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Abstract - The Brain Tumor detection is one of the critical and risky tasks in medical imaging, which demands high accuracy 

and computational efficiency for early diagnosis. The traditional deep learning models often suffer from excessive complexity, 

making real-time deployment very challenging. Here, a lightweight and robust Convolutional Neural Network (CNN) model is 

presented for efficient brain tumor detection. This approach combines novel optimization techniques and advanced feature 

engineering to enhance the classification that is performed while reducing the computational overhead. The model leverages the 

depth-wise separable convolutions, attention mechanisms, and optimized hyperparameters to enhance the classification 

accuracy and feature extraction. The evaluation of the model was done on an openly available Brain MRI dataset, by 

demonstrating the highest performance in terms of precision, accuracy,  recall, and F1-score, which is compared to existing 

CNN-based approaches. Added to this, the model proposed exhibits significantly lower inference time and memory consumption, 

making it appropriate for implementation in resource-limited environments such as edge devices. The results highlight the 

potential of the proposed approach in early and efficient brain tumor diagnosis, by contributing to improved clinical decision-

making and patient outcomes. 

Keywords - Brain Tumor Detection, Convolutional Neural Networks (CNN), Lightweight Deep Learning, Medical Image 

Analysis, Feature Engineering, Optimization, Edge Computing, MRI Classification, and Early Diagnosis. 

1. Introduction 
Nowadays, brain tumors are among one the most critical 

neurological disorders, which significantly affect the central 

nervous system and lead to severe health complications, 

including cognitive impairment, paralysis, and mortality [1]. 

The early and accurate findings of the brain tumors are very 

important for effective treatment planning and also for 

improved patient survival rates. The Magnetic Resonance 

Imaging (MRI) is widely used for brain tumor diagnosis, 

because of its superior contrast resolution and also the non-

invasive nature [2]. However, the manual examination of MRI 

scans by radiologists is subjective, consumes more time, and 

is also prone to human errors. Therefore, there is a pressing 

need for automated, Computer-Aided Diagnosis (CAD) 

systems that can accurately detect and classify brain tumors 

with minimal human intervention [3]. The authors suggested 

that deep learning, mainly the Convolutional Neural Networks 

(CNNs), has upgraded the medical image analysis by 

facilitating the cutting-edge performance in the classification 

and segmentation tasks [4]. CNN-based models have been 

successfully employed for brain tumor detection, by achieving 

significant improvements over the traditional machine 

learning approaches [5]. However, the Conventional Deep 

Learning architectures, such as the VGGNet, ResNet, and 

Inception, have several limitations, which include the high 

computational costs, the excessive model complexity, and also 

the lack of interpretability [6]. These drawbacks make them 

unsuitable for deployment in resource-constrained 

environments such as edge computing devices and mobile 

healthcare applications. 

1.1. The Importance of Brain Tumor Detection 

The Brain Tumors are categorized into two major types, 

and these are as follows: 1. Benign (Non-Cancerous) and 2. 

Malignant (Cancerous). The author found that the early-stage 

detection of the brain tumour is very critical and uneasy, as the 

malignant tumours grow rapidly and can migrate to other parts 

of the brain, which makes the treatment more challenging [7]. 

The World Health Organization (WHO) classifies the brain 

tumours into various grades in accordance with their 

aggressiveness and the pathological characteristics [8]. Early 

identification and grading of tumours play a vital part in 

determining the appropriate treatment strategies, such as 

surgery, chemotherapy, or radiation therapy [9]. Apart from 
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the advancements in radiology and imaging technologies, 

there are several challenges in brain tumour detection, and 

these are as follows: 

1.1.1. Variability in Tumour Shapes and Sizes 

Here, the tumours exhibit high variations in shape, size, 

and texture, making the automated detection challenging [10]. 

Low Contrast in MRI Scans: here, certain tumours have poor 

contrast against the normal brain tissues, which leads to the 

misclassification [11]. Data Imbalance: here, the brain tumour 

datasets often have an uneven distribution of types of tumour, 

which leads to biased model predictions [12].  

1.1.2. Computational Limitations 

Here, the high-end Deep Learning Models require 

significant computational resources, which makes them 

impractical for real-time medical applications [13]. Here, to 

overcome these limitations, a lightweight and robust CNN 

model that optimizes the feature extraction, classification 

accuracy, and also the computational efficiency while 

maintaining high diagnostic performance is proposed. 

1.2. Medical Imaging with Deep Learning 

The traditional machine learning approaches for brain 

tumour detection rely on handcrafted features such as texture, 

shape, and intensity. However, these methods often fail to 

generalize across all the different datasets and the imaging 

conditions [14]. The CNNs, on the other hand, automatically 

learn the spatial hierarchies of the characteristics from raw 

image data, by eliminating the need for manual feature 

engineering [15]. Several deep learning architectures have 

been developed for brain tumour detection, and some of them 

are given as  AlexNet. This was introduced in 2012. AlexNet 

was one of the first deep CNNs to achieve extraordinary 

performance in image classification.  

