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Abstract - This research addresses the effect of joint flexibility on the elastic stability of steel frames. A mathematical framework 

utilizing the classical stability functions is proposed to derive the governing critical load equations of flexibly jointed frame 

structures. Through these equations, it is revealed that the critical load is controlled not by the absolute stiffness of beams, 

columns, or joints but by their relative stiffness ratios. The framework is demonstrated by analyzing a theoretical case study of 

a single-storey rectangular frame with semi-rigid joints in two scenarios: sway-permitted and sway-prevented (i.e., braced). The 

analysis indicates variations up to 77% in buckling capacity for frames having connections classified as semi-rigid according to 

current codes of practice. To verify theoretical predictions, a custom-built software program, “stableX,” is introduced. This 

stiffness-method-based program is designed to accommodate flexible joints and is used in this paper to perform eigenvalue 

buckling analysis on the single-storey semi-rigid frame. The program not only accurately verifies the analytical results but also 
serves as a practical, versatile, and efficient numerical method of analysis when more complicated geometries, loading 

conditions, or boundary constraints are present. The numerical procedures underlying the implementation of “stableX” are 

detailed in this paper. 
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1. Introduction 
The subject of stability is concerned with the study of the 

equilibrium of structures in their deformed state under 

sustained compressive forces. Under such conditions, 

structures experience additional straining actions that regular 

first-order analysis cannot foresee. In the 16th century, Euler 

was the first to examine the stability of a pinned-pinned 

column. He put a formula to predict its critical buckling load, 

which, if exceeded, the column is deemed to be in unstable 

equilibrium. [1] At the critical load and beyond, any 

perturbation to the column causes very large lateral 

displacements. In theory, it is said that the column has two 

equilibrium states at the critical load: the fundamental 

equilibrium state, where the column remains straight, and the 
bifurcated equilibrium state, where the column displaces 

laterally. [2] In real life, columns are never perfectly straight, 

loads are rarely concentric, and material is never perfectly 

homogenous. These, among other assumptions made in the 

theory, make the first equilibrium state impossible to sustain. 

Real structures typically experience very large lateral 

displacements (i.e., instability) that often lead to collapse 

when the load approaches the critical load. Euler’s findings 

laid the foundation for subsequent advancements in stability 

analysis of structures.  The 20th century witnessed significant 

progress on the subject. For example, the works of 

Timoshenko are a landmark contribution to the field. [3] This 

comprehensive work included the study of the stability of a 

wide range of structural elements such as beam-columns, 

frames, and plates. Moreover, Timoshenko extended the 

analysis to other modes of buckling, such as torsional and 

lateral torsional buckling, and provided an approach to 
stability analysis using energy methods. Reference [4] is 

another notable work in the same era that introduced a formal 

and systematic approach to framework stability. Later, the 

English school adopted a more systemised approach through 

stability functions, following in the steps of the slope 

deflection method. [5] In the stability functions method, fixed 

end moments for each beam and column in the structure are 

formulated and then assembled through equilibrium equations 

at each joint in the structure. These equations are then solved 

simultaneously to obtain the buckling load. Stability functions 

were derived for various loading and boundary conditions for 
frame elements and were made readily available for use. [6] 

As digital computing emerged in the mid-20th century, 

scientists in the aeronautical and aerospace industries 

contemporarily developed matrix methods of analysis that are 

systematic enough to be programmed as a set of instructions 

and fed into the computer. [7,8] Their efforts arose from the 
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need to find faster and more efficient methods of analysis that 

can deal with the complexity and variability of air and space 

vehicles’ structures. These efforts led to the development of 

the stiffness method and the first coining of the term “finite-

element method”, which marked a significant leap in the field 
of structural mechanics and the rise of a new field, 

computational structural mechanics. The rapid progress that 

followed on these numerical methods enabled the 

development of incremental nonlinear analysis techniques that 

accommodated both geometrical and material nonlinearities; 

these are often called second-order analyses. [8-11] 

Geometrical nonlinearities are necessary in studying the 

stability of all types of structures. As their name suggests, they 

depend on the geometry and slenderness of the elements and 

are not related to the yielding or ultimate strength of the 

material; however, they depend on the material’s modulus of 

elasticity. Material nonlinearities, on the other hand, are 
concerned with stress-strain characteristics of the material 

from the onset of loading up to fracture. [12] 

Nowadays, computational methods of analysis, such as 

the stiffness method, form the basis of most widely used 

commercial software programs used in the analysis of 

building structures. Current codes of practice for building 

structures mandate the use of methods that consider geometric 

nonlinearity. For example, the AISC specification requires 

that the second-order nonlinear effects of 𝑃 − ∆ and 𝑃 − 𝛿 be 

included in the analysis and design of steel structures via the 
code-specified “Direct Analysis Method”. [13] The Eurocode 

also mandates the inclusion of second-order deformations 

with similar methodologies in the stability design of frames. 

[14] 

While several factors, such as the slenderness of columns 

and stiffness of beams, mainly affect the stability of steel 

frames, the effects of the rigidity of connections between 

columns and beams on stability are typically overlooked. In 

practice, when modelling structures, all moment connections 

are often assumed fully rigid, transferring full moments and 

rotations of the beam to the column, and all shear connections 

are assumed purely hinged, isolating beam rotations and 
moments from the column. However, experiments have 

consistently shown that connections typically exhibit semi-

rigid behaviour lying somewhere between fully rigid and 

purely hinged. Factors such as bolt size, connecting plate 

thickness, and framing angles, among several other factors, 

have been known to critically influence the stiffness of 

connections. [15-19] 

Thus, the ongoing practice of idealizing joints as either 

pinned or rigid and ignoring their actual stiffness in structural 

analysis can lead to considerably inaccurate results. Several 

studies have been conducted to capture connections’ 
behaviour, and various empirical formulas have been 

proposed to fit their experimental moment-rotation curves. A 

summary of these formulas and their historical development 

can be found in [16, 20]. Moreover, attempts have been made 

to compile all available experimental data of various types of 

steel connections into database programs.  [21] These 

programs enable the user to extract the moment-rotation 

characteristics, based on a given connection configuration, 
which can then be used in modelling joints properly when 

analysing structures. 

On analysis of structures, efforts were made to devise 

methods that account for the flexibility of connections in the 

structural model. For example, [22] developed stiffness 

matrices using an updated Lagrangian formulation for beam-

column elements with springs at their ends. Then, by using 

these formulations, a toggle snap-through structural system 

with flexible supports was analysed and was found to 

experience appreciably more deflections than the case with 

rigid supports. In the same study, a four-storey steel frame 

structure with semi-rigid steel connections modelled through 
springs experienced lateral drifts 10.9% greater than its rigidly 

connected counterpart. The numerical procedures and 

techniques used in the study were detailed in another paper. 

[23] Others used iterative numerical approaches to investigate 

the effect of the fixity of joints on the critical buckling load of 

braced and unbraced frames and concluded that the buckling 

capacity of frames could significantly increase for a marginal 

increase in the degree of fixity of joints. [24] The results were 

also validated using an experimental apparatus devised in the 

same research, and it was found that the proposed analytical 

method overestimated the experimental critical buckling load 
by 19%. A different numerical treatment for analysing semi-

rigid frames, relying on power series expansions of the 

stiffness equations, was proposed to eliminate numerical 

difficulty under small axial forces and allow unified treatment 

for tensile and compressive forces. [25] While all these studies 

considered stability via geometric nonlinearity [22-24], other 

studies focused on the first-order behaviour of steel frames 

with semi-rigid joints. [26-28] In general, there is a consensus 

among researchers in the field on the necessity of 

incorporating joints’ stiffness in the analysis of structures, 

particularly when stability is a concern. 

