Volume 73 Issue 11, 280-294, November 2025
© 2025 Seventh Sense Research Group®

International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/IJETT-V73111P120

Original Article

Performance Comparison for Anomaly Detection Using
System Level Traces on Dynamic Utilities

Goverdhan Reddy Jidiga', Rambabu Bandi?, Malla Reddy Adudhodla®

!Government Polytechnic, Mahabubnagar, Department of Technical Education, Hyderabad, Telangana, India.
’Department of CSE, CVR College of Engineering, Ibrahimpattan, RR Dist, Telangana, India.
3Department of IT, CVR College of Engineering, Ibrahimpattan, RR Dist, Telangana, India.

!Corresponding Author : jgreddymtech@gmail.com

Received: 05 April 2025 Revised: 07 November 2025 Accepted: 15 November 2025 Published: 25 November 2025

Abstract - The adaptive information security combines a wide range of system security approaches and network security methods
to create a robust defense strategy. This approach integrates various system models to protect delicate, secretive, and
unrestricted information from unlawful admission, misappropriation, alteration, disclosure, interference, and devastation.

Anomaly detection is a focused process that investigates the system’s data while applications are running. This one suggests
utilizing open-source Linux log data for tracing, aimed at enhancing system performance. This innovative method leverages
tracing techniques available on the Linux environment, virtually drawing attention to promote performance in live mode. The
Key tools like BACKTRACE (bt), LTRACE, PTRACE, and STRACE enable tracing vital system data, including introspection of
function calls, investigation of library calls, signals, and a massive quantity of system calls from the stack memory for effective
anomaly detection. It is provided that an advocate for the application of adaptive anomaly detection techniques at the data level,

particularly through command-level tracing with modern tracing tools. The use of STRACE with LTTng gives better results, and
performance is reached beyond threshold levels due to the speed of LTTng (Linux Trace Toolkit Next Generation) compared to
other tracing possibilities on system utilities. The overall DR is marked as 99% in all combinations with low FPR compared to
individual process tracing tools, and also disclosed the ratio of performance stability about system profiling with dynamic (for

live user space) vs. static probes.
Keywords - Anomaly Detection, Stack, System Call, Strace, LTTng, Relative Difference, Return Address.

implementation in this field. Anomaly detection in the live
introspection at the system level is a crucial aspect of detecting
behavioral actions due to the latest malicious penetrations into
the applications, which generate huge log profiles. As per
virtual introspection of running processes on the system
evades anomaly in this article is actually defined as identifying
patterns in specific datasets that deviate from established
normal behavior. This approach allows us to determine
whether security violations are present within programs by
creating a standard model of typical behavior for users or
systems and detecting deviations from this model. Identifying
anomalies in everyday human behavior is challenging, as it
requires ongoing observation over time to discern unusual
patterns. Therefore, detecting such anomalies in real-time
applications necessitates a methodical approach to learning
and analysis.

1. Introduction

The present introspection of anomalies while anomaly
detection is a specialized intrusive aspect of intrusion
detection and may be described as the progression of
categorizing patterns within certain data that deviate from
what is recognized as normal behavior [4]. Basically, the
anomaly reflects in intrusion in terms of scope, method of
detection, and nature of deviation for novel behavior.
Essentially, it involves using techniques to determine whether
there are security violations in programs by establishing a
standard model that reflects normal user or system behavior.
It subsequently looks for actions that significantly diverge
from these established norms. For instance, consider a
scenario where a low-income farmer receives unusually high
electricity bills or unexpected tax notices, and this would be
an anomaly. In everyday life, recognizing such anomalies in a
person's behavior can be quite challenging, as it requires long-
term observation of their usual patterns to identify any unusual
actions. This raises the question of how it can effectively

1.1. Concrete Anomaly Detection
The elementary anomalies are associated with the

detect these anomalies in real-time applications, highlighting
the importance of systematic learning and practical

inventive data activities and are constructed on their
incidences or process material; they can be categorized into

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

three types of abnormal patterns (anomalies) as illustrated in
Figure 1.

1. Individual-based anomalies (point-based) are shown in A
and C of Figure 1.

2. Contextual anomalies established on substance matter,
represented in B of Figure 1.

3. Group abnormalities driven by distinct incidences or

uninterrupted data (combined-based) as seen in left in A
of Figure 1.

Point anomalies refer to individual instances that do not
conform to the expected pattern, while collective anomalies
involve larger groups of data that deviate from the norm. In
some instances, particularly those related to specific subjects
like time series and real-time control, highlight anomalies
within their context [12, 13]. All types are depicted in Figure
1. Traditional algorithms used to identify these abnormalities
have been notably ineffective, often leading to a high False
Positive Rate (FPR) found in [2, 3].

A
Point Anomaly <— (')
O
©
C’E) 8) 8C011ective Anomaly | % 78 ..‘ ..so ’. 0 .. A
c9§ 0 (R
o &)) o 0“ ’.?‘: ’0 o ¢
o® ' ?
o o H
® e o "
<+—— Anomaly ‘ @ Anomaly ‘
St
= P Contextual Anomaly
N 1 B
< v ‘
P — n |\ A | N
h'-i \“ Jl ({““ "},‘l “‘;“‘ A |’ \\. “'4" .‘ l ”1 | ‘ ” ’rf\ yl‘\
g *l-’l w v v \“"L “v I
< << ANOmaly/Outlier
T i<
. <

Feature-X

Fig. 1 Interpretation of present anomalies [12, 13]

1.2. Problem Statement and Contribution

An Anomaly Detection System (ADS) is not impervious
to genuine threats due to the constantly evolving structure of
anomalies and the possible injection of malicious code into
applications. Such attacks can potentially cause significant
harm to critical infrastructure applications. To effectively
address and mitigate anomalies at various data levels in
relation to the context of application, it has been witnessed that
utilizing standard tracing techniques of Linux alongside
enhanced LTTng can utilize correlated techniques to present a
more effective approach to anomaly detection, enhancing the
classification of anomalies according to the utility’s needs.

281

Hence, in this article, the main contribution is an innovative
approach by merging the forensic introspection facilities
extracted from the virtual running process with the help of
strace and LTTng instruments [14, 16, 17]. This work
recommends two schemes, along with a comparison that
includes a hybrid approach. The proposed schemes, STRACE
Line and LTTng Lines, are elaborated on in the following
sections. This contribution will fulfill the outcome goals by
using lightweight tracing and gradually enhance the
performance by the proposed sequence, implemented as data
collection, extraction of required data, and detection of
anomalies, done after various filtering techniques.

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

2. Related Works

In the earlier work, the scope is limited to statistical
approaches, but indefinite causes of anomaly root labels
degrade its performance due to the dynamic nature and the
complexity; hence, in this work, the process to enhance the
maximum performance potentially while the system is
running is considered. This content is elaborated on in a
discussion on prior research focused on anomaly detection,
utilizing both tracing techniques at the command level and
introspection of application levels, presented with clear
benefits and drawbacks. This approach primarily employs
various tracing techniques available on the Linux platform,
including BACKTRACE, PTRACE, STRACE, and
LTRACE. These emerging methods are instrumental in
extracting vital system data from stack memory for anomaly
detection. They prove beneficial in scenarios such as coding
exploits at the programming level, debugging running
applications, and conducting program tests. Within the realm
of scope in detection of anomalies, various benchmark
datasets used by people working in this kind of work contain
introspected data from system context, like function calls from
user space, also system calls and library calls from the entire
memory space, mostly prefer live source datasets. The latter
significantly enhances online anomaly detection and is
particularly valuable for debugging and testing applications.

A concise review of the detection of anomalies using
various developed tracing techniques at the level of basic data
of the system is given here first. In this method, the detection
process utilizes data sourced from the stack. Analysts may
apply tracing tricks or employ other tools, which fall into
various categories: Stack-based [1-3], Function call-based [1,
8], System call-based [5, 6], PC-based (return address) [1],
Library call-based, and additional methods. Some analysts
have also suggested leveraging machine learning approaches
to identify anomalies at the system data level, utilizing similar
data sets previously established in benchmark sets.