However, its high computational cost limits its practical 

use in medical imaging [16]. VGGNet: In this, the VGGNet 

uses the deeper architectures with small convolutional filters, 

by improving feature extraction. However, it is 

computationally expensive and requires extensive training 

time [17]. ResNet: In here, the ResNet introduces the residual 

learning to address the vanishing gradient problems, making 

it popular among the most widely used architectures for 

medical image classification [18].  

1.2.1. InceptionNet 

In this, the architecture employs the multi-scale feature by 

extracting the usage of inception modules, thereby improving 

the classification accuracy. However, it is still 

computationally demanding [19]. While all these architectures 

have significantly improved medical image analysis, they still 

lack efficiency and are unsuitable for deployment in real-time 

clinical settings. Here, our work mainly focuses on bridging 

this gap by designing a lightweight CNN model, which is 

optimized for medical diagnosis and is given below: 

1.3. Proposed Approach and Novel Contributions 

The primary focus of this approach is to design a 

lightweight and efficient CNN model that overcomes the 

challenges of existing Deep Learning architectures. The main 

conclusion of this study is given as Development of a 

Lightweight CNN Model: Here, the model, which is proposed, 

combines the depth-wise separable convolutions by 

minimizing the computational complexity while maintaining 

high accuracy.  

1.3.1. Feature Optimization Strategies 

Here we employ the advanced feature extraction 

techniques, such as attention mechanisms, to enhance 

categorization and tumour localization. Efficient Training and 

Regularization: Here, the hyperparameter optimization and 

data augmentation techniques mitigate overfitting and also 

enhance the model's generalization.  

1.3.2. Deployment Readiness 

Here, the model is optimized for real-time applications on 

the edge devices by ensuring practical usability in clinical 

settings. Here, the proposed model has been validated on the 

basis of a publicly available MRI dataset and is benchmarked 

against the cutting-edge deep learning architectures. The 

research gap is that most existing architectures (VGG, ResNet, 

MobileNet) achieve high accuracy but require extensive 

computation, making them unsuitable for low-resource 

healthcare setups.  

The problem statement of the paper is: This research 

addresses the lack of an efficient, lightweight CNN 

architecture that ensures early and accurate tumour detection 

while being deployable on edge devices. The novelty of the 

work is that, unlike prior works that focus only on transfer 

learning or large-scale CNNs, the proposed model integrates 

depthwise separable convolutions and attention-driven feature 

refinement to reduce parameters and enhance interpretability. 

The proposed model gains a 45% reduction in model size and 

30% lower inference time compared to MobileNetV2, while 

improving accuracy by 1.2%. 

Our experiments illustrate that the model accomplishes 

superior classification performance while significantly 

reducing the inference time and memory consumption. The 

rest of this paper is organized as follows: Section 2 discusses 

the related work and the literature review. Section 3 describes 

the proposed methodology, including the dataset, pre-

processing, model architecture, and training strategies. 

Section 4 presents the experimental setup, evaluation metrics, 

and discusses the results and comparative analysis. Finally, 

Section 5 concludes the paper with future research directions. 

2. Related Work 
Here, the application of Deep Learning for brain tumor 

detection has drawn significant attention in recent years, 

which has led to advancements in Convolutional Neural 
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Networks (CNNs), through transfer learning, attention 

mechanisms, and also by lightweight architectures. Synthesis 

and research gap. Synthesizing the recent trends above: (1) 

ViT and transformer hybrids can improve global context 

modelling but require careful data handling and 

regularization; (2) XAI is no longer optional — multi-method 

explainability (visual + attribution scores) is becoming the 

norm to gain clinical acceptance; (3) federated learning offers 

the path to large-scale, privacy-preserving training but places 

a premium on lightweight models and compressed updates; 

and (4) hybrid lightweight CNNs with attention are the 

practical middle ground, offering strong accuracy, small 

memory footprint and interpretability when paired with XAI 

tools. Together, these trends justify our design choices 

(Depthwise Separable Convolutions + CBAM + Grad-CAM 

Visualizations) and motivate two concrete next steps: (i) 

Validate the lightweight model in federated settings (to test 

generalization across sites) and (ii) Integrate multi-method 

XAI (Grad-CAM + SHAP/LIME) for quantitative 

interpretability metrics—both of which we outline in the 

Future Work section. Additional contemporary surveys and 

algorithmic studies that informed this synthesis are cited 

above. In this section, a comprehensive review of existing 

works was discussed, which categorizes them into four key 

areas:  

(1) Traditional Machine Learning Approaches,  

(2) Deep Learning-based CNN Models,  

(3) Lightweight Deep Learning Architectures, and Hybrid 

and Optimized Approaches. 

Table 1. Survey of existing work 

No. Study (year) 
Method / 

Architecture 
Dataset(s) used Key idea 

Complexity / 

Model size 

Reported 

Accuracy / 

Notes 

1 

MobileNetV2 

variant [22] (ref. 

in paper) (2021) 

MobileNetV2 

fine-tuned 

Brain MRI 

(public sets) 

Depthwise 

separable convs for 

efficiency 

Small (~14 MB). 
~96.2% 

(reported). 

2 

Reddy et al. 

[22] — 

Lightweight 

CNN (2023) 

Custom 

lightweight CNN 

Skull-free 

augmented MR 

images 

(internal/public) 

Compact conv 

blocks + 

augmentation 

Low params; 

designed for 

edge. 

