Volume 73 Issue 12, 135-150, December 2025
© 2025 Seventh Sense Research Group®

International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/IJETT-V73112P111

Original Article

A Lightweight and Robust CNN Model for the Early
Brain Tumour Detection: Novel Optimization and
Feature Engineering Strategies

P. Saravanan', S. Saravanakumar?
12School of Computer Science and Engineering, Presidency University, Bengaluru, India.

ICorresponding Author : saravanan356@ gmail.com

Received: 04 September 2025 Revised: 21 November 2025 Accepted: 25 November 2025 Published: 19 December 2025
Abstract - The Brain Tumor detection is one of the critical and risky tasks in medical imaging, which demands high accuracy
and computational efficiency for early diagnosis. The traditional deep learning models often suffer from excessive complexity,
making real-time deployment very challenging. Here, a lightweight and robust Convolutional Neural Network (CNN) model is
presented for efficient brain tumor detection. This approach combines novel optimization techniques and advanced feature
engineering to enhance the classification that is performed while reducing the computational overhead. The model leverages the
depth-wise separable convolutions, attention mechanisms, and optimized hyperparameters to enhance the classification
accuracy and feature extraction. The evaluation of the model was done on an openly available Brain MRI dataset, by
demonstrating the highest performance in terms of precision, accuracy, recall, and F1-score, which is compared to existing
CNN-based approaches. Added to this, the model proposed exhibits significantly lower inference time and memory consumption,
making it appropriate for implementation in resource-limited environments such as edge devices. The results highlight the
potential of the proposed approach in early and efficient brain tumor diagnosis, by contributing to improved clinical decision-

making and patient outcomes.
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1. Introduction

Nowadays, brain tumors are among one the most critical
neurological disorders, which significantly affect the central
nervous system and lead to severe health complications,
including cognitive impairment, paralysis, and mortality [1].
The early and accurate findings of the brain tumors are very
important for effective treatment planning and also for
improved patient survival rates. The Magnetic Resonance
Imaging (MRI) is widely used for brain tumor diagnosis,
because of its superior contrast resolution and also the non-
invasive nature [2]. However, the manual examination of MRI
scans by radiologists is subjective, consumes more time, and
is also prone to human errors. Therefore, there is a pressing
need for automated, Computer-Aided Diagnosis (CAD)
systems that can accurately detect and classify brain tumors
with minimal human intervention [3]. The authors suggested
that deep learning, mainly the Convolutional Neural Networks
(CNNs), has upgraded the medical image analysis by
facilitating the cutting-edge performance in the classification
and segmentation tasks [4]. CNN-based models have been
successfully employed for brain tumor detection, by achieving
significant improvements over the traditional machine

learning approaches [5]. However, the Conventional Deep
Learning architectures, such as the VGGNet, ResNet, and
Inception, have several limitations, which include the high
computational costs, the excessive model complexity, and also
the lack of interpretability [6]. These drawbacks make them
unsuitable for deployment in resource-constrained
environments such as edge computing devices and mobile
healthcare applications.

1.1. The Importance of Brain Tumor Detection

The Brain Tumors are categorized into two major types,
and these are as follows: 1. Benign (Non-Cancerous) and 2.
Malignant (Cancerous). The author found that the early-stage
detection of the brain tumour is very critical and uneasy, as the
malignant tumours grow rapidly and can migrate to other parts
of the brain, which makes the treatment more challenging [7].
The World Health Organization (WHO) classifies the brain
tumours into various grades in accordance with their
aggressiveness and the pathological characteristics [8]. Early
identification and grading of tumours play a vital part in
determining the appropriate treatment strategies, such as
surgery, chemotherapy, or radiation therapy [9]. Apart from
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the advancements in radiology and imaging technologies,
there are several challenges in brain tumour detection, and
these are as follows:

1.1.1. Variability in Tumour Shapes and Sizes

Here, the tumours exhibit high variations in shape, size,
and texture, making the automated detection challenging [10].
Low Contrast in MRI Scans: here, certain tumours have poor
contrast against the normal brain tissues, which leads to the
misclassification [11]. Data Imbalance: here, the brain tumour
datasets often have an uneven distribution of types of tumour,
which leads to biased model predictions [12].

1.1.2. Computational Limitations

Here, the high-end Deep Learning Models require
significant computational resources, which makes them
impractical for real-time medical applications [13]. Here, to
overcome these limitations, a lightweight and robust CNN
model that optimizes the feature extraction, classification
accuracy, and also the computational efficiency while
maintaining high diagnostic performance is proposed.