Many analysts have developed several methods for
detecting anomalies in system data, often focusing
predominantly on system call data. With tracing information
viewed as an additional layer, it combines system calls and
function calls into a sequential arrangement that can assist as
a basic set for training to identify unusual activity. In real-time
system environments, the high volume of generated system
calls can lead to overhead during training and testing
exercises. Therefore, it is essential to control data based on
necessity while monitoring applications and coding to observe
any anomalous behavior.

Some exclusive uses of system calls have encountered
failures in specific situations, particularly when debugging
and testing real-time applications. This occurs because all
system calls and their addresses are flagged as anomalies in
online monitoring. To address this issue, a novel approach is
necessary, which involves analyzing the relative differences

282

between return addresses. This method proves beneficial for
applications that need to load new memory addresses
efficiently. The control transfer technique is implemented to
find different malicious attacks, but it is found that excessive
use of resources delays performance [1]. The limited context
of using system call monitoring using traditional modeling can
cause a long training period and a drastic occurrence of
impossible paths [2, 3]. The modeling nature of system calls
with a novel HMM, window-based, N-gram approach is
followed by suffering from high FPR, and also a negligible
preference [5, 6]. Almost for the first time, strace was utilized
to enhance the detection of anomalies working with the UNM
dataset, but lacked in finding the necessity of training time,
which affects performance due to missing FPR chains [7]. On
the other hand, working with log files in Windows tracing by
strace and PIN tools slows down the process of function calls,
which can vary with the Linux strace utility [8]. The
traditional introspection of system calls and static
participation of sequence enumerated with hamming distance
is also getting attention of peak FPR and convergence time
loads hanging on searching lookup tables [11].

In some contexts, working on the LL-MIT dataset may
attract more attention to the detection of anomaly, but
impossible paths exploits cause, if defined more mimicking
attacks, also alarm unauthorized control paths indicate a round
of 100% FPR and succeed in DR improvement [9]. The use of
UNM PS context also works well in the detection of
anomalies, in case of no mis-classification, in this FPR can be
reduced well, but finding sequence paths or control paths can
detect alarms 100% in mimicry attacks if found lazy
classification [10]. New artificial investigation of system calls
tracking introduced for both bagging cases with the help of
trace compass and LTTng extracted tremendous outcomes,
leading to a performance-based detection of anomalies by
means of different machine learning types [14].

The LTTng was incepted from dual trace options with
deployment of various random and dynamic mechanisms
applied to the process to extract the huge data, and also
analyzes the real-time performance [16, 17]. The custom trace
models enveloped for various cross platforms to extract the
potential patterns from the stored database using a generic
method [18]. Various real kinds of applications such as server
logs, network logs and web logs after extraction of process
data dynamically and also consider critical paths to exhibits
the performance [20, 21] and also embedded real time
application on distributive architecture environment without
LTTng to enhance the performance using master-slave
synchronization process may time consuming and trace points
to be insert, but performance is better as overall [19]. The
proposed method can follow the dual collection of log data
and extract the unique logs and sequence paths to gain the
performance with low time complexity compared to [20]. The
dual modes of methods (non-intrusive and intrusive)
implemented through live introspection of system calls in

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

virtual mode can ensure full stack results, and only the
overhead indicated in the intrusive method may be due to the
applications [15].

3. Materials of Proposed Anomaly Detection
This segment contributes to the STRACE methodology.
The recommended effort for abnormality recognition and its
accompanying prototypical is illustrated in Figure 2 and
elaborated upon in the structure of Figures 4 and 5. It
encompasses two key junctures: the determined size of the
Training phase, fixed before classification, and the decision-
making step of identifying kind anomalies during the Testing
phase. All through the Training phase, the steps include
extracting control data from the system, requisite data pre-
processing is carried out on generated data, then fabricating
the datasets which list the Return Address (RAi) and generate
sequences between Function Calls (FCSi), and packing these
in defined tables. The classification phase ensures the
involvement of the testing phase, repeating the first dualistic
training steps, generating the novel data sets (new Return
Address RAj and new FCSj with updated copy) from attacker
exploits using any payloads, and then comparing both old and
novel tables to identify anomalies using a defined threshold.

System calls are gathered using various tracing techniques in
Linux. The total number of system calls and their
corresponding program counter values, referred to as RA
(return addresses), are integrated through tools like Itrace,
ptrace, and ptrace. Additionally, library trace (Itrace) is
employed to extract library function-related calls into the L set
separately. The pre-processing stage focuses on identifying
repeated addresses that occur in succession, which could lead
to confusion. This redundant addressing is then removed, as
repetitive system calls alone are not problematic; rather,
consecutive calls can complicate the formation of the Return
Address Path (RAP) and help mitigate issues related to
Impossible Path Exploits (IPE).

3.1. Comparison Operation

In this, the method is adapted based on a probe-based
approach where modules of attacker’s snapshots are tested in
non-legitimate mode, then after extracting updated datasets to
define the kind of anomalies, illustrate a variety of attack
possibilities, and organize these datasets into tables. Next, this
will go for finding the variation by comparing the original
datasets of training and the updated datasets of the testing
phase generated from both modes of running.

Testing Phase

Select the Exploit Payload

Extract the system’s data

Pre-Processing

T
Construct the New RA Table

Construct the New FCS (VP) Table

Process
Training Phase
1
|
o
Extract the system’s data ° '3
= 1 2
: i3
]
g 1
Pre-Processing E ' e
EA,
S
L Z
1
Construct the RA Table '
1
| :
1
Construct the FCS (VP) Table !
1
v

Compare the Training and Testing tables

Detection on Threshold (T) o @ @

Update the Base Tables

Fig. 2 Proposed ADS overview (Model-1)

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

Backtrace Ptrace Strace Ltrace
| I || |
v———— e — - - ——_— - F—_-—. - e —_———]
I I
Function calls System calls System calls Library calls
Select F (FB,FP) Select SI (P,S) Select S2 (S,L) L
______\’_____J
f
Select S3 (S1, S2)
Pre-Processing <
Datasets (F, S, L)
Dataset (RAP)
Fig. 3 Max () function usage in datasets consolidation
- =
5 =
5 O =
. :
1 2 3 'y,

Create Child

debugger

Run the test programs in GDB

ptrace ()

Attach Child i

backtrace ()

Extract System

Use backtrace (bt) along with
rdynamic option in GDB

l

Select the Linux
command

v

Use trace tool::
LTRACE, STRACE

Calls and its return

addresses

Extract RA of
Function Calls

Extract return addresses of function calls
and dynamic libraries

Extract return addresses of
System calls and Library calls

Attacked mode of execution

\4 y

[Consolidate the datasets RA sets from backtrace(), ptrace(), bt with rdynamic, ltrace, strace

—
1
1
™

v

Create the RD set through relative differences between return addresses

Y v

Create all datasets again in non-
legitimate mode

[

[Find the size of RA sets and RD sets] .
Compare the datasets of legitimate
v and non-legitimate runs
Calculate the ratio of reduce the size of dataset]

Notify the Anomalies]

Fig. 4 The recommended prototype model-1 of the operational scheme, Datasets pulling out and RD set abnormalities are detected when a non-
legitimate run (right 4 line) and (left 1, 2, 3 vertical lines supposed as authentic or legitimate)

284

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

For each iteration for each instance i=1 to k of the dataset
from RAs extracted from phase during training, and likewise
for each instance of j=1 to k updated from the dataset (RA set)
during exploit mode in testing, it is indisputable to substitute
R using the assortment variable F during the implementation.

