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Abstract - Magnetic Resonance Imaging (MRI) is widely accepted as the reference standard and a highly employed technique
for brain tumor classification due to its ability to produce high-quality, non-invasive brain scans. Because tumor cells are
heterogeneous, it is challenging to classify them, however, recent advancements in Machine Learning (ML) have enhanced the
automation and accuracy of Brain Tumor Classification (BTC). Furthermore, with the expansion of artificial intelligence,
particularly in Deep Learning (DL), a new avenue has opened, offering promising new opportunities for BT research and
treatment. The objective of this research is to use multimodal images for the BTC. It specifically concentrates on MRI data
collected from three different repositories. The novelty is in using these MRIs. Most of the earlier researches use single datasets
or multiple datasets but applies DL individually. In this study, the MRI were mixed and then subjected to preprocessing before
being used for training. The significant research gap is the absence of a unified framework for defining the most suitable neural
network architecture for a given problem, which necessitates dependence on experimental trial-and-error strategies for new
models. This study presents a Customized CNN (CCNN) solution for classifying 5712 brain MRI into four types. Besides CCNN,
other Transfer Learning (TL) techniques like Custom VGG19 (C-VGG19), Customized MobileNet (C-MN), and customized
DenseNet201 (C-DN201) are also used. According to trial data, test accuracy for the suggested CCNN was 95.80%, for C-
VGG19 it was 97.02%, for C-MN it was 95.10%, and for C-DN201 it was 98.42%. DL frameworks utilizing CNN structures have
been demonstrated to be highly effective for tumor classification and segmentation, successfully mitigating obstacles in MRI
investigations.
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1. Introduction

Analysis of the brain is particularly challenging due to its
billions of active cells. BT is becoming a leading cause of death
in adults and children. Less than 2% of all cancers are primary
BT, which affects roughly 300,000 people yearly throughout
the world [1, 2]. People can develop more than 100 distinct
types of BT [3]. To save human life, BTs must be properly
graded and diagnosed as soon as possible. The high density of
BTs makes the manual assessment awfully challenging.

For tumor detection, an automated computer-based
approach is therefore highly advantageous [4]. Things are
extremely different today. Radiologists can discover BT more
rapidly by utilizing DL and ML [5]. More and more researchers
involved in image processing and DL are working on creating
precise and efficient algorithms for automated tumor
classification. The efficacy of BT diagnosis using DL relies on
efficient data handling. Handling large-scale data is crucial for
creating accurate models, as it enables the storage, retrieval,

and processing of massive medical imaging datasets. This
capability is essential for building reliable DL models. A good
data management system enables multimodal data integration,
which combines data from various imaging modes, such as
MRI and CT [3, 6]. Data augmentation gives a DL model a
diversity of scenarios, which in turn helps it generalize better.

Furthermore, effective data management also involves
creating and maintaining enhanced datasets to improve model
performance [6].

This manuscript primarily concentrates on the following
core research objectives.:

e The paper examines the latest advancements in BT
identification systems, driven by ML and DL
technologies, as detailed in Section 2.

e The research gaps have been systematically outlined in
Section 3. This section serves as the foundation for
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formulating the objectives and direction of the outlined
framework.

The paper explores the proposed and implemented
framework in Section 4, highlighting the dataset,
preprocessing procedures, and architecture.

Section 5 gives a comprehensive examination of the
experimental results.

Lastly, Section 6 encapsulates the essential findings
through a concise concluding summary.

2. Literature Review

In their article (2025), Mastoi et al used the concept of
federated learning with GoogleNet. Their experiment was
conducted on 7023 MRI taken from the Kaggle website. This
method attained a 99.8% accuracy [7]. U-Net was used by Ilani
et al. (2025) for BT classification. They used 3064 MRI from
Figshare, categorized into 03 classes. Their method got 98.56%
accuracy [8]. Islam et al (2024) used the EfficientNet family
method for BT classification.

They used 3064 MRI from Figshare, categorized into 03
classes. Their method attained a 99.69% accuracy with
EfficientNetB3 [9]. In 2024, Asiri et al. developed a hyper-
tuned CNN framework for BT classification. They used 02
datasets. Both datasets were sourced from Kaggle. A total of
7,023 MRI spread across four classes constituted the first
dataset. The second was a binary data set with 253 MRI. The
authors reported an accuracy of 96.00% on the first data, while
it was 88% on the second data [10].

