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Abstract - This study aims to analyze and predict the tsunami evacuation time in Padang City using an artificial intelligence 

method, namely Extreme Gradient Boosting (XGBoost) Regressor. The data used included distance to the beach, altitude, 

population, shelter capacity, and evacuation zone area. Model performance evaluation was carried out by accuracy 

measurements such as MSE, RMSE, MAE, MAPE, and determination coefficient (R²). The results of the analysis show that the 

XGBoost Regressor provides better prediction performance than Linear Regression and Random Forest. The XGBoost Regressor 

model is able to achieve an R² of 0.95, MSE of 0.0156, RMSE of 0.1250, MAE of 0.0212, and MAPE of 0.16%. The most influential 

factor on the evacuation time is the distance to the coastline.. This research has a uniqueness that lies in combining a machine 

learning-based predictive model with an interactive web interface that utilizes the Google Maps API, so that users get an 

informative and easy-to-understand spatial visualization. This application is specifically designed to support quick decision-

making in tsunami-prone areas by providing real-time evacuation time estimates as well as spatial visualizations. These findings 

not only provide a scientific contribution to the development of data-based prediction systems but also practical contributions in 

the form of application prototypes that can be used by the community and related agencies, such as BPBD, in planning and 

carrying out evacuations more effectively. Thus, this research is expected to improve the preparedness of coastal communities 

and strengthen an adaptive and technology-based disaster mitigation system. 

Keywords -  Tsunami evacuation, Evacuation time prediction, XGBoost regressor, Web-based GIS, Padang City, Disaster risk 

reduction. 

1. Introduction 
Indonesia is an archipelagic country located at the 

convergence of three major tectonic plates: the Eurasian Plate, 

the Indo-Australian Plate, and the Pacific Plate. This geological 

position makes Indonesia one of the most disaster-prone 

countries in the world, particularly vulnerable to earthquakes 

and tsunamis. Padang City, the capital of West Sumatra 

Province, is situated in an active megathrust zone and thus has 

a high potential to be impacted by tsunamis triggered by 

seismic activity along the Mentawai subduction zone. 

Consequently, disaster mitigation efforts, especially in terms of 

evacuation planning and implementation, are crucial to reduce 

the risk of casualties and material losses. Efforts to detect and 

classify tsunamis early are critical to risk mitigation and 

disaster impact reduction. Although various methods have 

been proposed to improve the accuracy of tsunami predictions, 

the primary challenge remains the variation in accuracy 

between different models and the inability of some models to 

handle complex and diverse data. Extreme Gradient Boosting 

(XGBoost) offers a solution by combining the power of 

multiple machine learning models to produce more accurate 

and reliable predictions. Extreme Gradient Boosting 

(XGBoost) is a method in machine learning that is a regression 

and classification algorithm with the ensemble method. 

XGBoost is also a variant of the Tree Gradient Boosting 

algorithm, which was developed with 10 times faster 

optimization than Gradient Boosting. This algorithm is an 

extension of the classic Gradient Boosting Machine (GBM) 

algorithm and is only used for data that has labels in the training 

process. This algorithm is very popular in machine learning 

competitions held by Kaggle. [1] using Machine Learning to 

forecast tsunamis from Rare Observations by demonstrating 

high accuracy even with limited data, and opening up 

opportunities for further research in evacuation prediction 

systems.. In addition, the use of regression tree-based machine 

learning approaches is used to model the evolution of tsunami 

waves, emphasizing the importance of selecting relevant 

features [2]. Research by [3] created a predictive model in a 

web-based application to provide quick and wide access for 

users to get evacuation time information. With an easy-to-use 

application and digital map integration, users can get real-time 

information on the estimated evacuation time. The main 
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challenge in system development is the limitations and quality 

of the data used. The accuracy of the model can be affected by 

incomplete data, so it is very necessary to use good and precise 

pre-processing techniques [4]. One of the main concerns is the 

interpretability of the model. Despite the high accuracy of 

XGBoost, its complexity can cause results to be difficult to 

interpret without the use of supporting tools. Therefore, an 

Explainable AI (XAI) approach with the aim of transparency 

[5]. To increase community resilience and risk understanding, 

a method of creating a spatial vulnerability surface is required 

[6]. 

Another study highlights the importance of agent-based 

modeling that can simulate human responses to disasters by 

integrating machine learning approaches in evacuation 

scenarios [7]. The use of technology (e.g., Sentinel-2A) and 

machine learning models provides enormous potential in 

predicting tsunami impacts in built-up areas [8]. Rapid disaster 

response is the main focus of multimodal data fusion, which 

includes estimating shelter needs and logistics allocation [9]. 

