
International Journal of Engineering Trends and Technology Volume 73 Issue 11, 280-294, November 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I11P120 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Performance Comparison for Anomaly Detection Using

System Level Traces on Dynamic Utilities

Goverdhan Reddy Jidiga1, Rambabu Bandi2, Malla Reddy Adudhodla3

1Government Polytechnic, Mahabubnagar, Department of Technical Education, Hyderabad, Telangana, India.
2Department of CSE, CVR College of Engineering, Ibrahimpattan, RR Dist, Telangana, India.

3Department of IT, CVR College of Engineering, Ibrahimpattan, RR Dist, Telangana, India.

1Corresponding Author : jgreddymtech@gmail.com

Received: 05 April 2025 Revised: 07 November 2025 Accepted: 15 November 2025 Published: 25 November 2025

Abstract - The adaptive information security combines a wide range of system security approaches and network security methods

to create a robust defense strategy. This approach integrates various system models to protect delicate, secretive, and

unrestricted information from unlawful admission, misappropriation, alteration, disclosure, interference, and devastation.

Anomaly detection is a focused process that investigates the system’s data while applications are running. This one suggests

utilizing open-source Linux log data for tracing, aimed at enhancing system performance. This innovative method leverages

tracing techniques available on the Linux environment, virtually drawing attention to promote performance in live mode. The

Key tools like BACKTRACE (bt), LTRACE, PTRACE, and STRACE enable tracing vital system data, including introspection of

function calls, investigation of library calls, signals, and a massive quantity of system calls from the stack memory for effective

anomaly detection. It is provided that an advocate for the application of adaptive anomaly detection techniques at the data level,

particularly through command-level tracing with modern tracing tools. The use of STRACE with LTTng gives better results, and

performance is reached beyond threshold levels due to the speed of LTTng (Linux Trace Toolkit Next Generation) compared to

other tracing possibilities on system utilities. The overall DR is marked as 99% in all combinations with low FPR compared to

individual process tracing tools, and also disclosed the ratio of performance stability about system profiling with dynamic (for

live user space) vs. static probes.

Keywords - Anomaly Detection, Stack, System Call, Strace, LTTng, Relative Difference, Return Address.

1. Introduction
The present introspection of anomalies while anomaly

detection is a specialized intrusive aspect of intrusion

detection and may be described as the progression of

categorizing patterns within certain data that deviate from

what is recognized as normal behavior [4]. Basically, the

anomaly reflects in intrusion in terms of scope, method of

detection, and nature of deviation for novel behavior.

Essentially, it involves using techniques to determine whether

there are security violations in programs by establishing a

standard model that reflects normal user or system behavior.

It subsequently looks for actions that significantly diverge

from these established norms. For instance, consider a

scenario where a low-income farmer receives unusually high

electricity bills or unexpected tax notices, and this would be

an anomaly. In everyday life, recognizing such anomalies in a

person's behavior can be quite challenging, as it requires long-

term observation of their usual patterns to identify any unusual

actions. This raises the question of how it can effectively

detect these anomalies in real-time applications, highlighting

the importance of systematic learning and practical

implementation in this field. Anomaly detection in the live

introspection at the system level is a crucial aspect of detecting

behavioral actions due to the latest malicious penetrations into

the applications, which generate huge log profiles. As per

virtual introspection of running processes on the system

evades anomaly in this article is actually defined as identifying

patterns in specific datasets that deviate from established

normal behavior. This approach allows us to determine

whether security violations are present within programs by

creating a standard model of typical behavior for users or

systems and detecting deviations from this model. Identifying

anomalies in everyday human behavior is challenging, as it

requires ongoing observation over time to discern unusual

patterns. Therefore, detecting such anomalies in real-time

applications necessitates a methodical approach to learning

and analysis.

1.1. Concrete Anomaly Detection

The elementary anomalies are associated with the

inventive data activities and are constructed on their

incidences or process material; they can be categorized into

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

281

three types of abnormal patterns (anomalies) as illustrated in

Figure 1.

1. Individual-based anomalies (point-based) are shown in A

and C of Figure 1.

2. Contextual anomalies established on substance matter,

represented in B of Figure 1.

3. Group abnormalities driven by distinct incidences or

uninterrupted data (combined-based) as seen in left in A

of Figure 1.

Point anomalies refer to individual instances that do not

conform to the expected pattern, while collective anomalies

involve larger groups of data that deviate from the norm. In

some instances, particularly those related to specific subjects

like time series and real-time control, highlight anomalies

within their context [12, 13]. All types are depicted in Figure

1. Traditional algorithms used to identify these abnormalities

have been notably ineffective, often leading to a high False

Positive Rate (FPR) found in [2, 3].

Fig. 1 Interpretation of present anomalies [12, 13]

1.2. Problem Statement and Contribution

An Anomaly Detection System (ADS) is not impervious

to genuine threats due to the constantly evolving structure of

anomalies and the possible injection of malicious code into

applications. Such attacks can potentially cause significant

harm to critical infrastructure applications. To effectively

address and mitigate anomalies at various data levels in

relation to the context of application, it has been witnessed that

utilizing standard tracing techniques of Linux alongside

enhanced LTTng can utilize correlated techniques to present a

more effective approach to anomaly detection, enhancing the

classification of anomalies according to the utility’s needs.

Hence, in this article, the main contribution is an innovative

approach by merging the forensic introspection facilities

extracted from the virtual running process with the help of

strace and LTTng instruments [14, 16, 17]. This work

recommends two schemes, along with a comparison that

includes a hybrid approach. The proposed schemes, STRACE

Line and LTTng Lines, are elaborated on in the following

sections. This contribution will fulfill the outcome goals by

using lightweight tracing and gradually enhance the

performance by the proposed sequence, implemented as data

collection, extraction of required data, and detection of

anomalies, done after various filtering techniques.

Feature-X

F
ea

tu
r

e
-Y

B
Contextual Anomaly

Point Anomaly

Collective Anomaly
A

C

Anomaly/Outlier

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

282

2. Related Works
In the earlier work, the scope is limited to statistical

approaches, but indefinite causes of anomaly root labels

degrade its performance due to the dynamic nature and the

complexity; hence, in this work, the process to enhance the

maximum performance potentially while the system is

running is considered. This content is elaborated on in a

discussion on prior research focused on anomaly detection,

utilizing both tracing techniques at the command level and

introspection of application levels, presented with clear

benefits and drawbacks. This approach primarily employs

various tracing techniques available on the Linux platform,

including BACKTRACE, PTRACE, STRACE, and

LTRACE. These emerging methods are instrumental in

extracting vital system data from stack memory for anomaly

detection. They prove beneficial in scenarios such as coding

exploits at the programming level, debugging running

applications, and conducting program tests. Within the realm

of scope in detection of anomalies, various benchmark

datasets used by people working in this kind of work contain

introspected data from system context, like function calls from

user space, also system calls and library calls from the entire

memory space, mostly prefer live source datasets. The latter

significantly enhances online anomaly detection and is

particularly valuable for debugging and testing applications.

