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Abstract - This research addresses the effect of joint flexibility on the elastic stability of steel frames. A mathematical framework
utilizing the classical stability functions is proposed to derive the governing critical load equations of flexibly jointed frame
structures. Through these equations, it is revealed that the critical load is controlled not by the absolute stiffness of beams,
columns, or joints but by their relative stiffness ratios. The framework is demonstrated by analyzing a theoretical case study of
a single-storey rectangular frame with semi-rigid joints in two scenarios: sway-permitted and sway-prevented (i.e., braced). The
analysis indicates variations up to 77% in buckling capacity for frames having connections classified as semi-rigid according to
current codes of practice. To verify theoretical predictions, a custom-built software program, “stableX,” is introduced. This
stiffness-method-based program is designed to accommodate flexible joints and is used in this paper to perform eigenvalue
buckling analysis on the single-storey semi-rigid frame. The program not only accurately verifies the analytical results but also
serves as a practical, versatile, and efficient numerical method of analysis when more complicated geometries, loading

conditions, or boundary constraints are present. The numerical procedures underlying the implementation of “stableX” are

detailed in this paper.
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1. Introduction

The subject of stability is concerned with the study of the
equilibrium of structures in their deformed state under
sustained compressive forces. Under such conditions,
structures experience additional straining actions that regular
first-order analysis cannot foresee. In the 16" century, Euler
was the first to examine the stability of a pinned-pinned
column. He put a formula to predict its critical buckling load,
which, if exceeded, the column is deemed to be in unstable
equilibrium. [1] At the critical load and beyond, any
perturbation to the column causes very large lateral
displacements. In theory, it is said that the column has two
equilibrium states at the critical load: the fundamental
equilibrium state, where the column remains straight, and the
bifurcated equilibrium state, where the column displaces
laterally. [2] In real life, columns are never perfectly straight,
loads are rarely concentric, and material is never perfectly
homogenous. These, among other assumptions made in the
theory, make the first equilibrium state impossible to sustain.
Real structures typically experience very large lateral
displacements (i.e., instability) that often lead to collapse
when the load approaches the critical load. Euler’s findings
laid the foundation for subsequent advancements in stability
analysis of structures. The 20™ century witnessed significant
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progress on the subject. For example, the works of
Timoshenko are a landmark contribution to the field. [3] This
comprehensive work included the study of the stability of a
wide range of structural elements such as beam-columns,
frames, and plates. Moreover, Timoshenko extended the
analysis to other modes of buckling, such as torsional and
lateral torsional buckling, and provided an approach to
stability analysis using energy methods. Reference [4] is
another notable work in the same era that introduced a formal
and systematic approach to framework stability. Later, the
English school adopted a more systemised approach through
stability functions, following in the steps of the slope
deflection method. [5] In the stability functions method, fixed
end moments for each beam and column in the structure are
formulated and then assembled through equilibrium equations
at each joint in the structure. These equations are then solved
simultaneously to obtain the buckling load. Stability functions
were derived for various loading and boundary conditions for
frame elements and were made readily available for use. [6]
As digital computing emerged in the mid-20" century,
scientists in the aeronautical and aerospace industries
contemporarily developed matrix methods of analysis that are
systematic enough to be programmed as a set of instructions
and fed into the computer. [7,8] Their efforts arose from the
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need to find faster and more efficient methods of analysis that
can deal with the complexity and variability of air and space
vehicles’ structures. These efforts led to the development of
the stiffness method and the first coining of the term “finite-
element method”, which marked a significant leap in the field
of structural mechanics and the rise of a new field,
computational structural mechanics. The rapid progress that
followed on these numerical methods enabled the
development of incremental nonlinear analysis techniques that
accommodated both geometrical and material nonlinearities;
these are often called second-order analyses. [8-11]
Geometrical nonlinearities are necessary in studying the
stability of all types of structures. As their name suggests, they
depend on the geometry and slenderness of the elements and
are not related to the yielding or ultimate strength of the
material; however, they depend on the material’s modulus of
elasticity. Material nonlinearities, on the other hand, are
concerned with stress-strain characteristics of the material
from the onset of loading up to fracture. [12]

Nowadays, computational methods of analysis, such as
the stiffness method, form the basis of most widely used
commercial software programs used in the analysis of
building structures. Current codes of practice for building
structures mandate the use of methods that consider geometric
nonlinearity. For example, the AISC specification requires
that the second-order nonlinear effects of P —Aand P — & be
included in the analysis and design of steel structures via the
code-specified “Direct Analysis Method”. [13] The Eurocode
also mandates the inclusion of second-order deformations
with similar methodologies in the stability design of frames.
[14]

While several factors, such as the slenderness of columns
and stiffness of beams, mainly affect the stability of steel
frames, the effects of the rigidity of connections between
columns and beams on stability are typically overlooked. In
practice, when modelling structures, all moment connections
are often assumed fully rigid, transferring full moments and
rotations of the beam to the column, and all shear connections
are assumed purely hinged, isolating beam rotations and
moments from the column. However, experiments have
consistently shown that connections typically exhibit semi-
rigid behaviour lying somewhere between fully rigid and
purely hinged. Factors such as bolt size, connecting plate
thickness, and framing angles, among several other factors,
have been known to critically influence the stiffness of
connections. [15-19]

Thus, the ongoing practice of idealizing joints as either
pinned or rigid and ignoring their actual stiffness in structural
analysis can lead to considerably inaccurate results. Several
studies have been conducted to capture connections’
behaviour, and various empirical formulas have been
proposed to fit their experimental moment-rotation curves. A
summary of these formulas and their historical development
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can be found in [16, 20]. Moreover, attempts have been made
to compile all available experimental data of various types of
steel connections into database programs. [21] These
programs enable the user to extract the moment-rotation
characteristics, based on a given connection configuration,
which can then be used in modelling joints properly when
analysing structures.