M(R,R;) = Xi-1 Dy (R, R;)) Where D;(R,R;) =
=0,if Ri=Rj 1
=1,if Rj#Rj -Anomaly ()

Where the term M signifies the functioning of the
similarity (Match Function), R stands for a generated return
address, the difference is annotated by D, which designates an
alteration, and |D| depicts the threshold, where a value of zero
is not considered an anomaly, while any non-zero value is
treated as such. In comparing RAP datasets, it is decided to
use the resemblance function from COSINE to assess the
overall status of anomaly occurrences. This function also
requires the bitwise XOR of the return addresses prior to the
comparison. Next, both phases of the datasets are needed to
match in order to show the evidence of anomalies by
association. Here, with each i from 1 to n in the P1 (RAP set)
recorded for the duration of training, we will then assess each
i from 1 to n in the same line of the P2 (RAP set) through the
detection line (testing).

P1xP2 Y P1;*P2;

IPLILIIP2]] Jz?zlplz*\/z?:lpzz
Let us take an evaluation with an example of one of the
outcomes:

COSINE(P1,P2) =)

RAP (P1) = {
==> 8049471 ==> 80493ecc ==> 8049399 ==>
8049353 ==> 804814 ==> 8048f19 ==> 8049365
==> 80493b3 ==> 804939 ==> 8049631 }
=1{7,4,6,0,14,3,5,12,0, 1}

RAP (P2) = {
—=> 8049471 ==> 80493ec ==> 8049399 ==>
8049353 ==> 8048f14 ==> 804819 ==> 8049365
==> 80493b3 ==> 80493 fe => 8049702 }
=1{7,4,6,0,14,3,5,12,7,0}

Then the evaluation of the cosine function is as follows
COS [P1,P2] =
(7*7+4*4+6*6+0*0+14*14+3*3+5%5+12%12+0*7+1*0)/

((7PH42+6+02+142+32452+1224+-07+12)03 *
(72+42+62+02+1 42+32+52+1 22+72+02)0A5)
COS [P1,P2] =(475)/ ((476)"5 * (524)%%)
COS [P1,P2] =(475)/(21.817 * 22.891)
=475/499.41 = 0.95

The interpretation of anomaly based on Cos (t) =1 if it is
a probable value, No RAP anomaly, else anomaly. The RAP’s
primary objective is to uncover exploits related to impossible
paths and mimicry attacks. In the example above, an anomaly

285

has been detected; however, the data shows a 95% similarity.
This approach utilizes cosine similarity to verify the ratio of
anomaly occurrences during testing.

3.2. Max () Function and Pre-Processing

The Max() function plays a crucial role in validating lists
of similar data gathered through various tracing techniques. Its
primary purpose is to identify and select the list with the
highest number of instances, which is referred to as Max. The
instance count is demonstrated in Figure 3. In this proposed
work, the Max() function is essential for maximizing the
assortment and total of all calls mined from the process control
running data; subsequently, it has been produced.
Additionally, the Fmax(Fg, Fp) function has been utilized to
enhance the number of return addresses for calling functions.
Here, Fp represents the function calls obtained from the
backtrace method, while Fp denotes the return addresses of the
function calls derived from the ptrace() tracing technique.

In this article, the approach is more concise by taking
various introspections and their combinations in command
mode as well as experimental mode, shown in Figure 4, and
also the hybrid mode of the above method, shown in Figure 5,
and the adorned technique used with a combination of strace
and LTTng for the extraction phase of the proposed model.
This kind of contributions of experiments basically exhibits
the internal behavior of cyber-physical systems to find the
deviation from external attacks, system failures by vulnerable
injection, and dynamic changes through external fraudulent
command activities. The basic extraction tool STRACE
utilizes the PTRACE concrete tool implicitly, but only the
outcomes of traced data are different for each one. Similarly,
LTTng operates externally on the Linux platform, serving as
a lightweight tool with minimal complexity.

4. Proposed Experimental Model

The extended work with STARCE, excluding LTTng, is
divided into two key phases, as illustrated in Figure 4. The
training phase follows a sequence of steps aligned with the
vertical lines labeled 1, 2, and 3. These steps include
extracting system control data, consolidating the data,
applying the Max () function for pre-processing, and
constructing the datasets, which incorporate relative deviation
(difference of addresses) calculations and hash tables for the
RD set. The probing mode of detection starts with the fourth
line to find the anomalies through injection or penetration kind
exploits that were taken artificially.

This phase involves the integration of non-legitimate
inputs, using the same vertical steps (1, 2, 3) from the training
phase, albeit in the presence of an attack. During this phase,
new datasets are created, hash tables are constructed, and both
tables are compared to detect anomalies based on a set
threshold. This methodology has been developed through a
series of detailed steps outlined in the succeeding sections.
The control data of the system is extracted using various

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

tracing options available on the Linux platform, as elaborated
in Figure 3 and detailed in Figure 4. Specific tools, such as the
rdynamic and ‘bt’ options available in the GNU Debugger
(GDB) for tracing, are utilized in this task. While the tracing
option ‘bt” method is not unswervingly instigated in the mock-
up programs, it also serves as a validation tool to ensure that
the control data is extracted accurately from the simulated
programs. The dynamic option is instrumental for tracing
control data generated by dynamic calls during program
execution. The data extraction includes register statistics,
system call numbers, names, timing, and time complexity as
part of system call information, as well as the return addresses
of all calls and details of various other calls. For the purpose
of this study, this work focuses on system call numbers and
their corresponding return addresses. Data consolidation is
achieved using the Max() functions, as discussed in the
previous section.

In this process, similar data points are consolidated for all
return addresses (RAs) associated with system calls and
library calls. Function call addresses are inherently included
in the RA set. However, separate datasets are created
specifically for system calls and library calls. The peer group
of system calls gathered from STARCE is verified with basic
tracing options embedded in LINUX, and STRACE is a
supplementary configured segment to extract the system calls
with substantial performance, but only issues misfortune with
additional overhead. The STRACE with LTTng hybrid model
is presented as the intersection of a unique system calls
collection shown in Figure 5, a basic ptrace collection is
shown in Figure 6, and an additional exclusive trace collection
is shown in Figure 7, separately from STRACE. As usual, the
LTTng collection process has proceeded with babeltrace2 for
analysis, including several steps depending on the user or
kernel trace.

| Instrumentation Module

Probing Module |

-~

L
LTTng o o)
— I I
N 1
NI LOS Lisy Probing :
[— 1 A
'I' i Exploit :
' I
STRACE S y pommm—s i
L e Vo e Y_,
1 [| 1
Static : Static : : Dynamic :
[T R I
AN V2 ' _____ W_ _______ / -
1 1
COMMIIT System Calls : COMMIT System Calls :
[e e e e e e e e 1
[Eabalal 2ottt |
\ T
NI I 1 I
| I 1
v
DETECTION MODULE

Notification of Anomaly

Fig. 5 Recommended prototype model-2 (Hybrid Mode) for the operational scheme of STRACE, LTTng, and their combination