A concise review of the detection of anomalies using

various developed tracing techniques at the level of basic data

of the system is given here first. In this method, the detection

process utilizes data sourced from the stack. Analysts may

apply tracing tricks or employ other tools, which fall into

various categories: Stack-based [1-3], Function call-based [1,

8], System call-based [5, 6], PC-based (return address) [1],

Library call-based, and additional methods. Some analysts

have also suggested leveraging machine learning approaches

to identify anomalies at the system data level, utilizing similar

data sets previously established in benchmark sets.

Many analysts have developed several methods for

detecting anomalies in system data, often focusing

predominantly on system call data. With tracing information

viewed as an additional layer, it combines system calls and

function calls into a sequential arrangement that can assist as

a basic set for training to identify unusual activity. In real-time

system environments, the high volume of generated system

calls can lead to overhead during training and testing

exercises. Therefore, it is essential to control data based on

necessity while monitoring applications and coding to observe

any anomalous behavior.

Some exclusive uses of system calls have encountered

failures in specific situations, particularly when debugging

and testing real-time applications. This occurs because all

system calls and their addresses are flagged as anomalies in

online monitoring. To address this issue, a novel approach is

necessary, which involves analyzing the relative differences

between return addresses. This method proves beneficial for

applications that need to load new memory addresses

efficiently. The control transfer technique is implemented to

find different malicious attacks, but it is found that excessive

use of resources delays performance [1]. The limited context

of using system call monitoring using traditional modeling can

cause a long training period and a drastic occurrence of

impossible paths [2, 3]. The modeling nature of system calls

with a novel HMM, window-based, N-gram approach is

followed by suffering from high FPR, and also a negligible

preference [5, 6]. Almost for the first time, strace was utilized

to enhance the detection of anomalies working with the UNM

dataset, but lacked in finding the necessity of training time,

which affects performance due to missing FPR chains [7]. On

the other hand, working with log files in Windows tracing by

strace and PIN tools slows down the process of function calls,

which can vary with the Linux strace utility [8]. The

traditional introspection of system calls and static

participation of sequence enumerated with hamming distance

is also getting attention of peak FPR and convergence time

loads hanging on searching lookup tables [11].

In some contexts, working on the LL-MIT dataset may

attract more attention to the detection of anomaly, but

impossible paths exploits cause, if defined more mimicking

attacks, also alarm unauthorized control paths indicate a round

of 100% FPR and succeed in DR improvement [9]. The use of

UNM PS context also works well in the detection of

anomalies, in case of no mis-classification, in this FPR can be

reduced well, but finding sequence paths or control paths can

detect alarms 100% in mimicry attacks if found lazy

classification [10]. New artificial investigation of system calls

tracking introduced for both bagging cases with the help of

trace compass and LTTng extracted tremendous outcomes,

leading to a performance-based detection of anomalies by

means of different machine learning types [14].

The LTTng was incepted from dual trace options with

deployment of various random and dynamic mechanisms

applied to the process to extract the huge data, and also

analyzes the real-time performance [16, 17]. The custom trace

models enveloped for various cross platforms to extract the

potential patterns from the stored database using a generic

method [18]. Various real kinds of applications such as server

logs, network logs and web logs after extraction of process

data dynamically and also consider critical paths to exhibits

the performance [20, 21] and also embedded real time

application on distributive architecture environment without

LTTng to enhance the performance using master-slave

synchronization process may time consuming and trace points

to be insert, but performance is better as overall [19]. The

proposed method can follow the dual collection of log data

and extract the unique logs and sequence paths to gain the

performance with low time complexity compared to [20]. The

dual modes of methods (non-intrusive and intrusive)

implemented through live introspection of system calls in

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

283

virtual mode can ensure full stack results, and only the

overhead indicated in the intrusive method may be due to the

applications [15].

3. Materials of Proposed Anomaly Detection
This segment contributes to the STRACE methodology.

The recommended effort for abnormality recognition and its

accompanying prototypical is illustrated in Figure 2 and

elaborated upon in the structure of Figures 4 and 5. It

encompasses two key junctures: the determined size of the

Training phase, fixed before classification, and the decision-

making step of identifying kind anomalies during the Testing

phase. All through the Training phase, the steps include

extracting control data from the system, requisite data pre-

processing is carried out on generated data, then fabricating

the datasets which list the Return Address (RAi) and generate

sequences between Function Calls (FCSi), and packing these

in defined tables. The classification phase ensures the

involvement of the testing phase, repeating the first dualistic

training steps, generating the novel data sets (new Return

Address RAj and new FCSj with updated copy) from attacker

exploits using any payloads, and then comparing both old and

novel tables to identify anomalies using a defined threshold.

System calls are gathered using various tracing techniques in

Linux. The total number of system calls and their

corresponding program counter values, referred to as RA

(return addresses), are integrated through tools like ltrace,

ptrace, and ptrace. Additionally, library trace (ltrace) is

employed to extract library function-related calls into the L set

separately. The pre-processing stage focuses on identifying

repeated addresses that occur in succession, which could lead

to confusion. This redundant addressing is then removed, as

repetitive system calls alone are not problematic; rather,

consecutive calls can complicate the formation of the Return

Address Path (RAP) and help mitigate issues related to

Impossible Path Exploits (IPE).

3.1. Comparison Operation

In this, the method is adapted based on a probe-based

approach where modules of attacker’s snapshots are tested in

non-legitimate mode, then after extracting updated datasets to

define the kind of anomalies, illustrate a variety of attack

possibilities, and organize these datasets into tables. Next, this

will go for finding the variation by comparing the original

datasets of training and the updated datasets of the testing

phase generated from both modes of running.

Fig. 2 Proposed ADS overview (Model-1)

Testing Phase

Extract the system’s data

Construct the FCS (VP) Table

Pre-Processing

Construct the RA Table

Detection on Threshold (Τ)

Process

Extract the system’s data

Pre-Processing

Construct the New RA Table

Construct the New FCS (VP) Table

Compare the Training and Testing tables

Update the Base Tables

L
eg

it
im

at
e

M
o

d
e

N
o

n
-L

eg
it

im
at

e
M

o
d

e

Anomaly

Training Phase

Select the Exploit Payload

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

284

Fig. 3 Max () function usage in datasets consolidation

Fig. 4 The recommended prototype model-1 of the operational scheme, Datasets pulling out and RD set abnormalities are detected when a non-

legitimate run (right 4 line) and (left 1, 2, 3 vertical lines supposed as authentic or legitimate)

Backtrace Ptrace Strace Ltrace

Function calls System calls System calls Library calls

Select F
max

 (F
B
,F

P
)

Pre-Processing

Dataset (RAP)

Datasets (F, S, L)

Select S1
max

 (P,S) Select S2
max

 (S,L) L

Select S3
max

 (S1, S2)

A
tt

ac
k
ed

 m
o
d
e

o
f

ex
ec

u
ti

o
n

P

ar
en

t

C

h
il

d

 fork ()

Child_end

 Attach Child

main ()

 ptrace ()

 Create Child

 Extract System

Calls and its return

addresses Extract RA of

Function Calls

 backtrace ()

 Consolidate the datasets RA sets from backtrace(), ptrace(), bt with rdynamic, ltrace, strace

 Use backtrace (bt) along with

rdynamic option in GDB

Run the test programs in GDB

debugger
 Select the Linux

command

Extract return addresses of function calls

and dynamic libraries

Use trace tool::

LTRACE, STRACE

Find the size of RA sets and RD sets

 Calculate the ratio of reduce the size of dataset

Create the RD set through relative differences between return addresses

Extract return addresses of

System calls and Library calls

Create all datasets again in non-
legitimate mode

Compare the datasets of legitimate
and non-legitimate runs Notify the Anomalies

1
3

2
4

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

285

For each iteration for each instance i=1 to k of the dataset

from RAs extracted from phase during training, and likewise

for each instance of j=1 to k updated from the dataset (RA set)

during exploit mode in testing, it is indisputable to substitute

R using the assortment variable F during the implementation.