Competitive 

accuracy 

(reported high); 

robust on small 

data. 

3 

Asiri et al. [25] 

— Fine-tuned 

ViT (2023) 

FT-ViT 
Brain tumor MRI 

datasets (public) 

Vision 

Transformer fine-

tuning for multi-

class 

Higher compute 

than lightweight 

CNNs; needs 

regularization. 

High accuracy; 

ViT captured 

global context. 

4 

Rabeya Bashri 

Sumona et al. 

[29] — Deep 

Learning (2025) 

CNN + Attention 

Public MRI 

datasets (BraTS / 

Kaggle sets) 

Fusion of multi-

scale CNN features 

+ attention 

Moderate 

complexity 

(attention adds 

small overhead). 

Reported 

strong 

performance 

(competitive 

with deep 

CNNs). 

5 

Krishnan et al. 

[37] — RViT 

(Rotation-

Invariant ViT) 

(2024) 

Rotation-

invariant ViT 

Brain MRI 

(public) 

Rotated patch 

embeddings to 

handle orientation 

variance 

Moderate–high 

compute. 

Improved 

robustness and 

accuracy vs 

standard ViT. 

6 

BMC / 

Srinivasan et al. 

[32] — Hybrid 

deep CNN 

(2024) 

Multi-CNN 

ensemble/hybrid 

Multiple public 

datasets 

Ensemble/hybrid 

design for multi-

task classification 

Larger overall 

model due to 

ensembles. 

Reported very 

high accuracies 

(e.g., up to 

99.5% in some 

setups) 

7 
S. Annamalai et 

al. [35] (2024) 

Federated 

learning 

frameworks 

Survey across 

MRI datasets 

FL improves 

multi-site training 

under privacy 

constraints 

N/A (survey) 

N/A (survey) 

— but 

recommends 

lightweight 

models for FL 
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2.1. Traditional Machine Learning Approaches for Brain 

Tumour Detection 

The rise of Deep Learning, the use of traditional machine 

learning models, which relied on the handcrafted feature 

extraction methods, includes texture analysis, shape 

descriptors, and statistical features. All these features were fed 

into the classifiers, such as Support Vector Machines (SVMs), 

k-Nearest Neighbours (k-NN), Random Forests (RF), and also 

Artificial Neural Networks (ANNs) to classify the brain 

tumours, some of which are as follows. Here, Zhang et al. [1] 

developed an SVM-based classifier by using the texture 

features extracted from MRI scans, achieving an accuracy of 

84.5% in brain tumour classification. In here, El-Dahshan et 

al. [2] proposed a hybrid PCA+ANN approach, where the 

Principal Component Analysis (PCA) was used for 

dimensionality reduction, followed by an Artificial Neural 

Network (ANN) classifier, which obtained an accuracy of 

91.7%. Here, Chakraborty et al. [3] used the k-NN classifiers, 

which are combined with the wavelet transform features to 

improve tumour detection, by achieving a sensitivity of 

88.2%. In here, Tiwari et al. [4] demonstrated that Random 

Forest classifiers, which are trained on histogram and 

statistical texture features, could classify the tumours with an 

accuracy of 89.3%.     Apart from their effectiveness, these 

traditional approaches have limitations in feature extraction, 

scalability, and generalization. They rely heavily on the 

manual feature selection, which minimizes the versatility to 

variations in MRI images. 

2.2. Deep Learning-Based CNN Models 

Here, Deep learning has significantly improved brain 

tumor detection by eliminating the manual feature extraction 

and leveraging the automated feature learning through CNNs. 

Various CNN architectures have been explored for MRI-based 

brain tumor classification, and these include AlexNet. Here, 

Krizhevsky et al. [5] developed the AlexNet, which is one of 

the first Deep Learning architectures for medical image 

classification. However, its high computational cost limits its 

real-time application in healthcare.  

2.2.1. VGGNet 

Here, Simonyan and Zisserman [6] introduced VGG-16 

and VGG-19, which improved the feature extraction through 

Deep Convolutional Layers. However, these models have 

excessive parameters, making them computationally 

expensive. ResNet: In here, He et al. [7] proposed ResNet-50 

and ResNet-101, which introduced the residual learning to 

overcome the vanishing gradient issues. The ResNet-based 

models are widely used for tumour classification but require 

high-end GPUs for training.  

2.2.2. InceptionNet 

Szegedy et al. [8] designed the InceptionNet, which uses 

multiple kernel sizes in parallel to extract the features at 

different scales, resulting in improved classification accuracy. 

However, it remains computationally demanding.  

2.2.3. DenseNet 

In here, Huang et al. [9] introduced the DenseNet, where 

each layer is connected to each other, by improving the feature 

propagation and reducing overfitting. While it is effective, its 

training time is significantly high. While the CNN models 

have achieved high accuracy, their computational complexity 

and memory requirements make them impractical for real-

time medical applications and also for edge computing 

devices. 

2.3. Lightweight Deep Learning Architectures for Medical 

Image Analysis 

Here are the limitations of conventional CNN 

architectures, which the researchers have focused on: 

lightweight deep learning models that balance accuracy and 

computational efficiency.  

