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Abstract - This study aims to analyze and predict the tsunami evacuation time in Padang City using an artificial intelligence
method, namely Extreme Gradient Boosting (XGBoost) Regressor. The data used included distance to the beach, altitude,
population, shelter capacity, and evacuation zone area. Model performance evaluation was carried out by accuracy
measurements such as MSE, RMSE, MAE, MAPE, and determination coefficient (R?). The results of the analysis show that the
XGBoost Regressor provides better prediction performance than Linear Regression and Random Forest. The XGBoost Regressor
model is able to achieve an R? of 0.95, MSE of 0.0156, RMSE of 0.1250, MAE of 0.0212, and MAPE of 0.16%. The most influential
factor on the evacuation time is the distance to the coastline.. This research has a uniqueness that lies in combining a machine
learning-based predictive model with an interactive web interface that utilizes the Google Maps API, so that users get an
informative and easy-to-understand spatial visualization. This application is specifically designed to support quick decision-
making in tsunami-prone areas by providing real-time evacuation time estimates as well as spatial visualizations. These findings
not only provide a scientific contribution to the development of data-based prediction systems but also practical contributions in
the form of application prototypes that can be used by the community and related agencies, such as BPBD, in planning and
carrying out evacuations more effectively. Thus, this research is expected to improve the preparedness of coastal communities
and strengthen an adaptive and technology-based disaster mitigation system.

Keywords - Tsunami evacuation, Evacuation time prediction, XGBoost regressor, Web-based GIS, Padang City, Disaster risk
reduction.

1. Introduction and reliable predictions. Extreme Gradient Boosting
Indonesia is an archipelagic country located at the (XGBoost? isamethod in'machinc? learning that is a regression
convergence of three major tectonic plates: the Eurasian Plate, and classification algorithm with the ensemble method.

the Indo-Australian Plate, and the Pacific Plate. This geological ~ XGBoost is also a variant of the Tree Gradient Boosting
position makes Indonesia one of the most disaster-prone  algorithm, which was developed with 10 times faster
countries in the world, particularly vulnerable to earthquakes optimization than Gradient Boosting. This algorithm is an
and tsunamis. Padang City, the capital of West Sumatra extension of the classic Gradient Boosting Machine (GBM)
Province, is situated in an active megathrust zone and thus has ~ algorithm and is only used for data that has labels in the training
a high potential to be impacted by tsunamis triggered by process. This algorithm is very popular in machine learning
seismic activity along the Mentawai subduction zone. competitions held by Kaggle. [1] using Machine Learning to
Consequently, disaster mitigation efforts, especially in terms of ~ forecast tsunamis from Rare Observations by demonstrating
evacuation planning and implementation, are crucial to reduce high accuracy even with limited data, and opening up
the risk of casualties and material losses. Efforts to detect and opportunities for further research in evacuation prediction
classify tsunamis early are critical to risk mitigation and systems.. In addition, the use of regression tree-based machine
disaster impact reduction. Although various methods have  learning approaches is used to model the evolution of tsunami
been proposed to improve the accuracy of tsunami predictions, ~ Waves, emphasizing the importance of selecting relevant
the primary challenge remains the variation in accuracy features [2]. Research by [3] created a predictive model in a
between different models and the inability of some models to web-based application to provide quick and wide access for
handle complex and diverse data. Extreme Gradient Boosting ~ Users to get evacuation time information. With an easy-to-use
(XGBoost) offers a solution by combining the power of application and digital map integration, users can get real-time
multiple machine learning models to produce more accurate information on the estimated evacuation time. The main
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challenge in system development is the limitations and quality
of the data used. The accuracy of the model can be affected by
incomplete data, so it is very necessary to use good and precise
pre-processing techniques [4]. One of the main concerns is the
interpretability of the model. Despite the high accuracy of
XGBoost, its complexity can cause results to be difficult to
interpret without the use of supporting tools. Therefore, an
Explainable AI (XAI) approach with the aim of transparency
[5]. To increase community resilience and risk understanding,
a method of creating a spatial vulnerability surface is required

[6].