One of the main advantages of AI is its ability to predict and 

provide early warning. By analyzing historical data as well as 

real-time data obtained from various sources such as satellite 

imagery, weather sensors, and seismic data, AI is able to 

recognize patterns and trends that can be an early indication of 

disaster occurrence [10]. Machine learning models with the 

Extreme Gradient Boosting (XGBoost) algorithm have shown 

good performance in modeling the complex relationships 

between input and output variables in the context of disasters 

on estimated travel time [11]. Leading machine learning for 

disaster prediction, outperforming traditional statistical 

approaches in the concept of a smart city disaster prediction 

system [12]. 

Graph-based and machine learning prediction models 

have also been used to estimate post-disaster shelter 

accessibility [13], while multi-agent system approaches 

integrated with data mining have been employed to simulate 

tsunami evacuation scenarios [14]. A recent literature review 

confirms that machine learning is an effective and flexible 

approach for supporting disaster management and response 

systems [15]. Theoretically, this study expands the use of 

machine learning in the field of disaster management, 

particularly related to data-driven evacuation. Practically, the 

results of this research are expected to contribute to local 

governments, BPBD, and other disaster management 

institutions in designing more effective evacuation strategies 

that can adapt to various realistic disaster scenarios. [16, 17].  

Although various studies have been conducted on tsunami 

evacuation modeling, many still exhibit significant limitations. 

Most rely on static GIS-based spatial analyses or simple linear 

regression methods that are insufficient to capture the complex 

nonlinear relationships among spatial, demographic, and 

topographic variables [10, 18]. In addition, many previous 

approaches lack real-time access and user interactivity, 

limiting their practical effectiveness in emergency response 

situations [19]. Earlier works have also rarely integrated 

machine learning–based predictive analytics with dynamic 

spatial visualization, which is essential for decision-makers 

and community users [20, 21]. Recent research confirms this 

gap. [19] developed an ABM approach to tsunami evacuation 

simulations, but the focus is still on agent behavior without 

providing local data-driven evacuation time estimates. [22] 

showed the effectiveness of regression trees in modeling 

tsunami wave dynamics, but did not cover aspects of predicting 

human evacuation time. [20] Highlight that Web-GIS 

applications for disasters are generally still limited to 

visualization and monitoring functions without Machine 

learning based prediction integration. Meanwhile, [23] 

introduced Geographical-XGBoost (G-XGBoost), which 

proves the relevance of the XGBoost algorithm for spatial 

modeling, but has not been specifically applied in the context 

of tsunami evacuation in Indonesia. 

Although various studies related to tsunami evacuation 

have been conducted, most of them are still limited to static 

GIS analysis or simple linear regression, that is less able to 

represent the nonlinear relationships between spatial, 

demographic, and topographic variables. In addition, existing 

systems generally do not provide real-time predictions or 

interactive Web-GIS interfaces that can be accessed directly by 

the public and disaster agencies. The application of modern 

ensemble algorithms, such as XGBoost, in the context of 

tsunami evacuation in Indonesia is also still rare. Based on 

these gaps, this study offers novelty in the form of the 

development of a tsunami evacuation time prediction model 

with XGBoost Regressor which is integrated with Web-GIS 

based on Google Maps API, so that it is able to produce real-

time evacuation time estimates, is spatially visualized, and is 

useful as a decision support system for local governments, 

BPBD, and the community in improving preparedness to face 

tsunami disasters in Padang City. 

2. Materials and Methods 
This research was conducted through a series of well-

organized stages, including data collection, data pre-processing 

and exploration, feature selection, model training using the 

XGBoost Regressor algorithm, model performance evaluation, 

and model implementation in web-based applications. 

2.1. Data Collection and Sources 

The data used in this study were taken from primary and 

secondary sources to take spatial, topographical, and 

demographic characteristics relevant to tsunami evacuation in 

Padang City, for location data such as road network and 

distance between residential zones and shelter locations are 

obtained from the Google Maps api (2024 version). Altitude 

information data is obtained from the Google Elevation API 

(2024). In addition, population statistics and shelter capacity 

data were collected from the Padang City Regional Disaster 

Management Agency (BPBD) (2023 official report). 
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Fig. 1 Research flow 

Meanwhile, additional data, such as land area, was 

obtained from the geospatial records of the local government. 

The number of shelters used in modeling the prediction of 

evacuation time is 182, collected from the Regional Disaster 

Management Agency (BPBD) of Padang City, which contains 

information (distance to the coastline, altitude, and land area) 

and demographic indicators (number of population and shelter 

capacity.  

Geolocation information, such as latitude and longitude, 

provides a spatial picture, while depth is an important 

parameter related to the intensity and impact of earthquakes on 

the surface. Before further analysis, the data goes through a 

number of pre-processing stages to ensure its accuracy. 