286

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

govardhan@ubuntu: ~/Desktop/security =5 i=NE3
File Edit View Terminal Help
%x*%xTHE RETURN ADDRESSES ARE::****%xx ~
f17 : 8049471 80493ec 8049399 8049353 804c1l59 8048f76 126b56
fi3 8049560 80493a6 8049358 804c159 8048f76 126b56 8048do1l
fis 8049631 €@493f9 80493b3 8049365 804c1l63 804876 126b56
fi9 8049702 80493fe 80493b3 8049365 804c1l63 8048f76 126b56
f20 80497d3 804940b 80493cO 8049372 804cl68 8048f76 126b56
f21 80498a4 8049418 80493cd 804937f 804cl6d 8048f76 126b56
f22 8049975 804941d 80493cd 804937f 804cl6d 8048f76 126b56
f23 : 8049a46 80493da 804938c 804cl72 8048f76 126b56 86048dO1l
f25 : 8049b17 804942a 80493df 804938c 804cl72 8048f76 126b56
MODIFIED ADDRESSES are:::
f17--> 8048176 804c159 8049353 8049399 80493ec 8049471
f13--> 8048176 804c159 8049358 80493a6 8049560
f18--> 804876 804cl1l63 8049365 80493b3 80493f9 8049631
f19--> 8048176 804c1l63 8049365 80493b3 80493fe 8049702
f20--> 804876 804c1l68 8049372 80493cO 804940b 80497d3
f21--> 8048776 804cl1l6d 804937f 80493cd 8049418 80498a4
f22--> 8048f76 804cl6d 804937f 80493cd 804941d 8049975
f23--> 804876 8604cl1l72 804938c 80493da 8049a46
f25--> 8048f76 804cl72 804938c 80493df 804942a 8049b1l7
RELATIVE DIFFERENCES OF RETURN ADDRESSES:::
f17--> ffffceld 2e06 ffffffba ffffffad ffffff7b
f13--> ffffceld 2e01 ffffffb2 fffffe46
f18--> ffffceld 2dfe ffffffb2 ffffffba fffffdc8
f19--> ffffceld 2dfe ffffffb2 ffffffbs fffffcfc
f20--> ffffceee 2dfe ffffffb2 ffffffbs fffffc38
f21--> ffffcee9 2dee ffffffb2 ffffffbs fffffb74
f22--> ffffcee9 2dee ffffffb2 ffffffbe fffffaas
f23--> ffffce04 2de6 ffffffb2 fffffo94
f25--> ffffcee4 2de6 ffffffad ffffffbs fffffol3
-

Fig. 6 The simulation program's output shows one of the snapshots on the Linux platform to demonstrate the RDs for Model-1

D pingl mj st-ps - Motepad
El ping-tt File Edit Format View Help
=] pingobj k time seconds usecs/call calls errors syscall
I i
E ps-it 81.87 8.ee8167 e 357 read
. 18.93 8.008839 a 192 6 stat6d
5] psobj
0 n a.e8 8.ee8080 e 7 write
a.e8 @.000000 a 362 2 open
Q re a.ea 8.eeep8e a 358 close
H ret a.ea 8. geeage a 1 execve
[retc~ a.e8 8.008080 a 1 time
£ sh-it @.e0 @.e00000 -] 2 lseek
D shobj a.ea 8.e00808 a 4 4 access
B she a.e8 8.ee8080 e 3 brk
) a.e8 @.000000 a 2 ioctl
| sshobj 9.00 ©0.000000) 6 readlink
5l stls a.ea 8. geeage a 3 munmap
E| st-ping 0.00 0.0000080 e 5 mprotect
E| st-ps e.ee @.e0ee80 -] 2 getdents
o a.ea 8.e00808 a 23 rt sigaction
= st-r-ls _S1g
B st-r-pin a.e8 8.ee8080 e 16 mmap2
Fing ©.00 ©.000000 e 8 fstatbd
5l str-ps a.80 8.000088 a 1 geteuid32
El stor-sty a.e8 @.000000 a 1 fentled
=] st-r-tar a.ee B .egeeoe] 1 set_thread_area
e I el i
2 st-tar 100.88 8.088286 1355 12 total

Fig. 7 Trace data statistics example for Model-1 (STRACE flow)

The pre-processing phase focuses on minimizing the
control data within the system by pinpointing duplicate return
addresses. These duplicates are then separated into distinct

datasets for future application if necessary. This pre-
processing approach offers a notable improvement over
existing methodologies that simply rely on repeated system

287

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

call numbers within datasets for experimental purposes. The
proposed method highlights that system calls can occur
multiple times, basically through sibling-type utilities in
Linux, entering kernel space from user-space with various
return addresses. As a result, achieve a collection of unique
return addresses in the datasets created. The only repetitions
to be eliminated are from the main () and _init () functions in
the extracted data. Once the key steps of pre-processing are
completed, focus on the arrangement of the working structure
for the finalized datasets. Further instrumentation
procurement can generate uniqueness of RAs, which may be
formed from the huge RA set initially, while keeping the SC
set separate, and an exclusive LC set for next consolidations.
The generative FCS or RAP paths are fabricated uniquely
from a collection of tracing points (RAs) drawn from a stack
of memory. Notably, the quantity of paths in sequence
generated is kept at least count initially to test the evaluation,
then follows the variation in sequence as thousands of return
addresses can potentially create even more paths. To manage
this complexity, the model focused on an average sequence
size of 10 (i.e., grams of return addresses) initially extracted
from the RA set, facilitating the construction of an optimally
sized RD set with ease. The return addresses will form the
Relative Differences (RD) resulting from the consolidated
Return Address (RA) set. This finalized RD set plays a vital
part in the testing and debugging stages of programs as well
as applications. In this section, the model will elaborate in
more detail about the method for preparing the RD set. The
primary objective of the RD is to streamline the dataset,
minimizing the excess timing computation that comes with
generating thousands or even lakhs of control data points,
which can be burdensome. Additionally, it is proposed to
utilize hash construction for the RD set to further decrease the
data size; however, this introduces a computational overhead.
Consequently, the testing process will be conducted in
parallel, comparing results. The procedure adapted in training
for the recommended system tracks the steps in the mode of
legitimate control in order from 1 to 3, allowing us to generate
authentic datasets for the supplementary phase of testing. In
contrast, the assessment of this perception transpires under a
non-legitimate control mode using the mock-up programs, as
well as taking Linux dynamic utilities sourced from
commands. During this testing phase, new datasets will be
created following the intervention of attacks on programs and
applications, allowing deviations to be compared between the
training and testing datasets, as previously explained. The
initial phase of the proposed work involves the extraction of
control data, illustrated in Figure 4, which provides an
additional model to support thorough evaluation and
implementation through methods such as rdynamic, system
trace-STRACE (which details system calls), BACKTRACE
(bt in GDB), for process tracing use PTRACE, and library
trace LTRACE (to track system calls and library calls) all are
fine recognized procedures for collecting system statistics on
LINUX platforms. As shown in Figure 4, return addresses
from all dropping calls are compiled from several tracing

288

combinations and techniques, such as the backtrace method,
which offers a subgroup of ptrace calls that contain both
function calls and system calls. This scheme syndicates
dynamic and BT (backtrace), which helps to mine the function
calls of libraries that made entry into the stack drop an inline
return addresses. The snapshot of collecting trace points is
shown in Figure 6 and elaborates on the process of generating
the RAs, modified RAs, and RDs for the evaluation of
accurate results, and shows the finding procedure of RDs.

4.1. Relative Difference Between Unique RAs

The extraction of RAs from the call stack during the
training phase needs to be mapped to their modified
counterparts. These modified addresses accurately help
compute the unique relative differences between the return
addresses, which are consolidated uniquely.

Let us describe a group (set) of RAs as follows:
Return Address (RA) set =
{RA1, RA2, RA3, RA4, ..., RAn-1, RAn}.

From the above basics, find the RD set (Relative
difference set) as follows:
RD set = {{RA1-RA2|,[RA2-RA3],
For corresponding pairs.

IRA-R(A[}

Here are 4 techniques to estimate the RDs.

From the 1% address generated (This Return address may
be from _Init, or Main() functions):

Ex: RD set= {|RAI-RA;|, |RA|-RA;3], [RA-RA||}.
By using fabricated (custom) RA: This is an input option
provided by the user during input.

Ex: Input is assumed from User as Ul,= 0xf25f643f or
0xf251643

Compute RD set= {|UIlx —-RA|,| Ulx —RA,|,
RAj[}.

By using a conceptual (base) address:

Ex: Address Base is AB; = Oxffffffff or Oxfffffff
Compute new RD set=

{|]AB1—RA|,| AB1—RA|,...| AB1-RAj|}.

Also by Consecutive addresses (Relative neighbor pair):
Ex: Compute new RD set =

{{RA1-RA|, [RA2-RAs,

[RA-RA||}.