Another study highlights the importance of agent-based
modeling that can simulate human responses to disasters by
integrating machine learning approaches in evacuation
scenarios [7]. The use of technology (e.g., Sentinel-2A) and
machine learning models provides enormous potential in
predicting tsunami impacts in built-up areas [8]. Rapid disaster
response is the main focus of multimodal data fusion, which
includes estimating shelter needs and logistics allocation [9].
One of the main advantages of Al is its ability to predict and
provide early warning. By analyzing historical data as well as
real-time data obtained from various sources such as satellite
imagery, weather sensors, and seismic data, Al is able to
recognize patterns and trends that can be an early indication of
disaster occurrence [10]. Machine learning models with the
Extreme Gradient Boosting (XGBoost) algorithm have shown
good performance in modeling the complex relationships
between input and output variables in the context of disasters
on estimated travel time [11]. Leading machine learning for
disaster prediction, outperforming traditional statistical
approaches in the concept of a smart city disaster prediction
system [12].

Graph-based and machine learning prediction models
have also been used to estimate post-disaster shelter
accessibility [13], while multi-agent system approaches
integrated with data mining have been employed to simulate
tsunami evacuation scenarios [14]. A recent literature review
confirms that machine learning is an effective and flexible
approach for supporting disaster management and response
systems [15]. Theoretically, this study expands the use of
machine learning in the field of disaster management,
particularly related to data-driven evacuation. Practically, the
results of this research are expected to contribute to local
governments, BPBD, and other disaster management
institutions in designing more effective evacuation strategies
that can adapt to various realistic disaster scenarios. [16, 17].

Although various studies have been conducted on tsunami
evacuation modeling, many still exhibit significant limitations.
Most rely on static GIS-based spatial analyses or simple linear
regression methods that are insufficient to capture the complex
nonlinear relationships among spatial, demographic, and
topographic variables [10, 18]. In addition, many previous
approaches lack real-time access and user interactivity,
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limiting their practical effectiveness in emergency response
situations [19]. Earlier works have also rarely integrated
machine learning—based predictive analytics with dynamic
spatial visualization, which is essential for decision-makers
and community users [20, 21]. Recent research confirms this
gap. [19] developed an ABM approach to tsunami evacuation
simulations, but the focus is still on agent behavior without
providing local data-driven evacuation time estimates. [22]
showed the effectiveness of regression trees in modeling
tsunami wave dynamics, but did not cover aspects of predicting
human evacuation time. [20] Highlight that Web-GIS
applications for disasters are generally still limited to
visualization and monitoring functions without Machine
learning based prediction integration. Meanwhile, [23]
introduced Geographical-XGBoost (G-XGBoost), which
proves the relevance of the XGBoost algorithm for spatial
modeling, but has not been specifically applied in the context
of tsunami evacuation in Indonesia.

Although various studies related to tsunami evacuation
have been conducted, most of them are still limited to static
GIS analysis or simple linear regression, that is less able to
represent the nonlinear relationships between spatial,
demographic, and topographic variables. In addition, existing
systems generally do not provide real-time predictions or
interactive Web-GIS interfaces that can be accessed directly by
the public and disaster agencies. The application of modern
ensemble algorithms, such as XGBoost, in the context of
tsunami evacuation in Indonesia is also still rare. Based on
these gaps, this study offers novelty in the form of the
development of a tsunami evacuation time prediction model
with XGBoost Regressor which is integrated with Web-GIS
based on Google Maps API, so that it is able to produce real-
time evacuation time estimates, is spatially visualized, and is
useful as a decision support system for local governments,
BPBD, and the community in improving preparedness to face
tsunami disasters in Padang City.

2. Materials and Methods

This research was conducted through a series of well-
organized stages, including data collection, data pre-processing
and exploration, feature selection, model training using the
XGBoost Regressor algorithm, model performance evaluation,
and model implementation in web-based applications.

2.1. Data Collection and Sources

The data used in this study were taken from primary and
secondary sources to take spatial, topographical, and
demographic characteristics relevant to tsunami evacuation in
Padang City, for location data such as road network and
distance between residential zones and shelter locations are
obtained from the Google Maps api (2024 version). Altitude
information data is obtained from the Google Elevation API
(2024). In addition, population statistics and shelter capacity
data were collected from the Padang City Regional Disaster
Management Agency (BPBD) (2023 official report).
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Fig. 1 Research flow

Meanwhile, additional data, such as land area, was
obtained from the geospatial records of the local government.
The number of shelters used in modeling the prediction of
evacuation time is 182, collected from the Regional Disaster
Management Agency (BPBD) of Padang City, which contains
information (distance to the coastline, altitude, and land area)
and demographic indicators (number of population and shelter

capacity.

Geolocation information, such as latitude and longitude,
provides a spatial picture, while depth is an important
parameter related to the intensity and impact of earthquakes on
the surface. Before further analysis, the data goes through a
number of pre-processing stages to ensure its accuracy.