On analysis of structures, efforts were made to devise
methods that account for the flexibility of connections in the
structural model. For example, [22] developed stiffness
matrices using an updated Lagrangian formulation for beam-
column elements with springs at their ends. Then, by using
these formulations, a toggle snap-through structural system
with flexible supports was analysed and was found to
experience appreciably more deflections than the case with
rigid supports. In the same study, a four-storey steel frame
structure with semi-rigid steel connections modelled through
springs experienced lateral drifts 10.9% greater than its rigidly
connected counterpart. The numerical procedures and
techniques used in the study were detailed in another paper.
[23] Others used iterative numerical approaches to investigate
the effect of the fixity of joints on the critical buckling load of
braced and unbraced frames and concluded that the buckling
capacity of frames could significantly increase for a marginal
increase in the degree of fixity of joints. [24] The results were
also validated using an experimental apparatus devised in the
same research, and it was found that the proposed analytical
method overestimated the experimental critical buckling load
by 19%. A different numerical treatment for analysing semi-
rigid frames, relying on power series expansions of the
stiffness equations, was proposed to eliminate numerical
difficulty under small axial forces and allow unified treatment
for tensile and compressive forces. [25] While all these studies
considered stability via geometric nonlinearity [22-24], other
studies focused on the first-order behaviour of steel frames
with semi-rigid joints. [26-28] In general, there is a consensus
among researchers in the field on the necessity of
incorporating joints’ stiffness in the analysis of structures,
particularly when stability is a concern.

Although the methods proposed in the literature are all
numerical and account for connections’ flexibility, they serve
different purposes. Some methods aim to trace the nonlinear
load-deformation response [22,23], while others investigated
the effect of joint semi-rigidity on straining actions. [25,28]
Little research was found on determining the critical buckling
load value of semi-rigid frames. [24]

The numerical methods presented so far pose two main
problems: (1) they are approximate numerical methods that do
not readily reveal the critical buckling load or the parameters
controlling stability; and (2) they are computationally
intensive due to the incremental and iterative schemes used.
The first problem can only be overcome by providing a
mathematical treatment that reveals the key parameters
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controlling stability and how they are related. To the authors’
knowledge, no analytical study was found in the existing body
of literature that mathematically investigated the effect of joint
flexibility on the critical buckling load. Thus, this paper’s first
objective is to set a theoretical framework from first principles
for calculating the exact critical buckling load with no
approximations and for identifying the key parameters
governing the stability of frames having semi-rigid joints.

To address the second problem, this paper introduces
stableX, a program that was developed to perform efficient
numerical analysis of flexibly jointed structures. The program
implements a non-iterative one-step eigenvalue analysis
technique to calculate the critical buckling load with high
accuracy. The proposed numerical method not only confirms
theoretical predictions with high precision but can also capture
higher modes of buckling effectively, allowing critical loads
for both braced and unbraced frames to be computed at the
same time without recalculations. The last objective of this
paper is to measure the effect of code-classified semi-rigid
connections (to the AISC and Eurocode provisions) on the
buckling capacity of frames using the methods devised herein.
Additionally, to demonstrate the utility of the analytical
method, the effect of column base flexibility on the structural
stability is briefly explored.

To ensure the applicability and reliability of the proposed
methods, the following assumptions are adopted:

o Material elasticity: It is assumed that the materials used
in the structures are perfectly elastic.

Plane buckling restriction: The analysis restricts buckling
to within the plane of the frame, thereby excluding out-
of-plane buckling phenomena from consideration.

Small deflection: Deflections are considered small,
allowing the use of approximate curvature expressions.
El d?y/dx? = —M. This assumption is a precursor to the
development of all readily available stability functions.

2. Analytical Methodology

In the mathematical treatment, it is hypothesized that
there exist non-dimensional key parameters that control the
buckling capacity of frames with flexible joints. The terms
“flexible” and “semi-rigid” are used interchangeably herein,
aligning with the literature, in describing joints that are neither
fully rigid (i.e., transmit full rotations and moments) nor fully
pinned (i.e., transmit zero moments or rotations) but that
possess finite stiffness (i.e., transmit moments and rotations
partially). To reveal these parameters, classical stability
functions are employed. The methodology is demonstrated
through its application to a single-storey rectangular frame,
analyzed in two scenarios: sway-permitted and sway-
prevented (i.e., braced). By following this method, one arrives
at the governing buckling equation that contains the key
controlling parameters of the structure’s stability. Since
stability functions form the foundation of the present work, a
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brief overview is provided. Stability functions are analogous
to the ordinary slope-deflection coefficients. In the ordinary
slope-deflection method, a stiffness coefficient represents the
force or moment needed to induce unit displacement or
rotation at a specific degree of freedom in the element under
no axial load while holding the other degrees of freedom fixed.
In this case, the resulting equilibrium differential equations are
simple, yielding constant stiffness coefficients. In contrast, to
derive stability functions, equilibrium equations are
formulated on the deformed state of the element under a
sustained axial load. This further complicates the differential
equation by adding the term (P-y) or similar variants
depending on the boundary conditions, where P and y are the
axial load and deflection curve, respectively. This results in
stiffness coefficients (i.e., stability functions) that are
nonlinear in the axial load P and that involve complex
trigonometric expressions. In a frame structure consisting of
more than one element, equilibrium is enforced discretely at
the joints, thereby resulting in a number of equilibrium
equations equal to the number of free degrees of freedom in
the overall structure. This system of equilibrium equations
typically leads to a symmetric matrix. To obtain the critical
load, the determinant of this matrix must be set to zero to have
non-trivial solutions for displacements at the critical state.
Since the terms in the matrix involve stability functions that
depend on the axial load in each element of the frame, a first-
order analysis is initially required to determine the axial force
distribution across all elements. In doing so, it is assumed that
the axial force distribution in the frame remains constant until
the point of buckling. [29]
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Fig. 1 Frame in the initial undeformed state

To illustrate the method, a single-storey rectangular frame
is analyzed. The frame is assumed to be fixed at the base and
subjected to concentric point load P on each column, as shown
in Figure 1. Joint flexibilities are modelled through rotational
springs, each of which has two rotational degrees of freedom,
one at each end of a spring. These purely theoretical springs
have zero length and extend out of the plane of the frame. They
are placed between columns and beams to ensure rotational
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incompatibility as dictated by the real connection behavior
(see Figures 2 and 3).

Beam-to-Column Separation

Fig. 2 Analytical representation of a frame having semi-rigid
connections

The springs should simulate the rotational stiffness of the
actual steel connections. Rotational stiffness is the moment
needed to induce unit rotation. A wide survey of literature
indicates that the moment-rotation behavior of steel
connections is often complex and nonlinear. [15,16,21]
Despite this inherent nonlinearity, several design codes
classify connections based on either their secant stiffness at a
given applied moment [13] or their initial tangent stiffness.
[30] Assigning to springs a constant stiffness value (i.e., secant
or initial tangent) will prove helpful in the analytical
investigation, as this allows the derivation of parameterized
equations that offer insight into the stability of semi-rigid
frames, as demonstrated next.