𝑀(𝑅𝑖 , 𝑅𝑗) = ∑ 𝐷𝑘(𝑅𝑖 , 𝑅𝑗) 𝑊ℎ𝑒𝑟𝑒 𝐷𝑘(𝑅𝑖, 𝑅𝑗) =𝑛
𝑘=1

{
≥1,𝑖𝑓 𝑅𝑖≠𝑅𝑗 ∴𝐴𝑛𝑜𝑚𝑎𝑙𝑦

=0 ,𝑖𝑓 𝑅𝑖=𝑅𝑗
 (1)

Where the term M signifies the functioning of the

similarity (Match Function), R stands for a generated return

address, the difference is annotated by D, which designates an

alteration, and |D| depicts the threshold, where a value of zero

is not considered an anomaly, while any non-zero value is

treated as such. In comparing RAP datasets, it is decided to

use the resemblance function from COSINE to assess the

overall status of anomaly occurrences. This function also

requires the bitwise XOR of the return addresses prior to the

comparison. Next, both phases of the datasets are needed to

match in order to show the evidence of anomalies by

association. Here, with each i from 1 to n in the P1 (RAP set)

recorded for the duration of training, we will then assess each

i from 1 to n in the same line of the P2 (RAP set) through the

detection line (testing).

𝐶𝑂𝑆𝐼𝑁𝐸(𝑃1, 𝑃2) =
𝑃1∗𝑃2

||𝑃1||.||𝑃2||
=

∑ 𝑃1𝑖∗𝑃2𝑖
𝑛
𝑖=1

√∑ 𝑃12𝑛
𝑖=1 ∗√∑ 𝑃22𝑛

𝑖=1

. (2)

Let us take an evaluation with an example of one of the

outcomes:

RAP (P1) = {

==> 8049471 ==> 80493ec ==> 8049399 ==>

8049353 ==> 8048f14 ==> 8048f19 ==> 8049365

==> 80493b3 ==> 80493f9 ==> 8049631 }

= {7, 4, 6, 0, 14, 3, 5, 12, 0, 1}

RAP (P2) = {

==> 8049471 ==> 80493ec ==> 8049399 ==>

8049353 ==> 8048f14 ==> 8048f19 ==> 8049365

==> 80493b3 ==> 80493fe ==> 8049702 }

= {7, 4, 6, 0, 14, 3, 5, 12, 7, 0}

Then the evaluation of the cosine function is as follows

COS [P1,P2] =

(7*7+4*4+6*6+0*0+14*14+3*3+5*5+12*12+0*7+1*0)/

((72+42+62+02+142+32+52+122+02+12)0.5 *

 (72+42+62+02+142+32+52+122+72+02)0.5)

 COS [P1,P2] = (475) / ((476)0.5 * (524)0.5)

 COS [P1,P2] = (475) / (21.817 * 22.891)

 = 475/499.41 = 0.95

The interpretation of anomaly based on Cos (t) = 1 if it is

a probable value, No RAP anomaly, else anomaly. The RAP’s

primary objective is to uncover exploits related to impossible

paths and mimicry attacks. In the example above, an anomaly

has been detected; however, the data shows a 95% similarity.

This approach utilizes cosine similarity to verify the ratio of

anomaly occurrences during testing.

3.2. Max () Function and Pre-Processing

The Max() function plays a crucial role in validating lists

of similar data gathered through various tracing techniques. Its

primary purpose is to identify and select the list with the

highest number of instances, which is referred to as Max. The

instance count is demonstrated in Figure 3. In this proposed

work, the Max() function is essential for maximizing the

assortment and total of all calls mined from the process control

running data; subsequently, it has been produced.

Additionally, the Fmax(FB, FP) function has been utilized to

enhance the number of return addresses for calling functions.

Here, FB represents the function calls obtained from the

backtrace method, while FP denotes the return addresses of the

function calls derived from the ptrace() tracing technique.

In this article, the approach is more concise by taking

various introspections and their combinations in command

mode as well as experimental mode, shown in Figure 4, and

also the hybrid mode of the above method, shown in Figure 5,

and the adorned technique used with a combination of strace

and LTTng for the extraction phase of the proposed model.

This kind of contributions of experiments basically exhibits

the internal behavior of cyber-physical systems to find the

deviation from external attacks, system failures by vulnerable

injection, and dynamic changes through external fraudulent

command activities. The basic extraction tool STRACE

utilizes the PTRACE concrete tool implicitly, but only the

outcomes of traced data are different for each one. Similarly,

LTTng operates externally on the Linux platform, serving as

a lightweight tool with minimal complexity.

4. Proposed Experimental Model
The extended work with STARCE, excluding LTTng, is

divided into two key phases, as illustrated in Figure 4. The

training phase follows a sequence of steps aligned with the

vertical lines labeled 1, 2, and 3. These steps include

extracting system control data, consolidating the data,

applying the Max () function for pre-processing, and

constructing the datasets, which incorporate relative deviation

(difference of addresses) calculations and hash tables for the

RD set. The probing mode of detection starts with the fourth

line to find the anomalies through injection or penetration kind

exploits that were taken artificially.

This phase involves the integration of non-legitimate

inputs, using the same vertical steps (1, 2, 3) from the training

phase, albeit in the presence of an attack. During this phase,

new datasets are created, hash tables are constructed, and both

tables are compared to detect anomalies based on a set

threshold. This methodology has been developed through a

series of detailed steps outlined in the succeeding sections.

The control data of the system is extracted using various

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

286

tracing options available on the Linux platform, as elaborated

in Figure 3 and detailed in Figure 4. Specific tools, such as the

rdynamic and ‘bt’ options available in the GNU Debugger

(GDB) for tracing, are utilized in this task. While the tracing

option ‘bt’ method is not unswervingly instigated in the mock-

up programs, it also serves as a validation tool to ensure that

the control data is extracted accurately from the simulated

programs. The dynamic option is instrumental for tracing

control data generated by dynamic calls during program

execution. The data extraction includes register statistics,

system call numbers, names, timing, and time complexity as

part of system call information, as well as the return addresses

of all calls and details of various other calls. For the purpose

of this study, this work focuses on system call numbers and

their corresponding return addresses. Data consolidation is

achieved using the Max() functions, as discussed in the

previous section.

