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Abstract - The adaptive information security combines a wide range of system security approaches and network security methods 

to create a robust defense strategy. This approach integrates various system models to protect delicate, secretive, and 

unrestricted information from unlawful admission, misappropriation, alteration, disclosure, interference, and devastation. 

Anomaly detection is a focused process that investigates the system’s data while applications are running. This one suggests 

utilizing open-source Linux log data for tracing, aimed at enhancing system performance. This innovative method leverages 

tracing techniques available on the Linux environment, virtually drawing attention to promote performance in live mode. The 

Key tools like BACKTRACE (bt), LTRACE, PTRACE, and STRACE enable tracing vital system data, including introspection of 

function calls, investigation of library calls, signals, and a massive quantity of system calls from the stack memory for effective 

anomaly detection. It is provided that an advocate for the application of adaptive anomaly detection techniques at the data level, 

particularly through command-level tracing with modern tracing tools. The use of STRACE with LTTng gives better results, and 

performance is reached beyond threshold levels due to the speed of LTTng (Linux Trace Toolkit Next Generation) compared to 

other tracing possibilities on system utilities. The overall DR is marked as 99% in all combinations with low FPR compared to 

individual process tracing tools, and also disclosed the ratio of performance stability about system profiling with dynamic (for 

live user space) vs. static probes.  

Keywords  -  Anomaly Detection, Stack, System Call, Strace, LTTng, Relative Difference, Return Address. 

1. Introduction 
The present introspection of anomalies while anomaly 

detection is a specialized intrusive aspect of intrusion 

detection and may be described as the progression of 

categorizing patterns within certain data that deviate from 

what is recognized as normal behavior [4]. Basically, the 

anomaly reflects in intrusion in terms of scope, method of 

detection, and nature of deviation for novel behavior. 

Essentially, it involves using techniques to determine whether 

there are security violations in programs by establishing a 

standard model that reflects normal user or system behavior. 

It subsequently looks for actions that significantly diverge 

from these established norms. For instance, consider a 

scenario where a low-income farmer receives unusually high 

electricity bills or unexpected tax notices, and this would be 

an anomaly. In everyday life, recognizing such anomalies in a 

person's behavior can be quite challenging, as it requires long-

term observation of their usual patterns to identify any unusual 

actions. This raises the question of how it can effectively 

detect these anomalies in real-time applications, highlighting 

the importance of systematic learning and practical 

implementation in this field. Anomaly detection in the live 

introspection at the system level is a crucial aspect of detecting 

behavioral actions due to the latest malicious penetrations into 

the applications, which generate huge log profiles. As per 

virtual introspection of running processes on the system 

evades anomaly in this article is actually defined as identifying 

patterns in specific datasets that deviate from established 

normal behavior. This approach allows us to determine 

whether security violations are present within programs by 

creating a standard model of typical behavior for users or 

systems and detecting deviations from this model. Identifying 

anomalies in everyday human behavior is challenging, as it 

requires ongoing observation over time to discern unusual 

patterns. Therefore, detecting such anomalies in real-time 

applications necessitates a methodical approach to learning 

and analysis. 

1.1. Concrete Anomaly Detection 

The elementary anomalies are associated with the 

inventive data activities and are constructed on their 

incidences or process material; they can be categorized into 
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three types of abnormal patterns (anomalies) as illustrated in 

Figure 1.  

1. Individual-based anomalies (point-based) are shown in A 

and C of Figure 1.  

2. Contextual anomalies established on substance matter, 

represented in B of Figure 1. 

3. Group abnormalities driven by distinct incidences or 

uninterrupted data (combined-based) as seen in left in A 

of Figure 1. 

Point anomalies refer to individual instances that do not 

conform to the expected pattern, while collective anomalies 

involve larger groups of data that deviate from the norm. In 

some instances, particularly those related to specific subjects 

like time series and real-time control, highlight anomalies 

within their context [12, 13]. All types are depicted in Figure 

1. Traditional algorithms used to identify these abnormalities 

have been notably ineffective, often leading to a high False 

Positive Rate (FPR) found in [2, 3].  

 
Fig. 1 Interpretation of present anomalies [12, 13]

1.2. Problem Statement and Contribution 

An Anomaly Detection System (ADS) is not impervious 

to genuine threats due to the constantly evolving structure of 

anomalies and the possible injection of malicious code into 

applications. Such attacks can potentially cause significant 

harm to critical infrastructure applications. To effectively 

address and mitigate anomalies at various data levels in 

relation to the context of application, it has been witnessed that 

utilizing standard tracing techniques of Linux alongside 

enhanced LTTng can utilize correlated techniques to present a 

more effective approach to anomaly detection, enhancing the 

classification of anomalies according to the utility’s needs. 

Hence, in this article, the main contribution is an innovative 

approach by merging the forensic introspection facilities 

extracted from the virtual running process with the help of 

strace and LTTng instruments [14, 16, 17]. This work 

recommends two schemes, along with a comparison that 

includes a hybrid approach. The proposed schemes, STRACE 

Line and LTTng Lines, are elaborated on in the following 

sections. This contribution will fulfill the outcome goals by 

using lightweight tracing and gradually enhance the 

performance by the proposed sequence, implemented as data 

collection, extraction of required data, and detection of 

anomalies, done after various filtering techniques.  
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2. Related Works 
In the earlier work, the scope is limited to statistical 

approaches, but indefinite causes of anomaly root labels 

degrade its performance due to the dynamic nature and the 

complexity; hence, in this work, the process to enhance the 

maximum performance potentially while the system is 

running is considered.   This content is elaborated on in a 

discussion on prior research focused on anomaly detection, 

utilizing both tracing techniques at the command level and 

introspection of application levels, presented with clear 

benefits and drawbacks. This approach primarily employs 

various tracing techniques available on the Linux platform, 

including BACKTRACE, PTRACE, STRACE, and 

LTRACE. These emerging methods are instrumental in 

extracting vital system data from stack memory for anomaly 

detection. They prove beneficial in scenarios such as coding 

exploits at the programming level, debugging running 

applications, and conducting program tests. Within the realm 

of scope in detection of anomalies, various benchmark 

datasets used by people working in this kind of work contain 

introspected data from system context, like function calls from 

user space, also system calls and library calls from the entire 

memory space, mostly prefer live source datasets. The latter 

significantly enhances online anomaly detection and is 

particularly valuable for debugging and testing applications. 