Fig. 3 Rotational spring element separating the column from the beam
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Let K. =EI./l., K, = El,/1,, and K, be the bending
stiffness of columns, the beam, and the spring constant,
respectively. Where E is the modulus of elasticity, /. and I,
are the moments of inertia for columns and beam cross-
sections, and [ and [, are as shown in Figure 1.

Iy

Fig. 4 Frame in the buckled state with end moments indicated

Under the shown loading conditions, each column carries
an axial load P. Due to the symmetry of the loading, geometry,
and boundary conditions, the frame buckles in anti-
symmetrical no-shear sway mode, as depicted in Figure 4.
Consequently, the beam is free from axial forces. Therefore,
stability functions are solely applicable to the equations at the
column ends. In this anti-symmetrical buckling mode, two
equilibrium equations need only be formulated, one at each
end of the spring: the equilibrium equation of moments at the
column-to-spring junction at Joint 2, and the equilibrium
equation of moments at the spring-to-beam junction at Joint 3,
shown in Figure 3. First, the elements’ end moments shall be
expressed as follows:

The column end moment at Joint 2 is:

M, = nK.6, 1)

Where n is a stability function derived for the case of no-
shear sway buckling of columns and is rewritten here for
reference: [6]

n = ul; cot(ul,) (2)
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PCT’

EI

PCT
- ul,=m /E = n\/ﬁ 3)
Where P, is the critical buckling load of the frame, and
p is the critical load ratio defined as p = P.,./P;. Euler’s
critical load, P, is expressed as: [3]

#:

— 2k

PE - l% (4)
The spring torsional moments are:
My = —M3, = K6, — K0, ®)

The beam end-moment in the absence of axial forces is
also known:

M, = 4K, 6, + 2K,6, (6)

Due to anti-symmetry, 6; = 6,. Therefore, Equation (6)
may be written as:

M3, = 6K),0, ()

Equilibrium equations of moments can then be written for
Joints 2 and 3 as follows:

XM; =0 - My +My; =0 (8)
)

Substituting Equations (1), (5), and (7) in (8) and (9):

ZM3=0 i M32+M34=0

TLKCHZ + KSGZ - KSG3 =0 (10)
_KSHZ + KSH3 + 6Kb63 =0 (11)

Equations (10) and (11) are then cast in matrix form:

Jte:}=o

Non-trivial solutions for the displacement vector in
Equation (12) exist if, and only if, the determinant vanishes,
that is:

nk. + K;
_KS

_KS
K, + 6K,

0,

0 (12

(nK. + K,)(K; + 6K,) —K2 =0 (13)

By expanding Equation (13) and dividing by K_K:

6524 6n24n=0 (14)
K K.

c S

Equation (14) can be solved numerically for the critical
buckling load of sway-permitted frames for any beam-to-
column K, /K, and beam-to-spring K, /K, relative bending
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stiffness ratios. For the case of braced (sway-prevented)
frames, Figure 5 shows a schematic of their typical buckling
mode. In this case, the stability function s shall be used instead
of n: [6]

sin(ulc)—plcco s(plc)
s = ‘LI.lC 2-2cos(ulc)—plesin(ule) (15)
Frames prevented from swaying (i.e., braced) buckle in a
symmetrical mode shape such that the beam end rotations are
equal in magnitude but opposite in direction, i.e., 8; = —6,.
This slightly modifies the previous formulation, resulting in
factor 2 replacing 6 in Equation (14). Therefore, the critical
buckling load equation for braced frames becomes:

(16)

A detailed discussion of the significance and implications
of Equations (14) and (16) is provided in Section Error!
Reference source not found.4 of this paper. Additionally,
formulations for the case of semi-rigid and hinged bases are
presented in the same section.

v

M\

s

F
Ly

Fig. 5 Frame in the buckled state with end moments indicated

3. Numerical Analysis through the Custom
Software stableX

A Python program, ‘“stableX”, was developed for the
purpose of this research to achieve two main objectives: to
verify the mathematical treatment proposed in this paper and
to establish a generalized framework that enables fast and
efficient stability analysis of flexibly jointed structures with
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more complex geometry, loading, and boundary conditions.
stableX is designed on Object-Oriented Programming (OOP)
principles to enhance usability for the end user, meaning that
entities such as degrees of freedom, nodes, elements, and loads
are treated as objects in the programming paradigm. This
design not only allows the addition of different types of
elements, such as rotational or linear springs and bar elements,
to its library, but also allows incorporating different types of
analysis, such as first-order elastic analysis and eigenvalue
buckling analysis, all of which are central in analyzing
structures having semi-rigid joints. stableX also provides
visualization through the library “Matplotlib”. (For
reproducibility of the results presented in this paper, the
developed program, stableX, was made open-source and is
licensed under the MIT License. The source code is available
at https://github.com/Hazem-Kassab/stableX, and the package
can be installed directly via the Python Package Index at
https://pypi.org/project/stableX/.

3.1. Elements’ Stiffness Matrices

Two types of elements are used in this study: the frame
element, which has six degrees of freedom, and the spring
element, which has two rotational degrees of freedom. For the
frame element, the program employs the ordinary elastic
stiffness matrix [k, ] and the typical geometric stiffness matrix
[k4] which accounts for geometric nonlinearities and second-
order effects, as represented by Equations (17) and (18),
respectively: [7, 12, 29]

EA EA k
= 0 0 —-=— 0 0
12E1 6E] 12EI 6EI
o = = 0 -7 =
L L L L
6E] 4E1 6EI 2EI
0o = = 0 -= =
[k]= L L L L
e EA EA
-= 0 0o — 0 0
L L
12EI 6E] 0 12E1 6EI
IE T R
6E1 2EI 6EI 4EI
L L L L

(17)

Where E, I, and A are the modulus of elasticity, moment
of inertia, and area of the element cross-section, respectively,
while L is the length of the element.

1 0 0 -1 0 0 1
o & L o _& L
5 10 5 10
2 2
=2 " % 0 T Tl
g L|=1 0 0 1 0 0
0 8 _L o & _L
5 10 5 10
2 2
0 L P o _L P
- 10 30 10 15-

The geometric stiffness matrix [k, ] is linear in N (the
internal axial force), this linearization is a result of the Taylor
series expansion of stability functions truncated after the first
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two terms. This approximation provides accurate results if
members are divided into sufficiently small elements to ensure
that the ratio P/P,,. does not exceed 0.1 for each element. This
ratio corresponds to the range (0 to 0.1) where stability
functions can be approximated as linear with insignificant
error. [29] Unlike stability functions, which need to be
reformulated as hyperbolic functions when the element is
under tension [29], the geometric stiffness matrix (Equation
(18)) remains valid in tension. [7] This is because Taylor’s
expansion of the hyperbolic counterparts is the same as those
derived for compression, with the key difference being an
alternating sign applied from the second term onward. When
N is negative, it signifies compression, resulting in a decrease
in total stiffness and indicating potential instability.
Conversely, a positive N signifies tension, which increases the
total stiffness and contributes to stabilizing the element.