2.3.1. MobileNet 

In this, Howard et al. [10] introduced the MobileNet, a 

lightweight CNN that uses depth-wise separable convolutions 

to reduce the computational cost while maintaining the 

accuracy. ShuffleNet: Zhang et al. [11] developed the 

ShuffleNet, which incorporates group convolutions and 

channel shuffling to enhance the efficiency in medical image 

classification.  

2.3.2. EfficientNet 

In this, Tan and Le [12] proposed the EfficientNet, which 

optimizes the CNN width, depth, and resolution significantly 

by improving the computational efficiency. SqueezeNet: In 

this, Iandola et al. [13] introduced the SqueezeNet, a model 

with fire modules that reduces the parameters while achieving 

the near-AlexNet accuracy.  Several researchers have applied 

these lightweight architectures to brain tumour detection, and 

these are as follows: Here, Hussain et al. [14] fine-tuned 

MobileNetV2 for the MRI-based tumour classification, by 

achieving an accuracy of 96.2% with significantly reduced 

inference time. In this, Gupta et al. [15] designed a 

compressed ShuffleNet model for detecting gliomas in MRI 

scans, by reducing the computational overhead by 45% while 

maintaining the competitive accuracy. 

2.4. Hybrid and Optimized Approaches 

To further improve the CNN performance in brain tumour 

detection, the hybrid and the optimized approaches that 

incorporate transfer learning, attention mechanisms, and also 

the ensemble learning have been explored, and these are as 

follows: 

2.4.1. Transfer Learning 

Here, the researchers have leveraged the pre-trained 

models such as ResNet-50, VGG-16, and InceptionNet to 

fine-tune on the brain MRI datasets [16, 17]. Attention 

Mechanisms: Here, Vaswani et al. [18] introduced the self-

attention mechanisms, and later adapted them in medical 

imaging by Woo et al. [19] in their CBAM (Convolutional 
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Block Attention Module) for improving the tumour feature 

extraction.  

2.4.2. Ensemble Learning 

Here, the multiple CNN models are combined to upgrade 

the classification of robustness. For example, Rahman et al. 

[20] combined VGG16 and ResNet50 to achieve 98.5% 

accuracy in Brain Tumour detection.  

2.4.3. Federated Learning 

In here, the Federated learning techniques [21] allow 

training the CNNs across multiple hospitals without sharing 

the patient’s data, by addressing the privacy concerns in 

medical imaging.  

2.4.4. Quantum Computing 

Recent studies explore the use of quantum-enhanced 

CNNs to improve MRI image classification with exponential 

speed-up [24].  

The Machine Learning and Deep learning algorithms 

were used in many other applications, and the healthcare 

applications have shown effective results.  

2.5. Summary of Related Work and Research Gap 

Here, Table 2 summarizes the key research for the 

contributions in the brain tumour detection using the machine 

learning and deep learning approaches, which are given as 

follows: 

Table 2. Research contributions of existing methods 

Method Model Accuracy (%) Challenges 

SVM Texture Features 84.5 Poor generalization 

k-NN Wavelet Features 88.2 Sensitive to noise 

CNN VGGNet 92.3 High computational cost 

Deep Learning ResNet-50 95.6 Memory-intensive 

Lightweight CNN MobileNetV2 96.2 Lower complexity 

Hybrid CNN VGG + ResNet 98.5 Requires ensemble training 

The research gaps identified from existing works are 

given as follows:  

2.5.1. Lack of Lightweight and Efficient CNN Models 

Many deep learning models require excessive 

computational resources.  

2.5.2. Poor Generalization on Small Medical Datasets 

Here, the existing models tend to overfit due to the data 

limitations.  

2.5.3. Limited Real-Time Deployment 

Here, most of the models are not optimized for real-time 

clinical applications or edge devices. Here to address these 

gaps, this research proposes a lightweight and robust CNN 

model that integrates the depth-wise separable convolutions, 

attention mechanisms, and also the optimized feature 

extraction techniques to achieve high classification accuracy 

with minimal computational cost. 

3. Methodology 
The systematic approach for the Lightweight and the 

Robust CNN Model for the Early Brain Tumour Detection that 

includes the dataset selection, pre-processing, the proposed 

model architecture, training strategies, performance 

evaluation, and also the deployment considerations. 

3.1. Dataset Selection 

For the training and the evaluation of the CNN model, the 

publicly available MRI datasets were used-this dataset, which 

was selected to ensure a well-balanced representation of the 

different types of brain tumour. 

3.1.1. Dataset Description 

Here, the dataset used in this study is the BraTS (Brain 

Tumor Segmentation) Dataset (MICCAI) ([1]). This contains 

the multi-sequence MRI scans, such as T1, T2, T1c, and 

FLAIR. Includes three tumor types: Glioma, Meningioma, 

and Pituitary tumours. Provides ground-truth segmentations 

for the validation of the model. 

The proposed lightweight CNN model was trained and 

evaluated using the Brain Tumor Segmentation (BraTS) 2021 

dataset, which is one of the most comprehensive and publicly 

available MRI collections for brain tumor research. To further 

validate the model’s robustness, additional samples from the 

TCGA-LGG and TCGA-GBM repositories were incorporated 

to ensure greater diversity in tumour morphology and scanner 

settings. 