Although the methods proposed in the literature are all 
numerical and account for connections’ flexibility, they serve 

different purposes. Some methods aim to trace the nonlinear 

load-deformation response [22,23], while others investigated 

the effect of joint semi-rigidity on straining actions. [25,28] 

Little research was found on determining the critical buckling 

load value of semi-rigid frames. [24] 

The numerical methods presented so far pose two main 

problems: (1) they are approximate numerical methods that do 

not readily reveal the critical buckling load or the parameters 

controlling stability; and (2) they are computationally 

intensive due to the incremental and iterative schemes used. 
The first problem can only be overcome by providing a 

mathematical treatment that reveals the key parameters 
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controlling stability and how they are related.  To the authors’ 

knowledge, no analytical study was found in the existing body 

of literature that mathematically investigated the effect of joint 

flexibility on the critical buckling load. Thus, this paper’s first 

objective is to set a theoretical framework from first principles 
for calculating the exact critical buckling load with no 

approximations and for identifying the key parameters 

governing the stability of frames having semi-rigid joints. 

To address the second problem, this paper introduces 

stableX, a program that was developed to perform efficient 

numerical analysis of flexibly jointed structures. The program 

implements a non-iterative one-step eigenvalue analysis 

technique to calculate the critical buckling load with high 

accuracy. The proposed numerical method not only confirms 

theoretical predictions with high precision but can also capture 

higher modes of buckling effectively, allowing critical loads 

for both braced and unbraced frames to be computed at the 
same time without recalculations. The last objective of this 

paper is to measure the effect of code-classified semi-rigid 

connections (to the AISC and Eurocode provisions) on the 

buckling capacity of frames using the methods devised herein. 

Additionally, to demonstrate the utility of the analytical 

method, the effect of column base flexibility on the structural 

stability is briefly explored. 

To ensure the applicability and reliability of the proposed 

methods, the following assumptions are adopted: 

 Material elasticity: It is assumed that the materials used 

in the structures are perfectly elastic. 

 Plane buckling restriction: The analysis restricts buckling 

to within the plane of the frame, thereby excluding out-

of-plane buckling phenomena from consideration. 

 Small deflection: Deflections are considered small, 

allowing the use of approximate curvature expressions. 

𝐸𝐼 𝑑2𝑦/𝑑𝑥2 = −𝑀. This assumption is a precursor to the 

development of all readily available stability functions. 

2. Analytical Methodology 
In the mathematical treatment, it is hypothesized that 

there exist non-dimensional key parameters that control the 

buckling capacity of frames with flexible joints. The terms 

“flexible” and “semi-rigid” are used interchangeably herein, 

aligning with the literature, in describing joints that are neither 

fully rigid (i.e., transmit full rotations and moments) nor fully 

pinned (i.e., transmit zero moments or rotations) but that 

possess finite stiffness (i.e., transmit moments and rotations 
partially). To reveal these parameters, classical stability 

functions are employed. The methodology is demonstrated 

through its application to a single-storey rectangular frame, 

analyzed in two scenarios: sway-permitted and sway-

prevented (i.e., braced). By following this method, one arrives 

at the governing buckling equation that contains the key 

controlling parameters of the structure’s stability. Since 

stability functions form the foundation of the present work, a 

brief overview is provided. Stability functions are analogous 

to the ordinary slope-deflection coefficients. In the ordinary 

slope-deflection method, a stiffness coefficient represents the 

force or moment needed to induce unit displacement or 

rotation at a specific degree of freedom in the element under 
no axial load while holding the other degrees of freedom fixed. 

In this case, the resulting equilibrium differential equations are 

simple, yielding constant stiffness coefficients. In contrast, to 

derive stability functions, equilibrium equations are 

formulated on the deformed state of the element under a 

sustained axial load. This further complicates the differential 

equation by adding the term (𝑃 ∙ 𝑦) or similar variants 

depending on the boundary conditions, where 𝑃 and 𝑦 are the 

axial load and deflection curve, respectively. This results in 

stiffness coefficients (i.e., stability functions) that are 

nonlinear in the axial load 𝑃 and that involve complex 

trigonometric expressions. In a frame structure consisting of 

more than one element, equilibrium is enforced discretely at 

the joints, thereby resulting in a number of equilibrium 

equations equal to the number of free degrees of freedom in 

the overall structure. This system of equilibrium equations 

typically leads to a symmetric matrix. To obtain the critical 

load, the determinant of this matrix must be set to zero to have 

non-trivial solutions for displacements at the critical state. 

Since the terms in the matrix involve stability functions that 

depend on the axial load in each element of the frame, a first-
order analysis is initially required to determine the axial force 

distribution across all elements. In doing so, it is assumed that 

the axial force distribution in the frame remains constant until 

the point of buckling. [29]  

 
Fig. 1 Frame in the initial undeformed state 

To illustrate the method, a single-storey rectangular frame 

is analyzed. The frame is assumed to be fixed at the base and 

subjected to concentric point load 𝑃 on each column, as shown 

in Figure 1. Joint flexibilities are modelled through rotational 

springs, each of which has two rotational degrees of freedom, 

one at each end of a spring. These purely theoretical springs 

have zero length and extend out of the plane of the frame. They 

are placed between columns and beams to ensure rotational 
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incompatibility as dictated by the real connection behavior 

(see Figures 2 and 3). 

 
Fig. 2 Analytical representation of a frame having semi-rigid 

connections 

The springs should simulate the rotational stiffness of the 

actual steel connections. Rotational stiffness is the moment 

needed to induce unit rotation. A wide survey of literature 

indicates that the moment-rotation behavior of steel 

connections is often complex and nonlinear. [15,16,21] 

Despite this inherent nonlinearity, several design codes 

classify connections based on either their secant stiffness at a 

given applied moment [13] or their initial tangent stiffness. 

[30] Assigning to springs a constant stiffness value (i.e., secant 

or initial tangent) will prove helpful in the analytical 

investigation, as this allows the derivation of parameterized 
equations that offer insight into the stability of semi-rigid 

frames, as demonstrated next. 

 
Fig. 3 Rotational spring element separating the column from the beam 

Let 𝐾𝑐 = 𝐸𝐼𝑐/𝑙𝑐 ,  𝐾𝑏 = 𝐸𝐼𝑏/𝑙𝑏, and 𝐾𝑠 be the bending 

stiffness of columns, the beam, and the spring constant, 

respectively. Where 𝐸 is the modulus of elasticity, 𝐼𝑐 and 𝐼𝑏 

are the moments of inertia for columns and beam cross-

sections, and 𝑙𝑐  and 𝑙𝑏 are as shown in Figure 1. 

 
Fig. 4 Frame in the buckled state with end moments indicated 

Under the shown loading conditions, each column carries 

an axial load 𝑃. Due to the symmetry of the loading, geometry, 

and boundary conditions, the frame buckles in anti-

symmetrical no-shear sway mode, as depicted in Figure 4. 