The rotational spring element used in the program
possesses the following stiffness matrix:

el =K[2 7] (19)

While the stiffness of springs could be incorporated
directly into the stiffness matrix of the frame element by static
condensation, a method adopted by several studies [22-26],
stableX models springs as distinct elements in the structure, as
illustrated in Figure 2. This facilitates the placement of spring
elements at any specific location in the structure, or their
complete removal when full fixity is required. Embedding
springs in frame elements would necessitate assigning
excessively large stiffness values to approximate full fixity,
which is less straightforward and less accurate. Additionally,
separate stiffness matrices must be formulated for the cases of
frame elements with a spring at one end, both ends, or neither
end; these then would have to be added to the elements’ library
inside the program.

The approach taken in stableX in modelling springs as
separate elements offers several advantages: it allows the
direct use of the standard textbook formulations of the elastic
and geometric stiffness matrices (Equations (17) and (18))
without the need for rederiving modified stiffness matrices for
frame elements incorporating springs at their ends. This can
potentially be useful for existing finite-element packages since
only the separate spring stiffness matrix needs to be
programmed into the software library. Additionally, the spring
element implementation in the software is such that rotational
Degrees Of Freedom (DOFs) at the spring ends are decoupled
while translational DOFs at both ends point to the same object
in memory (i.e., coupled), simulating the effect of joint
rotational flexibility effectively. The object-oriented nature of
stableX also facilitates the development of different
implementations of the spring element, enabling the
incorporation of other axial and lateral DOFs in addition to the
rotational DOFs in springs. Such spring elements can then be
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seamlessly integrated into the software library to better
capture other dimensions of deformability in the connection.
Furthermore, the coupling techniques available through the
program’s design make use of memory efficiently and
eliminate unnecessary increases in degrees of freedom, which
enhances the program’s capability to analyze structures with
semi-rigid joints effectively.

3.2. Eigenvalue Analysis for Critical
Determination

Several methods exist for buckling analysis. On the one
hand, there are incremental methods that consider geometric
nonlinearity and, in some cases, material nonlinearity. These
techniques include multi-step iterative processes in which the
load is incremented gradually until excessive deformations
occur or the stiffness matrix determinant approaches zero,
indicating instability. On the other hand, eigenvalue buckling
analysis, adopted in this paper, is a non-iterative single-step
procedure for calculating buckling loads. This method of
analysis not only offers a fast and efficient means of
calculating the critical loads but also captures higher modes of
buckling effectively. Unlike incremental methods, which
require imposing specific boundary conditions or otherwise
tweaking imperfections in such a way as to induce a specific
buckling mode shape, eigenvalue analysis allows for both
braced and unbraced frames to be analysed using the same
model and matrix formulation by simply extracting the first
and second computed eigenpairs, respectively, in a single step
without recalculations. The developed package, stableX,
performs eigenvalue buckling analysis through a sequence of
procedures. It begins by performing a first-order analysis to
determine the axial force distribution in the structure's
elements. This process starts with the formulation of the
elastic stiffness matrix [k,] for each element in the structure.
The elements’ stiffness matrices are then transformed from
local to global coordinate systems through coordinate
transformations [T]. Next, the global elastic stiffness matrix,
[Kg]. The structure is assembled by combining the elements’
transformed matrices. Once assembled, the global stiffness
matrix is partitioned to solve for the unknown displacements.
Nodal forces {f} within all elements are then computed using
the obtained end displacements of each member. Once the
axial forces N in the elements are known, the global geometric
stiffness matrix, [K;], of the structure is then assembled and
partitioned in a similar manner. Finally, an eigenvalue
problem is formulated and solved to determine the critical
loads and their associated mode shapes. The overall analysis
procedure is illustrated in the flowchart shown in Figure 6, and
its implementation is provided in the source code. To
formulate the eigenvalue problem, the equations of
equilibrium at the free degrees of freedom must first be
expressed in incremental form, which is written in matrix
notation as:

Buckling Load

([KE]ff + [KG]ff){dA} = {dF} (20)

Read nodes coordinates
Read elements connectivity
Read elements’ modulus of elasticity, inertia, and cross-
section area
Read structure as an array of elements
Read loading and boundary conditions

A 4

Compute elements’ local elastic stiffness matrices
[ke]
Compute elements’ transformation matrices [T]
Compute elements’ global elastic stiffness matrices
(K] = [T]"[k][T]

A 4

Assemble structure’s global elastic stiffness
matrix of free DOFs [Kg]sr
Assemble force vector at free DOFs {F}f

A 4

Compute displacements of free DOF’s {A} = [KE]}}{F}f
Calculate elements’ local nodal displacements {u} =
[T1{a}:

Calculate element local nodal forces {f} = [k.]{u}

A 4

Obtain elements” axial forces N; from {f}
Compute elements’ local geometric stiffness matrices
[kq]

Compute elements’ global geometric stiffness matrices
[Ky] = [T]T[kg][T]

\ 4

Assemble structures’ global geometric
stiffness matrix of free DOFs [Kg]ff

Compute the eigenvalues and eigenvectors of
the product —[Kz17}[K;1y s

Fig. 6 Flowchart of the buckling analysis procedure in stableX

/ /

301



Hazem Kassab et al. [ 1JETT, 73(11), 295-311, 2025

Where:

[Kelsr and [K;] s, are partitions of the assembled global
elastic and global geometric stiffness matrices
corresponding to the free degrees of freedom,
respectively. The sum [Kg]qr + [K;]; represents the
tangent stiffness matrix.

{dA} is the displacement increment, and {dF} is the load
increment at the free degrees of freedom.