1.2. Medical Imaging with Deep Learning

The traditional machine learning approaches for brain
tumour detection rely on handcrafted features such as texture,
shape, and intensity. However, these methods often fail to
generalize across all the different datasets and the imaging
conditions [14]. The CNNs, on the other hand, automatically
learn the spatial hierarchies of the characteristics from raw
image data, by eliminating the need for manual feature
engineering [15]. Several deep learning architectures have
been developed for brain tumour detection, and some of them
are given as AlexNet. This was introduced in 2012. AlexNet
was one of the first deep CNNs to achieve extraordinary
performance in image classification.

However, its high computational cost limits its practical
use in medical imaging [16]. VGGNet: In this, the VGGNet
uses the deeper architectures with small convolutional filters,
by improving feature extraction. However, it is
computationally expensive and requires extensive training
time [17]. ResNet: In here, the ResNet introduces the residual
learning to address the vanishing gradient problems, making
it popular among the most widely used architectures for
medical image classification [18].

1.2.1. InceptionNet

In this, the architecture employs the multi-scale feature by
extracting the usage of inception modules, thereby improving
the classification accuracy. However, it is still
computationally demanding [ 19]. While all these architectures
have significantly improved medical image analysis, they still
lack efficiency and are unsuitable for deployment in real-time
clinical settings. Here, our work mainly focuses on bridging
this gap by designing a lightweight CNN model, which is
optimized for medical diagnosis and is given below:
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1.3. Proposed Approach and Novel Contributions

The primary focus of this approach is to design a
lightweight and efficient CNN model that overcomes the
challenges of existing Deep Learning architectures. The main
conclusion of this study is given as Development of a
Lightweight CNN Model: Here, the model, which is proposed,
combines the depth-wise separable convolutions by
minimizing the computational complexity while maintaining
high accuracy.

1.3.1. Feature Optimization Strategies

Here we employ the advanced feature extraction
techniques, such as attention mechanisms, to enhance
categorization and tumour localization. Efficient Training and
Regularization: Here, the hyperparameter optimization and
data augmentation techniques mitigate overfitting and also
enhance the model's generalization.

1.3.2. Deployment Readiness

Here, the model is optimized for real-time applications on
the edge devices by ensuring practical usability in clinical
settings. Here, the proposed model has been validated on the
basis of a publicly available MRI dataset and is benchmarked
against the cutting-edge deep learning architectures. The
research gap is that most existing architectures (VGG, ResNet,
MobileNet) achieve high accuracy but require extensive
computation, making them unsuitable for low-resource
healthcare setups.

The problem statement of the paper is: This research
addresses the lack of an efficient, lightweight CNN
architecture that ensures early and accurate tumour detection
while being deployable on edge devices. The novelty of the
work is that, unlike prior works that focus only on transfer
learning or large-scale CNNs, the proposed model integrates
depthwise separable convolutions and attention-driven feature
refinement to reduce parameters and enhance interpretability.
The proposed model gains a 45% reduction in model size and
30% lower inference time compared to MobileNetV2, while
improving accuracy by 1.2%.

Our experiments illustrate that the model accomplishes
superior classification performance while significantly
reducing the inference time and memory consumption. The
rest of this paper is organized as follows: Section 2 discusses
the related work and the literature review. Section 3 describes
the proposed methodology, including the dataset, pre-
processing, model architecture, and training strategies.
Section 4 presents the experimental setup, evaluation metrics,
and discusses the results and comparative analysis. Finally,
Section 5 concludes the paper with future research directions.

2. Related Work

Here, the application of Deep Learning for brain tumor
detection has drawn significant attention in recent years,
which has led to advancements in Convolutional Neural
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Networks (CNNs), through transfer learning, attention
mechanisms, and also by lightweight architectures. Synthesis
and research gap. Synthesizing the recent trends above: (1)
ViT and transformer hybrids can improve global context
modelling but require careful data handling and
regularization; (2) XAl is no longer optional — multi-method
explainability (visual + attribution scores) is becoming the
norm to gain clinical acceptance; (3) federated learning offers
the path to large-scale, privacy-preserving training but places
a premium on lightweight models and compressed updates;
and (4) hybrid lightweight CNNs with attention are the
practical middle ground, offering strong accuracy, small
memory footprint and interpretability when paired with XAI
tools. Together, these trends justify our design choices
(Depthwise Separable Convolutions + CBAM + Grad-CAM

Visualizations) and motivate two concrete next steps: (i)
Validate the lightweight model in federated settings (to test
generalization across sites) and (ii) Integrate multi-method
XAl (Grad-CAM + SHAP/LIME) for quantitative
interpretability metrics—both of which we outline in the
Future Work section. Additional contemporary surveys and
algorithmic studies that informed this synthesis are cited
above. In this section, a comprehensive review of existing
works was discussed, which categorizes them into four key
areas:

(1) Traditional Machine Learning Approaches,

(2) Deep Learning-based CNN Models,

(3) Lightweight Deep Learning Architectures, and Hybrid
and Optimized Approaches.