Consequently, the beam is free from axial forces. Therefore, 

stability functions are solely applicable to the equations at the 

column ends. In this anti-symmetrical buckling mode, two 

equilibrium equations need only be formulated, one at each 

end of the spring: the equilibrium equation of moments at the 

column-to-spring junction at Joint 2, and the equilibrium 
equation of moments at the spring-to-beam junction at Joint 3, 

shown in Figure 3. First, the elements’ end moments shall be 

expressed as follows: 

The column end moment at Joint 2 is: 

𝑀21 = 𝑛𝐾𝑐𝜃2 (1)  

Where 𝑛 is a stability function derived for the case of no-

shear sway buckling of columns and is rewritten here for 

reference: [6] 

𝑛 = 𝜇𝑙𝑐 cot(𝜇𝑙𝑐) (2) 
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𝜇 = √
𝑃𝑐𝑟

𝐸𝐼
     →        𝜇𝑙𝑐 = 𝜋√

𝑃𝑐𝑟

𝑃𝐸
= 𝜋√𝜌  (3) 

Where 𝑃𝑐𝑟 is the critical buckling load of the frame, and 

𝜌 is the critical load ratio defined as 𝜌 = 𝑃𝑐𝑟/𝑃𝐸 . Euler’s 

critical load, 𝑃𝐸 , is expressed as: [3] 

𝑃𝐸 = 𝜋2 𝐸𝐼𝑐

𝑙𝑐
2 
  (4)  

The spring torsional moments are: 

𝑀23 = −𝑀32 = 𝐾𝑠𝜃2 − 𝐾𝑠𝜃3 (5)  

The beam end-moment in the absence of axial forces is 

also known: 

𝑀34 = 4𝐾𝑏𝜃3 + 2𝐾𝑏𝜃4 (6)  

Due to anti-symmetry, 𝜃3 = 𝜃4. Therefore, Equation (6) 

may be written as: 

𝑀34 = 6𝐾𝑏𝜃3 (7)  

Equilibrium equations of moments can then be written for 

Joints 2 and 3 as follows: 

∑𝑀2 = 0    →       𝑀21 + 𝑀23 = 0 (8) 

∑𝑀3 = 0      →     𝑀32 + 𝑀34 = 0 (9) 

Substituting Equations (1), (5), and (7) in (8) and (9): 

𝑛𝐾𝑐𝜃2 + 𝐾𝑠𝜃2 − 𝐾𝑠𝜃3 = 0 (10)  

−𝐾𝑠𝜃2 + 𝐾𝑠𝜃3 + 6𝐾𝑏𝜃3 = 0 (11)  

Equations (10) and (11) are then cast in matrix form: 

[
𝑛𝐾𝑐 + 𝐾𝑠 −𝐾𝑠

−𝐾𝑠 𝐾𝑠 + 6𝐾𝑏
] {

𝜃2

𝜃3
} = 0 (12)  

Non-trivial solutions for the displacement vector in 

Equation (12) exist if, and only if, the determinant vanishes, 

that is: 

(𝑛𝐾𝑐 + 𝐾𝑠)(𝐾𝑠 + 6𝐾𝑏) − 𝐾𝑠
2 = 0 (13) 

By expanding Equation (13) and dividing by 𝐾𝑐𝐾𝑠: 

6
𝐾𝑏

𝐾𝑐
+ 6𝑛

𝐾𝑏

𝐾𝑠
+ 𝑛 = 0 (14)  

Equation (14) can be solved numerically for the critical 

buckling load of sway-permitted frames for any beam-to-

column 𝐾𝑏/𝐾𝑐 and beam-to-spring 𝐾𝑏/𝐾𝑠 relative bending 

stiffness ratios. For the case of braced (sway-prevented) 

frames, Figure 5 shows a schematic of their typical buckling 

mode. In this case, the stability function 𝑠 shall be used instead 

of 𝑛: [6] 

𝑠 = 𝜇𝑙𝑐
sin(𝜇𝑙𝑐)−𝜇𝑙𝑐co s(𝜇𝑙𝑐)

2−2 cos(𝜇𝑙𝑐)−𝜇𝑙𝑐si n(𝜇𝑙𝑐)
 (15) 

Frames prevented from swaying (i.e., braced) buckle in a 

symmetrical mode shape such that the beam end rotations are 

equal in magnitude but opposite in direction, i.e., 𝜃3 = −𝜃4. 

This slightly modifies the previous formulation, resulting in 

factor 2 replacing 6 in Equation (14). Therefore, the critical 

buckling load equation for braced frames becomes: 

2
𝐾𝑏

𝐾𝑐
+ 2𝑠

𝐾𝑏

𝐾𝑠
+ 𝑠 = 0 (16)  

A detailed discussion of the significance and implications 
of Equations (14) and (16) is provided in Section Error! 

Reference source not found.4 of this paper. Additionally, 

formulations for the case of semi-rigid and hinged bases are 

presented in the same section. 

 
Fig. 5 Frame in the buckled state with end moments indicated 

3. Numerical Analysis through the Custom 

Software stableX 
A Python program, “stableX”, was developed for the 

purpose of this research to achieve two main objectives: to 

verify the mathematical treatment proposed in this paper and 

to establish a generalized framework that enables fast and 

efficient stability analysis of flexibly jointed structures with 
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more complex geometry, loading, and boundary conditions.   

stableX is designed on Object-Oriented Programming (OOP) 

principles to enhance usability for the end user, meaning that 

entities such as degrees of freedom, nodes, elements, and loads 

are treated as objects in the programming paradigm. This 
design not only allows the addition of different types of 

elements, such as rotational or linear springs and bar elements, 

to its library, but also allows incorporating different types of 

analysis, such as first-order elastic analysis and eigenvalue 

buckling analysis, all of which are central in analyzing 

structures having semi-rigid joints. stableX also provides 

visualization through the library “Matplotlib”. (For 

reproducibility of the results presented in this paper, the 

developed program, stableX, was made open-source and is 
licensed under the MIT License. The source code is available 

at https://github.com/Hazem-Kassab/stableX, and the package 

can be installed directly via the Python Package Index at 

https://pypi.org/project/stableX/. 

3.1. Elements’ Stiffness Matrices 

Two types of elements are used in this study: the frame 

element, which has six degrees of freedom, and the spring 

element, which has two rotational degrees of freedom. For the 

frame element, the program employs the ordinary elastic 

stiffness matrix [𝑘𝑒] and the typical geometric stiffness matrix 

[𝑘𝑔] which accounts for geometric nonlinearities and second-

order effects, as represented by Equations (17) and (18), 

respectively: [7, 12, 29] 

[𝑘𝑒] =

[
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2 0 −
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3 −
6𝐸𝐼

𝐿2 0
12𝐸𝐼

𝐿3 −
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 

 (17) 

Where 𝐸, 𝐼, and 𝐴 are the modulus of elasticity, moment 

of inertia, and area of the element cross-section, respectively, 

while 𝐿 is the length of the element. 

[𝑘𝑔] =
𝑁

𝐿

[
 
 
 
 
 
 
 

1 0 0 −1 0 0

0
6

5

𝐿

10
0 −

6

5

𝐿

10

0
𝐿

10
2

𝐿2

15
0 −

𝐿

10
−

𝐿2

30

−1 0 0 1 0 0

0 −
6

5
−

𝐿

10
0

6

5
−

𝐿

10

0
𝐿

10
−

𝐿2

30
0 −

𝐿

10
2

𝐿2

15]
 
 
 
 
 
 
 

 (18) 

The geometric stiffness matrix [𝑘𝑔] is linear in 𝑁 (the 

internal axial force), this linearization is a result of the Taylor 

series expansion of stability functions truncated after the first 

two terms. This approximation provides accurate results if 

members are divided into sufficiently small elements to ensure 

that the ratio 𝑃/𝑃𝑐𝑟 does not exceed 0.1 for each element. This 

ratio corresponds to the range (0 to 0.1) where stability 
functions can be approximated as linear with insignificant 

error. [29] Unlike stability functions, which need to be 

reformulated as hyperbolic functions when the element is 

under tension [29], the geometric stiffness matrix (Equation 

(18)) remains valid in tension. [7] This is because Taylor’s 

expansion of the hyperbolic counterparts is the same as those 

derived for compression, with the key difference being an 

alternating sign applied from the second term onward. When 

𝑁 is negative, it signifies compression, resulting in a decrease 

in total stiffness and indicating potential instability. 

Conversely, a positive 𝑁 signifies tension, which increases the 

total stiffness and contributes to stabilizing the element.  

