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Abstract - Magnetic Resonance Imaging (MRI) is widely accepted as the reference standard and a highly employed technique 

for brain tumor classification due to its ability to produce high-quality, non-invasive brain scans. Because tumor cells are 

heterogeneous, it is challenging to classify them; however, recent advancements in Machine Learning (ML) have enhanced the 

automation and accuracy of Brain Tumor Classification (BTC). Furthermore, with the expansion of artificial intelligence, 

particularly in Deep Learning (DL), a new avenue has opened, offering promising new opportunities for BT research and 

treatment. The objective of this research is to use multimodal images for the BTC. It specifically concentrates on MRI data 

collected from three different repositories. The novelty is in using these MRIs. Most of the earlier researches use single datasets 

or multiple datasets but applies DL individually. In this study, the MRI were mixed and then subjected to preprocessing before 

being used for training.  The significant research gap is the absence of a unified framework for defining the most suitable neural 

network architecture for a given problem, which necessitates dependence on experimental trial-and-error strategies for new 

models. This study presents a Customized CNN (CCNN) solution for classifying 5712 brain MRI into four types. Besides CCNN, 

other Transfer Learning (TL) techniques like Custom VGG19 (C-VGG19), Customized MobileNet (C-MN), and customized 

DenseNet201 (C-DN201) are also used. According to trial data, test accuracy for the suggested CCNN was 95.80%, for C-

VGG19 it was 97.02%, for C-MN it was 95.10%, and for C-DN201 it was 98.42%. DL frameworks utilizing CNN structures have 

been demonstrated to be highly effective for tumor classification and segmentation, successfully mitigating obstacles in MRI 

investigations.   

Keywords - Brain Tumor, CNN, Deep Learning,  Magnetic Resonance Imaging, Machine Learning.

1. Introduction  
Analysis of the brain is particularly challenging due to its 

billions of active cells. BT is becoming a leading cause of death 

in adults and children. Less than 2% of all cancers are primary 

BT, which affects roughly 300,000 people yearly throughout 

the world [1, 2]. People can develop more than 100 distinct 

types of BT [3]. To save human life, BTs must be properly 

graded and diagnosed as soon as possible. The high density of 

BTs makes the manual assessment awfully challenging.  

For tumor detection, an automated computer-based 

approach is therefore highly advantageous [4]. Things are 

extremely different today. Radiologists can discover BT more 

rapidly by utilizing DL and ML [5]. More and more researchers 

involved in image processing and DL are working on creating 

precise and efficient algorithms for automated tumor 

classification. The efficacy of BT  diagnosis using DL relies on 

efficient data handling. Handling large-scale data is crucial for 

creating accurate models, as it enables the storage, retrieval, 

and processing of massive medical imaging datasets. This 

capability is essential for building reliable DL models. A good 

data management system enables multimodal data integration, 

which combines data from various imaging modes, such as 

MRI and CT [3, 6].  Data augmentation gives a DL model a 

diversity of scenarios, which in turn helps it generalize better.  

Furthermore, effective data management also involves 

creating and maintaining enhanced datasets to improve model 

performance [6]. 

This manuscript primarily concentrates on the following 

core research objectives.: 

• The paper examines the latest advancements in BT 

identification systems, driven by ML and DL 

technologies, as detailed in Section 2. 

• The research gaps have been systematically outlined in 

Section 3. This section serves as the foundation for 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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formulating the objectives and direction of the outlined 

framework. 

• The paper explores the proposed and implemented 

framework in Section 4, highlighting the dataset, 

preprocessing procedures, and architecture.   

• Section 5 gives a comprehensive examination of the 

experimental results. 

• Lastly, Section 6 encapsulates the essential findings 

through a concise concluding summary. 

2. Literature Review 
In their article (2025), Mastoi et al used the concept of 

federated learning with GoogleNet. Their experiment was 

conducted on 7023 MRI taken from the Kaggle website. This 

method attained a 99.8% accuracy [7]. U-Net was used by Ilani 

et al. (2025) for BT classification. They used 3064 MRI from 

Figshare, categorized into 03 classes. Their method got 98.56%  

accuracy [8]. Islam et al (2024) used the EfficientNet family 

method for BT classification.  