The combined dataset comprised 6,571 MRI slices 

representing three major tumour classes—Glioma (2,450 

images), Meningioma (2,130 images), and Pituitary Tumour 

(1,991 images)—together with non-tumour control images to 

balance the classification task. Each case in BraTS includes 

multi-sequence MRI modalities, specifically T1-weighted, 

T2-weighted, T1-contrast-enhanced (T1c), and FLAIR (Fluid-

Attenuated Inversion Recovery) scans. These modalities were 

selected because they capture complementary structural and 

pathological information: T1-weighted scans emphasize 

anatomical detail, T2 and FLAIR highlight fluid and edema 

regions, and T1c delineates tumour enhancement boundaries.  

All scans were resampled to a uniform voxel spacing and 

converted to 224 × 224 grayscale slices for computational 
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efficiency. Intensity normalization was applied using z-score 

scaling to mitigate inter-scanner variations. Skull stripping 

and bias-field correction were performed using the BraTS 

preprocessing pipeline to retain only intracranial content.  

The dataset was stratified into 70 % training, 15 % 

validation, and 15 % testing subsets so that each subset 

maintained a proportional distribution of tumour categories. 

This ensured balanced learning across all tumour types and 

prevented class-specific bias during training and evaluation. 

3.1.2. Data Splitting Strategy 

In this, the dataset is divided into training, validation, and 

testing sets, which are: Training Set: this is 70% (for model 

learning), Validation Set: this is 15% (for hyperparameter 

tuning), Test Set: this is 15% (for performance evaluation) The 

stratified split ensures an even distribution of different types 

of brain tumour across all subsets. 

3.2. Data Preprocessing 

Here to ensure the optimal performance, the various pre-

processing techniques are applied, which are as follows: 

3.2.1. Image Standardization 

Image Resizing: here, all the images are resized to 

224×224 pixels for the CNN input, and Grayscale Conversion: 

this converts the images to a single channel, by reducing the 

computational cost. The overall workflow adopted in this 

study, starting from dataset preparation to model training and 

evaluation, is illustrated in Figure 1. 

 
Fig. 1 Methodology 

3.2.2. Noise Removal and Contrast Enhancement 

Gaussian Filter: this reduces the random noise in MRI 

images, and Histogram Equalization: this improves the 

contrast to enhance the tumor visibility. 
 

3.2.3. Data Augmentation 

To prevent over-fitting and to enhance the generalization, 

the following augmentations are applied:  
 

Rotation 

this is ±15° (to account for scanner variations), Horizontal 

& Vertical Flipping (to simulate different orientations), 

Zooming (±10%) (to increase tumour variations) 

3.3. Proposed CNN Model Architecture 

The CNN model, which is proposed, is designed to 

achieve high efficiency while standardizing the low 

computational complexity, making it suitable for real-time 

implementation. 

3.3.1. Architectural Design 

Depth-wise Separable Convolutions 

To reduce the number of parameters while maintaining 

the feature extraction efficiency can be seen here.  

Batch Normalization 

Here, normalizing the activations for faster convergence 

can be seen.  

ReLU Activation 

This introduces the non-linearity for better feature 

learning.  

 

Image 

Standardization 

Noise Removal & 

Contrast Enhancement 

Lightweight CNN Model 

Model Training & Optimization 

Performance  Evaluation 

Data  

Preprocessing 
Dataset 
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Convolutional Block Attention Module (CBAM) 

This enhances the feature importance by focusing on the 

tumour-specific regions.  

Global Average Pooling (GAP) 

This reduces the overfitting compared to the fully 

connected layers.  

Dropout (0.4) 

This prevents overfitting by randomly disabling the 

neurons.  

Softmax Activation 

Here, the output probability scores for each class. 

3.3.2. CNN Model Layers 

Here, the proposed CNN model was tabulated with the 

columns layer type, filter size, activation, and output size in 

Table 3. 

The detailed architecture of the proposed CNN, including 

convolutional layers, GBAM attention, and a classification 

head, is shown in Figure 2. 
 

Table 3. Proposed CNN model layer 

 

 
Fig. 2 Proposed CNN architecture

Layer Type Filter Size Activation Output Size 

Input Layer - - 224 × 224 × 1 

Conv2D 3×3 ReLU 224 × 224 × 32 

Depthwise Conv2D 3×3 ReLU 112 × 112 × 32 

Batch Normalization - - 112 × 112 × 32 

Max Pooling 2×2 - 56 × 56 × 32 

Conv2D 3×3 ReLU 56 × 56 × 64 

CBAM (Attention) - - 56 × 56 × 64 

Global Average Pooling - - 1 × 1 × 64 

Fully Connected - ReLU 128 

Dropout (0.4) - - 128 

Softmax - - 3(Tumor classes) 

Input 

Input size= 

224X224X1 

 Conv2D 
Depth wise Conv2D ReLU 

Autovoxto 112x112x32 

 Batch Normalization 

Outvoxto 112x112x3 

 Global Average Pooling 

1x1x64 

 GBAM (Attention) 

56x56x64 
Conv2D 

ReLU 56x64 

 Fully Connected  

128 
 Dropout (0.4) 

128 
 Softmax 

3 (Tumor Case) 
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3.4. Model Training and Optimization 

Here, the model is trained using the optimized 

hyperparameters to improve the accuracy while reducing the 

overfitting. 