2.2. Features and Target Variable 

This process aims to take information from the raw data 

and represent it in a more relevant form. Feature selection to 

ensure the most impactful features, and data normalization. In 

shelter information, there are features such as Distance to the 

Beach (km), Elevation (m), Number of People (number of 

population), Shelter Capacity, and Area (Ha). These features 

represent spatial, topographical, and demographic 

characteristics that can affect evacuation time. The target 

variable in this study is Time to Evacuate (min), which refers 

to the estimated actual evacuation time from a specific location 

point to the nearest shelter. The target variable in this study is 

evacuation time (minutes), which is set as a prediction of the 

time needed from a certain location point to the nearest shelter 

location. The calculation of the time of human walking speed 

in evacuation conditions based on the Google Maps API is 0.8–

1.0 m/s. This range is in line with the findings of previous 

evacuation studies, which show that horizontal walking speeds 

in emergency situations are generally in the range of 0.75–1.2 

m/s, depending on density, path conditions, and individual 

characteristics [24-26]. The velocity value is then calibrated by 

considering the population density in each zone, resulting in a 

more realistic estimate of evacuation time. 

2.3. Data Pre-Processing 

The pre-processing stage of data is carried out to ensure 

that the data used has good quality, consistency, and feasibility 

before being used in the prediction model training process. Pre-

processing is a crucial step before model training, which 

involves processing two main types of features. The following 

is a complete explanation of the steps of the pre-processing 

process carried out: 

• Handling of missing values: The performance of the 

prediction model will drop if the data source is empty or 

the data is unnatural. The solution is to refill the blank or 

missing value using the average or median method, 

according to the distribution of the data used. Another way 

is to identify the handling of outliers to be more in line 

with actual conditions in the field. This process is in 

accordance with the one carried out by [4], where the pre-

processing process of data has a very important role in 

determining the accuracy of the disaster prediction model. 

• Feature Normalization: The features of the altitude of the 

area and the distance to the coast have different scales, 

which leads to the model research process. In overcoming 

this, it is necessary to normalize data using the Z-score 

method so that the scale of each feature is balanced. In this 

process, it is very important because it ensures that 

variables have a proportional contribution during the 

model training process. Normalization of features can 

improve the performance of machine learning models in 

geotechnical disaster prediction, as has been done by [22]. 

• Dataset Splitting: The stratified split method is applied to 

ensure that the distribution of classes remains proportional 

in a subset of training sets and test data. The dataset is 

divided into 80% training sets and 20% test data, by 

maintaining a balance of class distribution in each subset. 

With the aim of learning from some available data, the 

performance is tested with data that has never been used 

before. [3] states that the model’s ability to make 

generalizations depends on the right data set being shared, 

especially when it comes to predicting the location of post-

disaster shelters. 

Start 

Data Collection 

(Google Maps API, BPBD, Elevation) 

Preprocessing Data 

(Imputation, Normalizes, Split) 

XG Boost Regressor 

Model Evaluation 

(MSE, RMSE, ΜΑΕ, ΜΑΡΕ) 
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• Dataset sharing: The data was divided into two sets, 

namely training data (80%) and testing data (20%). This 

division is done randomly to ensure that the model can be 

trained with representative data and tested for accuracy on 

previously unseen data. This method aims to evaluate the 

generalization ability of the model in predicting 

evacuation time based on the selected features. 

• Visualization of data distribution: A visualization of the 

results, such as a scatter plot, will be used to show the 

relationship between the actual value and the prediction, 

while the residual histogram will display the distribution 

of the prediction error. In improving the accuracy and 

stability of predictions, feature selection is a very complex 

process in developing models with machine learning to 

reduce the risk of disasters, as per [27]. 

To obtain valid evaluation results, these pre-processing 

steps are required, where this process is very important to 

improve the performance of the model [4].  

2.4. Model Training XGBoost Regressor 

The XGBoost Regressor model was chosen for its ability 

to handle large and complex datasets, and hyperparameter 

tuning is performed using GridSearchCV for performance 

optimization as well. As done by [28] using Geographical-

XGBoost (G-XGBoost) in the context of spatial modeling, 

producing high accuracy values compared to linear regression.  