A concise review of the detection of anomalies using 

various developed tracing techniques at the level of basic data 

of the system is given here first. In this method, the detection 

process utilizes data sourced from the stack. Analysts may 

apply tracing tricks or employ other tools, which fall into 

various categories: Stack-based [1-3], Function call-based [1, 

8], System call-based [5, 6], PC-based (return address) [1], 

Library call-based, and additional methods. Some analysts 

have also suggested leveraging machine learning approaches 

to identify anomalies at the system data level, utilizing similar 

data sets previously established in benchmark sets. 

Many analysts have developed several methods for 

detecting anomalies in system data, often focusing 

predominantly on system call data. With tracing information 

viewed as an additional layer, it combines system calls and 

function calls into a sequential arrangement that can assist as 

a basic set for training to identify unusual activity. In real-time 

system environments, the high volume of generated system 

calls can lead to overhead during training and testing 

exercises. Therefore, it is essential to control data based on 

necessity while monitoring applications and coding to observe 

any anomalous behavior. 

Some exclusive uses of system calls have encountered 

failures in specific situations, particularly when debugging 

and testing real-time applications. This occurs because all 

system calls and their addresses are flagged as anomalies in 

online monitoring. To address this issue, a novel approach is 

necessary, which involves analyzing the relative differences 

between return addresses. This method proves beneficial for 

applications that need to load new memory addresses 

efficiently. The control transfer technique is implemented to 

find different malicious attacks, but it is found that excessive 

use of resources delays performance [1]. The limited context 

of using system call monitoring using traditional modeling can 

cause a long training period and a drastic occurrence of 

impossible paths [2, 3]. The modeling nature of system calls 

with a novel HMM, window-based, N-gram approach is 

followed by suffering from high FPR, and also a negligible 

preference [5, 6]. Almost for the first time, strace was utilized 

to enhance the detection of anomalies working with the UNM 

dataset, but lacked in finding the necessity of training time, 

which affects performance due to missing FPR chains [7]. On 

the other hand, working with log files in Windows tracing by 

strace and PIN tools slows down the process of function calls, 

which can vary with the Linux strace utility [8]. The 

traditional introspection of system calls and static 

participation of sequence enumerated with hamming distance 

is also getting attention of peak FPR and convergence time 

loads hanging on searching lookup tables [11].  

In some contexts, working on the LL-MIT dataset may 

attract more attention to the detection of anomaly, but 

impossible paths exploits cause, if defined more mimicking 

attacks, also alarm unauthorized control paths indicate a round 

of 100% FPR and succeed in DR improvement [9]. The use of 

UNM PS context also works well in the detection of 

anomalies, in case of no mis-classification, in this FPR can be 

reduced well, but finding sequence paths or control paths can 

detect alarms 100% in mimicry attacks if found lazy 

classification [10]. New artificial investigation of system calls 

tracking introduced for both bagging cases with the help of 

trace compass and LTTng extracted tremendous outcomes, 

leading to a performance-based detection of anomalies by 

means of different machine learning types [14].  

The LTTng was incepted from dual trace options with 

deployment of various random and dynamic mechanisms 

applied to the process to extract the huge data, and also 

analyzes the real-time performance [16, 17]. The custom trace 

models enveloped for various cross platforms to extract the 

potential patterns from the stored database using a generic 

method [18]. Various real kinds of applications such as server 

logs, network logs and web logs after extraction of process 

data dynamically and also consider critical paths to exhibits 

the performance [20, 21] and also embedded real time 

application on distributive architecture environment without 

LTTng to enhance the performance using master-slave 

synchronization process may time consuming and trace points 

to be insert, but performance is better as overall [19]. The 

proposed method can follow the dual collection of log data 

and extract the unique logs and sequence paths to gain the 

performance with low time complexity compared to [20]. The 

dual modes of methods (non-intrusive and intrusive) 

implemented through live introspection of system calls in 



Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025 

 

283 

virtual mode can ensure full stack results, and only the 

overhead indicated in the intrusive method may be due to the 

applications [15].  

3. Materials of Proposed Anomaly Detection    
This segment contributes to the STRACE methodology. 

The recommended effort for abnormality recognition and its 

accompanying prototypical is illustrated in Figure 2 and 

elaborated upon in the structure of Figures 4 and 5. It 

encompasses two key junctures: the determined size of the 

Training phase, fixed before classification, and the decision-

making step of identifying kind anomalies during the Testing 

phase. All through the Training phase, the steps include 

extracting control data from the system, requisite data pre-

processing is carried out on generated data, then fabricating 

the datasets which list the Return Address (RAi) and generate 

sequences between Function Calls (FCSi), and packing these 

in defined tables. The classification phase ensures the 

involvement of the testing phase, repeating the first dualistic 

training steps, generating the novel data sets (new Return 

Address RAj and new FCSj with updated copy) from attacker 

exploits using any payloads, and then comparing both old and 

novel tables to identify anomalies using a defined threshold. 

System calls are gathered using various tracing techniques in 

Linux. The total number of system calls and their 

corresponding program counter values, referred to as RA 

(return addresses), are integrated through tools like ltrace, 

ptrace, and ptrace. Additionally, library trace (ltrace) is 

employed to extract library function-related calls into the L set 

separately. The pre-processing stage focuses on identifying 

repeated addresses that occur in succession, which could lead 

to confusion. This redundant addressing is then removed, as 

repetitive system calls alone are not problematic; rather, 

consecutive calls can complicate the formation of the Return 

Address Path (RAP) and help mitigate issues related to 

Impossible Path Exploits (IPE). 