They used 3064 MRI from Figshare, categorized into 03 

classes. Their method attained a 99.69% accuracy with 

EfficientNetB3 [9]. In 2024, Asiri et al. developed a hyper-

tuned CNN framework for BT classification. They used 02 

datasets. Both datasets were sourced from Kaggle. A total of 

7,023 MRI spread across four classes constituted the first 

dataset. The second was a binary data set with 253 MRI. The 

authors reported an accuracy of 96.00% on the first data, while 

it was 88% on the second data [10].     

Ahmed et al. (2023) utilized two pretrained networks - 

ResNet50 and InceptionV3 for classifying BT. They used 02 

datasets. A total of 3459 MRI distributed across four classes 

constituted the first dataset obtained from Kaggle. The second 

data from Figshare was binary data having 3000 MRI. Their 

modified ResNet 50 achieved a 97.68 % accuracy, whereas 

modified Inception V3 got 96.25% on the first data. For the 

second dataset, they achieved 99.83% accuracy with ResNet50 

and 98.22% with InceptionV3 [11].  

In 2023, Mactina employed an innovative approach to 

identify brain tumors. This study utilized the SCARRL model, 

a meta-heuristic-based DL approach, to determine the 

malignancy or intermediate severity of BTs using MRIs. This 

model achieved a 98 percent accuracy [12]. Gupta et al. (2022) 

exploited Inception-ResNet-v2 as a pretrained model. Certain 

modifications were made to this, along with the addition of a 

Random Forest Tree to classify the BT. 

The small dataset was enhanced using the Cyclic 

Generative Adversarial Networks (CGAN). The recommended 

model demonstrated an accuracy of 98.5% [13]. Díaz-Pernas 

(2021) utilized a deep CNN on MRI images to classify several 

forms of BT.  The methodology employed a multipath CNN  

for enhanced performance. Stochastic Gradient Descent was 

employed for optimization.  By utilizing this scheme, a 

remarkable accuracy of 97.3% was attained [14]. Semantic 

segmentation networks were created by Ruba et al. (2020) [9] 

using CNNs from MRI and CT scans. The GoogleNet CNN 

model was used in the suggested work.  With respect to 

accuracy, this model demonstrated 99.6% accuracy, 99.6% 

sensitivity, 99.8% specificity, and 99.4% precision [15]. 

Abiwinanda et al. (2019) created a scheme utilizing CNN 

through DL methodologies for analyzing brain MR data.  

In total, five classification models were created, and the 

second model demonstrated superior accuracy in classifying 

MR images. Within the proposed scheme, there is integration 

of the ReLU layer and the Max Pool layer, featuring a total of 

64 hidden neurons. Under the training stage, the recommended 

model demonstrated an accuracy of 98.5%, while achieving an 

84% accuracy during the validation phase [16]. 

Kabir Anaraki et al. (2019) devised a hybrid methodology 

that merged the evolutionary algorithm with CNN for 

categorizing BT. Their suggested method employed a genetic 

algorithm for selecting the structure of the CNN. This method 

has an accuracy of 90.9% [17]. The authors used four datasets.  

These are IXI, REMBRANDT, TCGA-GBM, and a 

general hospital from Tehran. A novel categorization process 

is introduced by Afshar et al. (2019).  Their work utilized the 

Capsule Network technique, also known as CapsNets. By 

adjusting the convolutional layer, this strategy improves the 

accuracy to 90.89% categorizing MR images of brain tumors.  

According to the research, precision sees a notable 86.5% 

enhancement, specifically attributed to alterations within the 

convolution layer. Sixty-four feature map was used by 

CapsNets [18]. Seetha et al. (2018) used an automated 

framework.. The model employs a deep architecture with small 

convolutional kernels to enhance feature learning while 

maintaining low computational complexity. The adopted 

method gave an accuracy of 97.50% [19]. 

3. Research Gap  
The absence of a unified framework for defining the most 

suitable neural network architecture for a given problem often 

necessitates dependence on experimental trial-and-error 

strategies. The tuning of critical hyperparameters-like learning 

rate and hidden layer size-continues to depend on heuristic 

experimentation rather than established theoretical or 

automated principles. Overfitting remains a persistent 

challenge for deep learning models across diverse datasets, 

necessitating advanced approaches to enhance regularization 

and generalization capabilities. The internal mechanisms 

through which deep learning models analyse input data and 

produce outputs remain largely opaque, underscoring the need 

for explainable AI approaches. Table 1 gives a summary of 

several other relevant research works. 
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Table 1. Summary of procedures used for BT classification