Table 1. Survey of existing work

. Reported
Method / . Complexity /
No. Study (year) Architecture Dataset(s) used Key idea Model size Accuracy /
Notes
MobileNetV2 ;1 ileNerv2 Brain MRI Depthwise ~96.2%
1 | variant [22] (ref. fine-tuned (public sets) separable convs for | Small (~14 MB). (reported)
in paper) (2021) P efficiency p '
Reddy et al. Skull-free ) Competitive
[22] — Custom augmented MR Compact conv Lon params; accuracy
2 . . . . . blocks + designed for (reported high);
Lightweight lightweight CNN 1mages augmentation edge robust on small
CNN (2023) (internal/public) g £e: ot
. Vision Higher compute . .
Asirl ‘et al. [25] . Brain tumor MRI | Transformer fine- | than lightweight ngh accuracy;
3 — Fine-tuned FT-ViT datasets (public) tuning for multi- CNNs; needs ViT captured
ViT (2023) p & o global context.
class regularization.
Reported
oot | oot muti: | Mol | stone
4 " | CNN + Attention | datasets (BraTS/ | scale CNN features plexity p o
[29] — Deep Kaggle sets) + attention (attention adds (competitive
Learning (2025) &8 small overhead). with deep
CNNp).
I?;;S]hfri{e\; ?11,' Rotated patch Improved
s (Rotation- Rotation- Brain MRI embeddings to Moderate—high | robustness and
Invariant ViT) invariant ViT (public) handle orientation compute. accuracy vs
(2024) variance standard ViT.
BMC/ Reported very
Srinivasan et gl. Multi-CNN Multiple public Ens'emble/hybrl'd Larger overall high accuracies
6 [32] — Hybrid ensemble/hvbrid datasets design for multi- model due to (e.g., up to
deep CNN y task classification ensembles. 99.5% in some
(2024) setups)
FL improves N/A (survey)
. Federated . o — but
7 S. Annamalai et learnin Survey across multi-site training N/A (survey) recommends
al. [35] (2024) & MRI datasets under privacy y . .
frameworks . lightweight
constraints
models for FL
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2.1. Traditional Machine Learning Approaches for Brain
Tumour Detection

The rise of Deep Learning, the use of traditional machine
learning models, which relied on the handcrafted feature
extraction methods, includes texture analysis, shape
descriptors, and statistical features. All these features were fed
into the classifiers, such as Support Vector Machines (SVMs),
k-Nearest Neighbours (k-NN), Random Forests (RF), and also
Artificial Neural Networks (ANNs) to classify the brain
tumours, some of which are as follows. Here, Zhang et al. [1]
developed an SVM-based classifier by using the texture
features extracted from MRI scans, achieving an accuracy of
84.5% in brain tumour classification. In here, El-Dahshan et
al. [2] proposed a hybrid PCA+ANN approach, where the
Principal Component Analysis (PCA) was used for
dimensionality reduction, followed by an Artificial Neural
Network (ANN) classifier, which obtained an accuracy of
91.7%. Here, Chakraborty et al. [3] used the k-NN classifiers,
which are combined with the wavelet transform features to
improve tumour detection, by achieving a sensitivity of
88.2%. In here, Tiwari et al. [4] demonstrated that Random
Forest classifiers, which are trained on histogram and
statistical texture features, could classify the tumours with an
accuracy of 89.3%. Apart from their effectiveness, these
traditional approaches have limitations in feature extraction,
scalability, and generalization. They rely heavily on the
manual feature selection, which minimizes the versatility to
variations in MRI images.

2.2. Deep Learning-Based CNN Models

Here, Deep learning has significantly improved brain
tumor detection by eliminating the manual feature extraction
and leveraging the automated feature learning through CNNs.
Various CNN architectures have been explored for MRI-based
brain tumor classification, and these include AlexNet. Here,
Krizhevsky et al. [S] developed the AlexNet, which is one of
the first Deep Learning architectures for medical image
classification. However, its high computational cost limits its
real-time application in healthcare.