2.2. Features and Target Variable

This process aims to take information from the raw data
and represent it in a more relevant form. Feature selection to
ensure the most impactful features, and data normalization. In
shelter information, there are features such as Distance to the
Beach (km), Elevation (m), Number of People (number of
population), Shelter Capacity, and Area (Ha). These features
represent  spatial,  topographical, and demographic
characteristics that can affect evacuation time. The target
variable in this study is Time to Evacuate (min), which refers
to the estimated actual evacuation time from a specific location
point to the nearest shelter. The target variable in this study is
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evacuation time (minutes), which is set as a prediction of the
time needed from a certain location point to the nearest shelter
location. The calculation of the time of human walking speed
in evacuation conditions based on the Google Maps APl is 0.8—
1.0 m/s. This range is in line with the findings of previous
evacuation studies, which show that horizontal walking speeds
in emergency situations are generally in the range of 0.75-1.2
m/s, depending on density, path conditions, and individual
characteristics [24-26]. The velocity value is then calibrated by
considering the population density in each zone, resulting in a
more realistic estimate of evacuation time.

2.3. Data Pre-Processing

The pre-processing stage of data is carried out to ensure
that the data used has good quality, consistency, and feasibility
before being used in the prediction model training process. Pre-
processing is a crucial step before model training, which
involves processing two main types of features. The following
is a complete explanation of the steps of the pre-processing
process carried out:

Handling of missing values: The performance of the
prediction model will drop if the data source is empty or
the data is unnatural. The solution is to refill the blank or
missing value using the average or median method,
according to the distribution of the data used. Another way
is to identify the handling of outliers to be more in line
with actual conditions in the field. This process is in
accordance with the one carried out by [4], where the pre-
processing process of data has a very important role in
determining the accuracy of the disaster prediction model.

Feature Normalization: The features of the altitude of the
area and the distance to the coast have different scales,
which leads to the model research process. In overcoming
this, it is necessary to normalize data using the Z-score
method so that the scale of each feature is balanced. In this
process, it is very important because it ensures that
variables have a proportional contribution during the
model training process. Normalization of features can
improve the performance of machine learning models in
geotechnical disaster prediction, as has been done by [22].

Dataset Splitting: The stratified split method is applied to
ensure that the distribution of classes remains proportional
in a subset of training sets and test data. The dataset is
divided into 80% training sets and 20% test data, by
maintaining a balance of class distribution in each subset.
With the aim of learning from some available data, the
performance is tested with data that has never been used
before. [3] states that the model’s ability to make
generalizations depends on the right data set being shared,
especially when it comes to predicting the location of post-
disaster shelters.
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e Dataset sharing: The data was divided into two sets,
namely training data (80%) and testing data (20%). This
division is done randomly to ensure that the model can be
trained with representative data and tested for accuracy on
previously unseen data. This method aims to evaluate the
generalization ability of the model in predicting
evacuation time based on the selected features.

e  Visualization of data distribution: A visualization of the
results, such as a scatter plot, will be used to show the
relationship between the actual value and the prediction,
while the residual histogram will display the distribution
of the prediction error. In improving the accuracy and
stability of predictions, feature selection is a very complex
process in developing models with machine learning to
reduce the risk of disasters, as per [27].

To obtain valid evaluation results, these pre-processing
steps are required, where this process is very important to
improve the performance of the model [4].

2.4. Model Training XGBoost Regressor

The XGBoost Regressor model was chosen for its ability
to handle large and complex datasets, and hyperparameter
tuning is performed using GridSearchCV for performance
optimization as well. As done by [28] using Geographical-
XGBoost (G-XGBoost) in the context of spatial modeling,
producing high accuracy values compared to linear regression.