The rotational spring element used in the program 

possesses the following stiffness matrix: 

[𝑘𝑠] = 𝐾𝑠 [ 1 −1
−1 1

] (19) 

While the stiffness of springs could be incorporated 

directly into the stiffness matrix of the frame element by static 

condensation, a method adopted by several studies [22-26], 

stableX models springs as distinct elements in the structure, as 

illustrated in Figure 2. This facilitates the placement of spring 

elements at any specific location in the structure, or their 

complete removal when full fixity is required. Embedding 

springs in frame elements would necessitate assigning 
excessively large stiffness values to approximate full fixity, 

which is less straightforward and less accurate. Additionally, 

separate stiffness matrices must be formulated for the cases of 

frame elements with a spring at one end, both ends, or neither 

end; these then would have to be added to the elements’ library 

inside the program. 

The approach taken in stableX in modelling springs as 

separate elements offers several advantages: it allows the 

direct use of the standard textbook formulations of the elastic 

and geometric stiffness matrices (Equations (17) and (18)) 

without the need for rederiving modified stiffness matrices for 

frame elements incorporating springs at their ends. This can 
potentially be useful for existing finite-element packages since 

only the separate spring stiffness matrix needs to be 

programmed into the software library. Additionally, the spring 

element implementation in the software is such that rotational 

Degrees Of Freedom (DOFs) at the spring ends are decoupled 

while translational DOFs at both ends point to the same object 

in memory (i.e., coupled), simulating the effect of joint 

rotational flexibility effectively. The object-oriented nature of 

stableX also facilitates the development of different 

implementations of the spring element, enabling the 

incorporation of other axial and lateral DOFs in addition to the 
rotational DOFs in springs. Such spring elements can then be 
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seamlessly integrated into the software library to better 

capture other dimensions of deformability in the connection. 

Furthermore, the coupling techniques available through the 

program’s design make use of memory efficiently and 

eliminate unnecessary increases in degrees of freedom, which 
enhances the program’s capability to analyze structures with 

semi-rigid joints effectively. 

3.2. Eigenvalue Analysis for Critical Buckling Load 

Determination 

Several methods exist for buckling analysis. On the one 

hand, there are incremental methods that consider geometric 

nonlinearity and, in some cases, material nonlinearity. These 

techniques include multi-step iterative processes in which the 

load is incremented gradually until excessive deformations 

occur or the stiffness matrix determinant approaches zero, 

indicating instability. On the other hand, eigenvalue buckling 

analysis, adopted in this paper, is a non-iterative single-step 
procedure for calculating buckling loads. This method of 

analysis not only offers a fast and efficient means of 

calculating the critical loads but also captures higher modes of 

buckling effectively. Unlike incremental methods, which 

require imposing specific boundary conditions or otherwise 

tweaking imperfections in such a way as to induce a specific 

buckling mode shape, eigenvalue analysis allows for both 

braced and unbraced frames to be analysed using the same 

model and matrix formulation by simply extracting the first 

and second computed eigenpairs, respectively, in a single step 

without recalculations. The developed package, stableX, 
performs eigenvalue buckling analysis through a sequence of 

procedures. It begins by performing a first-order analysis to 

determine the axial force distribution in the structure's 

elements. This process starts with the formulation of the 

elastic stiffness matrix [𝑘𝑒] for each element in the structure. 

The elements’ stiffness matrices are then transformed from 

local to global coordinate systems through coordinate 

transformations [𝑇]. Next, the global elastic stiffness matrix, 
[𝐾𝐸]. The structure is assembled by combining the elements’ 

transformed matrices. Once assembled, the global stiffness 
matrix is partitioned to solve for the unknown displacements. 

Nodal forces {𝑓} within all elements are then computed using 

the obtained end displacements of each member. Once the 

axial forces 𝑁 in the elements are known, the global geometric 

stiffness matrix, [𝐾𝐺], of the structure is then assembled and 

partitioned in a similar manner. Finally, an eigenvalue 

problem is formulated and solved to determine the critical 

loads and their associated mode shapes. The overall analysis 

procedure is illustrated in the flowchart shown in Figure 6, and 

its implementation is provided in the source code. To 

formulate the eigenvalue problem, the equations of 
equilibrium at the free degrees of freedom must first be 

expressed in incremental form, which is written in matrix 

notation as: 

([𝐾𝐸]𝑓𝑓 + [𝐾𝐺]𝑓𝑓){𝑑∆} = {𝑑𝐹} (20) 

 

 
Fig. 6 Flowchart of the buckling analysis procedure in stableX 

Start 

Read nodes coordinates 

Read elements connectivity 

Read elements’ modulus of elasticity, inertia, and cross-

section area 

Read structure as an array of elements 

Read loading and boundary conditions 

Compute elements’ local elastic stiffness matrices 

[𝑘𝑒] 
Compute elements’ transformation matrices [𝑇] 

Compute elements’ global elastic stiffness matrices 

[𝐾𝑒] = [𝑇]𝑇[𝑘𝑒][𝑇] 

Assemble structure’s global elastic stiffness 

matrix of free DOFs [𝐾𝐸]𝑓𝑓  

Assemble force vector at free DOFs {𝐹}𝑓  

Compute displacements of free DOF’s {∆} = [𝐾𝐸]𝑓𝑓
−1{𝐹}𝑓  

Calculate elements’ local nodal displacements {𝑢} =
[𝑇]{∆}𝑖  

Calculate element local nodal forces {𝑓} = [𝑘𝑒]{𝑢} 

Obtain elements’ axial forces 𝑁𝑖 from {𝑓} 
Compute elements’ local geometric stiffness matrices 

[𝑘𝑔] 

Compute elements’ global geometric stiffness matrices 

[𝐾𝑔] = [𝑇]𝑇[𝑘𝑔][𝑇] 

Assemble structures’ global geometric 

stiffness matrix of free DOFs [𝐾𝐺]𝑓𝑓 

Compute the eigenvalues and eigenvectors of 

the product −[𝐾𝐸]𝑓𝑓
−1[𝐾𝐺

∗]𝑓𝑓 

End 
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Where: 

 [𝐾𝐸]𝑓𝑓 and [𝐾𝐺]𝑓𝑓 are partitions of the assembled global 

elastic and global geometric stiffness matrices 

corresponding to the free degrees of freedom, 

respectively. The sum [𝐾𝐸]𝑓𝑓 + [𝐾𝐺]𝑓𝑓 represents the 

tangent stiffness matrix. 

 {𝑑∆} is the displacement increment, and {𝑑𝐹} is the load 

increment at the free degrees of freedom. 

The axial force 𝑁𝑖 for any element 𝑖 in the framework, 

obtained from first-order analysis, can always be expressed as 

some multiple 𝛼𝑖 of the applied load 𝑃 (i.e. 𝑁𝑖 = 𝛼𝑖𝑃). 

Consequently, the local geometric stiffness matrices 

(Equation (18)) of all elements can be expressed in terms of 

𝑃. It follows that the multiplier 𝑃 can be factored out in the 

global geometric stiffness matrix, i.e., 𝑃[𝐾𝐺
∗]𝑓𝑓. 