Ahmed et al. (2023) utilized two pretrained networks -
ResNet50 and InceptionV3 for classifying BT. They used 02
datasets. A total of 3459 MRI distributed across four classes
constituted the first dataset obtained from Kaggle. The second
data from Figshare was binary data having 3000 MRI. Their
modified ResNet 50 achieved a 97.68 % accuracy, whereas
modified Inception V3 got 96.25% on the first data. For the
second dataset, they achieved 99.83% accuracy with ResNet50
and 98.22% with InceptionV3 [11].

In 2023, Mactina employed an innovative approach to
identify brain tumors. This study utilized the SCARRL model,
a meta-heuristic-based DL approach, to determine the
malignancy or intermediate severity of BTs using MRIs. This
model achieved a 98 percent accuracy [12]. Gupta et al. (2022)
exploited Inception-ResNet-v2 as a pretrained model. Certain
modifications were made to this, along with the addition of a
Random Forest Tree to classify the BT.

The small dataset was enhanced using the Cyclic
Generative Adversarial Networks (CGAN). The recommended
model demonstrated an accuracy of 98.5% [13]. Diaz-Pernas
(2021) utilized a deep CNN on MRI images to classify several
forms of BT. The methodology employed a multipath CNN
for enhanced performance. Stochastic Gradient Descent was
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employed for optimization. By utilizing this scheme, a
remarkable accuracy of 97.3% was attained [14]. Semantic
segmentation networks were created by Ruba et al. (2020) [9]
using CNNs from MRI and CT scans. The GoogleNet CNN
model was used in the suggested work. With respect to
accuracy, this model demonstrated 99.6% accuracy, 99.6%
sensitivity, 99.8% specificity, and 99.4% precision [15].
Abiwinanda et al. (2019) created a scheme utilizing CNN
through DL methodologies for analyzing brain MR data.

In total, five classification models were created, and the
second model demonstrated superior accuracy in classifying
MR images. Within the proposed scheme, there is integration
of the ReLU layer and the Max Pool layer, featuring a total of
64 hidden neurons. Under the training stage, the recommended
model demonstrated an accuracy of 98.5%, while achieving an
84% accuracy during the validation phase [16].

Kabir Anaraki et al. (2019) devised a hybrid methodology
that merged the evolutionary algorithm with CNN for
categorizing BT. Their suggested method employed a genetic
algorithm for selecting the structure of the CNN. This method
has an accuracy of 90.9% [17]. The authors used four datasets.

These are IXI, REMBRANDT, TCGA-GBM, and a
general hospital from Tehran. A novel categorization process
is introduced by Afshar et al. (2019). Their work utilized the
Capsule Network technique, also known as CapsNets. By
adjusting the convolutional layer, this strategy improves the
accuracy to 90.89% categorizing MR images of brain tumors.

According to the research, precision sees a notable 86.5%
enhancement, specifically attributed to alterations within the
convolution layer. Sixty-four feature map was used by
CapsNets [18]. Seetha et al. (2018) used an automated
framework.. The model employs a deep architecture with small
convolutional kernels to enhance feature learning while
maintaining low computational complexity. The adopted
method gave an accuracy of 97.50% [19].

3. Research Gap

The absence of a unified framework for defining the most
suitable neural network architecture for a given problem often
necessitates dependence on experimental trial-and-error
strategies. The tuning of critical hyperparameters-like learning
rate and hidden layer size-continues to depend on heuristic
experimentation rather than established theoretical or
automated principles. Overfitting remains a persistent
challenge for deep learning models across diverse datasets,
necessitating advanced approaches to enhance regularization
and generalization capabilities. The internal mechanisms
through which deep learning models analyse input data and
produce outputs remain largely opaque, underscoring the need
for explainable AI approaches. Table 1 gives a summary of
several other relevant research works.
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Table 1. Summary of procedures used for BT classification