XGBoost is also capable of modeling more complex
nonlinear patterns with Decision tree enhancement techniques,
unlike Linear Regression, which assumes a simple linear
relationship between variables [28, 29]. Its advantage over
Random Forest provides more stable and often more accurate
results, although the training time is long and regularization is
effective in preventing overfitting [22, 29]. XGBoost has
proven to be computationally efficient and superior for
handling spatial data, including cases with missing values [22,
30]. The results of other studies have also shown that this
algorithm is well-suited for machine learning-based prediction
systems in the context of disasters as well as in other complex
classification problems [22, 28, 29]. Thus, XGBoost, used in
this study, is very appropriate for producing more accurate and
reliable predictions of the estimated time in the tsunami
evacuation process based on spatial and demographic data. It
is a decision tree-based boosting algorithm known for its
effectiveness in handling structured tabular data and its
superior performance in regression tasks. The model was
configured using key parameters, including:

e objective = ‘reg:squarederror’ — chosen because it is
suitable for continuous regression problems;

e random_state = 42 — to ensure the reproducibility of the
results;

e subsample = 0.8 — used to reduce the risk of overfitting
by taking a partial sample at each iteration;

e colsample bytree = 0.8 — is used to improve
generalization by limiting the number of features used in
each tree;

e max_ depth =6 — to control the complexity of the tree and
prevent overfitting;

e learning rate =0.1 — is set to maintain a balance between
convergence speed and accuracy;

e n_estimators = 200 — the number of boosting iterations
selected to achieve optimal performance without unduly
increasing the complexity of the model.

The model was trained using 80% of the dataset and
evaluated on the remaining 20%. XGBoost works by
optimizing a regularized objective function to minimize the
prediction error while controlling model complexity. The
general form of the XGBoost objective function is:

L) = X1(yu 3 + X Q(f0) (1

Where L(¢) is the total objective function, [(y;, §;) is a
differentiable loss function that measures the difference
between actual values y; and predicted values 3, Q(fr) =yT +
¥ A X wj? is the regularization term, T is the number of leaves
in the tree, w; is the weight on each leaf, y and A are
regularization parameters, K is the number of boosting rounds
(trees), f represents each regression tree in the model. The
testing process and the training process are two important
stages in the evaluation and use of machine learning models.
The main difference between the two is that the testing process
involves an evaluation stage using predetermined test data, as
demonstrated by [1] in predicting the amplitude of the tsunami
based on short-term observation data using XGBoost.

2.5. Model Evaluation

To measure the accuracy of the model, evaluation metrics
such as Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and coefficient of determination (R?) were used.
The goal is to evaluate the model’s performance quantitatively
and qualitatively, as well as to understand the model’s
behavior. After the model evaluation, the last step is the
interpretation of the results and validation. The goal is to ensure
that the model is not only numerically accurate but also
relevant, reliable, and scientifically and practically trustworthy.
Evaluation of the performance of predictive models is
indispensable in real-world scenarios [31].

2.6. Web-Based System Implementation

At this stage, it will develop a web-based application using
the PHP programming language. The database used is MySQL,
and for web design, using HTML, CSS, and JavaScript. The
system architecture consists of 3 components, namely,
frontend applications, networking, and servers. While the
backend uses Python Flask or PHP to handle the prediction
process, it displays an interactive map, including the user’s
location, nearby shelters, and suggested evacuation routes
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integrated with the Google Maps API. In maximizing a more
predictive modeling process, a combination of user
visualization is used to better understand the geographic
context and urgency of evacuation. The system is designed to
be accessible from a wide range of screen sizes, including
desktop and mobile devices, due to its responsive nature. This
means that the user interface will automatically adjust its layout
and appearance to keep it optimal and easy to use anywhere.
Thus, the implementation of this application aims to bridge
artificial intelligence-based analysis with practical needs in
disaster mitigation and support rapid decision-making by
communities and emergency management agencies [3].

3. Results and Discussion
3.1. Data Description

The data of 182 shelters in Padang City, collected from the
Regional Disaster Management Agency (BPBD), includes two
categories: spatial data (distance to the coastline, altitude, and
land area) and demographic data (shelter population and
capacity). The table displays the Description of Target Features
and Variables Used in Tsunami Evacuation Time Prediction:

Table 1. Description of features and target variable used in tsunami
evacuation time prediction

No Feature Description
| Distance to Straight-line distance from
Beach (km) each point to the nearest coast
) Elevation (m) Height above sea level at the

location
Estimated number of people at
the location
Maximum capacity of the
nearest evacuation shelter
Total evacuation zone area in
hectares
Target variable: estimated
time to reach the shelter

3 Number of Souls

4 Shelter Capacity

5 Area (Ha)

Time to
Evacuate (min)

Table 1 displays the value of “Distance to Beach” ranges
from 0.3 to 7.1 kilometers, while the population at each point
(Number of Inhabitants) ranges from 15 to 2,000 individuals,
and the capacity of shelters varies from 50 to 3,000 people. The
target variable “Time to Evacuate (min)” is calculated based on
the distance to the nearest shelter and the average human
walking speed (\(0.8-1.0\) m/sec).