In this process, similar data points are consolidated for all

return addresses (RAs) associated with system calls and

library calls. Function call addresses are inherently included

in the RA set. However, separate datasets are created

specifically for system calls and library calls. The peer group

of system calls gathered from STARCE is verified with basic

tracing options embedded in LINUX, and STRACE is a

supplementary configured segment to extract the system calls

with substantial performance, but only issues misfortune with

additional overhead. The STRACE with LTTng hybrid model

is presented as the intersection of a unique system calls

collection shown in Figure 5, a basic ptrace collection is

shown in Figure 6, and an additional exclusive trace collection

is shown in Figure 7, separately from STRACE. As usual, the

LTTng collection process has proceeded with babeltrace2 for

analysis, including several steps depending on the user or

kernel trace.

Instrumentation Module Probing Module

Fig. 5 Recommended prototype model-2 (Hybrid Mode) for the operational scheme of STRACE, LTTng, and their combination

Probing

Exploit

COMMIT System Calls

Static Dynamic

NI

DETECTION MODULE

Static

I

LTTng

STRACE

+
L ՈS

S

L

COMMIT System Calls

Notification of Anomaly

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

287

Fig. 6 The simulation program's output shows one of the snapshots on the Linux platform to demonstrate the RDs for Model-1

Fig. 7 Trace data statistics example for Model-1 (STRACE flow)

The pre-processing phase focuses on minimizing the

control data within the system by pinpointing duplicate return

addresses. These duplicates are then separated into distinct

datasets for future application if necessary. This pre-

processing approach offers a notable improvement over

existing methodologies that simply rely on repeated system

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

288

call numbers within datasets for experimental purposes. The

proposed method highlights that system calls can occur

multiple times, basically through sibling-type utilities in

Linux, entering kernel space from user-space with various

return addresses. As a result, achieve a collection of unique

return addresses in the datasets created. The only repetitions

to be eliminated are from the main () and _init () functions in

the extracted data. Once the key steps of pre-processing are

completed, focus on the arrangement of the working structure

for the finalized datasets. Further instrumentation

procurement can generate uniqueness of RAs, which may be

formed from the huge RA set initially, while keeping the SC

set separate, and an exclusive LC set for next consolidations.

The generative FCS or RAP paths are fabricated uniquely

from a collection of tracing points (RAs) drawn from a stack

of memory. Notably, the quantity of paths in sequence

generated is kept at least count initially to test the evaluation,

then follows the variation in sequence as thousands of return

addresses can potentially create even more paths. To manage

this complexity, the model focused on an average sequence

size of 10 (i.e., grams of return addresses) initially extracted

from the RA set, facilitating the construction of an optimally

sized RD set with ease. The return addresses will form the

Relative Differences (RD) resulting from the consolidated

Return Address (RA) set. This finalized RD set plays a vital

part in the testing and debugging stages of programs as well

as applications. In this section, the model will elaborate in

more detail about the method for preparing the RD set. The

primary objective of the RD is to streamline the dataset,

minimizing the excess timing computation that comes with

generating thousands or even lakhs of control data points,

which can be burdensome. Additionally, it is proposed to

utilize hash construction for the RD set to further decrease the

data size; however, this introduces a computational overhead.

Consequently, the testing process will be conducted in

parallel, comparing results. The procedure adapted in training

for the recommended system tracks the steps in the mode of

legitimate control in order from 1 to 3, allowing us to generate

authentic datasets for the supplementary phase of testing. In

contrast, the assessment of this perception transpires under a

non-legitimate control mode using the mock-up programs, as

well as taking Linux dynamic utilities sourced from

commands. During this testing phase, new datasets will be

created following the intervention of attacks on programs and

applications, allowing deviations to be compared between the

training and testing datasets, as previously explained. The

initial phase of the proposed work involves the extraction of

control data, illustrated in Figure 4, which provides an

additional model to support thorough evaluation and

implementation through methods such as rdynamic, system

trace-STRACE (which details system calls), BACKTRACE

(bt in GDB), for process tracing use PTRACE, and library

trace LTRACE (to track system calls and library calls) all are

fine recognized procedures for collecting system statistics on

LINUX platforms. As shown in Figure 4, return addresses

from all dropping calls are compiled from several tracing

combinations and techniques, such as the backtrace method,

which offers a subgroup of ptrace calls that contain both

function calls and system calls. This scheme syndicates

dynamic and BT (backtrace), which helps to mine the function

calls of libraries that made entry into the stack drop an inline

return addresses. The snapshot of collecting trace points is

shown in Figure 6 and elaborates on the process of generating

the RAs, modified RAs, and RDs for the evaluation of

accurate results, and shows the finding procedure of RDs.

4.1. Relative Difference Between Unique RAs

The extraction of RAs from the call stack during the

training phase needs to be mapped to their modified

counterparts. These modified addresses accurately help

compute the unique relative differences between the return

addresses, which are consolidated uniquely.

Let us describe a group (set) of RAs as follows:

Return Address (RA) set =

 {RA1, RA2, RA3, RA4, ..., RAn-1, RAn}.

From the above basics, find the RD set (Relative

difference set) as follows:

RD set = {|RA1-RA2|,|RA2-RA3|,..........|RAi-R(Aj|}

For corresponding pairs.

Here are 4 techniques to estimate the RDs.

1. From the 1st address generated (This Return address may

be from _Init, or Main() functions):

Ex: RD set= {|RA1-RA2|, |RA1-RA3|,..........|RA1-RAj|}.

2. By using fabricated (custom) RA: This is an input option

provided by the user during input.

3. Ex: Input is assumed from User as UIx= 0xf25f643f or

0xf25f643

Compute RD set= {|UIx –RA1|,| UIx –RA2|,.......| UIx -

RAj|}.

By using a conceptual (base) address:

Ex: Address Base is AB1 = 0xffffffff or 0xfffffff

Compute new RD set=

{|AB1 –RA1|,| AB1 –RA2|,...| AB1 -RAj|}.

4. Also by Consecutive addresses (Relative neighbor pair):

Ex: Compute new RD set =

{|RA1-RA2|, |RA2-RA3|,............|RAi-RAj|}.

Finally, the RD set can be minimized as a required ratio

by following the approach:

|∆| =
𝑆𝐷[𝑆(𝑅𝐴𝑠𝑒𝑡)−𝑆(𝑅𝐷𝑠𝑒𝑡)]

𝑆(𝑅𝐴𝑠𝑒𝑡)
∗ 100 (3)

The value of |Δ| signifies the proportion adjustment in the

RD set, by the relative difference set the RD set is signifying,

SD designates the variance factor among the RD set and the

RA set, and the size is given by S. The process for computing

the comparative variance and the proportion of deviations

from the RA set to the RD set is outlined after the part one of

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

289

the Figure 4 shown in next Figure 6, with an illustrative

example provided that shows the relative difference computed

from the neighbor pair addresses transitioning from the RA set

to the RD set, and vice versa. This section delves into the

proposed work, detailing the algorithms, flowcharts,

suggested models or techniques, and other associated efforts

[1, 6]. The RD table contains the unique difference RDs, and

further to reduce the size, a step was implemented to

manipulate the part by incorporating a hash function (XOR) to

the final RD table, and a new table H[RD] was constructed to

store the hash digests basically in sequence, preferably in

ascending order. This approach emphasizes the consideration

of relative differences, offering an effective means to detect

anomalies in malicious control data sourced from infected

applications, particularly when integrating new addresses into

memory segments.