3.1. Comparison Operation 

In this, the method is adapted based on a probe-based 

approach where modules of attacker’s snapshots are tested in 

non-legitimate mode, then after extracting updated datasets to 

define the kind of anomalies, illustrate a variety of attack 

possibilities, and organize these datasets into tables. Next, this 

will go for finding the variation by comparing the original 

datasets of training and the updated datasets of the testing 

phase generated from both modes of running.  

 

 
Fig. 2 Proposed ADS overview (Model-1) 
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Fig. 3 Max ( ) function usage in datasets consolidation 

 
Fig. 4 The recommended prototype model-1 of the operational scheme, Datasets pulling out and RD set abnormalities are detected when a non-

legitimate run (right 4 line) and (left 1, 2, 3 vertical lines supposed as authentic or legitimate) 
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For each iteration for each instance i=1 to k of the dataset 

from RAs extracted from phase during training, and likewise 

for each instance of j=1 to k updated from the dataset (RA set) 

during exploit mode in testing, it is indisputable to substitute 

R using the assortment variable F during the implementation. 

𝑀(𝑅𝑖 , 𝑅𝑗) = ∑ 𝐷𝑘(𝑅𝑖 , 𝑅𝑗)     𝑊ℎ𝑒𝑟𝑒 𝐷𝑘(𝑅𝑖, 𝑅𝑗) =𝑛
𝑘=1

{
≥1,𝑖𝑓 𝑅𝑖≠𝑅𝑗    ∴𝐴𝑛𝑜𝑚𝑎𝑙𝑦

=0 ,𝑖𝑓 𝑅𝑖=𝑅𝑗 
  (1) 

Where the term M signifies the functioning of the 

similarity (Match Function), R stands for a generated return 

address, the difference is annotated by D, which designates an 

alteration, and |D| depicts the threshold, where a value of zero 

is not considered an anomaly, while any non-zero value is 

treated as such. In comparing RAP datasets, it is decided to 

use the resemblance function from COSINE to assess the 

overall status of anomaly occurrences. This function also 

requires the bitwise XOR of the return addresses prior to the 

comparison. Next, both phases of the datasets are needed to 

match in order to show the evidence of anomalies by 

association. Here, with each i from 1 to n in the P1 (RAP set) 

recorded for the duration of training, we will then assess each 

i from 1 to n in the same line of the P2 (RAP set) through the 

detection line (testing). 

𝐶𝑂𝑆𝐼𝑁𝐸(𝑃1, 𝑃2) =
𝑃1∗𝑃2

||𝑃1||.||𝑃2||
=

∑ 𝑃1𝑖∗𝑃2𝑖
𝑛
𝑖=1

√∑ 𝑃12𝑛
𝑖=1 ∗√∑ 𝑃22𝑛

𝑖=1

. (2) 

Let us take an evaluation with an example of one of the 

outcomes: 

RAP (P1) = {  

==> 8049471 ==> 80493ec ==> 8049399 ==> 

8049353 ==> 8048f14 ==> 8048f19 ==> 8049365 

==> 80493b3 ==> 80493f9 ==> 8049631  }  

= {7, 4, 6, 0, 14, 3, 5, 12, 0, 1} 

RAP (P2) = {  

==> 8049471 ==> 80493ec ==> 8049399 ==> 

8049353 ==> 8048f14 ==> 8048f19 ==> 8049365 

==> 80493b3 ==> 80493fe ==> 8049702 } 

= {7, 4, 6, 0, 14, 3, 5, 12, 7, 0} 

Then the evaluation of the cosine function is as follows 

COS [P1,P2] = 

(7*7+4*4+6*6+0*0+14*14+3*3+5*5+12*12+0*7+1*0)/  

(   (72+42+62+02+142+32+52+122+02+12)0.5   *      

 (72+42+62+02+142+32+52+122+72+02)0.5 ) 

 COS [P1,P2]  = (475) / ((476)0.5 * (524)0.5) 

 COS [P1,P2]  = (475) / (21.817 * 22.891)  

                    = 475/499.41 = 0.95 

The interpretation of anomaly based on Cos (t) = 1 if it is 

a probable value, No RAP anomaly, else anomaly. The RAP’s 

primary objective is to uncover exploits related to impossible 

paths and mimicry attacks. In the example above, an anomaly 

has been detected; however, the data shows a 95% similarity. 

This approach utilizes cosine similarity to verify the ratio of 

anomaly occurrences during testing. 

3.2. Max ( ) Function and Pre-Processing 

The Max() function plays a crucial role in validating lists 

of similar data gathered through various tracing techniques. Its 

primary purpose is to identify and select the list with the 

highest number of instances, which is referred to as Max. The 

instance count is demonstrated in Figure 3. In this proposed 

work, the Max() function is essential for maximizing the 

assortment and total of all calls mined from the process control 

running data; subsequently, it has been produced. 

Additionally, the Fmax(FB, FP) function has been utilized to 

enhance the number of return addresses for calling functions. 

Here, FB represents the function calls obtained from the 

backtrace method, while FP denotes the return addresses of the 

function calls derived from the ptrace() tracing technique.  

In this article, the approach is more concise by taking 

various introspections and their combinations in command 

mode as well as experimental mode, shown in Figure 4, and 

also the hybrid mode of the above method, shown in Figure 5, 

and the adorned technique used with a combination of strace 

and LTTng for the extraction phase of the proposed model. 