XGBoost is also capable of modeling more complex 

nonlinear patterns with Decision tree enhancement techniques, 

unlike Linear Regression, which assumes a simple linear 

relationship between variables [28, 29]. Its advantage over 

Random Forest provides more stable and often more accurate 

results, although the training time is long and regularization is 

effective in preventing overfitting [22, 29]. XGBoost has 

proven to be computationally efficient and superior for 

handling spatial data, including cases with missing values [22, 

30]. The results of other studies have also shown that this 

algorithm is well-suited for machine learning-based prediction 

systems in the context of disasters as well as in other complex 

classification problems [22, 28, 29]. Thus, XGBoost, used in 

this study, is very appropriate for producing more accurate and 

reliable predictions of the estimated time in the tsunami 

evacuation process based on spatial and demographic data. It 

is a decision tree-based boosting algorithm known for its 

effectiveness in handling structured tabular data and its 

superior performance in regression tasks. The model was 

configured using key parameters, including: 

• objective = ‘reg:squarederror’ → chosen because it is 

suitable for continuous regression problems; 

• random_state = 42 → to ensure the reproducibility of the 

results; 

• subsample = 0.8 → used to reduce the risk of overfitting 

by taking a partial sample at each iteration; 

• colsample_bytree = 0.8 → is used to improve 

generalization by limiting the number of features used in 

each tree; 

• max_depth = 6 → to control the complexity of the tree and 

prevent overfitting; 

• learning_rate = 0.1 → is set to maintain a balance between 

convergence speed and accuracy; 

• n_estimators = 200 → the number of boosting iterations 

selected to achieve optimal performance without unduly 

increasing the complexity of the model. 

The model was trained using 80% of the dataset and 

evaluated on the remaining 20%. XGBoost works by 

optimizing a regularized objective function to minimize the 

prediction error while controlling model complexity. The 

general form of the XGBoost objective function is: 

𝐿(𝜑) = ∑ 𝑙(𝑦ᵢ, ŷᵢ) + ∑ Ω(𝑓ₖ)    (1) 

Where 𝐿(𝜑) is the total objective function, 𝑙(𝑦ᵢ, ŷᵢ) is a 

differentiable loss function that measures the difference 

between actual values yᵢ and predicted values ŷᵢ, Ω(𝑓ₖ) = 𝛾T + 

½ 𝜆 𝛴 𝑤ⱼ² is the regularization term, 𝑇 is the number of leaves 

in the tree, 𝑤ⱼ is the weight on each leaf, 𝛾 and 𝜆 are 

regularization parameters, 𝐾 is the number of boosting rounds 

(trees), 𝑓ₖ represents each regression tree in the model. The 

testing process and the training process are two important 

stages in the evaluation and use of machine learning models. 

The main difference between the two is that the testing process 

involves an evaluation stage using predetermined test data, as 

demonstrated by [1] in predicting the amplitude of the tsunami 

based on short-term observation data using XGBoost. 

2.5. Model Evaluation 

To measure the accuracy of the model, evaluation metrics 

such as Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and coefficient of determination (R²) were used. 

The goal is to evaluate the model’s performance quantitatively 

and qualitatively, as well as to understand the model’s 

behavior. After the model evaluation, the last step is the 

interpretation of the results and validation. The goal is to ensure 

that the model is not only numerically accurate but also 

relevant, reliable, and scientifically and practically trustworthy. 

Evaluation of the performance of predictive models is 

indispensable in real-world scenarios [31]. 

2.6. Web-Based System Implementation  

At this stage, it will develop a web-based application using 

the PHP programming language. The database used is MySQL, 

and for web design, using HTML, CSS, and JavaScript. The 

system architecture consists of 3 components, namely, 

frontend applications, networking, and servers. While the 

backend uses Python Flask or PHP to handle the prediction 

process, it displays an interactive map, including the user’s 

location, nearby shelters, and suggested evacuation routes 
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integrated with the Google Maps API. In maximizing a more 

predictive modeling process, a combination of user 

visualization is used to better understand the geographic 

context and urgency of evacuation. The system is designed to 

be accessible from a wide range of screen sizes, including 

desktop and mobile devices, due to its responsive nature. This 

means that the user interface will automatically adjust its layout 

and appearance to keep it optimal and easy to use anywhere. 

Thus, the implementation of this application aims to bridge 

artificial intelligence-based analysis with practical needs in 

disaster mitigation and support rapid decision-making by 

communities and emergency management agencies [3]. 