Year 
Ref 

No. 
Technique 

Data 

repository 

Images 

used 

Accuracy 

% 

Remark (Tumor classes 

identified) 

2025 [20] 
Xception with Transfer 

learning 
Kaggle 7023 98.73 

3 (Meningioma, Glioma, 

Pituitary) 

2025 [21] 
Attention-based GoogLeNet-

style CNN 
Figshare 3064 97.62 

3 (Meningioma, Glioma, 

Pituitary) 

2025 [22] 
ADE Algorithm and Diet 

Transformer 
Kaggle 5249 96.09 

3 (Meningioma, Glioma, 

Pituitary) 

2024 [23] InceptionV4 Kaggle 7022 98.70 
3 (Meningioma, Glioma, 

Pituitary) 

2023 [24] Vision Transformer (ViT) BraTS 2018 1425 96.75 
3 (Glioma, Meningioma, 

Pituitary) 

2023 [25] 
IVX16 ensemble of VGG16, 

InceptionV3, and Xception 
Kaggle 3264 96.94 

3 (Meningioma, Glioma, 

Pituitary) 

2022 [26] GoogLeNet Br35H Kaggle 3000 99.51 Tumor or non-tumor 

2021 [27] EfficientNet Figshare 3064 98.04 
3 (Meningioma, Glioma, 

Pituitary) 

2021 [28] Fine-tuned Inception-v3 Figshare 3064 94.34 
3 (Meningioma, Glioma, 

Pituitary) 

2020 [29] Convolutional NADE Figshare 3064 95.00 
3 (Meningioma, Glioma, 

Pituitary) 

2019 [30] 
GoogLeNet Transfer Learning 

Softmax 
Figshare 3064 98.0 

3 (Meningioma, Glioma, 

Pituitary) 

2019 [31] ResNet - 101 Figshare 3064 93.83 
3 (Meningioma, Glioma, 

Pituitary) 

2018 [32] DenseNet-LSTM Figshare 3064 92.13 
3 (Meningioma, Glioma, 

Pituitary) 

4. DL Methodology for Classification 
4.1. Customization of the Architectures Used 

Four models form the basis of this study: (a) Customised 

CNN (CCNN), (b) Customized VGG-19 (C-VGG19), (c) 

Customised MobileNet (C-MN), d) customised DenseNet201 

(C-DN201) techniques. The proposed customized CNN 

(CCNN) architecture, Figure 1,  is an efficient DL model for 

high-resolution medical image classification. It incorporates 

three convolutional stages with 5×5, 5×5, and stacked 3×3 

kernels. Batch Normalization (BN) and the SAF are applied 

following each convolution to ensure stable gradient flow [33]. 

Residual skip connections using 1×1 convolutions are 

employed to enhance feature reuse and mitigate vanishing 

gradients. This block is named as Residual Convolutional 

Block (RCB) [16].   A Dual-Pooling Swish-Activated 

Classification Head (DSCH) is appended after the final RCB. 

The module incorporates a 1×1 convolution for channel 

refinement. It is followed by Global Average Pooling (GAP) 

for capturing overall contextual information [34]. This stage 

operates in parallel with Global Max Pooling (GMP) to 

highlight the most discriminative features within the image. 

The concatenation  (GAP + GMP) enhances feature diversity 

and improves class discrimination. This concatenated feature 

vector is processed through a dense layer (128 neurons)  along 

with SAF and 50% dropout regularization to enhance 

generalization. After that, it is again passed through a second 

dense layer with 4 output neurons and a 40% dropout rate. The 

vector thus generated is passed through a Softmax layer [35, 

36]. This Softmax generates class probabilities for final 

classification. The proposed customized VGG-19 model, 

Figure 2, enhances the original architecture by integrating BN, 

SAF, and residual connections with 1×1 convolutions before 

each max-pooling layer to improve gradient flow and training 

stability [37]. A lightweight DSCH replaces the traditional 

fully connected layers. This design achieves improved 

accuracy, faster convergence, and reduced computational 

complexity compared to the conventional VGG-19 [38]. The 

proposed customized MobileNet architecture, Figure 3  is 

designed to enhance feature representation and classification 

accuracy for high-resolution medical imagery. The model 

extends the conventional MobileNet by incorporating deeper 

Depthwise Separable Convolution (DS) blocks, enabling 

effective multi-scale feature extraction while maintaining 

computational efficiency [39]. A 1×1 convolutional bottleneck 

layer is introduced for efficient feature compression, reducing 

redundancy and improving discriminative capability. 