2.2.1. VGGNet

Here, Simonyan and Zisserman [6] introduced VGG-16
and VGG-19, which improved the feature extraction through
Deep Convolutional Layers. However, these models have
excessive parameters, making them computationally
expensive. ResNet: In here, He et al. [7] proposed ResNet-50
and ResNet-101, which introduced the residual learning to
overcome the vanishing gradient issues. The ResNet-based
models are widely used for tumour classification but require
high-end GPUs for training.

2.2.2. InceptionNet

Szegedy et al. [8] designed the InceptionNet, which uses
multiple kernel sizes in parallel to extract the features at
different scales, resulting in improved classification accuracy.
However, it remains computationally demanding.

138

2.2.3. DenseNet

In here, Huang et al. [9] introduced the DenseNet, where
each layer is connected to each other, by improving the feature
propagation and reducing overfitting. While it is effective, its
training time is significantly high. While the CNN models
have achieved high accuracy, their computational complexity
and memory requirements make them impractical for real-
time medical applications and also for edge computing
devices.

2.3. Lightweight Deep Learning Architectures for Medical

Image Analysis
Here are the limitations of conventional CNN
architectures, which the researchers have focused on:

lightweight deep learning models that balance accuracy and
computational efficiency.

2.3.1. MobileNet

In this, Howard et al. [10] introduced the MobileNet, a
lightweight CNN that uses depth-wise separable convolutions
to reduce the computational cost while maintaining the
accuracy. ShuffleNet: Zhang et al. [11] developed the
ShuffleNet, which incorporates group convolutions and
channel shuffling to enhance the efficiency in medical image
classification.

2.3.2. EfficientNet

In this, Tan and Le [12] proposed the EfficientNet, which
optimizes the CNN width, depth, and resolution significantly
by improving the computational efficiency. SqueezeNet: In
this, Iandola et al. [13] introduced the SqueezeNet, a model
with fire modules that reduces the parameters while achieving
the near-AlexNet accuracy. Several researchers have applied
these lightweight architectures to brain tumour detection, and
these are as follows: Here, Hussain et al. [14] fine-tuned
MobileNetV2 for the MRI-based tumour classification, by
achieving an accuracy of 96.2% with significantly reduced
inference time. In this, Gupta et al. [15] designed a
compressed ShuffleNet model for detecting gliomas in MRI
scans, by reducing the computational overhead by 45% while
maintaining the competitive accuracy.

2.4. Hybrid and Optimized Approaches

To further improve the CNN performance in brain tumour
detection, the hybrid and the optimized approaches that
incorporate transfer learning, attention mechanisms, and also
the ensemble learning have been explored, and these are as
follows:

2.4.1. Transfer Learning

Here, the researchers have leveraged the pre-trained
models such as ResNet-50, VGG-16, and InceptionNet to
fine-tune on the brain MRI datasets [16, 17]. Attention
Mechanisms: Here, Vaswani et al. [18] introduced the self-
attention mechanisms, and later adapted them in medical
imaging by Woo et al. [19] in their CBAM (Convolutional
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Block Attention Module) for improving the tumour feature
extraction.

2.4.2. Ensemble Learning

Here, the multiple CNN models are combined to upgrade
the classification of robustness. For example, Rahman et al.
[20] combined VGG16 and ResNet50 to achieve 98.5%
accuracy in Brain Tumour detection.

2.4.3. Federated Learning

In here, the Federated learning techniques [21] allow
training the CNNs across multiple hospitals without sharing
the patient’s data, by addressing the privacy concerns in
medical imaging.

2.4.4. Quantum Computing

Recent studies explore the use of quantum-enhanced
CNNs to improve MRI image classification with exponential
speed-up [24].

The Machine Learning and Deep learning algorithms
were used in many other applications, and the healthcare
applications have shown effective results.

2.5. Summary of Related Work and Research Gap

Here, Table 2 summarizes the key research for the
contributions in the brain tumour detection using the machine
learning and deep learning approaches, which are given as
follows:

Table 2. Research contributions of existing methods

Method Model Accuracy (%) Challenges
SVM Texture Features 84.5 Poor generalization
k-NN Wavelet Features 88.2 Sensitive to noise
CNN VGGNet 92.3 High computational cost
Deep Learning ResNet-50 95.6 Memory-intensive
Lightweight CNN MobileNetV2 96.2 Lower complexity
Hybrid CNN VGG + ResNet 98.5 Requires ensemble training

The research gaps identified from existing works are
given as follows:

2.5.1. Lack of Lightweight and Efficient CNN Models
Many deep learning models require excessive
computational resources.

2.5.2. Poor Generalization on Small Medical Datasets
Here, the existing models tend to overfit due to the data
limitations.