Finally, the RD set can be minimized as a required ratio
by following the approach:

Sp[S(RAset)—S(RDset)]

|A] = S(RAmar) * 100 3)

The value of |A| signifies the proportion adjustment in the
RD set, by the relative difference set the RD set is signifying,
Sp designates the variance factor among the RD set and the
RA set, and the size is given by S. The process for computing
the comparative variance and the proportion of deviations
from the RA set to the RD set is outlined after the part one of

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

the Figure 4 shown in next Figure 6, with an illustrative
example provided that shows the relative difference computed
from the neighbor pair addresses transitioning from the RA set
to the RD set, and vice versa. This section delves into the
proposed work, detailing the algorithms, flowcharts,
suggested models or techniques, and other associated efforts
[1, 6]. The RD table contains the unique difference RDs, and
further to reduce the size, a step was implemented to
manipulate the part by incorporating a hash function (XOR) to
the final RD table, and a new table H[RD] was constructed to
store the hash digests basically in sequence, preferably in
ascending order. This approach emphasizes the consideration
of relative differences, offering an effective means to detect
anomalies in malicious control data sourced from infected
applications, particularly when integrating new addresses into
memory segments.

The proposed hybrid work was recommended in Figure
5: here, the instrumentation model (Model-2) is separated
from the probing module. These modules can work
independently of each other, and comparison is extracting the
invocation of anomalies. The instrumentation module focuses
on the extraction of control information using STRACE and
LTTng, where each can work in different lines, and a
combination method is proposed in the intersection module to
consolidate the exact number of system calls to be traced. It is
said that uniquely, both cannot work together, but the
introspection data can be consolidated to get more accurate
outcomes. Generally, in static mode, it runs in non-intrusive
mode to fix the list of system calls and RA data. At the same
time, a probing module is performed in intrusive mode, either
in static or dynamic, to conclude the exploited data, such as
RA and SC control information. Thereafter, the model can
notify the occurrences of anomalies using the module through
detection. The algorithm is presented in the following lines for
model-1, and similarly took exploits in combination of
STRACE and LTTng, probably trace in a more intrusive
manner, and finally commit the consolidation of system calls,
then proceeds to test the process.

Algorithm: for Extracting Relative Differences from the
output of basic Passtest:
1. Input: Set of Return Addresses (RA)
2. Convert: Transform the string representation of RA into
integer format.
3. Select RD Type: Choose the specific type of relative
difference to find from the options:

{FRA (First RA), CRA (Custom RA),

BRA (Base RA), RNRA (rel NP RA)}.
4. Invoke Function: relative difference ()" type to be invoked.
5. Perform Comparison: Execute the comparison process.
6. Return Value: Output the result in hexadecimal format
using "Hex()'.
7. Repeat Process: Continue steps 2 through 6 for each RA.
8. Store Results: Save the calculated relative differences into
the RD set.

289

Python algorithm for RD of return addresses from the
output of passtest
1 [€: RA set (Input);
2 Integer € I: string(RA);
/I Convert the String to Integer format
I'¢ {FRA (First RA), CRA (Custom RA), BRA
(Base RA), RNRA (rel NP_RA)}.
/I RD type can be determined by selection
find_relative difference ();
// exercise to find the difference between RAs
® < Phase-1- Compare ();
H< Hex() // Form initial H: Values
Steps from 2 to 6 repeat.
R Fix RD set
H(RD)< XOR (RD);
®2 & Phase-2- Compare ();

3

N

— O 00 3 O\ W

5. Results and Discussion

The work presented here is divided into three main
sections. The first focuses on establishing the model and
outlining the design methodology needed to accomplish the
task. The second part discusses enhancements in Linux that
facilitate faster operations and the creation of both training and
testing datasets. Finally, the third section delves into anomaly
classification based on test outcomes. The findings in this
study stand out from prior research by emphasizing the
importance of dataset size reduction while analyzing the
comparison ratio of performance, such as True Positive Rate
(TPR), Detection Rate (DR) of various models, and the actual
implications of False Positive Rate (FPR) of identified probes,
as well as real.

This comparison leverages the impact of mimicry attacks.
In particular, the TPR (DR) measures how many interfering or
unidentified Return Addresses (RAs) from the system calls,
library calls, and also from function calls, (laterally with their
ordering of sequence, and RDs) are accurately identified as
abnormalities. Conversely, the False Positive Rate assesses
the count of non-intrusive return addresses (RAPs) that are
incorrectly flagged as abnormalities. Notably, the
recommended scheme achieves an accurate DR of almost
100% with zero FPR, which denotes above-average
performance; however, the false positive rate may increase
when new addresses are introduced into memory segments.

This proposed approach incorporates a comparative
analysis akin to earlier methods. The new RD dataset enhances
anomaly detection, proving beneficial for various applications
and program testing. The advantages of using return address
and RD control data are illustrated through a case study on
Linux utilities (PS) presented in the Table. 1, particularly in the
context of mimicry attacks. The experiments conducted here
focus on standard and live system datasets collected from
various sources to understand the triggering of anomaly
detection, and also use the live system’s data from virtual
control. However, they approach the task as an offline method,

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

which poses a significant limitation for online applications
currently being tested, such as servers and network systems.
Notably, these methods face challenges from mimicry attacks,
as summarized in Table 1. To highlight this, let us examine
the first three methods that utilize the UNM or MIT dataset.
In these cases, mimicry attacks are not adequately recognized,
especially when contrasted with online methods that
incorporate real datasets. For instance, consider a scenario
involving an impression attack, also known as mimicry-based.

The demonstration of Mimicry Attacks is as follows:

The order or sequence of system calls is represented
normally as
Sr = {R1, R, B3| Ra, Rs, Re, B7|Rs, R, Ko,

Later, if any chances of attacks, it is possible to alter the
structure and also do replicate the order, then it will turn
identical to the original:

Interpretation of Attack: R, B, Ra™!, Ry
{Ra, Rs, R, By} = {(Bu, Rs, R, R7), (Ba, Rs, B, B7),
(B, Res, B7), R, Rs, R, Rr... B, Rs, R, R7}

(Or)
{ B, Rs, B, Rr}= {(B, Rs, R, Br),(Bu, Rs, R, K7,),

Where there R is a system call, the attackers are diverting
the traditional sequence by appending the original old and
legitimate sequence prefix or postfix with one false sequence.
But sometimes this method is misclassified as FPR in case of
new generation of system calls, maybe variation within
version of OS, and dual kind system calls, such as
IOCTL RETVAL, IOCTL ARGS, DUP, SETEGID, DUP2,
SETGID, are mistakenly treated as anomalies and found
misclassified (false positives) despite being non-intrusive.
Meanwhile, certain intrusive system calls, such as
OPEN EBUST, OPEN EEXIST, and specific file control
calls like FCNTL_EAGAIN and FCNTL_EIO, may not be
flagged as anomalies (false negatives).

Additionally, without a clear understanding of relative
differences post-testing and debugging, there is a high risk of
generating a 100% false positive rate. This relative difference
remains constant regardless of the application’s loading state
within memory segments. The Model has been implemented
in two ways separately; Model-1 is a mixing of powerful
utilities verified at the command level, as well as programmed
to consolidate the system introspection data. Many of the
dynamic utilities were verified, but more elaborated on PS,
along with a comparison of existing models developed based
on benchmark and live datasets shown in Table.l. The
traditional datasets took patterns of sequences formed with SC

Ry, Rs, Re, K7...... Ra, Rs, Re, Rr} numbers, but live sequence patterns were not disclosed well.
Table 1. Comparative analysis on a case study on PS utility benchmark vs live with RD and without RD, and the effects of performance
* With
System | System proposed RD
S. Working Contributed Calls Calls False FAR | Assaults Description of (Subsequent
o Dataset to work and Year Count | Count | Alarms (FPR)% | (Attacks) Attacks and attack and
be tested W/o With | Count ° Positive Notes Stuffing
Siblings | Siblings By Fresh EIP
Address)
PS from Classified well, but | TPR (ADR) =0
1 [11] 1999 6144 0 0 Possible seq. grams with | and FAR (FPR)
UNM e B
mimicry attacks =100%
TPR (ADR) =0
PS from . More no. of attacks
2 UNM [6] 2001 10649 4505 423 Possible but Classified well and leR (FPR)
=100%
PS from TPR (ADR) =0
3 [6]2001 36088 996 2.7 Possible Classified well and FAR (FPR)
LL (MIT) 1o
=100%
This approach is
. . close to the
Classified with tual method
FAR =0.0028, | ¢ ‘lf; . oslyo ’
PS from 14 and TPR=100% for
4 MIT-LL [912006 4949 0 0 Possible |seq. Gram Mimicry 12 sequences
are shown,
attacks may have _
chances to exploit and DR=0) and
€8 10 XD | EPR=100% with
RD.