Furthermore, DSCH is employed to capture both average 

contextual and dominant spatial activations, providing a more 

comprehensive feature embedding [12]. Overall, the 

customized MobileNet strikes the ideal balance between high-

fidelity feature learning and processing economy. This makes 

it well-suited for precise BTC tasks [20].
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Fig. 1 CCNN architecture

 
Fig. 2 C-VGG19 architecture 

Fig. 3 C-MN architecture 
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Figure 4(a) exhibits a customized DenseNet-inspired 

architecture with notable deviations from standard 

configurations. It begins with a 7×7 convolution followed by 

BN, SAF, and a residual 1×1 convolution before max-pooling. 

The network retains the DenseNet-201 configuration with a 

growth rate of k = 32 and a non-standard layer progression of 

[6, 12, 48, 32]. The proposed C-DN201 integrates a dual-stage 

bottleneck structure, where an additional pair of 1×1 

convolutions following the final dense block performs 

progressive channel compression (1920 to 512 to 256). Doing 

this enhances feature compactness and discrimination prior to 

global pooling. Finally, DSCH is then applied to capture both 

average contextual and salient activations for robust tumor 

discrimination. 

 
(a) 

 

(b)                                                   (c) 

Fig. 4(a) C-DN201 architecture, and (b) Dense layer, and (c) Transition layer. 

4.2. Mining the Data 

To gather image modality from various sources that will 

be needed to feed the detection machine for the purpose of 

tumor detection [8]. The MRI were sourced from the Kaggle 

website [40-42].  

The dataset underwent a meticulous cleaning process 

aimed at removing noisy, misclassified, and degraded images, 

resulting in a more consistent and reliable dataset.  

This dataset has 5718 MRI. The data was divided into 

three clusters. The first group of 4005 MRI is utilized for 

training, whereas the second group of 1142 MRI is for 

validation.  An unseen dataset of 571 MRI was used for 

testing. Table 2 summarizes the dataset. 

Table 2. Summary of the dataset Used 

MRI 
Train 

set 

Validation 

set 

Test 

set 
Total 

Glioma 931 263 132 1325 

Meningioma 938 268 134 1340 

No tumor 1113 318 159 1590 

Pituitary 1023 293 146 1462 

Total 4005 1142 571 5718 

4.3. Data Preparation  

In the clinical setting, the quality and quantity of imaging 

are essential for generating a reliable diagnosis. The actual 

MRI may contain numerous unneeded and superfluous details 

[43]. Due to its signal sensitivity, noise is hard to eliminate [4, 

37]. To preserve the original visual qualities, pre-processing 

methods like filtration are applied. MRI were subjected to a 

standardized preprocessing pipeline to improve image quality, 

contrast, and consistency across the dataset [5, 9, 23]. The 

procedure utilized SimpleITK-based filtering and Gaussian 

smoothing to suppress noise while preserving anatomical 

structures [44] effectively. Figure 5 depicts the noisy MRI and 

the preprocessed, denoised image.  

 
Fig. 1 (a) Noisy MRI, and (b) Preprocessed denoised image. 
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A light morphological erosion was applied to remove 

small unwanted artifacts and refine region boundaries [38]. To 

achieve uniform intensity scaling across scans, z-score 

normalization was employed, minimizing inter-patient and 

inter-scanner variability. Finally, CLAHE enhanced local 

contrast and emphasized tumor regions without amplifying 

background noise. This standardized preprocessing ensured 

high-quality, normalized inputs, enabling reliable and 

accurate model training. Every MRI was altered to have the 

same dimensions.  

4.4. Data Augmentation  

The performance of DL algorithms is intrinsically tied to 

the relevance, volume, and quality of training data [5, 17]. 

Unfortunately, the lack of sufficient data remains a major 

barrier, as gathering useful datasets is often an expensive and 

labour-intensive process. To overcome this obstacle, data 

augmentation approaches have been used. Training data 

undergoes a three-step image augmentation procedure. The 

first augmentation involves a single rotation of +10°, 

representing minor variations in patient positioning during 

image acquisition. The 2nd augmentation consisted of a 

horizontal flip, which introduced mirror symmetry and 

reduced orientation bias in the dataset. The third augmentation 

combined a mild zoom factor of 0.95× with a gamma 

correction factor of 1.1. This third step simulates subtle 

variations in acquisition scale and scanner-specific intensity 

distribution [45]. The augmented set now comprises 11,994 

MRI. This augmentation protocol generated three additional 

samples per image, effectively quadrupling the dataset size to 

15992 images. 