Year Ref Technique Data Images | Accuracy | Remark (Tumor classes
No. q repository used % identified)
2025 [20] Xceptloln Wlt.h Transfer Kaggle 7023 9873 3 (Menlnglqma, Glioma,
earning Pituitary)
Attention-based GooglLeNet- . 3 (Meningioma, Glioma,
2025 [21] style CNN Figshare 3064 97.62 Pituitary)
2025 [22] ADE Algorithm and Diet Kaggle 5249 96.09 3 (Menlnglqma, Glioma,
Transformer Pituitary)
2024 | [23] InceptionV4 Kaggle 7022 9870 | > (Mem;ﬁ;oigf; )Gh"ma’
2023 | [24] Vision Transformer (ViT) BraTS 2018 1425 9675 | ° (Gh‘”gi’u ?f::;l)ngloma’
IVX16 ensemble of VGG16, 3 (Meningioma, Glioma,
2023 23] InceptionV3, and Xception Kaggle 3264 96.94 Pituitary)
2022 [26] GoogleNet Br35H Kaggle 3000 99.51 Tumor or non-tumor
2021 | [27] EfficientNet Figshare 3064 98.04 | ° (Meml‘jﬁ:l‘;gﬁ‘;)(}homa’
. . . 3 (Meningioma, Glioma,
2021 [28] Fine-tuned Inception-v3 Figshare 3064 94.34 Pituitary)
2020 | [29] Convolutional NADE Figshare 3064 9500 | ° (Meml‘,‘ﬁ:l‘;gf; )Ghoma’
2019 [30] GoogLeNet Transfer Learning Figshare 3064 98.0 3 (Menlnglqma, Glioma,
Softmax Pituitary)
2019 | [31] ResNet - 101 Figshare 3064 93.83 3 (Mem;ﬁ;‘;g?; )Ghoma’
2018 | [32] DenseNet-LSTM Figshare 3064 92.13 3 (Mem;igt:l‘;gl‘j‘;fhoma’

4. DL Methodology for Classification
4.1. Customization of the Architectures Used

Four models form the basis of this study: (a) Customised
CNN (CCNN), (b) Customized VGG-19 (C-VGG19), (¢)
Customised MobileNet (C-MN), d) customised DenseNet201
(C-DN201) techniques. The proposed customized CNN
(CCNN) architecture, Figure 1, is an efficient DL model for
high-resolution medical image classification. It incorporates
three convolutional stages with 5x5, 5x5, and stacked 3x3
kernels. Batch Normalization (BN) and the SAF are applied
following each convolution to ensure stable gradient flow [33].
Residual skip connections using 1x1 convolutions are
employed to enhance feature reuse and mitigate vanishing
gradients. This block is named as Residual Convolutional
Block (RCB) [16]. A Dual-Pooling Swish-Activated
Classification Head (DSCH) is appended after the final RCB.
The module incorporates a 1x1 convolution for channel
refinement. It is followed by Global Average Pooling (GAP)
for capturing overall contextual information [34]. This stage
operates in parallel with Global Max Pooling (GMP) to
highlight the most discriminative features within the image.
The concatenation (GAP + GMP) enhances feature diversity
and improves class discrimination. This concatenated feature
vector is processed through a dense layer (128 neurons) along
with SAF and 50% dropout regularization to enhance
generalization. After that, it is again passed through a second
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dense layer with 4 output neurons and a 40% dropout rate. The
vector thus generated is passed through a Softmax layer [35,
36]. This Softmax generates class probabilities for final
classification. The proposed customized VGG-19 model,
Figure 2, enhances the original architecture by integrating BN,
SAF, and residual connections with 1x1 convolutions before
each max-pooling layer to improve gradient flow and training
stability [37]. A lightweight DSCH replaces the traditional
fully connected layers. This design achieves improved
accuracy, faster convergence, and reduced computational
complexity compared to the conventional VGG-19 [38]. The
proposed customized MobileNet architecture, Figure 3 is
designed to enhance feature representation and classification
accuracy for high-resolution medical imagery. The model
extends the conventional MobileNet by incorporating deeper
Depthwise Separable Convolution (DS) blocks, enabling
effective multi-scale feature extraction while maintaining
computational efficiency [39]. A 1x1 convolutional bottleneck
layer is introduced for efficient feature compression, reducing
redundancy and improving discriminative capability.
Furthermore, DSCH is employed to capture both average
contextual and dominant spatial activations, providing a more
comprehensive feature embedding [12]. Overall, the
customized MobileNet strikes the ideal balance between high-
fidelity feature learning and processing economy. This makes
it well-suited for precise BTC tasks [20].
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Figure 4(a) exhibits a customized DenseNet-inspired
architecture with notable deviations from standard
configurations. It begins with a 7x7 convolution followed by
BN, SAF, and a residual 1x1 convolution before max-pooling.
The network retains the DenseNet-201 configuration with a
growth rate of k = 32 and a non-standard layer progression of
[6, 12, 48, 32]. The proposed C-DN201 integrates a dual-stage