Thus, Equation (20) can be rewritten as: 

([𝐾𝐸]𝑓𝑓 + 𝑃[𝐾𝐺
∗]𝑓𝑓){𝑑∆} = 𝑑𝐹 (21) 

The critical state can then be sought for non-trivial 

displacements under vanishing load increment: [20] 

([𝐾𝐸]𝑓𝑓 + 𝑃[𝐾𝐺
∗]𝑓𝑓){𝑑∆} = 0 (22)  

Expanding and rearranging Equation (22) yields: 

−[𝐾𝐸]𝑓𝑓
−1[𝐾𝐺

∗]𝑓𝑓{𝑑∆} =
1

𝑃
𝑑∆ (23) 

Equation (23) is a standard eigenvalue problem that can 

be expressed as: 

(−[𝐾𝐸]𝑓𝑓
−1[𝐾𝐺

∗]𝑓𝑓 − 𝜆[𝐼]){𝑑∆} = 0 (24)  

In Equation (24), 𝜆 = 1/𝑃, and [𝐼] is the identity matrix 

of size equal to the number of free degrees of freedom. The 

inverses of the eigenvalues are the critical buckling load 

multipliers, while the eigenvectors represent the buckling 

mode shapes associated with the eigenvalues. The Python 

package “NumPy” is employed in the program to compute the 

eigenpairs of the product −[𝐾𝐸]𝑓𝑓
−1[𝐾𝐺

∗]𝑓𝑓. The number of 

buckling mode shapes and their associated critical loads is 

equal to the number of free degrees of freedom in the system. 
Unlike the iterative nature of the numerical techniques used in 

the literature, “Numpy” utilizes non-iterative QR factorization 

schemes to deterministically find all the eigenvalues and 

eigenvectors in a finite number of steps, yielding accurate 

results with high computational efficiency. [31] 

3.3. Verification of stableX 

In this section, stableX is verified against benchmark 

problems in stability. Two problems are investigated: (1) the 

classical Euler’s pinned column, shown in Figure 7(a), and (2) 

the rigid bar and spring assembly, shown in Figure 7(b); both 

of which have well-known solutions. These classical problems 

were specifically selected to adequately verify the capabilities 

of stableX in analyzing flexural buckling and accounting for 

joint flexibility. The theoretical solution to the pinned column 
problem is well-documented in the literature: [1-4,29,32] 

𝑃𝑐𝑟 = 𝑛2𝜋2 𝐸𝐼

𝑙2
 (25) 

Where 𝑛 is a positive integer reflecting the buckling mode 

shape, 𝐸 and 𝐼 are the column’s elasticity modulus and cross-

sectional inertia, respectively, and 𝑙 is the column’s length. 

Substituting 𝑛 = 1 in Equation (25) yields Equation (4), 

which corresponds to the lowest buckling mode of a half-sine 

wave. The theoretical solution to the second problem of the 

rigid bar and spring system is as follows: [2, 33] 

𝑃𝑐𝑟 =
𝑘

𝑙
  (26) 

Where 𝑘 is the spring constant and 𝑙 is the bar length.  

Equations (25) and (26) will provide benchmarks for 

comparison against results from stableX. The following 

presents examples of the two problems: (The Python scripts 
used to model these problems in stableX are available at 

https://github.com/Hazem-

Kassab/stableX/tree/master/verification_problems) 

 
Fig. 7 Classical benchmark buckling problems of (a) Pinned column, 

and (b) Rigid bar and spring assembly. 

Problem 1: Consider a 6-m-long pinned column subjected 

to axial compression. The column has profile IPE200 with 

properties: 𝐴 = 53.8 cm2, 𝐸 = 200 × 103 MPa and 𝐼 =
1340 cm4 (weaker axis). The critical loads calculated through 

Equation (25) are 77.86 kN for the first mode (𝑛 = 1) and 

311.44 kN for the second mode (𝑛 = 2). In 𝑠𝑡𝑎𝑏𝑙𝑒𝑋, the 

column was modelled with a mesh of four frame elements 
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having the same profile and material properties mentioned 

previously. Analysis was then performed, and the first two 

eigenpairs were extracted. Figure 8 shows the resulting mode 

shapes and the corresponding buckling loads computed by 

𝑠𝑡𝑎𝑏𝑙𝑒𝑋: 77.9 kN and 313.78 kN for the first and second 

modes, respectively. It is evident that the results from stableX 

are in strong agreement with the results obtained theoretically 

from Equation (25), with very small discrepancy; error less 

than 0.05% for the first mode and less than 0.75% for the 

second mode. In general, error increases with higher modes of 

buckling due to the increase in the ratio 𝑃𝑐𝑟/𝑃𝐸  for elements at 

higher buckling loads. To circumvent this, a more refined 

mesh might be necessary at higher buckling modes.To ensure 

adequate verification of stableX, the length of the column was 

varied in half-meter increments in the program, and the 
corresponding critical loads for first and second modes were 

computed at each increment. Figure 9 presents a chart 

comparing the results with Equation (25). The chart indicates 

that stableX predicts the flexural buckling loads with high 

precision. 

 
Fig. 8 stableX output for the buckling mode shapes and their 

corresponding critical loads, (a) First mode, and (b) Second mode. 

 
Fig. 9 Comparison between stableX and the theoretical solution for the 

buckling of the pinned column 

Problem 2: Consider a 2-m rigid bar free at the top and 

connected to a fixed base via a rotational spring having 

constant 𝑘 = 20 kN.m/rad. Substituting these inputs in 

Equation (26) yields the exact critical load value of 10 kN. To 
model the system in stableX, a single frame element with a 

very large cross-sectional area was used to simulate the rigid 

bar, and a linear rotational spring element was used to connect 

the bottom node of the bar to the fixed base node. The analysis 

in stableX yielded the mode shape depicted in Figure 10 and 

a critical buckling load of 10 kN, matching the theoretically 

predicted value exactly to two decimal places. Figure 11 is a 

chart showing the strong agreement between stableX and 

Equation (26) in solving problem 2 for different bar lengths. 

The plot verifies the program’s ability to analyse semi-rigid 

joints efficiently and accurately. Having verified stableX, the 

next section investigates a single-storey steel frame with semi-
rigid joints. 

 
Fig. 10 stableX output for the buckling mode of the rigid bar and the 

corresponding critical load 

 
Fig. 11 Comparison between stableX and the theoretical solution for the 

buckling of the rigid-bar and spring assembly 

3.4. Numerical Modelling of a Single-Storey Rectangular 

Frame in stableX 

To verify Equation (14), a single-storey 11 m × 11 m steel 

frame is modelled. Figure 12 illustrates the model in its initial 
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undeformed configuration, the end boundary conditions, the 

loading pattern, and element meshing of the frame. Unit loads 

are applied to the frame so that by inverting the resulting 

eigenvalues, the critical buckling loads are directly obtained. 

The columns are discretized into six elements to ensure 

that the critical load ratio 𝑃𝑐𝑟/𝑃𝐸  for each element, the value 

remains less than 1/36 in the case of sway buckling and less 

than 1/9 if braced. This guarantees that the ratio 𝑃𝑐𝑟/𝑃𝐸  is 

sufficiently small, lying in the range where stability functions 

can be approximated as linear and ensuring accurate results. 

[29] While such fine discretization significantly increases the 

degrees of freedom and is unnecessary for most practical 

scenarios, this refined mesh is justified in this paper for precise 

verification of the analytical results. In fact, modelling each 

column as a single unmeshed element results in a maximum 

error of only 1.05% in this example. 

Table 1. Properties of the profiles used in the numerical and analytical 

analysis 

Profile 𝐴 (cm2) 𝐼 (cm4) 

IPE160 20.09 869.3 

IPE200 28.48 1943 

IPE240 39.12 3892 

The analysis was conducted on the frame with different 

combinations of profiles for the beam and columns, selected 

from the European profiles IPE160, IPE200, and IPE240. 

S355 steel grade was assigned to all members, with a yield 

strength of 355 MPa and an elasticity modulus of 210 GPa. 

These selected profiles ensure elastic buckling failure by 

maintaining a critical stress below 44% of the yield strength, 

in accordance with the AISC provisions [13], which aligns 

with the assumptions of this research. Table 1 presents the 
profile properties used in the numerical and analytical 

analyses. 