3. Results and Discussion 
3.1. Data Description 

The data of 182 shelters in Padang City, collected from the 

Regional Disaster Management Agency (BPBD), includes two 

categories: spatial data (distance to the coastline, altitude, and 

land area) and demographic data (shelter population and 

capacity). The table displays the Description of Target Features 

and Variables Used in Tsunami Evacuation Time Prediction: 

Table 1. Description of features and target variable used in tsunami 

evacuation time prediction 

No Feature Description 

1 
Distance to 

Beach (km) 

Straight-line distance from 

each point to the nearest coast 

2 Elevation (m) 
Height above sea level at the 

location 

3 Number of Souls 
Estimated number of people at 

the location 

4 Shelter Capacity 
Maximum capacity of the 

nearest evacuation shelter 

5 Area (Ha) 
Total evacuation zone area in 

hectares 

6 
Time to 

Evacuate (min) 

Target variable: estimated 

time to reach the shelter 

Table 1 displays the value of “Distance to Beach” ranges 

from 0.3 to 7.1 kilometers, while the population at each point 

(Number of Inhabitants) ranges from 15 to 2,000 individuals, 

and the capacity of shelters varies from 50 to 3,000 people. The 

target variable “Time to Evacuate (min)” is calculated based on 

the distance to the nearest shelter and the average human 

walking speed (\(0.8-1.0\) m/sec).  

The estimated evacuation time ranges from 3 to 30 

minutes, which is influenced by differences in spatial planning 

and demographic characteristics in the study area. Initial 

visualizations, in the form of histogram curves and Kernel 

Density Estimation (KDE), show that most features exhibit 

symmetrical distributions with a slight positive slope. This 

supports the assumption that machine learning models, 

especially XGBoost, can work best on datasets with such 

features [32]. Through a pre-processing process that handles 

missing values, removes duplicates, and normalizes the scale 

of numerical features, the dataset is cleaned up. These steps are 

in line with what other research says, which says that the 

quality of pre-processing has a major impact on how accurate 

disaster-related models are in predicting what will happen [4]. 

3.2. Data Pre-Processing 

The pre-processing stage creates a cleaner, more 

consistent, and ready final dataset for training the model. After 

being cleaned, there were 182 valid observations left, each 

representing an evacuation shelter point in Padang City. We 

can make a number of improvements to the quality of the data. 

First, the average imputation is used to fill in the missing values 

in the Number of Lives variable (4 cases) and the Shelter 

Capacity variable (1 case). So, no more values are lost in the 

final dataset. Second, the Z-score method (> ±3σ) found three 

extreme values in the variables Number of Lives and Distance 

to Beach. Winsorization improves this outlier by balancing the 

distribution and lowering the likelihood of distortion in 

predictive performance. Also, we use the Z-score method to 

standardize all numerical variables so that they can be 

compared on the same scale (mean = 0, standard deviation = 

1). This step is especially important for variables with large 

ranges, such as Elevation and Number of Souls, because it 

prevents them from having too much of an effect on how the 

model learns. Figure 2 shows the normalization results. The 

distribution of variables appears more symmetrical than at first 

glance. In summary, the pre-processing procedure enhanced 

the dataset quality through three main outcomes: (1) 

elimination of missing values, (2) balanced data distributions 

after outlier handling, and (3) standardized scales across all 

variables to improve the stability of the XGBoost algorithm. 

These improvements ensured that the dataset used in this study 

was representative and reliable for predicting tsunami 

evacuation times in Padang City.

Table 2. Summary of dataset conditions before and after pre-processing 

Variable 
Missing Values 

(Before) 

Missing Values 

(After) 

Outliers 

Detected 

Value Range 

(Before) 

Value Range 

(After, Z-score) 

Distance to Beach 

(km) 
2 0 1 0.3 – 12.5 -2.1 – 2.3 

Elevation (m) 0 0 0 5 – 120 -1.8 – 2.0 

Number of Souls 4 0 2 50 – 3,500 -2.5 – 2.6 

Shelter Capacity 1 0 0 20 – 2,000 -1.9 – 2.1 

Area (Ha) 0 0 0 0.1 – 8.5 -1.7 – 2.0 
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Table 2 presents a comparison of dataset conditions before 

and after the pre-processing stage. The table highlights three 

key aspects of data improvement: handling of missing values, 

outlier treatment, and variable standardization. 

• Missing values: Prior to pre-processing, the dataset 

contained incomplete entries, particularly in the Number 

of Souls (4 cases) and Shelter Capacity (1 case). After 

applying mean imputation, all variables were complete, 

ensuring no missing values remained. 

• Outliers: Extreme values were detected in the Number of 

Souls and Distance to Beach variables using the Z-score 

method (> ±3σ). These anomalies were corrected through 

winsorization, which reduced distributional skewness and 

minimized the risk of bias in model learning. 

• Value ranges: The raw data were widely distributed (e.g., 

number of souls from 50 to 3,500). All columns were 

rescaled into similar distributions (approximately -3 to 

+3) after the establishment of Z-score normalization. Due 

to the difference in order of magnitude of these variables, 

this transformation ensured that no variable was biased. 

3.3. Feature Selection 

Feature selection is an important task in the modeling 

process because irrelevant or redundant features may lead to an 

inaccurate and over-complex model. In the present study, we 

performed feature selection through both domain-motivated 

(spatial and social) as well as algorithmic evaluation based on 

the XGBoost Regressor model.  