The estimated evacuation time ranges from 3 to 30
minutes, which is influenced by differences in spatial planning
and demographic characteristics in the study area. Initial
visualizations, in the form of histogram curves and Kernel
Density Estimation (KDE), show that most features exhibit
symmetrical distributions with a slight positive slope. This
supports the assumption that machine learning models,
especially XGBoost, can work best on datasets with such
features [32]. Through a pre-processing process that handles
missing values, removes duplicates, and normalizes the scale
of numerical features, the dataset is cleaned up. These steps are
in line with what other research says, which says that the
quality of pre-processing has a major impact on how accurate
disaster-related models are in predicting what will happen [4].

3.2. Data Pre-Processing

The pre-processing stage creates a cleaner, more
consistent, and ready final dataset for training the model. After
being cleaned, there were 182 valid observations left, each
representing an evacuation shelter point in Padang City. We
can make a number of improvements to the quality of the data.
First, the average imputation is used to fill in the missing values
in the Number of Lives variable (4 cases) and the Shelter
Capacity variable (1 case). So, no more values are lost in the
final dataset. Second, the Z-score method (> +36) found three
extreme values in the variables Number of Lives and Distance
to Beach. Winsorization improves this outlier by balancing the
distribution and lowering the likelihood of distortion in
predictive performance. Also, we use the Z-score method to
standardize all numerical variables so that they can be
compared on the same scale (mean = 0, standard deviation =
1). This step is especially important for variables with large
ranges, such as Elevation and Number of Souls, because it
prevents them from having too much of an effect on how the
model learns. Figure 2 shows the normalization results. The
distribution of variables appears more symmetrical than at first
glance. In summary, the pre-processing procedure enhanced
the dataset quality through three main outcomes: (1)
elimination of missing values, (2) balanced data distributions
after outlier handling, and (3) standardized scales across all
variables to improve the stability of the XGBoost algorithm.
These improvements ensured that the dataset used in this study
was representative and reliable for predicting tsunami
evacuation times in Padang City.

Table 2. Summary of dataset conditions before and after pre-processing

Variable Missing Values Missing Values Outliers Value Range Value Range
(Before) (After) Detected (Before) (After, Z-score)
Distance to Beach 2 0 1 0.3-12.5 2.1-23
(km)

Elevation (m) 0 0 0 5-120 -1.8-2.0
Number of Souls 4 0 2 50 — 3,500 -2.5-26
Shelter Capacity 1 0 0 20 —2,000 -1.9-2.1

Area (Ha) 0 0 0 0.1-8.5 -1.7-2.0
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Table 2 presents a comparison of dataset conditions before
and after the pre-processing stage. The table highlights three
key aspects of data improvement: handling of missing values,
outlier treatment, and variable standardization.

e Missing values: Prior to pre-processing, the dataset
contained incomplete entries, particularly in the Number
of Souls (4 cases) and Shelter Capacity (1 case). After
applying mean imputation, all variables were complete,
ensuring no missing values remained.

e Outliers: Extreme values were detected in the Number of
Souls and Distance to Beach variables using the Z-score
method (> +30). These anomalies were corrected through
winsorization, which reduced distributional skewness and
minimized the risk of bias in model learning.

e  Value ranges: The raw data were widely distributed (e.g.,
number of souls from 50 to 3,500). All columns were
rescaled into similar distributions (approximately -3 to
+3) after the establishment of Z-score normalization. Due
to the difference in order of magnitude of these variables,
this transformation ensured that no variable was biased.

3.3. Feature Selection

Feature selection is an important task in the modeling
process because irrelevant or redundant features may lead to an
inaccurate and over-complex model. In the present study, we
performed feature selection through both domain-motivated
(spatial and social) as well as algorithmic evaluation based on
the XGBoost Regressor model.

The gain-based feature importance scores of the trained
XGBoost Regressor model are provided in Table 3. Gain is a
measure of how each feature contributes to the loss function of
the model at all decision tree splits. Unsurprisingly, Height (m)
features as the second most influential variable with a Gain
score of 140.21, emphasizing its importance in estimating
tsunami evacuation time.