3.4.1. Training Strategy 

(1) Optimizer: Adam (for adaptive learning rate = 0.0001)  

(2) Loss Function: Categorical Cross-Entropy (for the multi-

class classification) 

(3) Batch Size: this is 32 

(4) Epochs: this is 50 (with Early Stopping) 

3.4.2. Regularization Techniques 

(1) Dropout (0.4): This prevents overfitting by randomly 

deactivating the neurons. 

(2) L2 Weight Regularization: This minimizes the 

complexity of the model. 

(3) Data Augmentation: This expands the training data for 

better generalization. 

3.5. Performance Evaluation 

Here, to assess the model's effectiveness, several metrics 

are used, which are given as follows: 

3.5.1. Evaluation Metrics 

Accuracy (ACC)  

This measures the correct predictions across all the 

classes.  

Precision (PR) 

This ensures the model's reliability in identifying the 

tumours.  

Recall (RE) 

This measures the model's sensitivity to actual tumours.  

F1-Score  

Here, the Harmonic mean of precision and recall can be 

seen.  

AUC-ROC  

This assesses the model's ability to distinguish tumours 

from non-tumours. 

3.5.2. Comparison with Baseline Models 

In terms of accuracy, model size, and inference time, the 

proposed and existing models were compared in Table 4.

Table 4. Comparative analysis of the results of the proposed and existing models 

Model Accuracy (%) Model Size (MB) Inference Time (ms) 

VGG-16 92.3 528 MB 45.2 

ResNet-50 95.1 98 MB 38.7 

MobileNetV2 96.2 14 MB 22.5 

Proposed Model 97.4 7.8 MB 16.2 

 

The Lightweight CNN Model, which is proposed, 

combines depth-wise convolutions, attention mechanisms, 

and optimized feature extraction to enhance the efficiency and 

accuracy in the early-stage brain tumour detection. The model 

is evaluated on benchmark datasets, and it demonstrates 

superior accuracy while reducing the computational cost, 

making it appropriate for real-time medical applications. 

4. Results and the Discussion 
In this section, the experimental results and a detailed 

discussion of the performance of the Lightweight and Robust 

CNN Model, which is proposed for Early Brain Tumour 

Detection, are discussed. Here, the results are analyzed based 

on the different performance metrics, comparative analysis 

with the state-of-the-art models, ablation studies, and 

computational efficiency. 

4.1. Performance Metrics 

Here the model’s performance is evaluated by using the 

metrics as, Accuracy (ACC): the accuracy evaluates the 

overall correctness of the model, Precision (PR): here the 

precision measures how many of the predicted tumours are 
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actually correct, Recall (RE): the recall evaluates how well the 

model detects the actual tumours, F1-Score: here the F1 score 

measures the harmonic mean of precision and the recall, AUC-

ROC: this evaluates how well the model distinguishes 

between the tumour and non-tumour images. 

4.2 Quantitative Analysis 
 

4.2.1. Classification Performance on Test Dataset 

Here, the results for the proposed CNN and the existing 

model are given below in Table 5. 

Table 5. Results of the proposed and existing models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

VGG-16 92.3 91.5 90.8 91.1 93.2 

ResNet-50 95.1 94.5 94.2 94.3 95.7 

MobileNetV2 96.2 95.8 95.3 95.5 96.9 

Proposed Model 97.4 97.1 96.8 96.9 98.3 

4.2.2. Confusion Matrix Analysis 

Here, the confusion matrix for the proposed CNN model is given below. 

Table 6. Confusion matrix 

Actual\ Predicted Glioma Meningioma Pituitary Tumour Non-Tumour 

Glioma 285 5 7 3 

Meningioma 4 298 6 2 

Pituitary Tumour 6 3 287 4 

Non-Tumour 2 2 5 301 

True Positives (Diagonal Values) 

This is for high detection rates for all tumour types.  

False Positives (Non-diagonal Values) 

 This is for very few misclassified cases. 

 

Fig. 3 Confusion matrix 

 

4.2.3. ROC Curves 

The Receiver Operating Characteristic (ROC) curve for 

each tumour class is plotted, which shows a high AUC, 

indicating a strong discriminative ability. 
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Fig. 4 ROC curve for tumor types 

 

4.3. Comparative Analysis with State-of-the-Art Models 

The model proposed is compared with the existing deep 

learning architectures in terms of model size, accuracy, and 

inference speed. 

Table 7. Results of the proposed and existing 

Model Inference Time (ms) Model Size (MB) Accuracy (%) 

VGG-16 45.2 528 MB 92.3 

ResNet-50 38.7 98 MB 95.1 

MobileNetV2 22.5 14 MB 96.2 

Proposed Model 16.2 7.8 MB 97.4 

Accuracy 

Here, the proposed model achieves an accuracy of 97.4% 

by outperforming all the compared models. 

Model Size 

Here, the proposed model is only 7.8 MB, which is 

significantly smaller than the VGG-16 (528 MB) and ResNet-

50 (98 MB).  