This kind of contributions of experiments basically exhibits 

the internal behavior of cyber-physical systems to find the 

deviation from external attacks, system failures by vulnerable 

injection, and dynamic changes through external fraudulent 

command activities. The basic extraction tool STRACE 

utilizes the PTRACE concrete tool implicitly, but only the 

outcomes of traced data are different for each one. Similarly, 

LTTng operates externally on the Linux platform, serving as 

a lightweight tool with minimal complexity.  

4. Proposed Experimental Model 
The extended work with STARCE, excluding LTTng, is 

divided into two key phases, as illustrated in Figure 4. The 

training phase follows a sequence of steps aligned with the 

vertical lines labeled 1, 2, and 3. These steps include 

extracting system control data, consolidating the data, 

applying the Max () function for pre-processing, and 

constructing the datasets, which incorporate relative deviation 

(difference of addresses) calculations and hash tables for the 

RD set. The probing mode of detection starts with the fourth 

line to find the anomalies through injection or penetration kind 

exploits that were taken artificially.  

This phase involves the integration of non-legitimate 

inputs, using the same vertical steps (1, 2, 3) from the training 

phase, albeit in the presence of an attack. During this phase, 

new datasets are created, hash tables are constructed, and both 

tables are compared to detect anomalies based on a set 

threshold. This methodology has been developed through a 

series of detailed steps outlined in the succeeding sections. 

The control data of the system is extracted using various 
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tracing options available on the Linux platform, as elaborated 

in Figure 3 and detailed in Figure 4. Specific tools, such as the 

rdynamic and ‘bt’ options available in the GNU Debugger 

(GDB) for tracing, are utilized in this task. While the tracing 

option ‘bt’ method is not unswervingly instigated in the mock-

up programs, it also serves as a validation tool to ensure that 

the control data is extracted accurately from the simulated 

programs. The dynamic option is instrumental for tracing 

control data generated by dynamic calls during program 

execution. The data extraction includes register statistics, 

system call numbers, names, timing, and time complexity as 

part of system call information, as well as the return addresses 

of all calls and details of various other calls. For the purpose 

of this study, this work focuses on system call numbers and 

their corresponding return addresses. Data consolidation is 

achieved using the Max() functions, as discussed in the 

previous section.  

In this process, similar data points are consolidated for all 

return addresses (RAs) associated with system calls and 

library calls. Function call addresses are inherently included 

in the RA set. However, separate datasets are created 

specifically for system calls and library calls. The peer group 

of system calls gathered from STARCE is verified with basic 

tracing options embedded in LINUX, and STRACE is a 

supplementary configured segment to extract the system calls 

with substantial performance, but only issues misfortune with 

additional overhead. The STRACE with LTTng hybrid model 

is presented as the intersection of a unique system calls 

collection shown in Figure 5, a basic ptrace collection is 

shown in Figure 6, and an additional exclusive trace collection 

is shown in Figure 7, separately from STRACE. As usual, the 

LTTng collection process has proceeded with babeltrace2 for 

analysis, including several steps depending on the user or 

kernel trace. 

Instrumentation Module Probing Module 

 
Fig. 5 Recommended prototype model-2 (Hybrid Mode) for the operational scheme of STRACE, LTTng, and their combination 

Probing 

Exploit 

COMMIT System Calls 

Static Dynamic 

NI 

DETECTION MODULE 

Static 

I 

LTTng 

STRACE 

+ 
L ՈS 

S 

L 

COMMIT System Calls 

Notification of Anomaly  



Goverdhan Reddy Jidiga et al. / IJETT, 73(11), 280-294, 2025 

 

287 

 
Fig. 6 The simulation program's output shows one of the snapshots on the Linux platform to demonstrate the RDs for Model-1 

 
Fig. 7 Trace data statistics example for Model-1 (STRACE flow) 

The pre-processing phase focuses on minimizing the 

control data within the system by pinpointing duplicate return 

addresses. These duplicates are then separated into distinct 

datasets for future application if necessary. This pre-

processing approach offers a notable improvement over 

existing methodologies that simply rely on repeated system 
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call numbers within datasets for experimental purposes. The 

proposed method highlights that system calls can occur 

multiple times, basically through sibling-type utilities in 

Linux, entering kernel space from user-space with various 

return addresses. As a result, achieve a collection of unique 

return addresses in the datasets created. The only repetitions 

to be eliminated are from the main () and _init () functions in 

the extracted data. Once the key steps of pre-processing are 

completed, focus on the arrangement of the working structure 

for the finalized datasets. Further instrumentation 

procurement can generate uniqueness of RAs, which may be 

formed from the huge RA set initially, while keeping the SC 

set separate, and an exclusive LC set for next consolidations. 

The generative FCS or RAP paths are fabricated uniquely 

from a collection of tracing points (RAs) drawn from a stack 

of memory. Notably, the quantity of paths in sequence 

generated is kept at least count initially to test the evaluation, 

then follows the variation in sequence as thousands of return 

addresses can potentially create even more paths. To manage 

this complexity, the model focused on an average sequence 

size of 10 (i.e., grams of return addresses) initially extracted 

from the RA set, facilitating the construction of an optimally 

sized RD set with ease. The return addresses will form the 

Relative Differences (RD) resulting from the consolidated 

Return Address (RA) set. This finalized RD set plays a vital 

part in the testing and debugging stages of programs as well 

as applications. In this section, the model will elaborate in 

more detail about the method for preparing the RD set. The 

primary objective of the RD is to streamline the dataset, 

minimizing the excess timing computation that comes with 

generating thousands or even lakhs of control data points, 

which can be burdensome. Additionally, it is proposed to 

utilize hash construction for the RD set to further decrease the 

data size; however, this introduces a computational overhead. 