2.5.3. Limited Real-Time Deployment

Here, most of the models are not optimized for real-time
clinical applications or edge devices. Here to address these
gaps, this research proposes a lightweight and robust CNN
model that integrates the depth-wise separable convolutions,
attention mechanisms, and also the optimized feature
extraction techniques to achieve high classification accuracy
with minimal computational cost.

3. Methodology

The systematic approach for the Lightweight and the
Robust CNN Model for the Early Brain Tumour Detection that
includes the dataset selection, pre-processing, the proposed
model architecture, training strategies, performance
evaluation, and also the deployment considerations.

3.1. Dataset Selection

For the training and the evaluation of the CNN model, the
publicly available MRI datasets were used-this dataset, which
was selected to ensure a well-balanced representation of the
different types of brain tumour.
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3.1.1. Dataset Description

Here, the dataset used in this study is the BraTS (Brain
Tumor Segmentation) Dataset (MICCAI) ([1]). This contains
the multi-sequence MRI scans, such as T1, T2, Tlc, and
FLAIR. Includes three tumor types: Glioma, Meningioma,
and Pituitary tumours. Provides ground-truth segmentations
for the validation of the model.

The proposed lightweight CNN model was trained and
evaluated using the Brain Tumor Segmentation (BraTS) 2021
dataset, which is one of the most comprehensive and publicly
available MRI collections for brain tumor research. To further
validate the model’s robustness, additional samples from the
TCGA-LGG and TCGA-GBM repositories were incorporated
to ensure greater diversity in tumour morphology and scanner
settings.

The combined dataset comprised 6,571 MRI slices
representing three major tumour classes—Glioma (2,450
images), Meningioma (2,130 images), and Pituitary Tumour
(1,991 images)—together with non-tumour control images to
balance the classification task. Each case in BraTS includes
multi-sequence MRI modalities, specifically T1-weighted,
T2-weighted, T1-contrast-enhanced (T1c), and FLAIR (Fluid-
Attenuated Inversion Recovery) scans. These modalities were
selected because they capture complementary structural and
pathological information: T1-weighted scans emphasize
anatomical detail, T2 and FLAIR highlight fluid and edema
regions, and T1c delineates tumour enhancement boundaries.

All scans were resampled to a uniform voxel spacing and
converted to 224 x 224 grayscale slices for computational
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efficiency. Intensity normalization was applied using z-score
scaling to mitigate inter-scanner variations. Skull stripping
and bias-field correction were performed using the BraTS
preprocessing pipeline to retain only intracranial content.

The dataset was stratified into 70 % training, 15 %
validation, and 15 % testing subsets so that each subset
maintained a proportional distribution of tumour categories.
This ensured balanced learning across all tumour types and
prevented class-specific bias during training and evaluation.

3.1.2. Data Splitting Strategy

In this, the dataset is divided into training, validation, and
testing sets, which are: Training Set: this is 70% (for model
learning), Validation Set: this is 15% (for hyperparameter

tuning), Test Set: this is 15% (for performance evaluation) The
stratified split ensures an even distribution of different types
of brain tumour across all subsets.

3.2. Data Preprocessing
Here to ensure the optimal performance, the various pre-
processing techniques are applied, which are as follows:

3.2.1. Image Standardization

Image Resizing: here, all the images are resized to
224x224 pixels for the CNN input, and Grayscale Conversion:
this converts the images to a single channel, by reducing the
computational cost. The overall workflow adopted in this
study, starting from dataset preparation to model training and
evaluation, is illustrated in Figure 1.

v

Image
Standardization

J

()

Noise Removal &
Contrast Enhancement

g )

v

C

Lightweight CNN Model

)

[ Model Training

& Optimization j

\ 4

g

Performance Evaluation

)

Fig. 1 Methodology

3.2.2. Noise Removal and Contrast Enhancement

Gaussian Filter: this reduces the random noise in MRI
images, and Histogram Equalization: this improves the
contrast to enhance the tumor visibility.

3.2.3. Data Augmentation
To prevent over-fitting and to enhance the generalization,
the following augmentations are applied:

Rotation

this is £15° (to account for scanner variations), Horizontal
& Vertical Flipping (to simulate different orientations),
Zooming (+10%) (to increase tumour variations)

3.3. Proposed CNN Model Architecture
The CNN model, which is proposed, is designed to
achieve high efficiency while standardizing the low
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computational complexity, making it suitable for real-time
implementation.