bottleneck structure, where an additional pair of 1x1
convolutions following the final dense block performs
progressive channel compression (1920 to 512 to 256). Doing
this enhances feature compactness and discrimination prior to
global pooling. Finally, DSCH is then applied to capture both
average contextual and salient activations for robust tumor
discrimination.

Input 16x16x512
512x512x3
128x128x64 64x64x 128 32x32%256 16x16x896 ; ;
l l l + Conv (1x1)
= } = BN + Swish Dropout (0.5) +
® stem = = = DL4 Densepﬁzs]( + Slwish
e DL1 DL2 DL3 I
[ ConvT=T — Dense Block 1
BN — Swish | Dense Block 1 Dense Block 1 Dense Block 1 Dropout (0.4) +
=2 X6 X12 X48 X3 Dense (4)

Residual Add
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Fig. 4(a) C-DN201 architecture, and (b) Dense layer, and (c) Transition layer.

4.2. Mining the Data

To gather image modality from various sources that will
be needed to feed the detection machine for the purpose of
tumor detection [8]. The MRI were sourced from the Kaggle
website [40-42].

The dataset underwent a meticulous cleaning process
aimed at removing noisy, misclassified, and degraded images,
resulting in a more consistent and reliable dataset.

This dataset has 5718 MRI. The data was divided into
three clusters. The first group of 4005 MRI is utilized for
training, whereas the second group of 1142 MRI is for
validation. An unseen dataset of 571 MRI was used for
testing. Table 2 summarizes the dataset.

Table 2. Summary of the dataset Used

MRI Train Validation Test Total

set set set
Glioma 931 263 132 1325
Meningioma 938 268 134 1340
No tumor 1113 318 159 1590
Pituitary 1023 293 146 1462
Total 4005 1142 571 5718
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4.3. Data Preparation

In the clinical setting, the quality and quantity of imaging
are essential for generating a reliable diagnosis. The actual
MRI may contain numerous unneeded and superfluous details
[43]. Due to its signal sensitivity, noise is hard to eliminate [4,
37]. To preserve the original visual qualities, pre-processing
methods like filtration are applied. MRI were subjected to a
standardized preprocessing pipeline to improve image quality,
contrast, and consistency across the dataset [5, 9, 23]. The
procedure utilized SimplelTK-based filtering and Gaussian
smoothing to suppress noise while preserving anatomical
structures [44] effectively. Figure 5 depicts the noisy MRI and
the preprocessed, denoised image.

a) Noisy image
Fig. 1 (a) Noisy MRI, and (b) Preprocessed denoised image.

b) Denoised image
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A light morphological erosion was applied to remove
small unwanted artifacts and refine region boundaries [38]. To
achieve uniform intensity scaling across scans, z-score
normalization was employed, minimizing inter-patient and
inter-scanner variability. Finally, CLAHE enhanced local
contrast and emphasized tumor regions without amplifying
background noise. This standardized preprocessing ensured
high-quality, normalized inputs, enabling reliable and
accurate model training. Every MRI was altered to have the
same dimensions.