The gain-based feature importance scores of the trained 

XGBoost Regressor model are provided in Table 3. Gain is a 

measure of how each feature contributes to the loss function of 

the model at all decision tree splits. Unsurprisingly, Height (m) 

features as the second most influential variable with a Gain 

score of 140.21, emphasizing its importance in estimating 

tsunami evacuation time. 

Table 3. Feature importance (Gain) from XGBoost regressor for 

tsunami evacuation time prediction 

No Feature Importance (Gain) 

1 Distance to Beach (km) 140.21 

2 Elevation (m) 0.000413 

3 Area (Ha) 0.000087 

4 Number of Souls 0.000035 

5 Shelter Capacity 0.000011 

This is consistent with spatial logic in disaster modeling, 

where evacuation planning is largely based on proximity to the 

coast. However, other attributes such as Shelter Capacity, Area 

(Ha), Elevation(m), and Number of Souls only have a small 

effect on Gain. Considered together, these variables provide 

useful context on both land type, density of population, and 

infrastructure, despite each having only a marginal impact in 

isolation. The model sensitivity with respect to the 

geographical vicinity of competing nodes, as indicated by the 

sharp contrast between Gain values, underscores the role of 

location-specific attributes in time-critical disaster response 

systems such as tsunami evacuation. 

 
Fig. 2 Distribution of feature variables used in the XGBoost regressor model 

Modelling using the XGBoost Regressor. Histogram of 

the Distance to beach (km) feature shows a positive skewness 

in the data, with most observation locations being less than 2 

kilometers away from the shoreline. This indicates that high-

risk areas are clustered along the coast. The Elevation (m) 

variable indicates that elevation values are highly right-

skewed, with many locations being below 100 meters, 

reflecting the lowland nature of Padang City. The distribution 

of the AREA (Ha) feature tends to be not one-sided and 

presents a normal-like distribution overall with almost constant 
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fluctuations, indicating some dispersion in the sizes fieldwise 

but no critical size variations. The NUMBER OF SOULS 

feature shows substantial skew (number of outliers with very 

high population densities and most sites having small 

populations). Meanwhile, the Shelter Capacity feature shows a 

distribution that is more level, despite some shelters (generally 

massive public facilities such as stadiums or schools) 

accommodating over 100,000 people. 

3.4. Training the Model 

Model training was performed using XGBoost Regressor, 

a gradient boosting framework known for its accuracy and 

robustness, particularly on structured tabular data. The way 

XGBoost works is that it adds a number of decision trees (each 

one fine-tuned to correct the mistakes of the previous rounds). 

This approach allows the model to capture complex non-linear 

correlations and feature interactions that are commonly present 

in disaster-related data, such as the tsunami evacuation context. 

Several important settings were adapted in the course of this 

study to optimise model performance. In order to ensure 

reproducibility of results, the objective for regression tasks was 

‘reg:squarederror’ with random_state = 42. In each iteration, 

we used all the features and full data using parameters 

subsample = 1.0, colsample bytree= 1.0. The training was done 

with single-threading to save consistency by setting nthread = 

1. Also, like a typical machine learning procedure, 80% of the 

dataset was used to train the model, and 20% was left for 

testing. 

The Python library XGBoost [25] was used to perform the 

training. Internal cross-validation was used to monitor 

overfitting during the model’s 100 rounds of boosting training 

or convergence. Initial experiments showed promising results 

already with a generally good performance, without 

meaningfully adjusting the hyperparameters to this end, we set 

the learning rate and tree depth parameters at their defaults. As 

demonstrated in a previous study [30], XGBoost’s ability to 

effectively deal with data diversity and represent nonlinear 

feature interactions has resulted in superior predictability for 

multi-hazardous risk exposure. 

 
Fig. 3 Training model 

3.5. Model Evaluation Results 

The XGBoost model performance is then evaluated based 

on the test data set, which it has not seen after being trained on 

the training data set. The purpose of this assessment is to 

estimate the model accuracy in time-to-evacuation prediction 

times at the regional scale using demographic and geographic 

parameters. Table 4 shows the findings of the model, obtained 

by testing on the held-out part of the dataset: 

Table 4. Evaluation results of the XGBoost regressor model 

Model MSE RMSE MAE MAPE R² 

XGBoost 

Regressor 
0.0156 0.1250 0.0212 0.16% 0.95 

Linear 

Regression 
0.0825 0.2871 0.0654 0.58% 0.78 

Random 

Forest 
0.0412 0.2030 0.0485 0.36% 0.87 

SVR (RBF 

Kernel) 
0.0568 0.2383 0.0527 0.42% 0.84 

Comparison of four algorithms in performance evaluation. 