Table 3. Feature importance (Gain) from XGBoost regressor for
tsunami evacuation time prediction

No Feature Importance (Gain)
1 Distance to Beach (km) 140.21
2 Elevation (m) 0.000413
3 Area (Ha) 0.000087
4 Number of Souls 0.000035
5 Shelter Capacity 0.000011

This is consistent with spatial logic in disaster modeling,
where evacuation planning is largely based on proximity to the
coast. However, other attributes such as Shelter Capacity, Area
(Ha), Elevation(m), and Number of Souls only have a small
effect on Gain. Considered together, these variables provide
useful context on both land type, density of population, and
infrastructure, despite each having only a marginal impact in
isolation. The model sensitivity with respect to the
geographical vicinity of competing nodes, as indicated by the
sharp contrast between Gain values, underscores the role of
location-specific attributes in time-critical disaster response
systems such as tsunami evacuation.
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Fig. 2 Distribution of feature variables used in the XGBoost regressor model

Modelling using the XGBoost Regressor. Histogram of
the Distance to beach (km) feature shows a positive skewness
in the data, with most observation locations being less than 2
kilometers away from the shoreline. This indicates that high-
risk areas are clustered along the coast. The Elevation (m)
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variable indicates that elevation values are highly right-
skewed, with many locations being below 100 meters,
reflecting the lowland nature of Padang City. The distribution
of the AREA (Ha) feature tends to be not one-sided and
presents a normal-like distribution overall with almost constant
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fluctuations, indicating some dispersion in the sizes fieldwise
but no critical size variations. The NUMBER OF SOULS
feature shows substantial skew (number of outliers with very
high population densities and most sites having small
populations). Meanwhile, the Shelter Capacity feature shows a
distribution that is more level, despite some shelters (generally
massive public facilities such as stadiums or schools)
accommodating over 100,000 people.

3.4. Training the Model

Model training was performed using XGBoost Regressor,
a gradient boosting framework known for its accuracy and
robustness, particularly on structured tabular data. The way
XGBoost works is that it adds a number of decision trees (each
one fine-tuned to correct the mistakes of the previous rounds).
This approach allows the model to capture complex non-linear
correlations and feature interactions that are commonly present
in disaster-related data, such as the tsunami evacuation context.
Several important settings were adapted in the course of this
study to optimise model performance. In order to ensure
reproducibility of results, the objective for regression tasks was
‘reg:squarederror’ with random_state = 42. In each iteration,
we used all the features and full data using parameters
subsample = 1.0, colsample bytree= 1.0. The training was done
with single-threading to save consistency by setting nthread =
1. Also, like a typical machine learning procedure, 80% of the
dataset was used to train the model, and 20% was left for
testing.

The Python library XGBoost [25] was used to perform the
training. Internal cross-validation was used to monitor
overfitting during the model’s 100 rounds of boosting training
or convergence. Initial experiments showed promising results
already with a generally good performance, without
meaningfully adjusting the hyperparameters to this end, we set
the learning rate and tree depth parameters at their defaults. As
demonstrated in a previous study [30], XGBoost’s ability to
effectively deal with data diversity and represent nonlinear
feature interactions has resulted in superior predictability for
multi-hazardous risk exposure.

¥_train, X _test, y_train, y test = train_test_split(x, vy, test_size=8.2, random_state=42)

model = xgb.XGBRegressor(

objective="reg:squarederrc
random_state=42,
subsample=1.8,
colsample_bytree=1.8,
nthread=1,
n_estimators=10@

)

model. fit(¥_train, y_train)

Fig. 3 Training model
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3.5. Model Evaluation Results

The XGBoost model performance is then evaluated based
on the test data set, which it has not seen after being trained on
the training data set. The purpose of this assessment is to
estimate the model accuracy in time-to-evacuation prediction
times at the regional scale using demographic and geographic
parameters. Table 4 shows the findings of the model, obtained
by testing on the held-out part of the dataset:

Table 4. Evaluation results of the XGBoost regressor model
Model MSE | RMSE | MAE | MAPE | R
XGBoost | 6 156 | 0.1250 | 0.0212 | 0.16% | 0.95
Regressor
Linear 14 0825 | 0.2871 | 0.0654 | 0.58% | 0.78
Regression
Random 1 4413 | 02030 | 0.0485 | 0.36% | 0.87
Forest
SVRRBE | 0568 | 0.2383 | 0.0527 | 0.42% | 0.84
Kernel)

Comparison of four algorithms in performance evaluation.
Considering the values for XGBoost Regressor, MSE: 0.0156,
RMSE: 0.1250, MAE: 0.0212, and MAPE is only 0.16%, the
XGBoost Regressor showed the best model performance
compared to other models (Table 4). Lastly, a 0.95 of R? value
means that this model is able to explain 95% variation in the
data and thus proves that it can be relied upon for accurate
prediction of evacuation time.