4.4. Data Augmentation

The performance of DL algorithms is intrinsically tied to
the relevance, volume, and quality of training data [5, 17].
Unfortunately, the lack of sufficient data remains a major
barrier, as gathering useful datasets is often an expensive and
labour-intensive process. To overcome this obstacle, data
augmentation approaches have been used. Training data
undergoes a three-step image augmentation procedure. The
first augmentation involves a single rotation of +10°,
representing minor variations in patient positioning during
image acquisition. The 2nd augmentation consisted of a
horizontal flip, which introduced mirror symmetry and
reduced orientation bias in the dataset. The third augmentation
combined a mild zoom factor of 0.95x with a gamma
correction factor of 1.1. This third step simulates subtle
variations in acquisition scale and scanner-specific intensity
distribution [45]. The augmented set now comprises 11,994
MRI. This augmentation protocol generated three additional
samples per image, effectively quadrupling the dataset size to
15992 images.

4.5. Methodology

Four models form the basis of this study. Customised
Transfer Learning (CTL) has been implemented across three
frameworks, namely C-MN, C-VGG19, and C-DN201, to
enhance classification performance.

Figure 6 shows the CCNN model. A customized model
for tumor detection is specifically designed for BTC. The
modification involves adjusting hyperparameters to
accommodate the nuances of BT structures. The CCNN
consists of alternating Conv2D layers and MaxPooling2D as
depicted in Figure 1.

The SAF exhibits a smooth, non-monotonic response that
facilitates efficient gradient propagation and enhances
convergence stability compared to conventional ReLU.
Owing to its self-gating characteristic, Swish preserves minor
negative  activations,  thereby  improving  feature
expressiveness and contributing to superior overall network
performance [46].

For improving prediction accuracy, the categorical cross-
entropy was used. This is a loss function that compares the real
and predicted class probabilities, ensuring effective
optimization for multi-class classification tasks [13]. Label
smoothing was employed to prevent the model from becoming
overconfident by slightly softening the target class
distributions during training [47]. This technique enhances
generalization and improves robustness by mitigating
overfitting to hard one-hot labels.

Image Preprocessing
(Denoising, Enhancement and
Filtering)

Data Division

v

!

Training data

| Validation data |

‘ Testing data |

Augmentation

Parameter
Optimization

_________ o —— -

Proposed Model
CCNN

Training Phase

Optimized
Model

Fig. 6 CCNN methodology for classification of BT
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The three CTL used are C-VGG19, C-MN, and C-
DN201. The customization is achieved by modifying the
framework, as previously discussed in Figures 2-4 The goal
is to control the robustness and knowledge of the pre-trained
model while enhancing its performance. Figure 7 represents
CTL. Transfer Learning takes advantage of the information
contained in prior models. This work extracts features from
MR pictures using pre-learned weights from model training on
the ImageNet dataset [6].

4.6. Training and Testing

Separate data cluster are utilized for trining, validation,
and testing. During model development, the validation set aids
in performance monitoring and hyperparameter optimization
[13, 16]. Eighty epochs were used to train each model. We
used Early Stopping to monitor the validation loss and prevent
overfitting. The best model weights were restored
automatically once the validation performance ceased to
improve. The patience level of 10 epochs was used. All the
architectures employed Nadam as an  optimiser.
Regularization is applied with a Dropout layer, which
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arbitrarily sets 45% of the inputs to zero through training. This
system improves generalization on unseen data. The concept
of Multi-Layer Perceptron (MLP) in Customised TL allowed
us to leverage the powerful feature extraction capabilities of
pre-trained convolutional networks while tailoring the
classifier specifically to our dataset, resulting in faster
convergence during training [21]. For training, the Hyper
parameter as used are provided in Table 3.

Table 3. Hyperparameters for mode | training

Parameter Value
Epoch 80
Learning Rate 0.0012
Loss Function Categorical cross-entropy
Batch size 32
Optimizer Nadam
Dropout 0.45
Activation Swish
Momentum 0.90
Classifier Softmax




Vikram Verma & Alankrita Aggarwal / IJETT, 73(11), 349-363, 2025

5. Results and Discussion
5.1. CCNN Model

Figures 8(a) and 8(b) show the accuracy and loss trends
for the CCNN algorithm. Given the small gap between the
curves, it appears to be generalizing effectively. The training
accuracy of 98.83% achieved by the CCNN model, together
with the validation accuracy of 96.17%, indicates efficient
learning behavior and minimal signs of overfitting. The
CCNN model exhibits rapid loss convergence during the early
epochs, with both training and validation losses stabilizing at
low values, indicating effective optimization and a strong
generalization capability. Figure 9 illustrates the CM, which
visualizes the potency of the CCNN model. It compares the
actual values of a dataset with the forecasted values generated
by the CCNN. The CCNN performs well overall, with high
numbers of correct classifications in each class. The most
common misclassifications occur between Glioma and
Meningioma, which could indicate similarities between these
two classes that make them harder to distinguish.