The axial force N; for any element i in the framework,
obtained from first-order analysis, can always be expressed as
some multiple «; of the applied load P (i.e. N; = a;P).
Consequently, the local geometric stiffness matrices
(Equation (18)) of all elements can be expressed in terms of
P. It follows that the multiplier P can be factored out in the
global geometric stiffness matrix, i.e., P[K;] ¢y

Thus, Equation (20) can be rewritten as:
([Kg)sr + PIKZ];7){dA} = dF (21)

The critical state can then be sought for non-trivial
displacements under vanishing load increment: [20]

([Kglsr + PIKZ;£){dA} =0 (22)
Expanding and rearranging Equation (22) yields:
K=K -1

(K7} Ke]p{dA} = dA (23)

Equation (23) is a standard eigenvalue problem that can
be expressed as:

(=[KelsF (K51 pp — AL {dA} = 0 (24)

In Equation (24), A = 1/P, and [I] is the identity matrix
of size equal to the number of free degrees of freedom. The
inverses of the eigenvalues are the critical buckling load
multipliers, while the eigenvectors represent the buckling
mode shapes associated with the eigenvalues. The Python
package “NumPy” is employed in the program to compute the
eigenpairs of the product—[KE];}[Kg]ff. The number of
buckling mode shapes and their associated critical loads is
equal to the number of free degrees of freedom in the system.
Unlike the iterative nature of the numerical techniques used in
the literature, “Numpy” utilizes non-iterative QR factorization
schemes to deterministically find all the eigenvalues and
eigenvectors in a finite number of steps, yielding accurate
results with high computational efficiency. [31]

3.3. Verification of stableX

In this section, stableX is verified against benchmark
problems in stability. Two problems are investigated: (1) the
classical Euler’s pinned column, shown in Figure 7(a), and (2)
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the rigid bar and spring assembly, shown in Figure 7(b); both
of which have well-known solutions. These classical problems
were specifically selected to adequately verify the capabilities
of stableX in analyzing flexural buckling and accounting for
joint flexibility. The theoretical solution to the pinned column
problem is well-documented in the literature: [1-4,29,32]

2 o2 EI

PCTZTI.TT IR (25)

Where n is a positive integer reflecting the buckling mode
shape, E and I are the column’s elasticity modulus and cross-
sectional inertia, respectively, and [ is the column’s length.
Substituting n =1 in Equation (25) yields Equation (4),
which corresponds to the lowest buckling mode of a half-sine
wave. The theoretical solution to the second problem of the
rigid bar and spring system is as follows: [2, 33]

P

cr 1

(26)
Where k is the spring constant and [ is the bar length.

Equations (25) and (26) will provide benchmarks for
comparison against results from stableX. The following
presents examples of the two problems: (The Python scripts
used to model these problems in stableX are available at
https://github.com/Hazem-
Kassab/stableX/tree/master/verification_problems)

T,

(b)

(a)
Fig. 7 Classical benchmark buckling problems of (a) Pinned column,
and (b) Rigid bar and spring assembly.

Problem 1: Consider a 6-m-long pinned column subjected
to axial compression. The column has profile IPE200 with
properties: A =53.8cm? E =200x103MPa and I =
1340 cm* (weaker axis). The critical loads calculated through
Equation (25) are 77.86 kN for the first mode (n = 1) and
311.44 kN for the second mode (n = 2). In stableX, the
column was modelled with a mesh of four frame elements
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having the same profile and material properties mentioned
previously. Analysis was then performed, and the first two
eigenpairs were extracted. Figure 8 shows the resulting mode
shapes and the corresponding buckling loads computed by
stableX: 77.9 kN and 313.78 kN for the first and second
modes, respectively. It is evident that the results from stableX
are in strong agreement with the results obtained theoretically
from Equation (25), with very small discrepancy; error less
than 0.05% for the first mode and less than 0.75% for the
second mode. In general, error increases with higher modes of
buckling due to the increase in the ratio P.,./P; for elements at
higher buckling loads. To circumvent this, a more refined
mesh might be necessary at higher buckling modes.To ensure
adequate verification of stableX, the length of the column was
varied in half-meter increments in the program, and the
corresponding critical loads for first and second modes were
computed at each increment. Figure 9 presents a chart
comparing the results with Equation (25). The chart indicates
that stableX predicts the flexural buckling loads with high
precision.

P.w‘ah[s')(: 77.90 kN
(a) (b)

Fig. 8 stableX output for the buckling mode shapes and their
corresponding critical loads, (a) First mode, and (b) Second mode.

P.s‘!able)( =313.78 kN

1400
Equation (25)

1200 stableX

1000

e m — —

6 7
L (m)
Fig. 9 Comparison between stableX and the theoretical solution for the

buckling of the pinned column

Problem 2: Consider a 2-m rigid bar free at the top and
connected to a fixed base via a rotational spring having
constant k = 20 kN.m/rad. Substituting these inputs in
Equation (26) yields the exact critical load value of 10 kN. To
model the system in stableX, a single frame element with a
very large cross-sectional area was used to simulate the rigid
bar, and a linear rotational spring element was used to connect
the bottom node of the bar to the fixed base node. The analysis
in stableX yielded the mode shape depicted in Figure 10 and
a critical buckling load of 10 kN, matching the theoretically
predicted value exactly to two decimal places. Figure 11 is a
chart showing the strong agreement between stableX and
Equation (26) in solving problem 2 for different bar lengths.
The plot verifies the program’s ability to analyse semi-rigid
joints efficiently and accurately. Having verified stableX, the
next section investigates a single-storey steel frame with semi-
rigid joints.

P\'tab[{’/\’ =10.00 kN

Fig. 10 stableX output for the buckling mode of the rigid bar and the
corresponding critical load

25
Equation (26)

20 stableX
=15
< \

\ \
5 o e ——
0
1 2 3 4 5
I (m)

Fig. 11 Comparison between stableX and the theoretical solution for the
buckling of the rigid-bar and spring assembly

3.4. Numerical Modelling of a Single-Storey Rectangular
Frame in stableX

To verify Equation (14), a single-storey 11 m x 11 m steel
frame is modelled. Figure 12 illustrates the model in its initial
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undeformed configuration, the end boundary conditions, the
loading pattern, and element meshing of the frame. Unit loads
are applied to the frame so that by inverting the resulting
eigenvalues, the critical buckling loads are directly obtained.

The columns are discretized into six elements to ensure
that the critical load ratio P.,./Pg for each element, the value
remains less than 1/36 in the case of sway buckling and less
than 1/9 if braced. This guarantees that the ratio P.,./Pg is
sufficiently small, lying in the range where stability functions
can be approximated as linear and ensuring accurate results.
[29] While such fine discretization significantly increases the
degrees of freedom and is unnecessary for most practical
scenarios, this refined mesh is justified in this paper for precise
verification of the analytical results. In fact, modelling each
column as a single unmeshed element results in a maximum
error of only 1.05% in this example.