In the analysis, for each set of beam and column profiles, 

the spring stiffness was varied using multiples of 0, 2, 5, 20, 

and ∞ relative to the beam’s bending stiffness 𝐾𝑏. The selected 

ratios 𝐾𝑏/𝐾𝑠 ranging from 1/20 to 1/2 fall within the range 

where connections are classified as semi-rigid under service 

loads, with 𝐾𝑠 representing the secant stiffness of the 

connection’s 𝑀 − 𝜃 curve, as per the AISC specification. [13] 

3.5. Comparison with the Exact Solution 

Table 2 presents the critical loads obtained from the 

stiffness method in stableX for the frame with various beam 

and column profile combinations. It is evident that as the 

spring stiffness decreases from the top to the bottom of the 

table, the frame's critical load decreases substantially. The 

strong agreement between the analytical predictions and the 

stiffness method verifies the analytical approach and all its 

underlying assumptions. In all cases, the lowest buckling load 

of the frame corresponds to a typical sway-buckling mode, 

illustrated by the stableX output in Figure 13, as predicted 
theoretically. Similarly, the second buckling mode, associated 

with the braced scenario, is depicted in Figure 14. 

 
Fig. 12 Elements used in the verification frame model and their associated stiffness matrices in stableX 
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Fig. 13 Typical first buckling mode in stableX 

 
Fig. 14 Typical second buckling mode in stableX

Table 2. Comparison between the results of the stiffness method and the exact solution (loads are in kN) 

Column IPE160 IPE200 IPE240 

Beam 
stableX Eq. 14 Error stableX Eq. 14 Error stableX Eq. 14 Error 

Ks = ꚙ (i.e. rigid) 

IPE160 111.31 111.33 -0.02% 195.82 195.86 -0.02% 306.98 307.02 -0.01% 

IPE200 129.21 129.23 -0.02% 248.77 248.84 -0.03% 406.99 407.11 -0.03% 

IPE240 138.42 138.45 -0.02% 284.38 284.47 -0.03% 498.22 498.44 -0.04% 
 Kb/Ks = 1/20 

IPE160 103.91 103.92 -0.01% 178.67 178.69 -0.01% 280.78 280.80 -0.01% 

IPE200 124.27 124.29 -0.02% 232.22 232.28 -0.03% 371.98 372.07 -0.02% 

IPE240 135.53 135.56 -0.02% 272.52 272.60 -0.03% 465.10 465.28 -0.04% 
 Kb/Ks = 1/5 

IPE160 88.09 88.10 -0.01% 148.37 148.38 -0.01% 239.64 239.65 0.00% 

IPE200 111.74 111.76 -0.02% 196.88 196.92 -0.02% 308.68 308.73 -0.02% 

IPE240 127.54 127.57 -0.02% 243.00 243.07 -0.03% 394.34 394.45 -0.03% 
 Kb/Ks = 1/2 

IPE160 71.34 71.35 -0.01% 122.87 122.87 0.00% 209.00 209.00 0.00% 

IPE200 94.34 94.35 -0.01% 159.45 159.47 -0.01% 254.02 254.04 -0.01% 

IPE240 114.29 114.31 -0.02% 203.41 203.45 -0.02% 319.38 319.43 -0.02% 
 Ks = 0 (i.e., hinge) 

IPE160 

37.23 37.23 0.00% 83.20 83.20 0.00% 166.67 166.67 0.00% IPE200 

IPE240 

The minor discrepancies between stableX and Equation 

(14) can be attributed to two reasons: first, the approximation 

inherent in the formulation of the geometric stiffness matrix 

of Equation (18) gives rise to some error, since the terms in 

the matrix are linearizations of the exact stability functions.  

The second reason is that, unlike stability functions, the 
stiffness method considers axial deformations in the members. 

It is essential, however, to recognize that the stiffness method 

is an approximate extension of the slope-deflection method. 

While the latter relies on the relative displacement of member 

end nodes, the former treats each end node displacement 

separately. 

3.6. Analytical Insights and the Effect of Base Flexibility 

While the stiffness method proved its versatility, the 

accuracy and efficiency of the analytical method cannot be 

overlooked. Studying merely two degrees of freedom has 

proven not only sufficient but precise, circumventing the need 

for the lengthier calculations associated with the stiffness 
method. More importantly, the analytical approach adopted 

herein abstracts the problem effectively and clearly delineates 

the critical parameters that govern the bifurcation load, 

thereby offering a deeper understanding of the structural 

stability behaviour of structures. Equations (14) and (16) 

demonstrate that the critical load ratio 𝜌 is not concerned with 

the stiffness of columns, beams, or springs; rather, it depends 
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on their relative stiffness ratios. The parameters 𝐾𝑏/𝐾𝑐 and 

𝐾𝑏/𝐾𝑠 substantially affect the critical buckling load ratio as 

illustrated through plots of Equations (14) and (16) in Figures 

15 and 16, respectively. The critical buckling load in single-

storey sway frames lies within the range 0.25𝑃𝐸 ≤ 𝑃𝑐𝑟 ≤ 𝑃𝐸 , 

where 𝑃𝐸  is the Euler buckling load of the columns as defined 

in Equation (4). This means that the strength of columns in 

sway frames with rigid beams can, at best, match their strength 

as pinned columns if the connection is fully rigid. These 

bounds increase in magnitude and expand in range such that 

2.045𝑃𝐸 ≤ 𝑃𝑐𝑟 ≤ 4𝑃𝐸  for braced frames. The maximum load 

of 4𝑃𝐸  also corresponds to the case where these columns are 

fixed at both ends, rather than pinned. 

 
Fig. 15 Effect of beam-to-spring stiffness ratio on the critical load 

of fixed-base sway frames 

Alternatively, the effective length factor, given by 𝑘 =

1/√𝜌, offers a more visual perspective of the slenderness of 

columns in the frame. The effective length factor in unbraced 

frames varies between 2 ≥ 𝑘 ≥ 1, while for braced frames the 

range is within 0.7 ≥ 𝑘 ≥ 0.5. These upper bounds, 

achievable only when connections are fully rigid, are 

generally lower for practical 𝐾𝑏/𝐾𝑐 ratios. In general, 

Equations (14) and (16) can be used to determine the 

maximum critical load or the effective length factor to be used 

in design for a frame with a specific beam-to-column stiffness 

ratio. 

The plots also reveal significant implications for buckling 

capacities if moment connections are assumed fully rigid. The 

steeply declining curves in the lower ranges of 𝐾𝑏/𝐾𝑠 ratios 

indicate sharp drops in buckling capacity for a small decrease 

in connection stiffness. For example, steel unbraced frames 

that have the same profiles for beams and columns, and with 

𝐾𝑏/𝐾𝑠 ratio in the range 0 to 1, a common case in practice, 

experience reductions in capacity of 47% (𝜌 = 0.748 →
0.397) when reducing the connection stiffness from ∞ (i.e., 

fully rigid assumption) to a stiffness equal to that of the beam 

(𝐾𝑏/𝐾𝑠 = 1). 

 
Fig. 16 Effect of beam-to-spring stiffness ratio on the critical load of 

fixed-base sway-prevented frames 

However, the aforementioned bounds for braced and 

unbraced frames assume idealized base boundary conditions, 

which are rarely realized. Due to the deformability of the base 

plates, concrete, and soil, base plates typically exhibit semi-

rigid behaviour that lies somewhere between fully fixed and 

perfectly pinned conditions. [15] This further degrades the 

stability of steel structures. To account for this, spring 

elements can be inserted at the column bases too. This 

generalization, while making the analytical approach more 

mathematically involved, effectively demonstrates the 

versatility and applicability to different settings. Equations 

(14) and (16) then emerge as a special case of a more 
comprehensive model. The four-spring frame model, 

schematically illustrated in Figure 17, incorporates semi-rigid 

connections and bases. The critical buckling load for this 

generalized model is governed by Equation (27) for sway-

permitted frames. If the frame is braced or sway-prevented, 

the buckling load is instead governed by Equation (28), which 
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has a similar form to Equation (27). In general, to get the 

equation for the braced condition, factor 2 replaces 6, 𝑠 

replaces 𝑛, and 𝑐𝑠 replaces 𝑜 in the unbraced buckling 

equation. Detailed derivation is provided in Appendix 1. 