CCNN - Epoch vs Accuracies

1.00

0.957

0.90

0.857

0.80+

Accuracy

0.754

0.70

= Train Accuracy

0.65+

Validation Accuracy

70

40
Epoch
Fig. 8(a) CCNN accuracy plots
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0.6
0.5 4
£ 04-
—
0.3 1
0.24
0.1
0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80
Epoch
Fig. 8(b) CCNN loss plots
Table 4. Class accuracy of CCNN model
Tumor Class Test Accuracy Specificity
Glioma tumor 0.9667 0.9818
Meningioma 0.9545 0.9680
No tumor 0.9912. 0.9951
Pituitary tumor 0.9895 0.9906

The classes “NO Tumor” and “Pituitary Tumor” have
fewer misclassifications, suggesting they are more distinct and
easier to classify correctly. Report in Table 5 gives an appraisal
of the model in predicting the diverse tumors.

No tumor and Pituitary tumor demonstrate a high metrics
score, indicating robust performance in correctly identifying
instances of these tumor types. Meningioma shows slightly
lower scores, particularly in recall, suggesting some difficulty
in accurately capturing all instances of this tumor class.

CCNN - Confusion Matrix

Glioma 121

Meningioma-

True

No Tumor-

Pituitary Tumor- 0

Glioma Mening'ioma

0 1

10

2,

0

No Pituitary
Tumor

Tumor

Predicted
Fig. 9 CM for CCNN
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Table 5. Class report CCNN model

Tumor Class | Precision | Recall K1 Support
score
Glioma tumor | 0.9380 | 0.9167 | 0.9272 132
Meningioma 0.8971 0.9104 | 0.9037 134
No tumor 0.9873 0.9811 | 0.9842 159
Pituitary 0.9730 | 0.9863 | 0.9796 146
tumor

5.2. C-VGG19 Model

Figures 10(a) and 10(b) show the accuracy and loss trends
for the C-VGG19 framework. The accuracy is 99.12% during
training, whereas it is 97.87% during validation. Table 6
provides the C-VGG19’s test specificity and accuracy. It is
evident that the C-VGG19 realizes very respectable results
across all BTC.

C-VGG19 - Epoch vs Accuracies

1.004

0.95+

0.904
P
2
3
3 0.851

0.80

= Train Accuracy
0.754 Validation Accuracy
0 10 20 30 40 S0 60 70 80
Epoch
Fig. 10(a) C-VGG19 accuracy plots
C-VGG19-
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No Tumor-

Pituitary Tumor- 2

Glioma Meningioma

CCNN - Epoch vs Loss

0.7
=== Train Loss
———Validation Loss

0.67

Loss

Epoch
Fig. 10(b) C-VGG1)9 loss plots

Figure 11 depicts the CM of the C-VGG19 model. The
CM for the BT classification shows high accuracy for all
classes with minimal misclassifications.

The report in Table 7 gives an appraisal of the model in
predicting the diverse tumors. The model is particularly
effective at identifying cases with no tumors, as indicated by
the highest precision and recall in this category.

Table 6. Class accuracy of C-VGG19 model

Tumor Class Test Accuracy Specificity
Glioma tumor 0.9842 0.9909
Meningioma 0.9772 0.9863
No tumor 0.9912 0.9927
Pituitary tumor 0.9877 0.9906

Confusion Matrix

4

1 0
I\IIO Pituitary
Tumor Tumor

Predicted

Fig. 11 CM for C-VGG19

357



Vikram Verma & Alankrita Aggarwal / IJETT, 73(11), 349-363, 2025

Table 7. Class report C-VGG19 model

Tumor Class | Precision | Recall F1 Support
score
Glioma tumor | 0.9695 | 0.9621 | 0.9658 132
Meningioma 0.9549 10.9478 | 0.9513 134
No tumor 09812 | 0.9874 | 0.9843 159
Pituitary 0.9728 | 0.9795 | 09761 | 146
tumor

5.3. C-MN Model

The C-MN model’s accuracy and loss trends are shown
in Figures 12 (a) and (b). The model is generalizing nicely, as
seen by the curves. The training accuracy is 98.75%, whereas
the validation accuracy is 96.26%. Table 8 provides the C-
MN’’s test specificity and accuracy.