Table 1. Properties of the profiles used in the numerical and analytical

analysis
Profile A (cm?) I (cm?)
IPE160 20.09 869.3
IPE200 28.48 1943
IPE240 39.12 3892

The analysis was conducted on the frame with different
combinations of profiles for the beam and columns, selected
from the European profiles IPE160, IPE200, and IPE240.
S355 steel grade was assigned to all members, with a yield

< Il m
!
' i
o o
< <
q Q
S S
S S
a Q
11 m § 3
08 4
2 2
Y

!
|

strength of 355 MPa and an elasticity modulus of 210 GPa.
These selected profiles ensure elastic buckling failure by
maintaining a critical stress below 44% of the yield strength,
in accordance with the AISC provisions [13], which aligns
with the assumptions of this research. Table 1 presents the
profile properties used in the numerical and analytical
analyses.

In the analysis, for each set of beam and column profiles,
the spring stiffness was varied using multiples of 0, 2, 5, 20,
and oo relative to the beam’s bending stiffness Kj,. The selected
ratios Kj, /K, ranging from 1/20 to 1/2 fall within the range
where connections are classified as semi-rigid under service
loads, with K representing the secant stiffness of the
connection’s M — 6 curve, as per the AISC specification. [13]

3.5. Comparison with the Exact Solution

Table 2 presents the critical loads obtained from the
stiffness method in stableX for the frame with various beam
and column profile combinations. It is evident that as the
spring stiffness decreases from the top to the bottom of the
table, the frame's critical load decreases substantially. The
strong agreement between the analytical predictions and the
stiffness method verifies the analytical approach and all its
underlying assumptions. In all cases, the lowest buckling load
of the frame corresponds to a typical sway-buckling mode,
illustrated by the stableX output in Figure 13, as predicted
theoretically. Similarly, the second buckling mode, associated
with the braced scenario, is depicted in Figure 14.

Rotational spring element [£,]

1 kN LN
¢ Frame element [k,] ¢
S [ ]
) [ ]

Frame element [£,]+{k,]

[ ) [ ]
[ ) [ ]
7 Fixed Fixed

Fig. 12 Elements used in the verification frame model and their associated stiffness matrices in stableX
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Fig. 13 Typical first buckling mode in stableX

Fig. 14 Typical second buckling mode in stableX

Table 2. Comparison between the results of the stiffness method and the exact solution (loads are in kN)

Column IPE160 IPE200 IPE240
stableX | Eqg.14 [ Error | stableX [ Eq.14 | Error stableX | Eq.14 | Error
Beam PE——
Ks= oo (i.e. rigid)
IPE160 111.31 111.33 -0.02% 195.82 195.86 -0.02% 306.98 307.02 -0.01%
IPE200 129.21 129.23 -0.02% 248.77 248.84 -0.03% 406.99 407.11 -0.03%
IPE240 138.42 138.45 -0.02% 284.38 284.47 -0.03% 498.22 498.44 -0.04%
Ko/Ks = 1/20
IPE160 103.91 103.92 -0.01% 178.67 178.69 -0.01% 280.78 280.80 -0.01%
IPE200 124.27 124.29 -0.02% 232.22 232.28 -0.03% 371.98 372.07 -0.02%
IPE240 135.53 135.56 -0.02% 272.52 272.60 -0.03% 465.10 465.28 -0.04%
Ko/Ks= 1/5
IPE160 88.09 88.10 -0.01% 148.37 148.38 -0.01% 239.64 239.65 0.00%
IPE200 111.74 111.76 -0.02% 196.88 196.92 -0.02% 308.68 308.73 -0.02%
IPE240 127.54 127.57 -0.02% 243.00 243.07 -0.03% 394.34 394.45 -0.03%
Ko/Ks = 1/2
IPE160 71.34 71.35 -0.01% 122.87 122.87 0.00% 209.00 209.00 0.00%
IPE200 94.34 94.35 -0.01% 159.45 159.47 -0.01% 254.02 254.04 -0.01%
IPE240 114.29 114.31 -0.02% 203.41 203.45 -0.02% 319.38 319.43 -0.02%
Ks=0 (i.e., hinge)
IPE160
IPE200 37.23 37.23 0.00% 83.20 83.20 0.00% 166.67 166.67 0.00%
IPE240

The minor discrepancies between stableX and Equation
(14) can be attributed to two reasons: first, the approximation
inherent in the formulation of the geometric stiffness matrix
of Equation (18) gives rise to some error, since the terms in
the matrix are linearizations of the exact stability functions.

The second reason is that, unlike stability functions, the
stiffness method considers axial deformations in the members.
It is essential, however, to recognize that the stiffness method
is an approximate extension of the slope-deflection method.
While the latter relies on the relative displacement of member
end nodes, the former treats each end node displacement
separately.

3.6. Analytical Insights and the Effect of Base Flexibility
While the stiffness method proved its versatility, the
accuracy and efficiency of the analytical method cannot be
overlooked. Studying merely two degrees of freedom has
proven not only sufficient but precise, circumventing the need
for the lengthier calculations associated with the stiffness
method. More importantly, the analytical approach adopted
herein abstracts the problem effectively and clearly delineates
the critical parameters that govern the bifurcation load,
thereby offering a deeper understanding of the structural
stability behaviour of structures. Equations (14) and (16)
demonstrate that the critical load ratio p is not concerned with
the stiffness of columns, beams, or springs; rather, it depends
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on their relative stiffness ratios. The parameters K, /K. and
K, /K, substantially affect the critical buckling load ratio as
illustrated through plots of Equations (14) and (16) in Figures
15 and 16, respectively. The critical buckling load in single-
storey sway frames lies within the range 0.25P; < P, < Py,
where P is the Euler buckling load of the columns as defined
in Equation (4). This means that the strength of columns in
sway frames with rigid beams can, at best, match their strength
as pinned columns if the connection is fully rigid. These
bounds increase in magnitude and expand in range such that
2.045P; < P, < 4P for braced frames. The maximum load

of 4P also corresponds to the case where these columns are
fixed at both ends, rather than pinned.

1 \
[ —
0.9
0.8
0.7
QL:.) 50
06 \
Shy K,
?=25
0.5 ¢
\
1
0.4 0\
1 2 4\
03 %Aakk\
0-25 —————————————————————— |
0.2
0O 2 4 6 8 10 12 14 16 18 20
Kb/Ks

Fig. 15 Effect of beam-to-spring stiffness ratio on the critical load
of fixed-base sway frames

Alternatively, the effective length factor, given by k =
1/Vp, offers a more visual perspective of the slenderness of
columns in the frame. The effective length factor in unbraced
frames varies between 2 > k > 1, while for braced frames the
range is within 0.7 >k = 0.5. These upper bounds,
achievable only when connections are fully rigid, are
generally lower for practical K,/K, ratios. In general,
Equations (14) and (16) can be used to determine the
maximum critical load or the effective length factor to be used
in design for a frame with a specific beam-to-column stiffness
ratio.