The proposed hybrid work was recommended in Figure

5: here, the instrumentation model (Model-2) is separated

from the probing module. These modules can work

independently of each other, and comparison is extracting the

invocation of anomalies. The instrumentation module focuses

on the extraction of control information using STRACE and

LTTng, where each can work in different lines, and a

combination method is proposed in the intersection module to

consolidate the exact number of system calls to be traced. It is

said that uniquely, both cannot work together, but the

introspection data can be consolidated to get more accurate

outcomes. Generally, in static mode, it runs in non-intrusive

mode to fix the list of system calls and RA data. At the same

time, a probing module is performed in intrusive mode, either

in static or dynamic, to conclude the exploited data, such as

RA and SC control information. Thereafter, the model can

notify the occurrences of anomalies using the module through

detection. The algorithm is presented in the following lines for

model-1, and similarly took exploits in combination of

STRACE and LTTng, probably trace in a more intrusive

manner, and finally commit the consolidation of system calls,

then proceeds to test the process.

Algorithm: for Extracting Relative Differences from the

output of basic Passtest:

1. Input: Set of Return Addresses (RA)

2. Convert: Transform the string representation of RA into

integer format.

3. Select RD Type: Choose the specific type of relative

difference to find from the options:

 {FRA (First RA), CRA (Custom RA),

 BRA (Base RA), RNRA (rel_NP_RA)}.

4. Invoke Function: relative difference ()` type to be invoked.

5. Perform Comparison: Execute the comparison process.

6. Return Value: Output the result in hexadecimal format

using `Hex()`.

7. Repeat Process: Continue steps 2 through 6 for each RA.

8. Store Results: Save the calculated relative differences into

the RD set.

Python algorithm for RD of return addresses from the

output of passtest

1 Ϊ: RA set (Input);

2 Integer Ϊ: string(RA);

// Convert the String to Integer format

3 Γ {FRA (First RA), CRA (Custom RA), BRA

(Base RA), RNRA (rel_NP_RA)}.

// RD type can be determined by selection

4 find_relative_difference ();

// exercise to find the difference between RAs

5 Φ Phase-1- Compare ();

6 Н Hex() // Form initial H: Values

7 Steps from 2 to 6 repeat.

8

9

10

Ṙ Fix RD set

H(RD) XOR (RD);

Φ2 Phase-2- Compare ();

5. Results and Discussion

The work presented here is divided into three main

sections. The first focuses on establishing the model and

outlining the design methodology needed to accomplish the

task. The second part discusses enhancements in Linux that

facilitate faster operations and the creation of both training and

testing datasets. Finally, the third section delves into anomaly

classification based on test outcomes. The findings in this

study stand out from prior research by emphasizing the

importance of dataset size reduction while analyzing the

comparison ratio of performance, such as True Positive Rate

(TPR), Detection Rate (DR) of various models, and the actual

implications of False Positive Rate (FPR) of identified probes,

as well as real.

This comparison leverages the impact of mimicry attacks.

In particular, the TPR (DR) measures how many interfering or

unidentified Return Addresses (RAs) from the system calls,

library calls, and also from function calls, (laterally with their

ordering of sequence, and RDs) are accurately identified as

abnormalities. Conversely, the False Positive Rate assesses

the count of non-intrusive return addresses (RAPs) that are

incorrectly flagged as abnormalities. Notably, the

recommended scheme achieves an accurate DR of almost

100% with zero FPR, which denotes above-average

performance; however, the false positive rate may increase

when new addresses are introduced into memory segments.

This proposed approach incorporates a comparative

analysis akin to earlier methods. The new RD dataset enhances

anomaly detection, proving beneficial for various applications

and program testing. The advantages of using return address

and RD control data are illustrated through a case study on

Linux utilities (PS) presented in the Table.1, particularly in the

context of mimicry attacks. The experiments conducted here

focus on standard and live system datasets collected from

various sources to understand the triggering of anomaly

detection, and also use the live system’s data from virtual

control. However, they approach the task as an offline method,

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

290

which poses a significant limitation for online applications

currently being tested, such as servers and network systems.

Notably, these methods face challenges from mimicry attacks,

as summarized in Table 1. To highlight this, let us examine

the first three methods that utilize the UNM or MIT dataset.

In these cases, mimicry attacks are not adequately recognized,

especially when contrasted with online methods that

incorporate real datasets. For instance, consider a scenario

involving an impression attack, also known as mimicry-based.

The demonstration of Mimicry Attacks is as follows:

The order or sequence of system calls is represented

normally as

SR = {℞1, ℞2, ℞3| ℞4, ℞5, ℞6, ℞7|℞8, ℞9, ℞10,

 ℞11|………….}

Later, if any chances of attacks, it is possible to alter the

structure and also do replicate the order, then it will turn

identical to the original:

Interpretation of Attack: ℞i
n, ℞j

n , ℞k
n-1, ℞l

n

{℞4, ℞5, ℞6, ℞7} = {(℞4, ℞5, ℞6, ℞7), (℞4, ℞5, ℞6, ℞7),

 (℞4, ℞5, ℞7), ℞4, ℞5, ℞6, ℞7… ℞4, ℞5, ℞6, ℞7}

(Or)

{ ℞4,℞5, ℞6, ℞7}= {(℞4, ℞5, ℞6, ℞7),(℞4, ℞5, ℞6, ℞7, ℞7),

℞4, ℞5, ℞6, ℞7…… ℞4, ℞5, ℞6, ℞7}

Where there ℞ is a system call, the attackers are diverting

the traditional sequence by appending the original old and

legitimate sequence prefix or postfix with one false sequence.

But sometimes this method is misclassified as FPR in case of

new generation of system calls, maybe variation within

version of OS, and dual kind system calls, such as

IOCTL_RETVAL, IOCTL_ARGS, DUP, SETEGID, DUP2,

SETGID, are mistakenly treated as anomalies and found

misclassified (false positives) despite being non-intrusive.

Meanwhile, certain intrusive system calls, such as

OPEN_EBUST, OPEN_EEXIST, and specific file control

calls like FCNTL_EAGAIN and FCNTL_EIO, may not be

flagged as anomalies (false negatives).