4.5. Methodology 

Four models form the basis of this study. Customised 

Transfer Learning (CTL) has been implemented across three 

frameworks, namely C-MN, C-VGG19, and C-DN201, to 

enhance classification performance.  

Figure 6 shows the CCNN model. A customized model 

for tumor detection is specifically designed for BTC. The 

modification involves adjusting hyperparameters to 

accommodate the nuances of BT structures. The CCNN 

consists of alternating Conv2D layers and MaxPooling2D as 

depicted in Figure 1.  

The SAF exhibits a smooth, non-monotonic response that 

facilitates efficient gradient propagation and enhances 

convergence stability compared to conventional ReLU. 

Owing to its self-gating characteristic, Swish preserves minor 

negative activations, thereby improving feature 

expressiveness and contributing to superior overall network 

performance [46].  

For improving prediction accuracy, the categorical cross-

entropy was used. This is a loss function that compares the real 

and predicted class probabilities, ensuring effective 

optimization for multi-class classification tasks [13]. Label 

smoothing was employed to prevent the model from becoming 

overconfident by slightly softening the target class 

distributions during training [47]. This technique enhances 

generalization and improves robustness by mitigating 

overfitting to hard one-hot labels. 

 

 
Fig. 6 CCNN methodology for classification of BT 
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Fig. 7 CTL Scheme for classification of BT 

The three CTL used are C-VGG19, C-MN, and C-

DN201. The customization is achieved by modifying the 

framework, as previously discussed in Figures 2-4  The goal 

is to control the robustness and knowledge of the pre-trained 

model while enhancing its performance. Figure 7  represents 

CTL. Transfer Learning takes advantage of the information 

contained in prior models. This work extracts features from 

MR pictures using pre-learned weights from model training on 

the ImageNet dataset [6]. 

4.6. Training and Testing  

Separate data cluster are utilized for trining,  validation, 

and testing. During model development, the validation set aids 

in performance monitoring and hyperparameter optimization 

[13, 16]. Eighty epochs were used to train each model. We 

used Early Stopping to monitor the validation loss and prevent 

overfitting.  The best model weights were restored 

automatically once the validation performance ceased to 

improve. The patience level of 10 epochs was used. All the 

architectures employed Nadam as an optimiser. 

Regularization is applied with a Dropout layer, which 

arbitrarily sets 45% of the inputs to zero through training. This 

system improves generalization on unseen data. The concept 

of Multi-Layer Perceptron (MLP) in Customised TL allowed 

us to leverage the powerful feature extraction capabilities of 

pre-trained convolutional networks while tailoring the 

classifier specifically to our dataset, resulting in faster 

convergence during training [21]. For training, the Hyper 

parameter as used are provided in Table 3. 

Table 3. Hyperparameters for mode l training 

Parameter Value 

Epoch 80 

Learning Rate 0.0012 

Loss Function Categorical cross-entropy 

Batch size 32 

Optimizer Nadam 

Dropout 0.45 

Activation Swish 

Momentum 0.90 

Classifier Softmax 
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5. Results and Discussion 
5.1. CCNN Model  

Figures 8(a) and 8(b) show the accuracy and loss trends 

for the CCNN algorithm. Given the small gap between the 

curves, it appears to be generalizing effectively. The training 

accuracy of 98.83% achieved by the CCNN model, together 

with the validation accuracy of 96.17%, indicates efficient 

learning behavior and minimal signs of overfitting. The 

CCNN model exhibits rapid loss convergence during the early 

epochs, with both training and validation losses stabilizing at 

low values, indicating effective optimization and a strong 

generalization capability. Figure 9 illustrates the CM, which 

visualizes the potency of the CCNN model. It compares the 

actual values of a dataset with the forecasted values generated 

by the CCNN. The CCNN performs well overall, with high 

numbers of correct classifications in each class.  The most 

common misclassifications occur between Glioma and 

Meningioma, which could indicate similarities between these 

two classes that make them harder to distinguish. 