290

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

Avg. of TPR and
FAR shown
PS from Not . . P DR=0 and
5 UNM [10]2013 13399 Shown 10 Possible Mlsqa?s.lﬁed. FPR=100%
Possibility of
Mimicry attacks.
Virtual Recommended Onrll lglsl:zrro;b;ai 1:10::16(:1(1 DR=99%
. s — 0,
6 L;\S]e Approach-1 1357 156 0 0.08 Shown signals and DLLs | FPR<=0.9 %
excluded
In this, only Probe InﬁNI Mode
. . 4 DR=100% and
Virtual .| is allowed in User -~
. Recommended Shown in . FPR=0%
7 Live 10318 5159 0 0 Space and estimates
Approach-2 (I) Mode oy . In I Mode
PS the possibility with 000
fewer frequencies DR=98%
" | and FPR<=2%

The existing developments are suffering from various
scripting attacks, which may not update the calling sequence
data, and found attacks also drop the data into an assumed
legitimate mode due to the same RA, and also unnecessary
system call data and system-level applications are burdened
with the generation of huge addresses. Hence, the solution is
adorned with a new concept of RD that may work accurately

to I mode in order. Particularly, the PS utility has 10318
system calls in NI mode compared to 12227 in I mode by
probing at the user space. Also, it is observed that GREP and
FTP gives more change in file size due to the repetition of
more siblings’ calls. Table 3 presents the actual convergence
times, including CPU time (in Seconds) and Memory Usage
in MB, during Implementation (1: Strace, 2: LTTng).

to overcome the scripting attacks and mimicry attacks.

The new approach-2 is a hybrid model giving the best
results even in intrusive mode to disconnect the false alarms,
even stuffing with new EIP, and also sensitivity (DR) is
maximum with all thresholds. Also, it is found that maximum
system calls and patterns are generated from siblings of
existing, which may lead to false alarms, so uniqueness is best
for minimizing the live dataset.
system is mainly dependent on the size of the datasets and
convergence time during working on the training and testing
modules, which are explained in Tables 2 and 3. Table 2
elaborates on the context of the size of generated data in
original, authentic size in non-intrusive mode (NI), non-
authentic (I-intrusive) size in intrusive mode, actual no. of
system calls with siblings, and actual errors found. Both live
datasets, RA and RD, are extracted through the I vs NI impact,
which can be observed in the % change of data size from NI

The performance of the

The last column elaborates on the %C: Change using
Strace and LTTng, as well as the combination of the
intersection of models during the training and detection
phases. The approximate changes are maximum for LTTng
due to the application tool compared to the command-level
STRACE. The recommended hybrid model is showing worth
in finding less convergence time compared to similar
developments done in the past. Table 4 shows the performance
comparison of various utilities on the Linux live platform (a:
sensitivity-detection rate, b: False Alarm rate in %) calculated
overall up to finding the RD in non-malicious mode (NI-Non
Intrusive), and similar detection phase outcomes are depicted
in Table 5 for Intrusive mode (Non-legitimate) by elaborating
DR, FAR (FPR), along with accuracy, and pictorial
comparison is presented in Figure 8, which displays the
accurate outcomes by visually hybrid model plot showing best

with live dataset results.

Table 2. Legitimate and non-legitimate comparison of RD with file size change ratio using combination Models
(%change: during actual training and testing in order)

No. of No. of

Name of | File size in | File Size in Non- System | System | No.of | No of RD (L) RD %

Utility | Original | Authentic | Legitimate |Calls (L)| Calls |Errors| RAs (NL) Change
(ND |[(NL)or (D

Netstat | 1112 KB 32 KB 37KB 112 224 8 214 24 KB 28KB | 15&16
Ping 4908 KB 73 KB 89 KB 243 486 9 271 61 KB 69 KB 22&11
TTY 741KB 3KB 5KB 106 182 5 134 1.5KB 2KB 66&33
PS 30186 KB | 2046 KB 2200 KB 10318 12227 327 | 13547 | 1746KB | 1725KB | 24& 26
Tar 665 KB 112 KB 128 KB 390 425 24 408 97 KB 111 KB | 15&19
LS 813KB 14KB 22KB 156 204 4 214 2.7KB 4KB 57&48
Grep 876 KB 14KB 25KB 178 208 5 231 2.7KB 4KB 78&48
Ftp 16510KB 14KB 24KB 610 782 4 726 3KB 5KB 71&66

291

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

Table 3. Estimated convergence time, CPU time (in Seconds), and memory usage in MB during Implementation (1: Strace, 2: LTTng), last column
elaborates the %C: change using strace and LTTng, and its combination of intersection of models during training and detection phase

o

1\},'[';:“;311 Netstat | Ping TTY PS TAR LS GREP | FTP % C (S/A“ft)
Method | 1 [2 [1 [21 [J2]tJ2[t[2]1J2]1J2[1t[2]1]2]1ad2

[} [} ;

o & |l o =) o - o =)] =) 4] — =) =) a R e B
53 |s|&lg|e|g|gs|e|g|gs|s|&|=|8|E|s|s|&|~| x&
= S|e|e|e|s|3|S|s|s]|s]|° = =g = =2
z) £ <
==Y [N o~ [N \O \O O (q\] O on c~ \O — o~ o~ on [e] \O 0 5
E < (2] <+ o0 c~ 0 Vel — — v 0 <t O o0 v — (9l — 0 = en <
5 @ =} — — o 0 — o n 0 o (%) [N N 0 o o~ <t <t I o o
=) [\ o\l 9\ o — Q) Y2) <t o) <t Vo) — — on o I 8 o

= 5

Table 4. Performance comparison of various dynamic utilities on Linux live platform (a: sensitivity-detection rate, b: false alarm rate in %)
calculated overall up to finding the RD in non-malicious mode (NI-Non Intrusive)

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP
Parameter> a b a b a b a b a b a b a b a b
STRACE 100 0 100 0 100 0 100 0 98 7 100 0 100 0 100 0
LTTng 100 0 100 0 100 0 100 0 99 4 100 0 100 0 100 0
Hybrid Mode | 100 0 100 0 100 0 100 0 99 5 100 0 100 0 100 0

Table 5. Performance comparison of various utilities on Linux live platform (a: Sensitivity-detection rate, b: false alarm rate in %) calculated in
overall up to finding the RD in malicious mode (I-Intrusive), generally user space introspection (* Combination)

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP
Parameter> a b a b a b a b a b a b a b a b
STRACE 98 7 99 3 99 0 98 2 99 9 99 2 98 2 97 6
LTTng 99 5 99 2 [100 O 99 2 99 8 99 2 99 1 98 3
Hybrid Mode* 99 5 99 2 [100] O 9 2 99 8 99 2 99 2 98 4
Overall Accuracy* 100% 100% 100% 100% 100% 100% 100% 100%
100
A
{80
~
< 60
&
2 40
B
e
g8 20
2)
o 0 [| I I I
A Netstat ng Grep
Model with Utility ------- >
m STRACE DR u STRACE FPR LTTing DR
®m LTTing FPR = Hybrid Mode* DR Hybrid Mode* FPR

Fig. 8 The DR vs FPR for performance comparison of various dynamic utilities on the Linux live platform

5.1. Analysis of Results and Discussion

All the results with performance metrics are evaluated
from trace findings, which were based on trace statistics
shown in Figures 7 and 9. Further, all the results related to
performance are to be explored well in the above tables with
some statistical comparison of existing frameworks. The static
mode of tracing system calls works offline and can help to find

292

modern malware penetrations and subsequently analyze the
potential dynamic anomalies in real-world applications, such
as web-based based are closely facing the issue of ransomware
attacks, which take control of the API and users’ privileges,
then expect ransom [15]. The main involvement of this theme
is to investigate the performance indication of numerous
permutations of tracing tools.