Additionally, without a clear understanding of relative

differences post-testing and debugging, there is a high risk of

generating a 100% false positive rate. This relative difference

remains constant regardless of the application’s loading state

within memory segments. The Model has been implemented

in two ways separately; Model-1 is a mixing of powerful

utilities verified at the command level, as well as programmed

to consolidate the system introspection data. Many of the

dynamic utilities were verified, but more elaborated on PS,

along with a comparison of existing models developed based

on benchmark and live datasets shown in Table.1. The

traditional datasets took patterns of sequences formed with SC

numbers, but live sequence patterns were not disclosed well.

Table 1. Comparative analysis on a case study on PS utility benchmark vs live with RD and without RD, and the effects of performance

S.

no

Working

Dataset to

be tested

Contributed

work and Year

System

Calls

Count

W/o

Siblings

System

Calls

Count

With

Siblings

False

Alarms

Count

FAR

(FPR)%

Assaults

(Attacks)

Description of

Attacks and

Positive Notes

* With

proposed RD

(Subsequent

attack and

Stuffing

By Fresh EIP

Address)

1
PS from

UNM
[11] 1999 6144 0 0 Possible

Classified well, but

seq. grams with

mimicry attacks

TPR (ADR) =0

and FAR (FPR)

=100%

2
PS from

UNM
[6] 2001 10649 4505 42.3 Possible

More no. of attacks

but Classified well

TPR (ADR) =0

and FAR (FPR)

=100%

3
PS from

LL (MIT)
[6] 2001 36088 996 2.7 Possible Classified well

TPR (ADR) =0

and FAR (FPR)

=100%

4
PS from

MIT-LL
[9] 2006 4949 0 0

14 and

Possible

Classified with

FAR =0.0028,

TPR= 100% for

seq. Gram Mimicry

attacks may have

chances to exploit

This approach is

close to the

actual method,

but only

12 sequences

are shown,

and DR=0 and

FPR=100% with

RD.

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

291

5
PS from

UNM
[10] 2013 13399

Not

Shown
10 Possible

Avg. of TPR and

FAR shown,

Misclassified.

Possibility of

Mimicry attacks.

DR=0 and

FPR=100%

6

Virtual

Live

PS

Recommended

Approach-1
1357 156 0 0.08 Shown

Only Probe allowed

in User space, and

signals and DLLs

excluded

DR=99%,

FPR<=0.9 %

7

Virtual

Live

PS

Recommended

Approach-2
10318 5159 0 0

Shown in

(I) Mode

In this, only Probe

is allowed in User

Space and estimates

the possibility with

fewer frequencies.

In NI Mode

DR=100% and

FPR=0%

In I Mode

DR=98%

and FPR< = 2%

The existing developments are suffering from various

scripting attacks, which may not update the calling sequence

data, and found attacks also drop the data into an assumed

legitimate mode due to the same RA, and also unnecessary

system call data and system-level applications are burdened

with the generation of huge addresses. Hence, the solution is

adorned with a new concept of RD that may work accurately

to overcome the scripting attacks and mimicry attacks.

The new approach-2 is a hybrid model giving the best

results even in intrusive mode to disconnect the false alarms,

even stuffing with new EIP, and also sensitivity (DR) is

maximum with all thresholds. Also, it is found that maximum

system calls and patterns are generated from siblings of

existing, which may lead to false alarms, so uniqueness is best

for minimizing the live dataset. The performance of the

system is mainly dependent on the size of the datasets and

convergence time during working on the training and testing

modules, which are explained in Tables 2 and 3. Table 2

elaborates on the context of the size of generated data in

original, authentic size in non-intrusive mode (NI), non-

authentic (I-intrusive) size in intrusive mode, actual no. of

system calls with siblings, and actual errors found. Both live

datasets, RA and RD, are extracted through the I vs NI impact,

which can be observed in the % change of data size from NI

to I mode in order. Particularly, the PS utility has 10318

system calls in NI mode compared to 12227 in I mode by

probing at the user space. Also, it is observed that GREP and

FTP gives more change in file size due to the repetition of

more siblings’ calls. Table 3 presents the actual convergence

times, including CPU time (in Seconds) and Memory Usage

in MB, during Implementation (1: Strace, 2: LTTng).

The last column elaborates on the %C: Change using

Strace and LTTng, as well as the combination of the

intersection of models during the training and detection

phases. The approximate changes are maximum for LTTng

due to the application tool compared to the command-level

STRACE. The recommended hybrid model is showing worth

in finding less convergence time compared to similar

developments done in the past. Table 4 shows the performance

comparison of various utilities on the Linux live platform (a:

sensitivity-detection rate, b: False Alarm rate in %) calculated

overall up to finding the RD in non-malicious mode (NI-Non

Intrusive), and similar detection phase outcomes are depicted

in Table 5 for Intrusive mode (Non-legitimate) by elaborating

DR, FAR (FPR), along with accuracy, and pictorial

comparison is presented in Figure 8, which displays the

accurate outcomes by visually hybrid model plot showing best

with live dataset results.

Table 2. Legitimate and non-legitimate comparison of RD with file size change ratio using combination Models

(%change: during actual training and testing in order)

Name of

Utility

File size in

Original

File Size in

Authentic

Non-

Legitimate

No. of

System

Calls (L)

(NI)

No. of

System

Calls

(NL) or (I)

No. of

Errors

No of

RAs
RD (L)

RD

(NL)

%

Change

Netstat 1112 KB 32 KB 37 KB 112 224 8 214 24 KB 28 KB 15 & 16

Ping 4908 KB 73 KB 89 KB 243 486 9 271 61 KB 69 KB 22&11

TTY 741KB 3KB 5KB 106 182 5 134 1.5KB 2KB 66&33

PS 30186 KB 2046 KB 2200 KB 10318 12227 327 13547 1746KB 1725KB 24& 26

Tar 665 KB 112 KB 128 KB 390 425 24 408 97 KB 111 KB 15&19

LS 813KB 14KB 22KB 156 204 4 214 2.7KB 4KB 57&48

Grep 876 KB 14KB 25KB 178 208 5 231 2.7KB 4KB 78&48

Ftp 16510KB 14KB 24KB 610 782 4 726 3KB 5KB 71&66

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

292

Table 3. Estimated convergence time, CPU time (in Seconds), and memory usage in MB during Implementation (1: Strace, 2: LTTng), last column

elaborates the %C: change using strace and LTTng, and its combination of intersection of models during training and detection phase

Phase/

Method
Netstat Ping TTY PS TAR LS GREP FTP % C

%C

(S^Lt)

Method 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1and 2

C
P

U

U
sa

g
e

0
.0

0
1
6

0
.0

0
2

0
.0

2
0

0
.0

2
9

0
.0

0
3
1

0
.0

0
3
5

0
.0

3
0

0
.0

3
1
6

0
.0

0
1
9

0
.0

0
2
5

0
.0

0
1

0

0
.0

0
0
0

2

0
.0

0
0
0

2

0
.0

0
5
1

0
.0

0
5
8

2
6

3
1

2
8

%

ap
p

ro
x

.

M
em

o
ry

U
sa

g
e

2
0

8
7

2
1

4
7

2
1

8
7

3
0

7
6

1
8

8
6

2
1

5
6

5
0

1
2

5
3

1
6

4
8

5
3

5
2

8
7

4
8

4
6

5
2

6
1

1
9

8
7

1
8

5
7

3
2

1
3

3
7

2
0

4
1

4
8

4
4

%

ch
an

g
e

in

ap
p

ro
x

.