 
Fig. 17 Four-spring frame model to account for bases and connections' 

flexibility. Joint labels are highlighted in red. 

(Unbraced) 

6𝛽 + 𝑛(1 + 6𝛽α1 + 6𝛼2)  

+𝛼1(𝑛
2 − 𝑜2)(1 + 6𝛼2) = 0 (27) 

(Braced) 

2𝛽 + 𝑠(1 + 2𝛽α1 + 2𝛼2)  

+𝛼1𝑠
2(1 − 𝑐2)(1 + 2𝛼2) = 0 (28)    

Where: 

 𝛼1 = 𝐾𝑐/𝐾𝑠1 : column-to-base spring stiffness ratio. 

 𝛼2 = 𝐾𝑏/𝐾𝑠2 : beam-to-connection spring stiffness ratio. 

 𝛽 = 𝐾𝑏/𝐾𝑐 : beam-to-column stiffness ratio. 

 𝑜 = 𝜇𝑙𝑐/ sin(𝜇𝑙𝑐) : stability function for members with 

double curvature and subject to sway. [6] 

 𝑐 = (𝜇𝑙𝑐 − sin(𝜇𝑙𝑐)) (sin(𝜇𝑙𝑐) − 𝜇𝑙𝑐cos(𝜇𝑙𝑐)⁄ ): 

stability function representing a carry-over factor. [6] 

These generalizations underscore the analytical 
framework’s utility in identifying and isolating the key 

parameters controlling buckling. This is advantageous when 

more complex scenarios are encountered and when the factors 

governing the critical load are obscure, giving more insight 

into the underlying mechanics of structural stability. 

By setting 𝛼1 to zero, the bases become fixed, and 

Equations (27) and (28) reduce to Equations (14) and (16), 

respectively. Hinged bases can be modelled by setting 𝐾𝑠1 =
0 in Equations (27) and (28), which, after some algebraic 

manipulations, lead to the following equations for critical 

buckling loads of hinged-base frames with semi-rigid 

connections: 

(Unbraced) 

6𝑛𝛽 + (𝑛2 − 𝑜2)(1 + 6𝛼2) = 0 (29)  

(Braced) 

2𝑠𝛽 + 𝑠2(1 − 𝑐2)(1 + 2𝛼2) = 0 (30)  

Equations (29) and (30) indicate that the critical load for 

all single-storey frames with fully rigid connections and 

hinged bases has an upper limit of 0.25𝑃𝐸  when unbraced and 

2.045𝑃𝐸  when braced. Or an effective length factor of 2 for 

unbraced frames and 0.7 for braced frames. However, 
connection springs cannot have zero stiffness when the bases 

are hinged, as this would result in a statically unstable 

configuration. 

4. Practical Design Considerations 
Current codes of practice propose different treatments for 

the subject of connection flexibility. For example, the AISC 

specification classifies connections according to their secant 

stiffness at service loads into three categories: Fully 

Restrained (FR), Partially Restrained (PR), and simple 

connections.  A PR connection follows the same definition of 

a semi-rigid connection in this paper. For a connection to be 

classified as PR to AISC, the secant stiffness 𝐾𝑠 must lie 

within the range 2𝐾𝑏 to 20𝐾𝑏. AISC requires that PR 
connections’ stiffness, as well as strength and ductility, be 

included in the analysis. [13] A closer examination of the 

previous example in Section 3.4 indicates the following: for 

frames where columns and beams have the same bending 

stiffness, PR connections result in a reduction of at most 31% 

in buckling capacity when the connection stiffness is 

decreased from 20𝐾𝑏 to 2𝐾𝑏, the range specified in the AISC 

specification for PR connections. In theory, the percentage 

change in 𝜌 corresponds directly to the percentage change in 

𝑃𝑐𝑟 This implies that the 31% reduction is universally 

applicable to all such frames, regardless of the columns’ 

absolute stiffness. For hinged-base frames, Equation (29) 

yields a greater reduction of 42%. However, only minor 

reductions in capacity were observed if the frame was braced; 

7% reduction for fixed-base braced frames and 9% for hinged-

base braced frames. While the AISC specification does not 
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distinguish between unbraced and braced frames in its criteria 

for classifying connections, the Eurocode adopts a different 

approach. The Eurocode provisions specify different limits in 

braced and unbraced frames for a connection to be classified 

as semi-rigid. Additionally, the Eurocode bases its criteria on 
the initial stiffness rather than the secant stiffness of the 

connection. The Eurocode also requires the behaviour of semi-

rigid connections to be accounted for in the analysis. [30]  

According to the Eurocode, in unbraced frames, the 

connection's initial stiffness 𝐾𝑠 must fall within the range 

0.5𝐾𝑏 < 𝐾𝑠 < 25𝐾𝑏 to consider the connection as semi-rigid. 

When 𝐾𝑠 decreases from 25𝐾𝑏 to 0.5𝐾𝑏, Equations (14) and 

(29) indicate reductions of 53% and 77% in buckling capacity 

for fixed-base and hinged-base frames, respectively. If 𝐾𝑠 

exceeds 25𝐾𝑏, Eurocode still considers the connection semi-

rigid, provided that 𝐾𝑏/𝐾𝑐 < 0.1. For braced frames, the range 

is narrower, specified as 0.5𝐾𝑏 < 𝐾𝑠 < 8𝐾𝑏, leading to a 

smaller variation of 12% for fixed-base frames and 17% for 

hinged-base frames. Table 3 provides a summary of the 

preceding discussion, where percentage reductions in critical 

load values correspond to the decrease in connection stiffness 

from the upper to the lower limit within the specified code 

range. 

Table 3. Buckling capacity variation for frames with equal beam and 

column stiffness under AISC and Eurocode semi-rigid connection 

stiffness range 

Spec. 

Connecti

on 

Stiffness 

Frame 

Condition 

Fixed 

base 

Hing

ed 

base 

AISC 

(Secant 

Stiffnes

s) 

2𝐾𝑏

< 𝐾𝑠

< 20𝐾𝑏 

Unbraced 31% 42% 

Braced 7% 9% 

Euroco

de 

(Initial 

Stiffnes

s) 

0.5𝐾𝑏

< 𝐾𝑠

< 8𝐾𝑏 

Unbraced 53% 77% 

0.5𝐾𝑏

< 𝐾𝑠

< 25𝐾𝑏 

Braced 12% 17% 

Table 3 highlights the significant influence of the 
flexibility of bases and connections on the buckling capacity 

of frames. It indicates that reductions in buckling capacity are 

more pronounced in the case of unbraced frames, where base 

flexibility tends to further degrade the frame’s buckling 

capacity appreciably. The reductions can be as large as 77% 

in some cases where connections are considered semi-rigid 

according to Eurocode provisions. Thus, simplifying moment 

connections as fully rigid in structural analysis models can 

lead to an overestimation of the load-carrying capacity of 

structures, while the flexibility of joints reduces the capacity 

substantially. This necessitates proper accounting for the 
stiffness of connections in analysis. In practice, one way to 

determine the actual stiffness of connections is by using the 

component method established in the Eurocode, where each 

component in a connection, such as bolts, framing angles, and 

end plates, is modelled as a linear spring with stiffness 𝑘𝑖, as 

depicted in Figure 18. The overall stiffness of the connection 
is then the collective stiffnesses of all the constituent 

components, calculated as follows: [30] 

𝑆𝑗 =
𝐸𝑧2

𝜇 ∑1/𝑘𝑖
 (31) 

Where: 

 𝑘𝑖: is the stiffness coefficient for the basic joint 

component 𝑖. 
 𝑧: is the lever arm, to be determined as per Eurocode 

provisions. 