 
Fig. 8(a) CCNN accuracy plots 

 
Fig. 8(b) CCNN loss plots 

Table 4. Class accuracy of CCNN model 

Tumor Class Test Accuracy Specificity 

Glioma tumor 0.9667 0.9818 

Meningioma 0.9545 0.9680 

No tumor 0.9912. 0.9951 

Pituitary tumor 0.9895 0.9906 

 

The classes “NO Tumor” and “Pituitary Tumor” have 

fewer misclassifications, suggesting they are more distinct and 

easier to classify correctly. Report in Table 5 gives an appraisal 

of the model in predicting the diverse tumors.  

No tumor and Pituitary tumor demonstrate a high metrics 

score, indicating robust performance in correctly identifying 

instances of these tumor types. Meningioma shows slightly 

lower scores, particularly in recall, suggesting some difficulty 

in accurately capturing all instances of this tumor class. 

 
Fig. 9 CM for CCNN 
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Table 5. Class report  CCNN model 

Tumor Class Precision Recall 
F1 

score 
Support 

Glioma tumor 0.9380 0.9167 0.9272 132 

Meningioma 0.8971 0.9104 0.9037 134 

No tumor 0.9873 0.9811 0.9842 159 

Pituitary 

tumor 
0.9730 0.9863 0.9796 146 

5.2. C-VGG19 Model  

Figures 10(a) and 10(b) show the accuracy and loss trends 

for the C-VGG19 framework. The accuracy is 99.12% during 

training, whereas it is 97.87% during validation. Table 6 

provides the C-VGG19’s test specificity and accuracy. It is 

evident that the C-VGG19 realizes very respectable results 

across all BTC. 

 
Fig. 10(a) C-VGG19 accuracy plots 

 
Fig. 10(b) C-VGG19 loss plots 

Figure 11 depicts the CM of the C-VGG19 model. The 

CM for the BT classification shows high accuracy for all 

classes with minimal misclassifications.  

The report in Table 7 gives an appraisal of the model in 

predicting the diverse tumors. The model is particularly 

effective at identifying cases with no tumors, as indicated by 

the highest precision and recall in this category. 

Table 6. Class accuracy of C-VGG19 model 

Tumor Class Test Accuracy Specificity 

Glioma tumor 0.9842 0.9909 

Meningioma 0.9772 0.9863 

No tumor 0.9912 0.9927 

Pituitary tumor 0.9877 0.9906 

 

 
Fig. 11 CM for C-VGG19 
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Table 7. Class report  C-VGG19 model 

Tumor Class Precision Recall 
F1 

score 
Support 

Glioma tumor 0.9695 0.9621 0.9658 132 

Meningioma 0.9549 0.9478 0.9513 134 

No tumor 0.9812 0.9874 0.9843 159 

Pituitary 

tumor 
0.9728 0.9795 0.9761 146 

5.3. C-MN Model  

The C-MN model’s accuracy and loss trends are shown 

in Figures 12 (a) and (b). The model is generalizing nicely, as 

seen by the curves. The training accuracy is 98.75%, whereas 

the validation accuracy is 96.26%. Table 8 provides the C-

MN’s test specificity and accuracy.  

 
Fig. 12(a) C-MN accuracy plots  

 
Fig. 12(b) C-MN loss plots 

The table indicates robust performance and reliability in 

distinguishing between different tumor types. Figure 13 

depicts the CM that visualizes the potency of the C-MN 

model. The CM report in Table 9 shows that neither tumor nor 

pituitary tumor has a high score, indicating robust 

performance in correctly identifying instances of these tumor 

types. 

Table 8. Class accuracy of C-MN model 

Tumor Class Test Accuracy Specificity 

Glioma tumor 0.9737 0.9818 

Meningioma 0.9615 0.9748 

No tumor 0.9895 0.9976 

Pituitary tumor 0.9912 0.9906 

 
Fig. 13 CM for C-MN

Table 9. CLASS report  C-MN model 

Tumor Class Precision Recall F1 score Support 

Glioma tumor 0.9398 0.9470 0.9434 132 

Meningioma 0.9179 0.9179 0.9179 134 

No tumor 0.9935 0.9686 0.9809 159 

Pituitary tumor 0.9732 0.9932 0.9831 146 
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5.4. C-DN201 Model 

Figure 14 (a) and 14 (b) depict the accuracy and loss 

trends for the C-DN201. A small variation in the curves 

advocates that it is generalizing significantly. The train 

accuracy is 99.25% whereas it is 98.58% during validation.  

The C-DN201 model exhibits rapid loss convergence 

within the early epochs, with both training and validation 

losses stabilizing at low values, indicating effective 

optimization and a strong generalization capability.  