Consequently, the testing process will be conducted in 

parallel, comparing results. The procedure adapted in training 

for the recommended system tracks the steps in the mode of 

legitimate control in order from 1 to 3, allowing us to generate 

authentic datasets for the supplementary phase of testing. In 

contrast, the assessment of this perception transpires under a 

non-legitimate control mode using the mock-up programs, as 

well as taking Linux dynamic utilities sourced from 

commands. During this testing phase, new datasets will be 

created following the intervention of attacks on programs and 

applications, allowing deviations to be compared between the 

training and testing datasets, as previously explained. The 

initial phase of the proposed work involves the extraction of 

control data, illustrated in Figure 4, which provides an 

additional model to support thorough evaluation and 

implementation through methods such as rdynamic, system 

trace-STRACE (which details system calls), BACKTRACE 

(bt in GDB), for process tracing use PTRACE, and library 

trace LTRACE (to track system calls and library calls) all are 

fine recognized procedures for collecting system statistics on 

LINUX platforms. As shown in Figure 4, return addresses 

from all dropping calls are compiled from several tracing 

combinations and techniques, such as the backtrace method, 

which offers a subgroup of ptrace calls that contain both 

function calls and system calls. This scheme syndicates 

dynamic and BT (backtrace), which helps to mine the function 

calls of libraries that made entry into the stack drop an inline 

return addresses. The snapshot of collecting trace points is 

shown in Figure 6 and elaborates on the process of generating 

the RAs, modified RAs, and RDs for the evaluation of 

accurate results, and shows the finding procedure of RDs. 

4.1. Relative Difference Between Unique RAs  

The extraction of RAs from the call stack during the 

training phase needs to be mapped to their modified 

counterparts. These modified addresses accurately help 

compute the unique relative differences between the return 

addresses, which are consolidated uniquely.  

Let us describe a group (set) of RAs as follows: 

Return Address (RA) set =  

             {RA1, RA2, RA3, RA4, ..., RAn-1, RAn}.  

From the above basics, find the RD set (Relative 

difference set) as follows:  

RD set = {|RA1-RA2|,|RA2-RA3|,..........|RAi-R(Aj|}  

For corresponding pairs.  

Here are 4 techniques to estimate the RDs. 

1. From the 1st address generated (This Return address may 

be from _Init, or Main()  functions ):    

Ex:  RD set= {|RA1-RA2|, |RA1-RA3|,..........|RA1-RAj|}.  

2. By using fabricated (custom) RA: This is an input option 

provided by the user during input. 

3. Ex: Input is assumed from User as UIx= 0xf25f643f  or 

0xf25f643     

Compute RD set= {|UIx –RA1|,| UIx –RA2|,.......| UIx -

RAj|}.  

By using a conceptual (base) address:   

Ex: Address Base is AB1 = 0xffffffff or 0xfffffff    

Compute new RD set=  

{|AB1 –RA1|,| AB1 –RA2|,...| AB1 -RAj|}.  

4. Also by Consecutive addresses (Relative neighbor pair): 

Ex:  Compute new RD set = 

{|RA1-RA2|, |RA2-RA3|,............|RAi-RAj|}.  

Finally, the RD set can be minimized as a required ratio 

by following the approach: 

|∆| =
𝑆𝐷[𝑆(𝑅𝐴𝑠𝑒𝑡)−𝑆(𝑅𝐷𝑠𝑒𝑡)]

𝑆(𝑅𝐴𝑠𝑒𝑡)
∗ 100 (3) 

The value of |Δ| signifies the proportion adjustment in the 

RD set, by the relative difference set the RD set is signifying, 

SD designates the variance factor among the RD set and the 

RA set, and the size is given by S. The process for computing 

the comparative variance and the proportion of deviations 

from the RA set to the RD set is outlined after the part one of 
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the Figure 4 shown in next Figure 6, with an illustrative 

example provided that shows the relative difference computed 

from the neighbor pair addresses transitioning from the RA set 

to the RD set, and vice versa. This section delves into the 

proposed work, detailing the algorithms, flowcharts, 

suggested models or techniques, and other associated efforts 

[1, 6]. The RD table contains the unique difference RDs, and 

further to reduce the size, a step was implemented to 

manipulate the part by incorporating a hash function (XOR) to 

the final RD table, and a new table H[RD] was constructed to 

store the hash digests basically in sequence, preferably in 

ascending order. This approach emphasizes the consideration 

of relative differences, offering an effective means to detect 

anomalies in malicious control data sourced from infected 

applications, particularly when integrating new addresses into 

memory segments.  

The proposed hybrid work was recommended in Figure 

5: here, the instrumentation model (Model-2) is separated 

from the probing module. These modules can work 

independently of each other, and comparison is extracting the 

invocation of anomalies. The instrumentation module focuses 

on the extraction of control information using STRACE and 

LTTng, where each can work in different lines, and a 

combination method is proposed in the intersection module to 

consolidate the exact number of system calls to be traced. It is 

said that uniquely, both cannot work together, but the 

introspection data can be consolidated to get more accurate 

outcomes. Generally, in static mode, it runs in non-intrusive 

mode to fix the list of system calls and RA data. At the same 

time, a probing module is performed in intrusive mode, either 

in static or dynamic, to conclude the exploited data, such as 

RA and SC control information. Thereafter, the model can 

notify the occurrences of anomalies using the module through 

detection. The algorithm is presented in the following lines for 

model-1, and similarly took exploits in combination of 

STRACE and LTTng, probably trace in a more intrusive 

manner, and finally commit the consolidation of system calls, 

then proceeds to test the process.  

Algorithm: for Extracting Relative Differences from the 

output of basic Passtest: 

1. Input: Set of Return Addresses (RA)  

2. Convert: Transform the string representation of RA into 

integer format.  

3. Select RD Type: Choose the specific type of relative 

difference to find from the options:  

            {FRA (First RA), CRA (Custom RA),  

            BRA (Base RA), RNRA (rel_NP_RA)}.  