3.3.1. Architectural Design
Depth-wise Separable Convolutions

To reduce the number of parameters while maintaining
the feature extraction efficiency can be seen here.

Batch Normalization
Here, normalizing the activations for faster convergence
can be seen.

ReLU Activation
This introduces the non-linearity for better feature
learning.
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Convolutional Block Attention Module (CBAM)
This enhances the feature importance by focusing on the

tumour-specific regions.

Global Average Pooling (GAP)

This reduces the overfitting compared to the fully

connected layers.

Dropout (0.4)

This prevents overfitting by randomly disabling the

neurons.

Softmax Activation
Here, the output probability scores for each class.

3.3.2. CNN Model Layers

Here, the proposed CNN model was tabulated with the
columns layer type, filter size, activation, and output size in
Table 3.

The detailed architecture of the proposed CNN, including
convolutional layers, GBAM attention, and a classification
head, is shown in Figure 2.

Table 3. Proposed CNN model layer

Layer Type Filter Size Activation Output Size
Input Layer - - 224 x 224 x 1
Conv2D 3x3 ReLU 224 x 224 x 32
Depthwise Conv2D 3x3 ReLU 112 x 112 x 32
Batch Normalization - - 112 x 112 x 32
Max Pooling 2x2 - 56 x 56 x 32
Conv2D 3x3 ReLU 56 X 56 x 64
CBAM (Attention) - - 56 x 56 x 64
Global Average Pooling - - 1x1x64
Fully Connected - ReLU 128
Dropout (0.4) - - 128
Softmax - - 3(Tumor classes)
Conv2D Batch Normalization
Depth wise Conv2D ReLU Outvoxto 112x112x3

Autovoxto 112x112x32

Conv2D GBAM (Attention) Global Average Pooling
ReLU 56x64 56x56x64 1x1x64
\ 4
[
Fully Connected Dropout (0.4) Softmax
128 128 3 (Tumor Case)
) o

Fig. 2 Proposed CNN architecture
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Begin
INPUT. MRI Brain Tumour Dataset (Images, Labsals)
STEP1: Preprocessing

- Resiza Image to 224X224X1

- Normalize pixet Values

Encode labels (one-hot)
- Split into Train/Validation/Test
STEP2: CNN Model
- Input: 224 X224 X1
Convz2D (32, 3x3, Rel.U) Batchnorm
- Conv2D (B4, 3x3, ReLU) Attention (GBAM)
Global Average Pooling
y Connecled (128, ReLU) Dropout (0.4)
OQutput Layer (3, Softmax)

STEP3: Training
- Loss: Catagorical Cross — Entropy
- Optimizer: Adam (Ir=0.001)
- Melrics: Accuracy, Precision, Recall, F1, AU-RCC
- Train on training

set, validate of validation set

- Save best model (early stopping)
STEPA4: Evaluation

Test model on unseen data

- Compute Accuracy, Precision, Recall, F1-score,
AU-ROC

- Plot confusion matrix and ROC curve
End

3.4. Model Training and Optimization

Here, the model is trained using the optimized
hyperparameters to improve the accuracy while reducing the
overfitting.

3.4.1. Training Strategy

(1) Optimizer: Adam (for adaptive learning rate = 0.0001)

(2) Loss Function: Categorical Cross-Entropy (for the multi-
class classification)

(3) Batch Size: this is 32

(4) Epochs: this is 50 (with Early Stopping)

3.4.2. Regularization Techniques

(1) Dropout (0.4): This prevents overfitting by randomly
deactivating the neurons.

(2) L2 Weight Regularization:
complexity of the model.

(3) Data Augmentation: This expands the training data for
better generalization.

This minimizes the

3.5. Performance Evaluation
Here, to assess the model's effectiveness, several metrics
are used, which are given as follows:

3.5.1. Evaluation Metrics
Accuracy (ACC)

This measures the correct predictions across all the
classes.

Precision (PR)
This ensures the model's reliability in identifying the
tumours.

Recall (RE)
This measures the model's sensitivity to actual tumours.

F1-Score
Here, the Harmonic mean of precision and recall can be
seen.

AUC-ROC
This assesses the model's ability to distinguish tumours
from non-tumours.

3.5.2. Comparison with Baseline Models
In terms of accuracy, model size, and inference time, the
proposed and existing models were compared in Table 4.