The Random Forest model, which boasted a MSE of
0.0412 and R? at.87, also yielded some fairly impressive
results, though not quite as accurate as the XGboost. The SVR
(RBF Kernel) model, with an MSE of 0.0568 and R? of 0.84,
has an intermediate performance, indicating it is relatively
reliable, but it does not account for all the complexity of the
data. In contrast, Linear Regression achieved the worst results:
R? 0f 0.78 and MSE of 0.0825. This may be due to the fact that
non-linear relationships between demographic and geographic
factors affecting tsunami evacuation time are more difficult to
identify in linear models. With the ability to handle non-linear
data, manage feature interactions, and produce very low
prediction error rates, these findings combined indicate that
XGBoost Regressor is the optimal algorithm for tsunami
evacuation time predictions.

It is in this light that the predictive performance of the
XGBoost Regressor model appears to be significantly high,
making it a great choice for catastrophe decision-support
systems. This finding is consistent with previous work
establishing the effectiveness of XGBoost for modeling
complex tabular data and labeling success prediction in various
disaster-related contexts [22]. It has also been found that
integrating MSE, MAE, RMSE, and MAPE as assessment
measures is a reliable way to evaluate regression performance
in research involving spatial and environmental prediction
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[33]. For these two training and testing data sets, the following
learning curve was obtained by the XGBoost Regressor
process, as explained the relationship between the number of
boosting rounds and RMSE. Fast convergence of the data is
reflected in the significant decrease of RMSE for both sets at
the first few boosting runs. The curve then becomes steady at
about 30 iterations, which suggests that the model converges.

XGBoost Regressor Learning Curve

Train
Test

20 40 60
Boosting Round

Fig. 4 XGBoost regressor learning curve

80 100

The fact that the training and testing score curves are quite
close indicates a lack of overfitting in the model, with good
generalization. This also indicates that the model has solid
predicted performance for new data but is not overly fine-tuned
to the training set. The relatively constant trend also indicates
that the complexity and iteration of the model are appropriate
for the dataset structure. These results are consistent with a
recent one showing XGBoost commonly reaches the best
performance in a few rounds and handles overfitting well using
regularisation [34]. An indicator of the success with which
XGBoost can rediscover structure in tabular and spatial data is
a quickly converging learning curve [35]. On the whole, this
learning curve provides interesting data and visual evidence for
strong mathematical support that the XGBoost Regressor
model developed in this paper is credible, accurate, and can be
applied to different situations, which makes it a good candidate
for a real-time decision-support system in tsunami evacuation
planning.

3.6. Results Visualization

The results visualisation provides a non-expert insight into
how well the trained XGBoost Regressor model is learning and
making predictions. The Learning Curve, perhaps one of the
most useful visualisations provided here, illustrates how
increasing numbers of boosting rounds and Root Mean
Squared Error (RMSE) on both the train and test data relate to
each other. This figure indicates that as the number of iterations
increases, our model is able to continuously reduce the
prediction error during the learning process of the tsunami
evacuation time. Figure 5 shows the relationship between
observed and predicted tsunami evacuation times by the
XGBoost Regressor model. On the x-axis of this scatter plot,
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you have the real evacuation time (from your dataset again),
and on the y-axis, you plot your model’s prediction. Each point
of the scatter plot corresponds to a test data observation. Most
of the data points are very close to the identity line y = x,
indicating that actual values and the model’s predictions are
quite similar.

Actual vs Predicted Evacuation Time
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Fig. 6 Residuals distribution histogram