4. Invoke Function: relative difference ()` type to be invoked.  

5. Perform Comparison: Execute the comparison process.  

6. Return Value: Output the result in hexadecimal format 

using `Hex()`.  

7. Repeat Process: Continue steps 2 through 6 for each RA.  

8. Store Results: Save the calculated relative differences into 

the RD set. 

Python algorithm for RD of return addresses from the 

output of passtest 

1 Ϊ: RA set (Input); 

2 Integer Ϊ: string(RA); 

// Convert the String to Integer format 

3 Γ {FRA (First RA), CRA (Custom RA), BRA 

(Base RA), RNRA (rel_NP_RA)}.  

// RD type can be determined by selection  

4 find_relative_difference ( ); 

// exercise to find the difference between RAs 

5 Φ Phase-1- Compare ( ); 

6 Н Hex( ) // Form initial H: Values   

7 Steps from 2 to 6 repeat. 

8 

9 

10 

Ṙ Fix RD set  

H(RD) XOR (RD); 

Φ2 Phase-2- Compare ( ); 
 

5. Results and Discussion 

The work presented here is divided into three main 

sections. The first focuses on establishing the model and 

outlining the design methodology needed to accomplish the 

task. The second part discusses enhancements in Linux that 

facilitate faster operations and the creation of both training and 

testing datasets. Finally, the third section delves into anomaly 

classification based on test outcomes. The findings in this 

study stand out from prior research by emphasizing the 

importance of dataset size reduction while analyzing the 

comparison ratio of performance, such as True Positive Rate 

(TPR), Detection Rate (DR) of various models, and the actual 

implications of False Positive Rate (FPR) of identified probes, 

as well as real.  

This comparison leverages the impact of mimicry attacks. 

In particular, the TPR (DR) measures how many interfering or 

unidentified Return Addresses (RAs) from the system calls, 

library calls, and also from function calls, (laterally with their 

ordering of sequence, and RDs) are accurately identified as 

abnormalities. Conversely, the False Positive Rate assesses 

the count of non-intrusive return addresses (RAPs) that are 

incorrectly flagged as abnormalities. Notably, the 

recommended scheme achieves an accurate DR of almost 

100% with zero FPR, which denotes above-average 

performance; however, the false positive rate may increase 

when new addresses are introduced into memory segments.  

This proposed approach incorporates a comparative 

analysis akin to earlier methods. The new RD dataset enhances 

anomaly detection, proving beneficial for various applications 

and program testing. The advantages of using return address 

and RD control data are illustrated through a case study on 

Linux utilities (PS) presented in the Table.1, particularly in the 

context of mimicry attacks. The experiments conducted here 

focus on standard and live system datasets collected from 

various sources to understand the triggering of anomaly 

detection, and also use the live system’s data from virtual 

control. However, they approach the task as an offline method, 
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which poses a significant limitation for online applications 

currently being tested, such as servers and network systems. 

Notably, these methods face challenges from mimicry attacks, 

as summarized in Table 1. To highlight this, let us examine 

the first three methods that utilize the UNM or MIT dataset. 

In these cases, mimicry attacks are not adequately recognized, 

especially when contrasted with online methods that 

incorporate real datasets. For instance, consider a scenario 

involving an impression attack, also known as mimicry-based. 

The demonstration of Mimicry Attacks is as follows:   

The order or sequence of system calls is represented 

normally as  

SR = {℞1, ℞2, ℞3| ℞4, ℞5, ℞6, ℞7|℞8, ℞9, ℞10, 

                         ℞11|………….}   

Later, if any chances of attacks, it is possible to alter the 

structure and also do replicate the order, then it will turn 

identical to the original: 

Interpretation of Attack:       ℞i
n, ℞j

n , ℞k
n-1, ℞l

n  

{℞4, ℞5, ℞6, ℞7} = {(℞4, ℞5, ℞6, ℞7), (℞4, ℞5, ℞6, ℞7), 

 (℞4, ℞5, ℞7), ℞4, ℞5, ℞6, ℞7… ℞4, ℞5, ℞6, ℞7}      

(Or) 

{ ℞4,℞5, ℞6, ℞7}= {( ℞4, ℞5, ℞6, ℞7),( ℞4, ℞5, ℞6, ℞7, ℞7),     

℞4, ℞5, ℞6, ℞7…… ℞4, ℞5, ℞6, ℞7}  

Where there ℞ is a system call, the attackers are diverting 

the traditional sequence by appending the original old and 

legitimate sequence prefix or postfix with one false sequence. 

But sometimes this method is misclassified as FPR in case of 

new generation of system calls, maybe variation within 

version of OS, and dual kind system calls, such as  

IOCTL_RETVAL, IOCTL_ARGS, DUP, SETEGID, DUP2, 

SETGID, are mistakenly treated as anomalies and found 

misclassified (false positives) despite being non-intrusive. 

Meanwhile, certain intrusive system calls, such as 

OPEN_EBUST, OPEN_EEXIST, and specific file control 

calls like FCNTL_EAGAIN and FCNTL_EIO, may not be 

flagged as anomalies (false negatives).  

 

Additionally, without a clear understanding of relative 

differences post-testing and debugging, there is a high risk of 

generating a 100% false positive rate. This relative difference 

remains constant regardless of the application’s loading state 

within memory segments. The Model has been implemented 

in two ways separately; Model-1 is a mixing of powerful 

utilities verified at the command level, as well as programmed 

to consolidate the system introspection data. Many of the 

dynamic utilities were verified, but more elaborated on PS, 

along with a comparison of existing models developed based 

on benchmark and live datasets shown in Table.1. The 

traditional datasets took patterns of sequences formed with SC 

numbers, but live sequence patterns were not disclosed well.