C-MN - Epoch vs Accuracies

CCNN - Epoch vs Loss

1.0
Train Loss
Validation Loss
0.8
0.6
g
=
0.4+
0.21
0.0 T T T T T T T T
0 10 20 30 40 50 60 70 80
Epoch

Fig. 12(b) C-MN loss plots

1,00
The table indicates robust performance and reliability in
0.95 distinguishing between different tumor types. Figure 13
depicts the CM that visualizes the potency of the C-MN
o model. The CM report in Table 9 shows that neither tumor nor
. pituitary tumor has a high score, indicating robust
i performance in correctly identifying instances of these tumor
2 0851 types.
0.804 Table 8. Class accuracy of C-MN model
- Tumor Class Test Accuracy Specificity
L ok Glioma tumor 0.9737 0.9818
0.75- alidation Accuracy —
. . : y : = ; . , Meningioma 0.9615 0.9748
0 10 20 30 40 50 60 70 80 No tumor 0.9895 0.9976
Epoch — - .
Fig. 12(a) C-MN accuracy plots Pituitary tumor 0.9912 0.9906
C-MN - Confusion Matrix
125 7 0 0
Meningioma- 1 3
L
=
= No Tumor- 1 3 1
Pituitary Tumor- 0 1 0
Glioma Meninfgioma No Pituitary
. Tumor Tumor
Predicted
Fig. 13 CM for C-MN
Table 9. CLASS report C-MN model
Tumor Class Precision Recall F1 score Support
Glioma tumor 0.9398 0.9470 0.9434 132
Meningioma 0.9179 0.9179 0.9179 134
No tumor 0.9935 0.9686 0.9809 159
Pituitary tumor 0.9732 0.9932 0.9831 146
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5.4. C-DN201 Model

Figure 14 (a) and 14 (b) depict the accuracy and loss
trends for the C-DN201. A small variation in the curves
advocates that it is generalizing significantly. The train
accuracy is 99.25% whereas it is 98.58% during validation.

The C-DN201 model exhibits rapid loss convergence
within the early epochs, with both training and validation
losses stabilizing at low values, indicating -effective
optimization and a strong generalization capability.

Table 10 presents the class-wise performance of the C-
DN201 model in terms of test accuracy and specificity across

various tumor categories.

C-DN201 - Epoch vs Accuracies

1.00

0.954

0.904

0.85+

0.804

Accuracy

0.75 1

C-DN201 - Epoch vs Loss

1.0
Train Loss
Validation Loss
0.8
0.6
0.4
0.2
0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80
Epoch
Fig. 14(b) C-DN201 loss plots
Table 10. Class accuracy Of C-DN201 model
Tumor Class Test Accuracy Specificity
Glioma tumor 0.9930 0.9954
Meningioma 0.9912 0.9954
No tumor 0.9947 0.9951
Pituitary tumor 0.9965 0.9976

Figure 15 depicts the CM that visualizes the potency of
the C-DN201 model. High precision and recall scores indicate
that the C-DN201 performs exceptionally well across all
classes. Overall, the C-DN201 model demonstrates strong
capability with slight misclassifications. Such a level of
effectiveness implies that the C-DN201 model is appropriate
for real-world use in classifying various BT types.