The plots also reveal significant implications for buckling
capacities if moment connections are assumed fully rigid. The
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steeply declining curves in the lower ranges of K, /K, ratios
indicate sharp drops in buckling capacity for a small decrease
in connection stiffness. For example, steel unbraced frames
that have the same profiles for beams and columns, and with
K, /K, ratio in the range 0 to 1, a common case in practice,
experience reductions in capacity of 47% (p = 0.748 —
0.397) when reducing the connection stiffness from oo (i.e.,
fully rigid assumption) to a stiffness equal to that of the beam
(Ky /K = 1).

4 \
00 ————

3.8

3.6

34

39 100
5 50

Kp

26 Z 25

2.4 1 T

22 4 1~ 4 \
HZE NN e e S

10 12 14 16 18 20
Kb/Ks

Fig. 16 Effect of beam-to-spring stiffness ratio on the critical load of
fixed-base sway-prevented frames

However, the aforementioned bounds for braced and
unbraced frames assume idealized base boundary conditions,
which are rarely realized. Due to the deformability of the base
plates, concrete, and soil, base plates typically exhibit semi-
rigid behaviour that lies somewhere between fully fixed and
perfectly pinned conditions. [15] This further degrades the
stability of steel structures. To account for this, spring
elements can be inserted at the column bases too. This
generalization, while making the analytical approach more
mathematically involved, effectively demonstrates the
versatility and applicability to different settings. Equations
(14) and (16) then emerge as a special case of a more
comprehensive model. The four-spring frame model,
schematically illustrated in Figure 17, incorporates semi-rigid
connections and bases. The critical buckling load for this
generalized model is governed by Equation (27) for sway-
permitted frames. If the frame is braced or sway-prevented,
the buckling load is instead governed by Equation (28), which
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has a similar form to Equation (27). In general, to get the
equation for the braced condition, factor 2 replaces 6, s
replaces n, and cs replaces o in the unbraced buckling
equation. Detailed derivation is provided in Appendix 1.

ly
Fig. 17 Four-spring frame model to account for bases and connections’
flexibility. Joint labels are highlighted in red.
(Unbraced)

68 +n(1+ 6Ba;, + 6a,)

+a;(n? —0?)(1+6a,) =0 27
(Braced)

2B +s(1+2Ba;, +2a,)

+a;52(1—c?)(1 + 2a,) =0 (28)

Where:

a, = K. /K., : column-to-base spring stiffness ratio.

a, = K, /K, : beam-to-connection spring stiffness ratio.
B = K, /K. : beam-to-column stiffness ratio.

o = ul,/sin(ul,) : stability function for members with
double curvature and subject to sway. [6]

¢ = (ul; —sin(ul))/ (sin(ul.) — plecos(ul,)):
stability function representing a carry-over factor. [6]

These generalizations underscore the analytical
framework’s utility in identifying and isolating the key
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parameters controlling buckling. This is advantageous when
more complex scenarios are encountered and when the factors
governing the critical load are obscure, giving more insight
into the underlying mechanics of structural stability.

By setting a, to zero, the bases become fixed, and
Equations (27) and (28) reduce to Equations (14) and (16),
respectively. Hinged bases can be modelled by setting Ky, =
0 in Equations (27) and (28), which, after some algebraic
manipulations, lead to the following equations for critical
buckling loads of hinged-base frames with semi-rigid
connections:

(Unbraced)

6nf + (n? —o0?)(1+6a,) =0 (29)
(Braced)

2sB +s?(1—c®)(1+2a,) =0 (30)

Equations (29) and (30) indicate that the critical load for
all single-storey frames with fully rigid connections and
hinged bases has an upper limit of 0.25P; when unbraced and
2.045P; when braced. Or an effective length factor of 2 for
unbraced frames and 0.7 for braced frames. However,
connection springs cannot have zero stiffness when the bases
are hinged, as this would result in a statically unstable
configuration.

4. Practical Design Considerations

Current codes of practice propose different treatments for
the subject of connection flexibility. For example, the AISC
specification classifies connections according to their secant
stiffness at service loads into three categories: Fully
Restrained (FR), Partially Restrained (PR), and simple
connections. A PR connection follows the same definition of
a semi-rigid connection in this paper. For a connection to be
classified as PR to AISC, the secant stiffness K, must lie
within the range 2K, to 20K,. AISC requires that PR
connections’ stiffness, as well as strength and ductility, be
included in the analysis. [13] A closer examination of the
previous example in Section 3.4 indicates the following: for
frames where columns and beams have the same bending
stiffness, PR connections result in a reduction of at most 31%
in buckling capacity when the connection stiffness is
decreased from 20K, to 2K,,, the range specified in the AISC
specification for PR connections. In theory, the percentage
change in p corresponds directly to the percentage change in
P.. This implies that the 31% reduction is universally
applicable to all such frames, regardless of the columns’
absolute stiffness. For hinged-base frames, Equation (29)
yields a greater reduction of 42%. However, only minor
reductions in capacity were observed if the frame was braced;
7% reduction for fixed-base braced frames and 9% for hinged-
base braced frames. While the AISC specification does not
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distinguish between unbraced and braced frames in its criteria
for classifying connections, the Eurocode adopts a different
approach. The Eurocode provisions specify different limits in
braced and unbraced frames for a connection to be classified
as semi-rigid. Additionally, the Eurocode bases its criteria on
the initial stiffness rather than the secant stiffness of the
connection. The Eurocode also requires the behaviour of semi-
rigid connections to be accounted for in the analysis. [30]

According to the Eurocode, in unbraced frames, the
connection's initial stiffness K, must fall within the range
0.5K,, < K, < 25K, to consider the connection as semi-rigid.
When K decreases from 25K, to 0.5K;, Equations (14) and
(29) indicate reductions of 53% and 77% in buckling capacity
for fixed-base and hinged-base frames, respectively. If K
exceeds 25K, Eurocode still considers the connection semi-
rigid, provided that K, /K, < 0.1. For braced frames, the range
is narrower, specified as 0.5K;, < K, < 8K, leading to a
smaller variation of 12% for fixed-base frames and 17% for
hinged-base frames. Table 3 provides a summary of the
preceding discussion, where percentage reductions in critical
load values correspond to the decrease in connection stiffness
from the upper to the lower limit within the specified code
range.