Table 4. Performance comparison of various dynamic utilities on Linux live platform (a: sensitivity-detection rate, b: false alarm rate in %)

calculated overall up to finding the RD in non-malicious mode (NI-Non Intrusive)

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP

Parameter→ a b a b a b a b a b a b a b a b

STRACE 100 0 100 0 100 0 100 0 98 7 100 0 100 0 100 0

LTTng 100 0 100 0 100 0 100 0 99 4 100 0 100 0 100 0

Hybrid Mode 100 0 100 0 100 0 100 0 99 5 100 0 100 0 100 0

Table 5. Performance comparison of various utilities on Linux live platform (a: Sensitivity-detection rate, b: false alarm rate in %) calculated in

overall up to finding the RD in malicious mode (I-Intrusive), generally user space introspection (* Combination)

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP

Parameter→ a b a b a b a b a b a b a b a b

STRACE 98 7 99 3 99 0 98 2 99 9 99 2 98 2 97 6

LTTng 99 5 99 2 100 0 99 2 99 8 99 2 99 1 98 3

Hybrid Mode* 99 5 99 2 100 0 9 2 99 8 99 2 99 2 98 4

Overall Accuracy* 100% 100% 100% 100% 100% 100% 100% 100%

Fig. 8 The DR vs FPR for performance comparison of various dynamic utilities on the Linux live platform

5.1. Analysis of Results and Discussion

All the results with performance metrics are evaluated

from trace findings, which were based on trace statistics

shown in Figures 7 and 9. Further, all the results related to

performance are to be explored well in the above tables with

some statistical comparison of existing frameworks. The static

mode of tracing system calls works offline and can help to find

modern malware penetrations and subsequently analyze the

potential dynamic anomalies in real-world applications, such

as web-based based are closely facing the issue of ransomware

attacks, which take control of the API and users’ privileges,

then expect ransom [15]. The main involvement of this theme

is to investigate the performance indication of numerous

permutations of tracing tools.

0

20

40

60

80

100

Netstat Ping Tty PS TAR Ls Grep FtpD
R

 (
S

)
an

d
 F

P
R

 (
F

A
R

)
--

--
--

>

Model with Utility ------->

STRACE DR STRACE FPR LTTing DR

LTTing FPR Hybrid Mode* DR Hybrid Mode* FPR

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

293

The proposed hybrid scheme exhibits unique RD, which

is the best kind of criteria to find any kind of anomaly in the

application execution, and found an injection of malicious

code snippets, penetration threads, and abnormal payloads.

From the hybrid model, we can also form the critical execution

paths to find more anomalies, but it can form virtual paths by

taking tracing return addresses from virtual address space,

which may incur additional overhead to store the paths, and

unique RDs are enough to enhance the performance shown in

the above tables compared to the idea of critical path

sequences [20]. The declarative events model encourages

specifying synthetic events in a trace model of two different

OS and exhibits the state information and performance of a

real application, but lacks the point of anomalies [18]. This

can be overcome by proposed models with unit anomaly by

invoking a single RA or RD between two consecutive RAs. It

is found that limited tracing platforms encouraged on

heterogeneous systems without LTTng are represented in a

lack of performance synchronization, and real-time embedded

systems can also consume a process; also, trace

synchronization and critical path extension are more difficult

[19].

Fig. 9 Trace data statistics for Model-2 for exclusive LTTng

The statistical tracing and machine learning are

implemented to detect the limited point anomalies, but the

sequence of anomalies in further extension is not feasible in

this method due to additional clustering overhead [21]. Hence,

this paper is able to show exclusive performance on direct

tracing with minimal consolidation of traced data, and

enrichment of the LINUX platform can overcome the various

kinds of anomalies observed in any kind of applications run

on the present platforms. The developed combination is an

enhanced scheme, as STRACE is quite fast due to its direct

interaction with the kernel and is more suitable for validating

notable performance and extracting the accurate semantics of

system calls, which are quantified.

6. Conclusion and Further Enrichment
The proposed contribution introduces innovative ways to

leverage the live control data from the system’s run, including

library calls, system calls, and function calls through an

innovative perception known as the comparative variance

among Return Addresses (RAs). This methodology proves to

be invaluable for debugging and testing applications.

Furthermore, it effectively reduces convergence time. By

utilizing Linux containers, it can intelligently observe

program execution behaviour and prototype the statistics

collected from the background of systems as a significant

feature of learning as dynamic knowledge. Lastly, a

comparative analysis of two developments reveals that the

strace tool has less overhead when paired with LTTng.

Observations may find that the results of performance

parameters may show that the variation depends on the

algorithm, hardware, and method of utilizing the working

tools.

From the past observations it is very difficult to trace the

threats in real world applications entertainment, networks,

system audits, social engineering, surveillances, transport

tracking and management and many due to abnormal updates

in structure of anomalies caused by bugs, updation failure,

failure in networks, and payload errors, but in critical mode

can able to trace errors or odd ones while in running of

applications. So, for further improvement in performance, it is

supposed to merge the machine learning adornments to LTTng

and STRACE materials, which can enrich the outcomes for

real-world applications. Also state that basic trace outcomes

are modeled with LTTng state transition, and extension

classification of anomalies through machine learning is

supposed to be suggested to extract high-level performance for

the dynamic context of real-time applications.

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

294

References
[1] H.H. Feng et al., “Anomaly Detection Using Call Stack Information,” 2003 Symposium on Security and Privacy, Berkeley, CA, USA, pp.

62-75, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[2] R. Sekar et al., “A Fast Automaton-Based Method for Detecting Anomalous Program Behaviors,” Proceedings 2001 IEEE Symposium on

Security and Privacy. S&P, Oakland, CA, USA, pp. 144-155, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[3] D. Wagner, and R. Dean, “Intrusion Detection via Static Analysis,” Proceedings 2001 IEEE Symposium on Security and Privacy. S&P

2001, Oakland, CA, USA, pp. 156-168, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[4] Debra Anderson, Thane Frivold, and Alfonso Valdes, “Next Generation Intrusion Detection Expert System (NIDES): A Summary,” SRI

International is an Independent, Nonprofit Corporation, pp. 1-47, 1995. [Google Scholar] [Publisher Link]

[5] Stephanie Forrest et al., “A Sense of Self for Unix Processes,” Proceedings 1996 IEEE Symposium on Security and Privacy, Oakland,

CA, USA, pp. 120-128, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[6] Eleazar Eskin, Salvatore Stolfo, and Wenke Lee, “Modeling System Calls for Intrusion Detection with Dynamic Window Sizes,”

Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01, Anaheim, CA, USA, pp. 165-175, 2001.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Surekha Mariam Varghese, and K. Poulose Jacob, “Anomaly Detection Using System Call Sequence Sets” Journal of Software, vol. 2,

no. 6, pp 14-21, 2007. [Google Scholar] [Publisher Link]

[8] Sean Peisert et al., “Analysis of Computer Intrusions Using Sequences of Function Calls,” IEEE Transactions on Dependable and Secure

Computing, vol. 4, no. 2, pp. 137-150, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[9] Darren Mutz et al., “Anomalous System Call Detection,” ACM Transactions on Information and System Security, vol. 9, no. 1, pp. 61-93,

2006. [CrossRef] [Google Scholar] [Publisher Link]

[10] Syed Shariyar Murtaza et al., “A Host Based Anomaly Detection Approach by Representing System Calls as States of Kernel Modules,”

2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Pasadena, CA, USA, pp. 431-440, 2013.