C-DN201-Confusion Matrix

0.70+ = Train Accuracy
—— Validation Accuracy
0.65-1— T T T T T T T T
0 10 20 30 40 50 60 70 80
Epoch
Fig. 14(a) C-DN201 accuracy plots
Glioma S e[V
Meningioma- 1
2
&= No Tumor- 1
Pituitary Tumor- O

- 1 . ! -
Glioma Meningioma

The report derived from the CM is in Table 11, which
gives an appraisal of the C-DN201 model in predicting the
diverse tumors. The Matthews Correlation Coefficient (MCC)
is widely regarded as a dependable indicator for evaluating the
overall quality of classification algorithms [48]. Unlike simple
accuracy, MCC incorporates all four outcomes of the CM (TP,

1 1 0
131 1 1
0 158 1
1 0 145
TuIi'Ifl)or P'i“tljllrlrg?)ll."y

Predicted
Fig. 15 CM for C-DN201
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TN, FP, and FN), thereby delivering a fair and unbiased
measure of a model’s predictive capability, especially in cases
of class imbalance. As presented in Table 12, the C-DN201
model recorded the highest MCC value of 0.9836,
demonstrating a strong correlation between its predicted and
actual outcomes. This high score reflects the model’s
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robustness and consistent learning behaviour throughout the across all evaluation parameters highlights DN20’s enhanced
training and testing phases. The same pattern can be observed  capability to generalize well, minimize misclassifications, and
in Figure 17, where C-DN201 maintains a clear lead over the deliver more accurate predictions for brain tumor
other models in overall performance. The steady improvement classification tasks.

Table 11. CLASS report C-DN201 model

Tumor Class Precision Recall F1 score Support
Glioma tumor 0.9848 0.9848 0.9848 132
Meningioma 0.9850 0.9776 0.9813 134
No tumor 0.9875 0.9937 0.9906 159
Pituitary tumor 09932 0.9932 0.9932 146
Training Time vs Model
12000
9800
10000 9000
Z 8000
=
S
2 6000 5000
[}
.E 4000 3500
2000
0 T T
CCNN C-VGGI19 C-MN C-DN201
Model
Fig. 16 Training time vs Model graph
Table 12. Performance report
Metrics CCNN C-MN C-VGG19 C-DN201
Macro Precision 0.9488 0.9561 0.9696 0.9876
Macro Recall 0.9486 0.9566 0.9692 0.9873
Macro Dice 0.9487 0.9563 0.9694 0.9875
Test Accuracy 0.9510 0.9580 0.9702 0.9877
MCC 0.9345 0.9439 0.9602 0.9836
Per-Model Metrics: Precision, Recall, Dice, MCC, and Accuracy
H Precision m Recall = Dice MCC B Accuracy
1
0.99 0.9876 0.9873 0.9875 0.9877

0.9836

0.98

0.9696 0.9692 0.9694 0.9702

0.97

0.9581

0.96 0.9561.0.9566 0.9563

0.951

Score

0.9488 0.9486 0.9487

0.95

0.94 +

0.93 +

0.92 +

0.91 +

0.9 -+

CCNN C-MN C-VGG19 C-DN201

Fig. 17 Per model comparison
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6. Conclusion

This study presents a comprehensive framework for
classifying BTs, beginning with a meticulous data collection
process. Prior to model training, the data is thoroughly
organized, pre-processed, and augmented to achieve improved
generalization and robustness.

The classification report compares the performance of four
different classification methods (CCNN, C-MN, C-VGG19, C-
DN201) across four BT classes. Method C-DN201 consistently
achieves the highest efficacy across all BT classes,
demonstrating excellent performance with nearly perfect
scores, especially for Pituitary tumor with an overall metric
score of 0.9932. Method C-VGG19 also shows strong
performance with high metrics across the board, particularly
for No tumor and Glioma tumor.

Methods CCNN and C-MN exhibit slightly lower
performance compared to C-DN201 and C-VGG19, with
Method CCNN having the lowest recall for the Glioma tumor
(0.9167) and Meningioma (0.9104). Method C-MN shows
variability in its metrics but generally maintains high precision
and recall. Overall, Method C-DN201 is the most effective,
followed closely by C-VGG19, while CCNN and C-MN are
slightly less consistent but still perform well.

The proposed approach makes a valuable contribution to
the field of medical data analysis. Moreover, this applied
research study is expected to provide significant assistance and
practical benefits to radiologists in clinical decision-making.
By obtaining a second opinion, radiologists will be better able
to identify the types, positions, diameters, and intensities of
tumors.
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