Table 10 presents the class-wise performance of the C-

DN201 model in terms of test accuracy and specificity across 

various tumor categories.  

 
Fig. 14(a) C-DN201 accuracy plots 

 
Fig. 14(b) C-DN201 loss plots 

Table 10. Class accuracy Of C-DN201 model 

Tumor Class Test Accuracy Specificity 

Glioma tumor 0.9930 0.9954 

Meningioma 0.9912 0.9954 

No tumor 0.9947 0.9951 

Pituitary tumor 0.9965 0.9976 

Figure 15 depicts the CM that visualizes the potency of 

the C-DN201 model. High precision and recall scores indicate 

that the C-DN201 performs exceptionally well across all 

classes. Overall, the C-DN201 model demonstrates strong 

capability with slight misclassifications. Such a level of 

effectiveness implies that the C-DN201 model is appropriate 

for real-world use in classifying various BT types.  

 
Fig. 15 CM for C-DN201 

The report derived from the CM is in Table 11, which 

gives an appraisal of the C-DN201 model in predicting the 

diverse tumors. The Matthews Correlation Coefficient (MCC) 

is widely regarded as a dependable indicator for evaluating the 

overall quality of classification algorithms [48]. Unlike simple 

accuracy, MCC incorporates all four outcomes of the CM (TP, 

TN, FP, and FN), thereby delivering a fair and unbiased 

measure of a model’s predictive capability, especially in cases 

of class imbalance. As presented in Table 12, the C-DN201 

model recorded the highest MCC value of 0.9836, 

demonstrating a strong correlation between its predicted and 

actual outcomes. This high score reflects the model’s 
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robustness and consistent learning behaviour throughout the 

training and testing phases. The same pattern can be observed 

in Figure  17, where C-DN201 maintains a clear lead over the 

other models in overall performance. The steady improvement 

across all evaluation parameters highlights DN20’s enhanced 

capability to generalize well, minimize misclassifications, and 

deliver more accurate predictions for brain tumor 

classification tasks. 

Table 11. CLASS report  C-DN201 model 

Tumor Class Precision Recall F1 score Support 

Glioma tumor 0.9848 0.9848 0.9848 132 

Meningioma 0.9850 0.9776 0.9813 134 

No tumor 0.9875 0.9937 0.9906 159 

Pituitary tumor 09932 0.9932 0.9932 146 

 
Fig. 16 Training time vs Model graph 

Table 12. Performance  report   

Metrics CCNN C-MN C-VGG19 C-DN201 

Macro Precision 0.9488 0.9561 0.9696 0.9876 

Macro Recall 0.9486 0.9566 0.9692 0.9873 

Macro Dice 0.9487 0.9563 0.9694 0.9875 

Test Accuracy 0.9510 0.9580 0.9702 0.9877 

MCC 0.9345 0.9439 0.9602 0.9836 

 
Fig. 17 Per model comparison 
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6. Conclusion 
This study presents a comprehensive framework for 

classifying BTs, beginning with a meticulous data collection 

process. Prior to model training, the data is thoroughly 

organized, pre-processed, and augmented to achieve improved 

generalization and robustness.  

The classification report compares the performance of four 

different classification methods (CCNN, C-MN, C-VGG19, C-

DN201) across four BT classes. Method C-DN201 consistently 

achieves the highest efficacy across all BT classes, 

demonstrating excellent performance with nearly perfect 

scores, especially for Pituitary tumor with an overall metric 

score of 0.9932. Method C-VGG19 also shows strong 

performance with high metrics across the board, particularly 

for No tumor and Glioma tumor.  

Methods CCNN and C-MN exhibit slightly lower 

performance compared to C-DN201 and C-VGG19, with 

Method CCNN having the lowest recall for the Glioma tumor 

(0.9167) and Meningioma (0.9104). Method C-MN shows 

variability in its metrics but generally maintains high precision 

and recall. Overall, Method C-DN201 is the most effective, 

followed closely by C-VGG19, while CCNN and C-MN are 

slightly less consistent but still perform well.  

The proposed approach makes a valuable contribution to 

the field of medical data analysis. Moreover, this applied 

research study is expected to provide significant assistance and 

practical benefits to radiologists in clinical decision-making. 

By obtaining a second opinion, radiologists will be better able 

to identify the types, positions, diameters, and intensities of 

tumors. 
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