[CrossRef] [Google Scholar] [Publisher Link]

[11] C. Warrender, Stephanie Forrest, and Barak A. Pearlmutter, “Detecting Intrusions Using System Calls: Alternative Data Models”

Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344), Oakland, CA, USA, pp. 133-145, 1999.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly Detection: A Survey,” ACM Computing Surveys (CSUR), vol. 41, no.

3, pp. 1-58, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[13] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava, Intrusion Detection: A Survey, Managing Cyber Threats, Springer, Boston,

MA, pp 19-78, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[14] Iman Kohyarnejadfard et al., “A Framework for Detecting System Performance Anomalies Using Tracing Data Analysis,” Entropy, vol.

23, no. 8, pp. 1-24, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Thanh Nguyen, Meni Orenbach, and Ahmad Atamli, “Live System Call Trace Reconstruction on Linux,” Forensic Science International:

Digital Investigation, vol. 42, pp. 1-10, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Philippe Proulx, Tracing Bare-Metal Systems: A Multi-Core Story, The LTTng Project, 2014. [Online]. Available:

https://lttng.org/blog/2014/11/25/tracing-bare-metal-systems/

[17] Mathieu Desnoyers, and Michel Dagenais, “Lttng: Tracing Across Execution Layers, from the Hypervisor to User-Space,” Linux

Symposium, Ottawa, Ontario Canada, vol. 1, pp. 101-106, 2008. [Google Scholar] [Publisher Link]

[18] Florian Wininger, Naser Ezzati-Jivan, and Michel R. Dagenais, “A Declarative Framework for Stateful Analysis of Execution Traces,”

Software Quality Journal, vol. 25, no. 1, pp. 201-229, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[19] Thomas Bertauld, and Michel R. Dagenais, “Low-Level Trace Correlation on Heterogeneous Embedded Systems,” EURASIP Journal on

Embedded Systems, vol. 2017, no. 1, pp. 1-14, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Madeline Janecek, Naser Ezzati-Jivan, and Abdelwahab Hamou-Lhadj, “Performance Anomaly Detection through Sequence Alignment

of System-Level Traces,” Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, New York, NY,

United States, pp. 264-274, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Quentin Fournier et al., “Automatic Cause Detection of Performance Problems in Web Applications,” 2019 IEEE International Symposium

on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, pp. 398-405, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/SECPRI.2003.1199328
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+Call+Stack+Information&btnG=
https://ieeexplore.ieee.org/document/1199328
https://doi.org/10.1109/SECPRI.2001.924295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fast+Automaton-Based+Method+for+Detecting+Anomalous+Program+Behaviors&btnG=
https://ieeexplore.ieee.org/document/924295
https://doi.org/10.1109/SECPRI.2001.924296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+Detection+via+Static+Analysis&btnG=
https://ieeexplore.ieee.org/document/924296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Next+Generation+Intrusion+Detection+Expert+System+%28NIDES%29%3A+A+Summary&btnG=
https://www.csl.sri.com/projects/nides/
https://doi.org/10.1109/SECPRI.1996.502675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Sense+of+Self+for+Unix+Processes&btnG=
https://ieeexplore.ieee.org/document/502675
https://doi.org/10.1109/DISCEX.2001.932213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+System+Calls+for+Intrusion+Detection+with+Dynamic+Window+Sizes&btnG=
https://ieeexplore.ieee.org/document/932213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+System+Call+Sequence+Sets&btnG=
https://www.jsoftware.us/show-70-1092-1.html
https://doi.org/10.1109/TDSC.2007.1003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+Computer+Intrusions+Using+Sequences+of+Function+Calls&btnG=
https://ieeexplore.ieee.org/document/4198178
https://doi.org/10.1145/1127345.1127348
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomalous+System+Call+Detection&btnG=
https://dl.acm.org/doi/10.1145/1127345.1127348
https://doi.org/10.1109/ISSRE.2013.6698896
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Host+Based+Anomaly+Detection+Approach+By+Representing+System+Calls+As+States+Of+Kernel+Modules&btnG=
https://ieeexplore.ieee.org/document/6698896
https://doi.org/10.1109/SECPRI.1999.766910
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Intrusions+Using+System+Calls%3A++Alternative+Data+Models&btnG=
https://ieeexplore.ieee.org/document/766910
https://doi.org/10.1145/1541880.1541882
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+%3A+A+Survey&btnG=
https://dl.acm.org/doi/10.1145/1541880.1541882
https://doi.org/10.1007/0-387-24230-9_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aleksandar+L%2C+Vipin+Kumar%2C+J.+Srivastava%2C+Intrusion+Detection%3A+A+Survey&btnG=
https://link.springer.com/chapter/10.1007/0-387-24230-9_2
https://doi.org/10.3390/e23081011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+for+Detecting+System+Performance+Anomalies+Using+Tracing+Data+Analysis&btnG=
https://www.mdpi.com/1099-4300/23/8/1011
https://www.sciencedirect.com/journal/forensic-science-international-digital-investigation/vol/42/suppl/S
https://doi.org/10.1016/j.fsidi.2022.301398
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Live+system+call+trace+reconstruction+on+Linux&btnG=
https://www.sciencedirect.com/science/article/pii/S2666281722000798?via%3Dihub
https://lttng.org/blog/2014/11/25/tracing-bare-metal-systems/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lttng%3A+Tracing+Across+Execution+Layers%2C+From+The+Hypervisor+To+User-Space&btnG=
https://www.kernel.org/doc/ols/2008/
https://doi.org/10.1007/s11219-016-9311-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Declarative+Framework+For+Stateful+Analysis+Of+Execution+Traces&btnG=
https://link.springer.com/article/10.1007/s11219-016-9311-0
https://doi.org/10.1186/s13639-016-0067-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-Level+Trace+Correlation+On+Heterogeneous+Embedded+Systems&btnG=
https://jes-eurasipjournals.springeropen.com/articles/10.1186/s13639-016-0067-1
https://doi.org/10.1145/3524610.3527898
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Anomaly+Detection+Through+Sequence+Alignment+Of+System-Level+Traces&btnG=
https://dl.acm.org/doi/10.1145/3524610.3527898
https://doi.org/10.1109/ISSREW.2019.00102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Cause+Detection+of+Performance+Problems+in+Web+Applications&btnG=
https://ieeexplore.ieee.org/document/8990337
https://ieeexplore.ieee.org/document/8990337