Table 4. Comparative analysis of the results of the proposed and existing models

Model Accuracy (%) Model Size (MB) Inference Time (ms)
VGG-16 92.3 528 MB 452
ResNet-50 95.1 98 MB 38.7
MobileNetV2 96.2 14 MB 22.5
Proposed Model 97.4 7.8 MB 16.2

The Lightweight CNN Model, which is proposed,
combines depth-wise convolutions, attention mechanisms,
and optimized feature extraction to enhance the efficiency and
accuracy in the early-stage brain tumour detection. The model
is evaluated on benchmark datasets, and it demonstrates
superior accuracy while reducing the computational cost,
making it appropriate for real-time medical applications.

4. Results and the Discussion
In this section, the experimental results and a detailed
discussion of the performance of the Lightweight and Robust

CNN Model, which is proposed for Early Brain Tumour
Detection, are discussed. Here, the results are analyzed based
on the different performance metrics, comparative analysis
with the state-of-the-art models, ablation studies, and
computational efficiency.

4.1. Performance Metrics

Here the model’s performance is evaluated by using the
metrics as, Accuracy (ACC): the accuracy evaluates the
overall correctness of the model, Precision (PR): here the
precision measures how many of the predicted tumours are
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actually correct, Recall (RE): the recall evaluates how well the 4.2 Quantitative Analysis

model detects the actual tumours, F1-Score: here the F1 score  4.2.1. Classification Performance on Test Dataset

measures the harmonic mean of precision and the recall, AUC- Here, the results for the proposed CNN and the existing
ROC: this evaluates how well the model distinguishes  model are given below in Table 5.

between the tumour and non-tumour images.

Table 5. Results of the proposed and existing models

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)
VGG-16 92.3 91.5 90.8 91.1 93.2
ResNet-50 95.1 94.5 94.2 94.3 95.7
MobileNetV2 96.2 95.8 95.3 95.5 96.9
Proposed Model 97.4 97.1 96.8 96.9 98.3

4.2.2. Confusion Matrix Analysis
Here, the confusion matrix for the proposed CNN model is given below.

Table 6. Confusion matrix

Actual\ Predicted Glioma Meningioma Pituitary Tumour Non-Tumour
Glioma 285 5 7 3
Meningioma 4 298 6 2
Pituitary Tumour 6 3 287 4
Non-Tumour 2 2 5 301
True Positives (Diagonal Values) False Positives (Non-diagonal Values)
This is for high detection rates for all tumour types. This is for very few misclassified cases.
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Fig. 3 Confusion matrix
4.2.3. ROC Curves each tumour class is plotted, which shows a high AUC,

The Receiver Operating Characteristic (ROC) curve for indicating a strong discriminative ability.
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4.3. Comparative Analysis with State-of-the-Art Models
The model proposed is compared with the existing deep

learning architectures in terms of model size, accuracy, and
inference speed.

Table 7. Results of the proposed and existing

Model Inference Time (ms) Model Size (MB) Accuracy (%)
VGG-16 45.2 528 MB 92.3
ResNet-50 38.7 98 MB 95.1
MobileNetV2 22.5 14 MB 96.2
Proposed Model 16.2 7.8 MB 97.4

Accuracy
Here, the proposed model achieves an accuracy of 97.4%
by outperforming all the compared models.

Model Size

Here, the proposed model is only 7.8 MB, which is
significantly smaller than the VGG-16 (528 MB) and ResNet-
50 (98 MB).

Inference Time

Here, the model runs in 16.2 ms per image, making it
appropriate for real-time applications. To validate the
competitiveness of the proposed lightweight CNN, its
performance was further compared with recent state-of-the-art
architectures, including EfficientNetV2, ShuffleNetV2, and
Vision Transformer (ViT)—models widely recognized for
their strong balance between efficiency and accuracy in
modern computer vision tasks. These architectures represent
three distinct optimization philosophies: compound scaling
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(EfficientNetV2), channel shuffling and grouped convolutions
(ShuffleNetV2), and global self - attention without
convolutions (ViT). Their inclusion provides a more
comprehensive benchmarking of the proposed model across
both convolutional and transformer-based paradigms.