 𝜇: is the ratio of the stiffness 𝑆𝑗  to the initial stiffness 𝑆𝑗,𝑖𝑛𝑖, 

determined in accordance with Eurocode provisions. The 

initial stiffness is the 𝑆𝑗  calculated from Equation (31) 

with 𝜇 = 1. 

 
Fig. 18 Eurocode’s component method for determining rotational 

stiffness of moment connection, modelling each component as a linear 

spring 

The Eurocode provides a table of formulas for calculating 

the stiffness coefficients 𝑘𝑖 of all components in a connection. 

The stiffness, 𝑆𝑗 , can be substituted for 𝐾𝑠, and then used in the 

analytical or numerical frameworks devised in this paper. The 

Eurocode also specifies a detailed method for calculating 

column base stiffness, which can then be utilized in the four-

spring frame model. This allows for all types of joints’ 

flexibility to be properly accounted for in the stability analysis 

of steel structures. 

5. Conclusion  
This research studied the elastic stability of flexibly 

jointed structural steel frames. Two approaches were 

proposed: analytical and numerical. The analytical treatment 

utilized stability functions and proved superior in identifying 

the key parameters that directly affect stability. These 

parameters appear in the characteristic equation and are 

typically relative stiffness ratios of the beams, columns, and 

connections that constitute the structure. The stiffness method, 

which is a numerical treatment of the subject, corroborated the 

analytical insights with high fidelity and with minimal 

deviation from theoretical predictions. The method utilized 
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distinct spring elements to model connections’ flexibilities 

and ensure rotational decoupling at the joints. The software 

“stableX” provides engineers with a practical, extensible, and 

effective tool for handling complex frame geometries with 

various loading and boundary conditions. Further, the 
application of the stiffness matrices in this paper extends to 

nonlinear incremental analysis, where the load-deformation 

response can be explored, and additional material 

nonlinearities could be considered. The paper also addressed 

the categorization criteria of current codes of practice in 

classifying steel connections as semi-rigid. The analysis 

highlighted that code-classified “semi-rigid” connections can 

cause reductions up to 77% in the stability of frames, 

underscoring the importance of incorporating joint stiffness in 

analysis. The reductions were particularly pronounced in 
unbraced frames, where hinged bases further amplified the 

reductions in buckling capacity. The dual analytical and 

numerical frameworks developed in this paper provide a 

valuable tool for engineers to assess the stability of flexibly 

jointed frames. 
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Appendix 1 
The derivations of Equations (27) and (28), which were 

previously introduced in Section 4, are provided in this 

appendix. Referring to Figure 17, the governing buckling load 

equation for the four-spring model is derived by formulating 

moment equilibrium equations at joints 2, 3, and 4. Joint 2 

corresponds to the column-to-base interface, joint 3 to the 

column-to-connection interface, and joint 4 to the beam-to-

connection interface. The base spring moment at Joint 2 is 
given by: 

𝑀21 = 𝐾𝑠1𝜃2 (A.1) 

The column end moments are expressed as: 

𝑀23 = 𝑛𝐾𝑐𝜃2 − 𝑜𝐾𝑐𝜃3 (A.2) 

𝑀32 = −𝑜𝐾𝑐𝜃2 + 𝑛𝐾𝑐𝜃3 (A.3) 

The connection spring moments at joints 3 and 4 are: 

𝑀34 = −𝑀43 = 𝐾𝑠2𝜃3 − 𝐾𝑠2𝜃4 (A.4) 

The beam end moment at joint 4 is: 

𝑀45 = 4𝐾𝑏𝜃4 + 2𝐾𝑏𝜃5 (A.5) 

 

Since an anti-symmetrical sway buckling mode is 

assumed, it follows that 𝜃4 = 𝜃5. Therefore, Equation (A.5) 

simplifies to: 

𝑀45 = 6𝐾𝑏𝜃4 (A.6) 

Applying moment equilibrium at each joint: 

∑𝑀2 = 0     →      𝑀21 + 𝑀23 = 0 (A.7) 

∑𝑀3 = 0     →      𝑀32 + 𝑀34 = 0 (A.8) 

∑𝑀4 = 0     →      𝑀43 + 𝑀45 = 0 (A.9) 

Using Equations (A.1) to (A.6), the equilibrium equations 

become: 

∑𝑀2 = 0 → 𝐾𝑠1𝜃2 + 𝑛𝐾𝑐𝜃2 − 𝑜𝐾𝑐𝜃3 = 0 (A.10) 

∑𝑀3 = 0 → −𝑜𝐾𝑐𝜃2 + 𝑛𝐾𝑐𝜃3 + 𝐾𝑠2𝜃3 − 𝐾𝑠2𝜃4 = 0 (A.11) 

∑𝑀4 = 0 → −𝐾𝑠2𝜃3 + 𝐾𝑠2𝜃4 + 6𝐾𝑏𝜃4 = 0 (A.12) 

Rewriting in matrix form: 

[
𝐾𝑠1 + 𝑛𝐾𝑐 −𝑜𝐾𝑐 0

−𝑜𝐾𝑐 𝑛𝐾𝑐 + 𝐾𝑠2 −𝐾𝑠2

0 −𝐾𝑠2 𝐾𝑠2 + 6𝐾𝑏

] {
𝜃2

𝜃3

𝜃4

}

= 𝟎 

(A.13) 

Since non-trivial solutions for 𝜃2, 𝜃3, and 𝜃4 exist only 

when the determinant of the coefficient matrix is zero. 

Expanding the determinant and simplifying yields the 

following equation, which is Equation (27): 
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 6𝛽 + 𝑛(1 + 6𝛽α1 + 6𝛼2) + 

𝛼1(𝑛
2 − 𝑜2)(1 + 6𝛼2) = 0 

(A.1) 

For braced frames, column end moment equations 

involve different stability functions, namely, 𝑠 and 𝑐. 

Equations (A.2) and (A.3) become: 

𝑀23 = 𝑠𝐾𝑐𝜃2 + 𝑐𝑠𝐾𝑐𝜃3 (A.15) 

𝑀32 = 𝑠𝐾𝑐𝜃2 + 𝑐𝑠𝐾𝑐𝜃3 (A.16) 

 

Due to the symmetrical buckling mode, 𝜃4 = −𝜃5. Thus, 

Equation (A.5) simplifies to: 

𝑀45 = 2𝐾𝑏𝜃4 (A.17) 

Reformulating the equilibrium Equations (A.10) to (A.12) for 

the braced case yields the matrix equation: 

[
𝐾𝑠1 + 𝑠𝐾𝑐 𝑐𝑠𝐾𝑐 0

𝑐𝑠𝐾𝑐 𝑠𝐾𝑐 + 𝐾𝑠2 −𝐾𝑠2

0 −𝐾𝑠2 𝐾𝑠2 + 2𝐾𝑏

] {
𝜃2

𝜃3

𝜃4

}

= 𝟎 

(A.18) 

Expanding the determinant and simplifying leads to the 

following characteristic equation, which is Equation (28): 

2𝛽 + 𝑠(1 + 2𝛽α1 + 2𝛼2) + 

      𝛼1𝑠
2(1 − 𝑐2)(1 + 2𝛼2) = 0 

(A.19) 

 