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

The proposed hybrid scheme exhibits unique RD, which
is the best kind of criteria to find any kind of anomaly in the
application execution, and found an injection of malicious
code snippets, penetration threads, and abnormal payloads.
From the hybrid model, we can also form the critical execution
paths to find more anomalies, but it can form virtual paths by
taking tracing return addresses from virtual address space,
which may incur additional overhead to store the paths, and
unique RDs are enough to enhance the performance shown in
the above tables compared to the idea of critical path
sequences [20]. The declarative events model encourages

specifying synthetic events in a trace model of two different
OS and exhibits the state information and performance of a
real application, but lacks the point of anomalies [18]. This
can be overcome by proposed models with unit anomaly by
invoking a single RA or RD between two consecutive RAs. It
is found that limited tracing platforms encouraged on
heterogeneous systems without LTTng are represented in a
lack of performance synchronization, and real-time embedded
systems can also consume a process; also, trace
synchronization and critical path extension are more difficult
[19].

N X 3 N X time seconds usecs/fcall calls errors syscall
imtﬁa}'ndtya:ftcﬂeintararl.#)cknlcads.-wrl:# f1ttng_syscalls_trace with_cpu_and men_usage via dstat.sh ps ps 8N | ooooo coiiiiiiiis cmmmccmeees s cmememeee mmememeeeemeeeeee
Seseion pg trace created. 33.56 ©.010615 6 1591 read

i) . 32,71 ©.010348 6 1513 305
Traces will be output to /root/lttng_traces/ps/28258329 165013 16,30 a_aésﬁ.s a 1212 core
Enabling all system calls for all processes 6.32 8.001999 5 341 15 newfstatat
. 5.67 8.801792 & 298 write
A11 kernel systen calls are enabled in channel channeld 1.81 ©.800574 9 62 nemap
Adding context of registering process name along with system call... 1,18 6.000373 93 4 getdents6d
" " . 8.61 9.800193 3 49 fitat
kernel context procnane added to all channels 8.37 B 008118 5 2 leeek
ust context procnase added to all channels 0.34 0.000106 7 14 mprotect
rti 0.33 9.800104 17 6 munmap
Sta ti!'lﬂ ﬁStaF 0 log system stats... a.28 @. 800087 4 il rt_sigaction
Starting tracing for process ps... 8.13 0.800041 4 9 brk
Tracing started for session ps_trace 0.18 0.000031 15 2 2 connect
N = 8.88 8.800025 12 2 socket
Executing conmand: ps aux 0.06 ©.000019 3 6 4 pretl
----total-usage---- ------BOROPY-Usage----- .83 ©.800018 5 2 preadéd
use sys 1d] vl stl] used Free bof cach o2 o ed00r 7 h sex.1d_sddress
|S316M 4634 7BM 23B2MISER PID ACPU SMEN VST RSSTTY STAT START TIME (MAND | e.e2 e.eoeees 6 1 arch_pretl
. . . . 0.82 ©.800005 6 1 set_robust_list
root 1 0.8 0.1 23709 14468 2 S5 18:51 ©:86 /sbin/init splash 0.62 © 000005 5 . prlimitsd
root lop e @ @2 S 10:51 @:00 [kthreadd) 8.81 £.000004 4 1 getrandom
o " " " 8.e1 8. ee0ad 4 1 rseq
root 3 0.0 0.8 e 82 S 18:51 2:80 [pool_workqueue release] oes o nonse N 3 e
root dppee @ @2 Io 18:51 @:08 [kworker/f-rcu_g] 2.00 @,000000 8 1 1 access
root 5 0.8 0.8 e 8?2 Ic 18:51 :80 [kworker/R-rcu_p] :-:g g-g:gggg g 1 getpid
. . execve
root 6 0.0 8.0 8 82 Ic 10:51 @:08 [kworker/R-slub_] .00 ©.000008 o 1 geteuid
root 7 0.8 0.8 e 8?2 I 18:51 8:80 [kworker/R-netns] ©.e0 @.e00000 @ 1 sched_getaffinity
root 90000 o 82 Io 10:51 @:00 [kworker/0:04-events_highpri] 100.08 6831631 5 5159 327 total
root 1270008 8 82 Ie 10:51 8:80 [kworker/R-m_pe] Stopping the trace...
A3 484040 A I Af.C4 A0 L Ll Al Waiting for data availability.
Fig. 9 Trace data statistics for Model-2 for exclusive LTTng
The statistical tracing and machine learning are collected from the background of systems as a significant

implemented to detect the limited point anomalies, but the
sequence of anomalies in further extension is not feasible in
this method due to additional clustering overhead [21]. Hence,
this paper is able to show exclusive performance on direct
tracing with minimal consolidation of traced data, and
enrichment of the LINUX platform can overcome the various
kinds of anomalies observed in any kind of applications run
on the present platforms. The developed combination is an
enhanced scheme, as STRACE is quite fast due to its direct
interaction with the kernel and is more suitable for validating
notable performance and extracting the accurate semantics of
system calls, which are quantified.

6. Conclusion and Further Enrichment

The proposed contribution introduces innovative ways to
leverage the live control data from the system’s run, including
library calls, system calls, and function calls through an
innovative perception known as the comparative variance
among Return Addresses (RAs). This methodology proves to
be invaluable for debugging and testing applications.
Furthermore, it effectively reduces convergence time. By
utilizing Linux containers, it can intelligently observe
program execution behaviour and prototype the statistics

293

feature of learning as dynamic knowledge. Lastly, a
comparative analysis of two developments reveals that the
strace tool has less overhead when paired with LTTng.
Observations may find that the results of performance
parameters may show that the variation depends on the
algorithm, hardware, and method of utilizing the working
tools.

From the past observations it is very difficult to trace the
threats in real world applications entertainment, networks,
system audits, social engineering, surveillances, transport
tracking and management and many due to abnormal updates
in structure of anomalies caused by bugs, updation failure,
failure in networks, and payload errors, but in critical mode
can able to trace errors or odd ones while in running of
applications. So, for further improvement in performance, it is
supposed to merge the machine learning adornments to LTTng
and STRACE materials, which can enrich the outcomes for
real-world applications. Also state that basic trace outcomes
are modeled with LTTng state transition, and extension
classification of anomalies through machine learning is
supposed to be suggested to extract high-level performance for
the dynamic context of real-time applications.

Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025

References

[1] H.H. Feng et al., “Anomaly Detection Using Call Stack Information,” 2003 Symposium on Security and Privacy, Berkeley, CA, USA, pp.
62-75,2003. [CrossRef] [Google Scholar] [Publisher Link]

[2] R.Sekar etal., “A Fast Automaton-Based Method for Detecting Anomalous Program Behaviors,” Proceedings 2001 IEEE Symposium on
Security and Privacy. S&P, Oakland, CA, USA, pp. 144-155, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[3] D. Wagner, and R. Dean, “Intrusion Detection via Static Analysis,” Proceedings 2001 IEEE Symposium on Security and Privacy. S&P
2001, Oakland, CA, USA, pp. 156-168, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[4] Debra Anderson, Thane Frivold, and Alfonso Valdes, “Next Generation Intrusion Detection Expert System (NIDES): A Summary,” SRI
International is an Independent, Nonprofit Corporation, pp. 1-47, 1995. [Google Scholar] [Publisher Link]

[5] Stephanie Forrest et al., “A Sense of Self for Unix Processes,” Proceedings 1996 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, pp. 120-128, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[6] Eleazar Eskin, Salvatore Stolfo, and Wenke Lee, “Modeling System Calls for Intrusion Detection with Dynamic Window Sizes,”
Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'0], Anaheim, CA, USA, pp. 165-175, 2001.
[CrossRef] [Google Scholar] [Publisher Link]

[7] Surekha Mariam Varghese, and K. Poulose Jacob, “Anomaly Detection Using System Call Sequence Sets” Journal of Software, vol. 2,
no. 6, pp 14-21, 2007. [Google Scholar] [Publisher Link]

[8] Sean Peisert et al., “Analysis of Computer Intrusions Using Sequences of Function Calls,” IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 2, pp. 137-150, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[9] Darren Mutz et al., “Anomalous System Call Detection,” ACM Transactions on Information and System Security, vol. 9, no. 1, pp. 61-93,
2006. [CrossRef] [Google Scholar] [Publisher Link]

[10] Syed Shariyar Murtaza et al., “A Host Based Anomaly Detection Approach by Representing System Calls as States of Kernel Modules,”
2013 IEEE 24™ International Symposium on Software Reliability Engineering (ISSRE), Pasadena, CA, USA, pp. 431-440, 2013.
[CrossRef] [Google Scholar] [Publisher Link]

[11] C. Warrender, Stephanie Forrest, and Barak A. Pearlmutter, “Detecting Intrusions Using System Calls: Alternative Data Models”
Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344), Oakland, CA, USA, pp. 133-145, 1999.
[CrossRef] [Google Scholar] [Publisher Link]

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly Detection: A Survey,” ACM Computing Surveys (CSUR), vol. 41, no.
3, pp. 1-58, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[13] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava, Intrusion Detection: A Survey, Managing Cyber Threats, Springer, Boston,
MA, pp 19-78, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[14] Iman Kohyarnejadfard et al., “A Framework for Detecting System Performance Anomalies Using Tracing Data Analysis,” Entropy, vol.
23, no. 8, pp. 1-24, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Thanh Nguyen, Meni Orenbach, and Ahmad Atamli, “Live System Call Trace Reconstruction on Linux,” Forensic Science International:
Digital Investigation, vol. 42, pp. 1-10, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Philippe Proulx, Tracing Bare-Metal Systems: A Multi-Core Story, The LTTng Project, 2014. [Online]. Available:
https://Ittng.org/blog/2014/11/25/tracing-bare-metal-systems/

[17] Mathieu Desnoyers, and Michel Dagenais, “Lttng: Tracing Across Execution Layers, from the Hypervisor to User-Space,” Linux
Symposium, Ottawa, Ontario Canada, vol. 1, pp. 101-106, 2008. [Google Scholar] [Publisher Link]

[18] Florian Wininger, Naser Ezzati-Jivan, and Michel R. Dagenais, “A Declarative Framework for Stateful Analysis of Execution Traces,”
Sofitware Quality Journal, vol. 25, no. 1, pp. 201-229, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[19] Thomas Bertauld, and Michel R. Dagenais, “Low-Level Trace Correlation on Heterogeneous Embedded Systems,” EURASIP Journal on
Embedded Systems, vol. 2017, no. 1, pp. 1-14, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Madeline Janecek, Naser Ezzati-Jivan, and Abdelwahab Hamou-Lhadj, “Performance Anomaly Detection through Sequence Alignment
of System-Level Traces,” Proceedings of the 30" IEEE/ACM International Conference on Program Comprehension, New York, NY,
United States, pp. 264-274, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Quentin Fournier et al., “Automatic Cause Detection of Performance Problems in Web Applications,” 2019 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, pp. 398-405, 2019. [CrossRef] [Google Scholar] [Publisher
Link]

294

https://doi.org/10.1109/SECPRI.2003.1199328
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+Call+Stack+Information&btnG=
https://ieeexplore.ieee.org/document/1199328
https://doi.org/10.1109/SECPRI.2001.924295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fast+Automaton-Based+Method+for+Detecting+Anomalous+Program+Behaviors&btnG=
https://ieeexplore.ieee.org/document/924295
https://doi.org/10.1109/SECPRI.2001.924296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+Detection+via+Static+Analysis&btnG=
https://ieeexplore.ieee.org/document/924296
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Next+Generation+Intrusion+Detection+Expert+System+%28NIDES%29%3A+A+Summary&btnG=
https://www.csl.sri.com/projects/nides/
https://doi.org/10.1109/SECPRI.1996.502675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Sense+of+Self+for+Unix+Processes&btnG=
https://ieeexplore.ieee.org/document/502675
https://doi.org/10.1109/DISCEX.2001.932213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+System+Calls+for+Intrusion+Detection+with+Dynamic+Window+Sizes&btnG=
https://ieeexplore.ieee.org/document/932213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Using+System+Call+Sequence+Sets&btnG=
https://www.jsoftware.us/show-70-1092-1.html
https://doi.org/10.1109/TDSC.2007.1003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+Computer+Intrusions+Using+Sequences+of+Function+Calls&btnG=
https://ieeexplore.ieee.org/document/4198178
https://doi.org/10.1145/1127345.1127348
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomalous+System+Call+Detection&btnG=
https://dl.acm.org/doi/10.1145/1127345.1127348
https://doi.org/10.1109/ISSRE.2013.6698896
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Host+Based+Anomaly+Detection+Approach+By+Representing+System+Calls+As+States+Of+Kernel+Modules&btnG=
https://ieeexplore.ieee.org/document/6698896
https://doi.org/10.1109/SECPRI.1999.766910
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Intrusions+Using+System+Calls%3A++Alternative+Data+Models&btnG=
https://ieeexplore.ieee.org/document/766910
https://doi.org/10.1145/1541880.1541882
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+%3A+A+Survey&btnG=
https://dl.acm.org/doi/10.1145/1541880.1541882
https://doi.org/10.1007/0-387-24230-9_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aleksandar+L%2C+Vipin+Kumar%2C+J.+Srivastava%2C+Intrusion+Detection%3A+A+Survey&btnG=
https://link.springer.com/chapter/10.1007/0-387-24230-9_2
https://doi.org/10.3390/e23081011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+for+Detecting+System+Performance+Anomalies+Using+Tracing+Data+Analysis&btnG=
https://www.mdpi.com/1099-4300/23/8/1011
https://www.sciencedirect.com/journal/forensic-science-international-digital-investigation/vol/42/suppl/S
https://doi.org/10.1016/j.fsidi.2022.301398
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Live+system+call+trace+reconstruction+on+Linux&btnG=
https://www.sciencedirect.com/science/article/pii/S2666281722000798?via%3Dihub
https://lttng.org/blog/2014/11/25/tracing-bare-metal-systems/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lttng%3A+Tracing+Across+Execution+Layers%2C+From+The+Hypervisor+To+User-Space&btnG=
https://www.kernel.org/doc/ols/2008/
https://doi.org/10.1007/s11219-016-9311-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Declarative+Framework+For+Stateful+Analysis+Of+Execution+Traces&btnG=
https://link.springer.com/article/10.1007/s11219-016-9311-0
https://doi.org/10.1186/s13639-016-0067-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-Level+Trace+Correlation+On+Heterogeneous+Embedded+Systems&btnG=
https://jes-eurasipjournals.springeropen.com/articles/10.1186/s13639-016-0067-1
https://doi.org/10.1145/3524610.3527898
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Anomaly+Detection+Through+Sequence+Alignment+Of+System-Level+Traces&btnG=
https://dl.acm.org/doi/10.1145/3524610.3527898
https://doi.org/10.1109/ISSREW.2019.00102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Cause+Detection+of+Performance+Problems+in+Web+Applications&btnG=
https://ieeexplore.ieee.org/document/8990337
https://ieeexplore.ieee.org/document/8990337