Table 1. Comparative analysis on a case study on PS utility benchmark vs live with RD and without RD, and the effects of performance 

S. 

no 

Working 

Dataset to 

be tested 

Contributed 

work and Year 

System 

Calls 

Count 

W/o 

Siblings 

System 

Calls 

Count 

With 

Siblings 

False 

Alarms 

Count 

FAR 

(FPR)% 

Assaults 

(Attacks) 

Description of 

Attacks and 

Positive Notes 

* With 

proposed RD 

(Subsequent 

attack and 

Stuffing 

By Fresh EIP 

Address) 

1 
PS from 

UNM 
[11]  1999 6144 0 0 Possible 

Classified well, but 

seq. grams with 

mimicry attacks 

TPR (ADR) =0 

and FAR (FPR) 

=100% 

2 
PS from 

UNM 
[6] 2001 10649 4505 42.3 Possible 

More no. of attacks 

but Classified well 

TPR (ADR) =0 

and FAR (FPR) 

=100% 

3 
PS from 

LL (MIT) 
[6] 2001 36088 996 2.7 Possible Classified well 

TPR (ADR) =0 

and FAR (FPR) 

=100% 

4 
PS from 

MIT-LL 
[9] 2006 4949 0 0 

14 and 

Possible 

Classified with 

FAR =0.0028, 

TPR= 100%  for 

seq. Gram Mimicry 

attacks may have 

chances to exploit 

This approach is 

close to the 

actual method, 

but only 

12 sequences 

are shown, 

and  DR=0 and 

FPR=100%  with 

RD. 
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5 
PS from 

UNM 
[10] 2013 13399 

Not 

Shown 
10 Possible 

Avg. of TPR and 

FAR shown, 

Misclassified. 

Possibility of 

Mimicry attacks. 

DR=0 and 

FPR=100% 

6 

Virtual 

Live 

PS 

Recommended 

Approach-1 
1357 156 0 0.08 Shown 

Only Probe allowed 

in User space, and 

signals and DLLs 

excluded 

DR=99%,  

FPR<=0.9 % 

7 

Virtual 

Live 

PS 

Recommended 

Approach-2 
10318 5159 0 0 

Shown in 

(I) Mode 

In this, only Probe 

is allowed in User 

Space and estimates 

the possibility with 

fewer frequencies. 

In NI Mode 

DR=100%  and 

FPR=0% 

In I Mode 

DR=98% 

and FPR< = 2% 

The existing developments are suffering from various 

scripting attacks, which may not update the calling sequence 

data, and found attacks also drop the data into an assumed 

legitimate mode due to the same RA, and also unnecessary 

system call data and system-level applications are burdened 

with the generation of huge addresses. Hence, the solution is 

adorned with a new concept of RD that may work accurately 

to overcome the scripting attacks and mimicry attacks.  

The new approach-2 is a hybrid model giving the best 

results even in intrusive mode to disconnect the false alarms, 

even stuffing with new EIP, and also sensitivity (DR) is 

maximum with all thresholds. Also, it is found that maximum 

system calls and patterns are generated from siblings of 

existing, which may lead to false alarms, so uniqueness is best 

for minimizing the live dataset.  The performance of the 

system is mainly dependent on the size of the datasets and 

convergence time during working on the training and testing 

modules, which are explained in Tables 2 and 3. Table 2 

elaborates on the context of the size of generated data in 

original, authentic size in non-intrusive mode (NI), non-

authentic (I-intrusive) size in intrusive mode, actual no. of 

system calls with siblings, and actual errors found. Both live 

datasets, RA and RD, are extracted through the I vs NI impact, 

which can be observed in the % change of data size from NI 

to I mode in order. Particularly, the PS utility has 10318 

system calls in NI mode compared to 12227 in I mode by 

probing at the user space. Also, it is observed that GREP and 

FTP gives more change in file size due to the repetition of 

more siblings’ calls. Table 3 presents the actual convergence 

times, including CPU time (in Seconds) and Memory Usage 

in MB, during Implementation (1: Strace, 2: LTTng).  

The last column elaborates on the %C: Change using 

Strace and LTTng, as well as the combination of the 

intersection of models during the training and detection 

phases. The approximate changes are maximum for LTTng 

due to the application tool compared to the command-level 

STRACE. The recommended hybrid model is showing worth 

in finding less convergence time compared to similar 

developments done in the past. Table 4 shows the performance 

comparison of various utilities on the Linux live platform (a: 

sensitivity-detection rate, b: False Alarm rate in %) calculated 

overall up to finding the RD in non-malicious mode (NI-Non 

Intrusive), and similar detection phase outcomes are depicted 

in Table 5 for Intrusive mode (Non-legitimate) by elaborating 

DR, FAR (FPR), along with accuracy, and pictorial 

comparison is presented in Figure 8, which displays the 

accurate outcomes by visually hybrid model plot showing best 

with live dataset results.   

Table 2. Legitimate and non-legitimate comparison of RD with file size change ratio using combination Models  

(%change: during actual training and testing in order) 

Name of 

Utility 

File size in 

Original 

File Size in 

Authentic 

Non- 

Legitimate 

No. of 

System 

Calls (L) 

(NI) 

No. of 

System 

Calls  

(NL) or (I) 

No. of 

Errors 

No of 

RAs 
RD (L) 

RD 

(NL) 

% 

Change 

Netstat 1112 KB 32 KB 37 KB 112 224 8 214 24 KB 28 KB 15 & 16 

Ping 4908 KB 73 KB 89 KB 243 486 9 271 61 KB 69 KB 22&11 

TTY 741KB 3KB 5KB 106 182 5 134 1.5KB 2KB 66&33 

PS 30186  KB 2046  KB 2200 KB 10318 12227 327 13547 1746KB 1725KB 24& 26 

Tar 665 KB 112 KB 128 KB 390 425 24 408 97 KB 111 KB 15&19 

LS 813KB 14KB 22KB 156 204 4 214 2.7KB 4KB 57&48 

Grep 876 KB 14KB 25KB 178 208 5 231 2.7KB 4KB 78&48 

Ftp 16510KB 14KB 24KB 610 782 4 726 3KB 5KB 71&66 
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Table 3. Estimated convergence time, CPU time (in Seconds), and memory usage in MB during Implementation (1: Strace, 2: LTTng), last column 

elaborates the %C: change using strace and LTTng, and its combination of intersection of models during training and detection phase 