Considering the values for XGBoost Regressor, MSE: 0.0156, 

RMSE: 0.1250, MAE: 0.0212, and MAPE is only 0.16%, the 

XGBoost Regressor showed the best model performance 

compared to other models (Table 4). Lastly, a 0.95 of R2 value 

means that this model is able to explain 95% variation in the 

data and thus proves that it can be relied upon for accurate 

prediction of evacuation time. 

The Random Forest model, which boasted a MSE of 

0.0412 and R2 at.87, also yielded some fairly impressive 

results, though not quite as accurate as the XGboost. The SVR 

(RBF Kernel) model, with an MSE of 0.0568 and R2 of 0.84, 

has an intermediate performance, indicating it is relatively 

reliable, but it does not account for all the complexity of the 

data. In contrast, Linear Regression achieved the worst results: 

R2 of 0.78 and MSE of 0.0825. This may be due to the fact that 

non-linear relationships between demographic and geographic 

factors affecting tsunami evacuation time are more difficult to 

identify in linear models. With the ability to handle non-linear 

data, manage feature interactions, and produce very low 

prediction error rates, these findings combined indicate that 

XGBoost Regressor is the optimal algorithm for tsunami 

evacuation time predictions. 

It is in this light that the predictive performance of the 

XGBoost Regressor model appears to be significantly high, 

making it a great choice for catastrophe decision-support 

systems. This finding is consistent with previous work 

establishing the effectiveness of XGBoost for modeling 

complex tabular data and labeling success prediction in various 

disaster-related contexts [22]. It has also been found that 

integrating MSE, MAE, RMSE, and MAPE as assessment 

measures is a reliable way to evaluate regression performance 

in research involving spatial and environmental prediction 
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[33]. For these two training and testing data sets, the following 

learning curve was obtained by the XGBoost Regressor 

process, as explained the relationship between the number of 

boosting rounds and RMSE. Fast convergence of the data is 

reflected in the significant decrease of RMSE for both sets at 

the first few boosting runs. The curve then becomes steady at 

about 30 iterations, which suggests that the model converges. 

 
Fig. 4 XGBoost regressor learning curve 

The fact that the training and testing score curves are quite 

close indicates a lack of overfitting in the model, with good 

generalization. This also indicates that the model has solid 

predicted performance for new data but is not overly fine-tuned 

to the training set. The relatively constant trend also indicates 

that the complexity and iteration of the model are appropriate 

for the dataset structure. These results are consistent with a 

recent one showing XGBoost commonly reaches the best 

performance in a few rounds and handles overfitting well using 

regularisation [34]. An indicator of the success with which 

XGBoost can rediscover structure in tabular and spatial data is 

a quickly converging learning curve [35]. On the whole, this 

learning curve provides interesting data and visual evidence for 

strong mathematical support that the XGBoost Regressor 

model developed in this paper is credible, accurate, and can be 

applied to different situations, which makes it a good candidate 

for a real-time decision-support system in tsunami evacuation 

planning. 

3.6. Results Visualization 

The results visualisation provides a non-expert insight into 

how well the trained XGBoost Regressor model is learning and 

making predictions. The Learning Curve, perhaps one of the 

most useful visualisations provided here, illustrates how 

increasing numbers of boosting rounds and Root Mean 

Squared Error (RMSE) on both the train and test data relate to 

each other. This figure indicates that as the number of iterations 

increases, our model is able to continuously reduce the 

prediction error during the learning process of the tsunami 

evacuation time. Figure 5 shows the relationship between 

observed and predicted tsunami evacuation times by the 

XGBoost Regressor model. On the x-axis of this scatter plot, 

you have the real evacuation time (from your dataset again), 

and on the y-axis, you plot your model’s prediction. Each point 

of the scatter plot corresponds to a test data observation. Most 

of the data points are very close to the identity line y = x, 

indicating that actual values and the model’s predictions are 

quite similar.  