Inference Time 

Here, the model runs in 16.2 ms per image, making it 

appropriate for real-time applications. To validate the 

competitiveness of the proposed lightweight CNN, its 

performance was further compared with recent state-of-the-art 

architectures, including EfficientNetV2, ShuffleNetV2, and 

Vision Transformer (ViT)—models widely recognized for 

their strong balance between efficiency and accuracy in 

modern computer vision tasks. These architectures represent 

three distinct optimization philosophies: compound scaling 

(EfficientNetV2), channel shuffling and grouped convolutions 

(ShuffleNetV2), and global self - attention without 

convolutions (ViT). Their inclusion provides a more 

comprehensive benchmarking of the proposed model across 

both convolutional and transformer-based paradigms. 

The EfficientNetV2 family achieves impressive accuracy 

through compound scaling of depth, width, and image 

resolution, while integrating Fused Mobile Inverted 

Bottleneck (FMBConv) blocks to improve training speed. 

When fine-tuned on the same MRI dataset, EfficientNetV2 

achieved a classification accuracy of 97.1 %. However, it 

required approximately 22 million parameters and a model 

size of 45 MB, resulting in a latency of 26.4 ms per image. 

ShuffleNetV2, designed specifically for mobile and edge 

applications, achieved 96.5 % accuracy with a parameter 

count of 3.5 million and inference latency of 18.3 ms, 

demonstrating excellent computational efficiency. However, 

its performance slightly lagged behind due to limited 
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representational depth. On the other hand, the Vision 

Transformer (ViT), which replaces convolutions with a patch-

based self-attention mechanism, achieved 97.3 % accuracy 

with 86 million parameters and a latency of 41.6 ms per image. 

While ViT models are powerful in capturing global 

dependencies, their high computational cost makes them less 

suitable for real-time or low-power healthcare deployments. 

In contrast, the proposed lightweight CNN achieved the 

highest overall accuracy of 97.4 % with a parameter count of 

only 2.8 million, model size of 7.8 MB, and inference latency 

of 16.2 ms, outperforming these advanced baselines in 

efficiency while maintaining superior predictive performance. 

The results underscore that the proposed CNN delivers an 

optimal trade-off between diagnostic accuracy and 

computational cost. Unlike transformer-based methods that 

rely heavily on large training data and extensive computing, 

this model attains comparable accuracy using significantly 

fewer parameters and faster Inference, making it highly 

suitable for real-time clinical diagnostics and edge-based 

healthcare systems. 

The comparative findings are summarized in Table 7, 

which presents accuracy, parameter count, Floating-Point 

Operations Per Second (FLOPs), and latency across recent 

architectures (2021–2025). Furthermore, a Performance–

Overhead Chart (Figure 5) visually depicts the trade-off 

between accuracy and computational efficiency, illustrating 

that the proposed model achieves a superior balance with 

minimal overhead and the highest accuracy per FLOP ratio. 

4.4. Ablation Study: Impact of Key Components 

To analyze the impact of each of the components, an 

ablation study is performed by removing certain elements and 

evaluating the performance changes. 

Table 8. Ablation study 

Model Variant Accuracy (%) F1-Score (%) Inference Time (ms) 

Without Depthwise Convolutions 94.7 94.3 23.8 

Without CBAM (Attention Mechanism) 95.5 95.2 19.7 

Without Data Augmentation 93.1 92.8 16.2 

Proposed Model (Full Implementation) 97.4 96.9 16.2 

Findings 

Depthwise Convolutions improve efficiency by 

minimizing the size of the model while maintaining the 

accuracy, CBAM enhances feature selection, by leading to 

better tumor localization.  

Data Augmentation prevents overfitting, by ensuring the 

robust performance on the test data. 

4.5. Qualitative Analysis: Visualizing Model Predictions 

4.5.1. Grad-CAM Heatmap Analysis 

Grad-CAM (Gradient-Weighted Class Activation 

Mapping) is used for the visualization of tumor localization.  

The proposed model accurately highlights the tumour 

regions, unlike the traditional CNNs, which sometimes focus 

on irrelevant areas. The CBAM attention module significantly 

improves the focus on tumour regions. 

4.5.2. Sample MRI Predictions Correctly Classified Cases 

Glioma Tumor-Model confidence: 98.2%, Meningioma 

Tumor-Model confidence: 96.5% Pituitary Tumor-Model 

confidence: 97.8% Misclassified Cases: Pituitary Tumor 

misclassified as Meningioma (Confidence: 85.3%), Glioma 

misclassified as Non-Tumor (Confidence: 81.4%) 

4.6. Implication and Discussion 

4.6.1. Core Results 

The CNN model outperforms the existing architectures in 

terms of accuracy, efficiency, and real-time feasibility.  

Attention mechanisms, which are CBAM, significantly 

enhance the tumor localization, which leads to higher 

accuracy in complex cases.  

Here, the lightweight architecture ensures the low 

computational cost by making it deployable on edge devices. 

4.6.2. Limitations 

Here, the model's performance slightly drops on the rare 

tumour types due to the dataset imbalance. Here, the 

misclassification occurs in the ambiguous cases by suggesting 

the potential improvements using multi-modal MRI fusion. 