Phase/ 

Method 
Netstat Ping TTY PS TAR LS GREP FTP % C 

%C 

(S^Lt) 

Method 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1and 2 
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Table 4. Performance comparison of various dynamic utilities on Linux live platform (a: sensitivity-detection rate, b: false alarm rate in %) 

calculated overall up to finding the RD in non-malicious mode (NI-Non Intrusive) 

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP 

Parameter→ a b a b a b a b a b a b a b a b 

STRACE 100 0 100 0 100 0 100 0 98 7 100 0 100 0 100 0 

LTTng 100 0 100 0 100 0 100 0 99 4 100 0 100 0 100 0 

Hybrid Mode 100 0 100 0 100 0 100 0 99 5 100 0 100 0 100 0 
               

Table 5. Performance comparison of various utilities on Linux live platform (a: Sensitivity-detection rate, b: false alarm rate in %) calculated in 

overall up to finding the RD in malicious mode (I-Intrusive), generally user space introspection (* Combination) 

Method/Utility Netstat Ping TTY PS TAR LS GREP FTP 

Parameter→ a b a b a b a b a b a b a b a b 

STRACE 98 7 99 3 99 0 98 2 99 9 99 2 98 2 97 6 

LTTng 99 5 99 2 100 0 99 2 99 8 99 2 99 1 98 3 

Hybrid Mode* 99 5 99 2 100 0 9 2 99 8 99 2 99 2 98 4 

Overall Accuracy* 100% 100% 100% 100% 100% 100% 100% 100% 

 

 
Fig. 8 The  DR vs FPR for performance comparison of various dynamic utilities on the Linux live platform 

5.1. Analysis of Results and Discussion  

All the results with performance metrics are evaluated 

from trace findings, which were based on trace statistics 

shown in Figures 7 and 9. Further, all the results related to 

performance are to be explored well in the above tables with 

some statistical comparison of existing frameworks. The static 

mode of tracing system calls works offline and can help to find 

modern malware penetrations and subsequently analyze the 

potential dynamic anomalies in real-world applications, such 

as web-based based are closely facing the issue of ransomware 

attacks, which take control of the API and users’ privileges, 

then expect ransom [15]. The main involvement of this theme 

is to investigate the performance indication of numerous 

permutations of tracing tools.  
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The proposed hybrid scheme exhibits unique RD, which 

is the best kind of criteria to find any kind of anomaly in the 

application execution, and found an injection of malicious 

code snippets, penetration threads, and abnormal payloads. 

From the hybrid model, we can also form the critical execution 

paths to find more anomalies, but it can form virtual paths by 

taking tracing return addresses from virtual address space, 

which may incur additional overhead to store the paths, and 

unique RDs are enough to enhance the performance shown in 

the above tables compared to the idea of critical path 

sequences [20]. The declarative events model encourages 

specifying synthetic events in a trace model of two different 

OS and exhibits the state information and performance of a 

real application, but lacks the point of anomalies [18]. This 

can be overcome by proposed models with unit anomaly by 

invoking a single RA or RD between two consecutive RAs. It 

is found that limited tracing platforms encouraged on 

heterogeneous systems without LTTng are represented in a 

lack of performance synchronization, and real-time embedded 

systems can also consume a process; also, trace 

synchronization and critical path extension are more difficult 

[19].  

 
Fig. 9 Trace data statistics for Model-2 for exclusive LTTng 

The statistical tracing and machine learning are 

implemented to detect the limited point anomalies, but the 

sequence of anomalies in further extension is not feasible in 

this method due to additional clustering overhead [21]. Hence, 

this paper is able to show exclusive performance on direct 

tracing with minimal consolidation of traced data, and 

enrichment of the LINUX platform can overcome the various 

kinds of anomalies observed in any kind of applications run 

on the present platforms. The developed combination is an 

enhanced scheme, as STRACE is quite fast due to its direct 

interaction with the kernel and is more suitable for validating 

notable performance and extracting the accurate semantics of 

system calls, which are quantified.    

6. Conclusion  and Further Enrichment 
The proposed contribution introduces innovative ways to 

leverage the live control data from the system’s run, including 

library calls, system calls, and function calls through an 

innovative perception known as the comparative variance 

among Return Addresses (RAs). This methodology proves to 

be invaluable for debugging and testing applications. 

Furthermore, it effectively reduces convergence time. By 

utilizing Linux containers, it can intelligently observe 

program execution behaviour and prototype the statistics 

collected from the background of systems as a significant 

feature of learning as dynamic knowledge. Lastly, a 

comparative analysis of two developments reveals that the 

strace tool has less overhead when paired with LTTng. 

Observations may find that the results of performance 

parameters may show that the variation depends on the 

algorithm, hardware, and method of utilizing the working 

tools. 

From the past observations it is very difficult to trace the 

threats in real world applications entertainment, networks, 

system audits, social engineering, surveillances, transport 

tracking and management and many due to abnormal updates 

in structure of anomalies caused by bugs, updation failure, 

failure in networks, and payload errors, but in critical mode 

can able to trace errors or odd ones while in running of 

applications. So, for further improvement in performance, it is 

supposed to merge the machine learning adornments to LTTng 

and STRACE materials, which can enrich the outcomes for 

real-world applications. Also state that basic trace outcomes 

are modeled with LTTng state transition, and extension 

classification of anomalies through machine learning is 

supposed to be suggested to extract high-level performance for 

the dynamic context of real-time applications. 
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