 
Fig. 5  Actual vs Predicted evacuation time 

 
Fig. 6 Residuals distribution histogram 

This result indicates that the model can produce estimates 

that are close to actual evacuation conditions and has high 

predictive accuracy. There is no recognizable trend of gross 

systematic over- or under-estimation. In other words, it can be 

seen that the model shows a high degree of generalization for 

new data and is not biased in predicting values that are very 

high or very low. This visualization complements the 

quantitative evaluation results (MSE, RMSE, MAE, and 

MAPE) presented above, and it provides evidence that the 

proposed XGBoost Regressor model performs well in 

decision-support systems for disaster mitigation using spatial 

and demographic data. These plots validate the stability and 

fairness of the model, justifying its applicability in actual 

tsunami evacuation readiness tests [36]. The histogram of the 

difference between actual values and predicted ones (residual 
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= actual - prediction) provided by the XGBoost Regressor 

model is called the residual distribution. This plot is used to 

identify any bias in the fitted model and check whether the 

residuals are randomly distributed. From the histogram, we see 

that the majority of residuals are relatively normally distributed 

around zero. This means that the model’s predictions do not 

necessarily systematically over- or underestimate the labels, 

but do roughly match them. As the histogram indicates, most 

residues cluster near zero in an almost symmetric fashion. This 

means that the model’s predictions are mostly close to the 

actual value, with no obvious overestimation or 

underestimation. The zero point with the vertical dashed line is 

the ideal prediction reference that occurs when the predicted 

results are completely consistent with the actual value. 

Symmetry and clustering of residuals around this line show that 

the model is stable and there is no major bias in the overall test 

dataset. Residual distribution, this confirms the previous 

observation that the XGBoost Regressor model gives good and 

consistent predictions. Furthermore, the residual properties 

conform to desirable regression model performance 

assumptions: nearly normally distributed errors centred at zero 

and no obvious patterns. 

3.7. User Interface Implementation 

In order to make the predicted evacuation time results 

available for practical use by both a wider public and 

authorities, we implemented the trained XGBoost Regressor 

in a web-app. The UI was developed to be intuitive, 

informative, and easy-to-use even in emergency situations. 

This method corresponds to the proposed system design in 

[37], a machine learning based real-time early warning 

dashboard for a tsunami framework to share the information 

rapidly and also improve user accessibility in a disastrous 

environment. 

 
Fig. 7 Implementation of a website-based user interface 

Figure 7 Click here to see (a) A web-based Tsunami 

Evacuation Time Prediction App created to support the 

prediction of the time needed by a user for evacuation from an 

imminent tsunami. In this application, several location 

attributes are required when the users provide the values for 

Distance to Beach, Location Elevation, Number of Lives at that 

point, Nearby Shelter Capacity, and Evacuation Area Size in 

hectares. Once all the information is filled in, users can click 

on the “Predict” button to see the results predicting the 

evacuation time displayed automatically. For instance, the 

app’s result shows an estimated evacuation time of ∼14.7 

minutes, which represents the time it takes to reach the nearest 

shelter from the input given by the user.  

The objective of the application is to give fast and precise 

data in order to make evacuation planning more effective, 

especially during emergency situations needing a rapid 

response. This interface also includes an interactive map 

(utilizing the Google Maps API) that illustrates the user’s 

location or evacuee site, helping to provide spatial context to 

the prediction. It is a 100% responsive design that can be used 

on any device, such as a desktop, tablet, or mobile. 

A simple, informative, and responsive UI that can be 

quickly accessed for time-constrained situations is consistent 

with findings emerging from the recent literature on disaster 

DSS [38]. In this regard, our result is supported by, in the 

acceleration of the tsunami evacuation decision-making 

method at disaster-prone areas, integration of Web-GIS-based 

systems with interactive spatial visualization plays an 

important role. 

4. Conclusion 
This study has achieved the construction of an accurate 

and efficient XGBoo. Through this research, we have 

succeeded in constructing a regime where runners are able to 

compete with equal opponents. The research data set contains 

important spatial and demographic factors such as Distance to 

Beach, Elevation, Number of Souls, Shelter Capacity, and 

Area. Through the stages of data pre-processing, feature 

selection, model training, and performance evaluation, we have 

achieved outcomes that found that the resulting model offers 

predictions with excellent accuracy. 

This is indicated by the value of MSE, RMSE, MAE, and 

MAPE, 0.0156, 0.1250, 0.0212, and 0.16%, respectively. 

Furthermore, the R² value is 0.95, indicating that the model can 

explain most of the data variance significantly. When 

compared to other machine learning models, such as Linear 

Regression, Random Forest, and Support Vector Regression 

(SVR), the XGBoost Regressor algorithm is found to yield 

better prediction results with fewer errors and performs well in 

Generalization. The approach can be further extended by 

including dynamic factors (e.g., traffic conditions, individual 

walking pace variations, and other non-spatial geographical 

aspects) to improve prediction accuracy. Finally, enhancement 
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and validation of the model is suggested using field 

experiments in order to fit it to the real conditions. In the near 

future, this framework can be further developed for other 

tsunami-affected regions in Indonesia and connected with early 

warning systems to enable a holistic, adaptive, and data-driven 

disaster management strategy. Accordingly, such a study 

contributes to the creation of a decision support system to 

bolster community preparedness for tsunami hazards. 
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