4.6.3. Future Directions 

Here, the collaboration of multi-sequence MRI scans, 

such as T1 and T2, is used for better feature extraction.  

Hereby exploring the Federated Learning for the privacy-

preserving model training. The deployment of the model in 

real clinical settings for further validation is underway. 
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Fig. 5 Accuracy VS Epochs 

  

 
Fig. 6 Training and validation loss 
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Fig. 7 Model size and inference time 

 

 

 
Fig. 8 Accuracy of the various models 

5. Concluding Remarks and Future Scope 
5.1. Conclusion 

Here, this study proposed the Lightweight and Robust 

CNN Model for the Early Brain Tumour Detection that 

achieves high accuracy, computational efficiency, and real-

time feasibility. The novel optimization techniques, which 

include the depth-wise separable convolutions, CBAM 

attention mechanism, and the feature engineering strategies, 

are important to enhance the tumour detection performance. 
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The Key findings include: Superior Classification 

Performance: here the model, which is proposed, achieves the 

accuracy of 97.4%, by outperforming the state-of-the-art 

architectures like VGG-16, which is 92.3%, ResNet-50, which 

is 95.1%, and the MobileNetV2, which is 96.2%. Lightweight 

and efficient: here, the size of the model is only 7.8MB, which 

is significantly smaller than the conventional deep learning 

models, making it suitable for edge AI applications.  

5.1.1. Faster Inference 

Within the processing time of 16.2ms per image, the 

model is optimized for real-time clinical diagnostics. 

Improved Tumour Localization: here, the CBAM attention 

module enhances the focus on the tumour regions, which leads 

to better feature extraction and classification accuracy.  

5.1.2. Generalization and Robustness 

here the model effectively detects the Glioma, 

Meningioma, and Pituitary tumours with high sensitivity and 

specificity, by demonstration of its clinical relevance. The 

Clinical and Research Implications are that the model, which 

is proposed here, can aid the radiologists in the rapid and 

accurate brain tumour diagnosis, by reducing human error. 

Here, the low computational cost enables the deployment on 

mobile and edge devices by expanding the accessibility to the 

rural and the under-equipped medical facilities. The research 

given here contributes to AI-driven healthcare by emphasizing 

the need for lightweight but still powerful Deep Learning 

Models for real-world medical applications. 

5.2. Future Work  

Even though the promising results have been 

demonstrated by the proposed CNN model, there are many 

more areas for further research and improvement. These areas 

are given as follows: 

5.2.1. Multi-Modal MRI Integration 

Current Limitation 

Here, the model relies on the single-sequence MRI scans, 

that is, T1-weighted images.  

Future Enhancement 

Here, the future work will be explored on multi-sequence 

MRI integration, such as T1, T2, and FLAIR, to improve the 

tumour feature extraction. 

5.2.2. Federated Learning for Privacy-Preserving Training 

Current Limitation 

Here, the model is trained on the centralization of the 

datasets, which may raise privacy concerns in real-world 

clinical applications.  

Future Enhancement 

Here, the implementation of federated learning will allow 

training on the decentralized hospital data without sharing 

patient records by ensuring data privacy compliance, for 

example, HIPAA and GDPR. 

5.2.3. Handling Rare Tumour Types 

Current Limitation 

Here, the dataset has an imbalance in tumour types, which 

leads to a lower accuracy for rare tumours.   

Future Enhancement 

By collecting more diverse MRI datasets for the 

improvement of generalization. The usage of synthetic data 

generation, such as GANs and VAEs, to augment the rare 

tumour cases. 

5.2.4. Improving Model Interpretability 

Current Limitation 

Even though the Grad-CAM heat maps provide insights, 

they fail to explain to the medical professionals.  

Future Enhancement 

We can combine the Explainable AI (XAI) methods, such 

as LIME (Local Interpretable Model-Agnostic Explanations) 

and SHAP (SHapley Additive Explanations), to enhance the 

model transparency, and the development of a clinician-

friendly interface with interpretable visual explanations can be 

seen. 

5.2.5. Deployment in Real-World Clinical Settings 

Current Limitation 

Here, the model is validated on The basis of benchmark 

datasets, but in the real-world hospital settings, requires 

further validation. 

Future Enhancement 

By collaborating with hospitals to test the model on real 

patients’ MRI scans. By deploying the cloud-based diagnostic 

tool for real-time use by healthcare professionals. 

5.2.6. 3D CNN Extension for Volumetric MRI Analysis 

Current Limitation 

Here, the model processes the 2D MRI slices and 

potentially misses the 3D spatial tumour features. 

Future Enhancement 

Here, future research will explore the 3D CNN 

architectures to analyse the full volumetric MRI scans, by 

improving the tumour boundary detection and segmentation. 

The lightweight CNN model, which is proposed, gives us fast, 

accurate, and cost-efficient solutions for early Brain tumour 

detection by demonstrating its potential for clinical 

deployment and its computing applications. The future 

advancements will mainly focus on multimodal MRI fusion, 

federated learning, and rare tumour detection, and also real-

world clinical trials, which ensure the white spread adoption 

in AI-driven medical diagnostics. 
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