Table 3. Buckling capacity variation for frames with equal beam and
column stiffness under AISC and Eurocode semi-rigid connection
stiffness range

Connecti Erame Fixed Hing
Spec. on Condition base ed
Stiffness base
AISC 2K Unbraced 31% 42%
(Secant < Ib<
Stiffnes s Braced 7% 9%
5) < 20K,
0.5K,
Eu(;gco < K, Unbraced 53% 7%
(Initial 0<581§<b
Stiffnes | =P 0 0
5) < K; Braced 12% 17%
< 25K,

Table 3 highlights the significant influence of the
flexibility of bases and connections on the buckling capacity
of frames. It indicates that reductions in buckling capacity are
more pronounced in the case of unbraced frames, where base
flexibility tends to further degrade the frame’s buckling
capacity appreciably. The reductions can be as large as 77%
in some cases where connections are considered semi-rigid
according to Eurocode provisions. Thus, simplifying moment
connections as fully rigid in structural analysis models can
lead to an overestimation of the load-carrying capacity of
structures, while the flexibility of joints reduces the capacity
substantially. This necessitates proper accounting for the
stiffness of connections in analysis. In practice, one way to
determine the actual stiffness of connections is by using the
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component method established in the Eurocode, where each
component in a connection, such as bolts, framing angles, and
end plates, is modelled as a linear spring with stiffness k;, as
depicted in Figure 18. The overall stiffness of the connection
is then the collective stiffnesses of all the constituent
components, calculated as follows: [30]

Ez?

Sj - uX1/k; (31)
Where:
o k;: is the stiffness coefficient for the basic joint

component i.
z: is the lever arm, to be determined as per Eurocode

provisions.
w: is theratio of the stiffness S; to the initial stiffness S; ;,,;,
determined in accordance with Eurocode provisions. The
initial stiffness is the S; calculated from Equation (31)

with u = 1.

Fig. 18 Eurocode’s component method for determining rotational
stiffness of moment connection, modelling each component as a linear
spring

The Eurocode provides a table of formulas for calculating
the stiffness coefficients k; of all components in a connection.
The stiffness, S;, can be substituted for K and then used in the
analytical or numerical frameworks devised in this paper. The
Eurocode also specifies a detailed method for calculating
column base stiffness, which can then be utilized in the four-
spring frame model. This allows for all types of joints’
flexibility to be properly accounted for in the stability analysis
of steel structures.

5. Conclusion

This research studied the elastic stability of flexibly
jointed structural steel frames. Two approaches were
proposed: analytical and numerical. The analytical treatment
utilized stability functions and proved superior in identifying
the key parameters that directly affect stability. These
parameters appear in the characteristic equation and are
typically relative stiffness ratios of the beams, columns, and
connections that constitute the structure. The stiffness method,
which is a numerical treatment of the subject, corroborated the
analytical insights with high fidelity and with minimal
deviation from theoretical predictions. The method utilized
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distinct spring elements to model connections’ flexibilities
and ensure rotational decoupling at the joints. The software
“stableX” provides engineers with a practical, extensible, and
effective tool for handling complex frame geometries with
various loading and boundary conditions. Further, the
application of the stiffness matrices in this paper extends to
nonlinear incremental analysis, where the load-deformation
response can be explored, and additional material
nonlinearities could be considered. The paper also addressed
the categorization criteria of current codes of practice in

classifying steel connections as semi-rigid. The analysis
highlighted that code-classified “semi-rigid” connections can
cause reductions up to 77% in the stability of frames,
underscoring the importance of incorporating joint stiffness in
analysis. The reductions were particularly pronounced in
unbraced frames, where hinged bases further amplified the
reductions in buckling capacity. The dual analytical and
numerical frameworks developed in this paper provide a
valuable tool for engineers to assess the stability of flexibly
jointed frames.
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Appendix 1 M,s = 6K, 6, (A.6)
The derivations of Equations (27) and (28), which were

previously introduced in Section 4, are provided in this Applying moment equilibrium at each joint:

appendix. Referring to Figure 17, the governing buckling load

equation for the four-spring model is derived by formulating YM, =0 > My +My;=0 (A7)

moment equilibrium equations at joints 2, 3, and 4. Joint 2

corresponds to the column-to-base interface, joint 3 to the XM; =0 = Mg+ Mz =0 (A8)
column-to-connection interface, and joint 4 to the beam-to- YM,=0 - My +M;;=0 (A9
connection interface. The base spring moment at Joint 2 is
given by. Using Equations (A.1) to (A.6), the equilibrium equations
become:
My, = K, 6, (A1)
ZMZ =0- K5‘192 + anez - OKCH3 =0 (A.].O)

The column end moments are expressed as:
YM; =0 - —0K.0, +nK.0; + K,,0; — K;,6, =0  (A.11)
M23 = angz - OKC93 (A.2)

M32 = _OKCHZ + nKC93 (A.3)

YM, =0 > —Ky,05 + K304 + 6K,0, = 0 (A.12)

Rewriting in matrix form:
The connection spring moments at joints 3 and 4 are:

K¢, +nK, —oK, 0 0,
M34 = _M4_3 = KSZ 93 - KSZ 94_ (A4) _OKC nKC + KSZ _KSZ {93} (A 13)
O _KSZ KSZ + 6Kb 94 '
The beam end moment at joint 4 is: =0

M,s = 4K, 0, + 2K, 05 (A.5) Since non-trivial solutions for 8,, 85, and 6, exist only
when the determinant of the coefficient matrix is zero.
Since an anti-symmetrical sway buckling mode is  Expanding the determinant and simplifying yields the
assumed, it follows that 6, = 6. Therefore, Equation (A.5)  following equation, which is Equation (27):
simplifies to:
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68 +n(1+ 6B, +6a,)+

a;(n? —02)(1+6a,)=0 (A1)

For braced frames, column end moment equations
involve different stability functions, namely, s and c.
Equations (A.2) and (A.3) become:

M5 = sK .0, + csK_0,
M;, = sK .0, + csK_0,

(A.15)
(A.16)

Due to the symmetrical buckling mode, 6, = —6<. Thus,
Equation (A.5) simplifies to:

M45 = ZKb64 (Al?)
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Reformulating the equilibrium Equations (A.10) to (A.12) for
the braced case yields the matrix equation:

K¢ + sK, csK, 0 0,
csK, sK. + K, -K, {93}
0 —K, K, + 2K,1 10, (A.18)
=0

Expanding the determinant and simplifying leads to the
following characteristic equation, which is Equation (28):

2B +s(1+ 280y +2a;,) +

a;52(1—c®)(1 + 2a,) =0 (A.19)