This result indicates that the model can produce estimates
that are close to actual evacuation conditions and has high
predictive accuracy. There is no recognizable trend of gross
systematic over- or under-estimation. In other words, it can be
seen that the model shows a high degree of generalization for
new data and is not biased in predicting values that are very
high or very low. This visualization complements the
quantitative evaluation results (MSE, RMSE, MAE, and
MAPE) presented above, and it provides evidence that the
proposed XGBoost Regressor model performs well in
decision-support systems for disaster mitigation using spatial
and demographic data. These plots validate the stability and
fairness of the model, justifying its applicability in actual
tsunami evacuation readiness tests [36]. The histogram of the
difference between actual values and predicted ones (residual
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= actual - prediction) provided by the XGBoost Regressor
model is called the residual distribution. This plot is used to
identify any bias in the fitted model and check whether the
residuals are randomly distributed. From the histogram, we see
that the majority of residuals are relatively normally distributed
around zero. This means that the model’s predictions do not
necessarily systematically over- or underestimate the labels,
but do roughly match them. As the histogram indicates, most
residues cluster near zero in an almost symmetric fashion. This
means that the model’s predictions are mostly close to the
actual value, with no obvious overestimation or
underestimation. The zero point with the vertical dashed line is
the ideal prediction reference that occurs when the predicted
results are completely consistent with the actual value.
Symmetry and clustering of residuals around this line show that
the model is stable and there is no major bias in the overall test
dataset. Residual distribution, this confirms the previous
observation that the XGBoost Regressor model gives good and
consistent predictions. Furthermore, the residual properties
conform to desirable regression model performance
assumptions: nearly normally distributed errors centred at zero
and no obvious patterns.

3.7. User Interface Implementation

In order to make the predicted evacuation time results
available for practical use by both a wider public and
authorities, we implemented the trained XGBoost Regressor
in a web-app. The Ul was developed to be intuitive,
informative, and easy-to-use even in emergency situations.
This method corresponds to the proposed system design in
[37], a machine learning based real-time early warning
dashboard for a tsunami framework to share the information
rapidly and also improve user accessibility in a disastrous
environment.

TSUNAMI EVACUATION TIME PREDICTION

Enter Location Details

Distance to Beach (km)
0,8

Elevation (m)

15
Number of Souls

400

Shelter Capacity
1200

Area (Ha)
35

Prediction Result
Estimated evacuation Time:
14,7 minutes

Fig. 7 Implementation of a website-based user interface
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Figure 7 Click here to see (a) A web-based Tsunami
Evacuation Time Prediction App created to support the
prediction of the time needed by a user for evacuation from an
imminent tsunami. In this application, several location
attributes are required when the users provide the values for
Distance to Beach, Location Elevation, Number of Lives at that
point, Nearby Shelter Capacity, and Evacuation Area Size in
hectares. Once all the information is filled in, users can click
on the “Predict” button to see the results predicting the
evacuation time displayed automatically. For instance, the
app’s result shows an estimated evacuation time of ~14.7
minutes, which represents the time it takes to reach the nearest
shelter from the input given by the user.

The objective of the application is to give fast and precise
data in order to make evacuation planning more effective,
especially during emergency situations needing a rapid
response. This interface also includes an interactive map
(utilizing the Google Maps API) that illustrates the user’s
location or evacuee site, helping to provide spatial context to
the prediction. It is a 100% responsive design that can be used
on any device, such as a desktop, tablet, or mobile.

A simple, informative, and responsive Ul that can be
quickly accessed for time-constrained situations is consistent
with findings emerging from the recent literature on disaster
DSS [38]. In this regard, our result is supported by, in the
acceleration of the tsunami evacuation decision-making
method at disaster-prone areas, integration of Web-GIS-based
systems with interactive spatial visualization plays an
important role.

4. Conclusion

This study has achieved the construction of an accurate
and efficient XGBoo. Through this research, we have
succeeded in constructing a regime where runners are able to
compete with equal opponents. The research data set contains
important spatial and demographic factors such as Distance to
Beach, Elevation, Number of Souls, Shelter Capacity, and
Area. Through the stages of data pre-processing, feature
selection, model training, and performance evaluation, we have
achieved outcomes that found that the resulting model offers
predictions with excellent accuracy.

This is indicated by the value of MSE, RMSE, MAE, and
MAPE, 0.0156, 0.1250, 0.0212, and 0.16%, respectively.
Furthermore, the R? value is 0.95, indicating that the model can
explain most of the data variance significantly. When
compared to other machine learning models, such as Linear
Regression, Random Forest, and Support Vector Regression
(SVR), the XGBoost Regressor algorithm is found to yield
better prediction results with fewer errors and performs well in
Generalization. The approach can be further extended by
including dynamic factors (e.g., traffic conditions, individual
walking pace variations, and other non-spatial geographical
aspects) to improve prediction accuracy. Finally, enhancement
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and validation of the model is suggested using field  warning systems to enable a holistic, adaptive, and data-driven
experiments in order to fit it to the real conditions. In the near ~ disaster management strategy. Accordingly, such a study
future, this framework can be further developed for other contributes to the creation of a decision support system to
tsunami-affected regions in Indonesia and connected with early ~ bolster community preparedness for tsunami hazards.
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