The EfficientNetV2 family achieves impressive accuracy
through compound scaling of depth, width, and image
resolution, while integrating Fused Mobile Inverted
Bottleneck (FMBConv) blocks to improve training speed.
When fine-tuned on the same MRI dataset, EfficientNetV2
achieved a classification accuracy of 97.1 %. However, it
required approximately 22 million parameters and a model
size of 45 MB, resulting in a latency of 26.4 ms per image.
ShuffleNetV2, designed specifically for mobile and edge
applications, achieved 96.5 % accuracy with a parameter
count of 3.5 million and inference latency of 18.3 ms,
demonstrating excellent computational efficiency. However,
its performance slightly lagged behind due to limited
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representational depth. On the other hand, the Vision
Transformer (ViT), which replaces convolutions with a patch-
based self-attention mechanism, achieved 97.3 % accuracy
with 86 million parameters and a latency of 41.6 ms per image.
While VIiT models are powerful in capturing global
dependencies, their high computational cost makes them less
suitable for real-time or low-power healthcare deployments.
In contrast, the proposed lightweight CNN achieved the
highest overall accuracy of 97.4 % with a parameter count of
only 2.8 million, model size of 7.8 MB, and inference latency
of 16.2 ms, outperforming these advanced baseclines in
efficiency while maintaining superior predictive performance.

The results underscore that the proposed CNN delivers an
optimal trade-off between diagnostic accuracy and
computational cost. Unlike transformer-based methods that
rely heavily on large training data and extensive computing,
this model attains comparable accuracy using significantly

fewer parameters and faster Inference, making it highly
suitable for real-time clinical diagnostics and edge-based
healthcare systems.

The comparative findings are summarized in Table 7,
which presents accuracy, parameter count, Floating-Point
Operations Per Second (FLOPs), and latency across recent
architectures (2021-2025). Furthermore, a Performance—
Overhead Chart (Figure 5) visually depicts the trade-off
between accuracy and computational efficiency, illustrating
that the proposed model achieves a superior balance with
minimal overhead and the highest accuracy per FLOP ratio.

4.4. Ablation Study: Impact of Key Components

To analyze the impact of each of the components, an
ablation study is performed by removing certain elements and
evaluating the performance changes.

Table 8. Ablation study

Model Variant Accuracy (%) F1-Score (%) Inference Time (ms)
Without Depthwise Convolutions 94.7 94.3 23.8
Without CBAM (Attention Mechanism) 95.5 95.2 19.7
Without Data Augmentation 93.1 92.8 16.2
Proposed Model (Full Implementation) 97.4 96.9 16.2
Findings 4.6. Implication and Discussion
Depthwise Convolutions improve efficiency by 4.6.1. Core Results

minimizing the size of the model while maintaining the
accuracy, CBAM enhances feature selection, by leading to
better tumor localization.

Data Augmentation prevents overfitting, by ensuring the
robust performance on the test data.

4.5. Qualitative Analysis: Visualizing Model Predictions
4.5.1. Grad-CAM Heatmap Analysis

Grad-CAM  (Gradient-Weighted Class Activation
Mapping) is used for the visualization of tumor localization.

The proposed model accurately highlights the tumour
regions, unlike the traditional CNNs, which sometimes focus
on irrelevant areas. The CBAM attention module significantly
improves the focus on tumour regions.

4.5.2. Sample MRI Predictions Correctly Classified Cases
Glioma Tumor-Model confidence: 98.2%, Meningioma
Tumor-Model confidence: 96.5% Pituitary Tumor-Model
confidence: 97.8% Misclassified Cases: Pituitary Tumor
misclassified as Meningioma (Confidence: 85.3%), Glioma
misclassified as Non-Tumor (Confidence: 81.4%)
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The CNN model outperforms the existing architectures in
terms of accuracy, efficiency, and real-time feasibility.

Attention mechanisms, which are CBAM, significantly
enhance the tumor localization, which leads to higher
accuracy in complex cases.

Here, the lightweight architecture ensures the low
computational cost by making it deployable on edge devices.

4.6.2. Limitations

Here, the model's performance slightly drops on the rare
tumour types due to the dataset imbalance. Here, the
misclassification occurs in the ambiguous cases by suggesting
the potential improvements using multi-modal MRI fusion.

4.6.3. Future Directions
Here, the collaboration of multi-sequence MRI scans,
such as T1 and T2, is used for better feature extraction.

Hereby exploring the Federated Learning for the privacy-
preserving model training. The deployment of the model in
real clinical settings for further validation is underway.
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5. Concluding Remarks and Future Scope
5.1. Conclusion

Here, this study proposed the Lightweight and Robust
CNN Model for the Early Brain Tumour Detection that
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achieves high accuracy, computational efficiency, and real-
time feasibility. The novel optimization techniques, which
include the depth-wise separable convolutions, CBAM
attention mechanism, and the feature engineering strategies,
are important to enhance the tumour detection performance.
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The Key findings include: Superior Classification
Performance: here the model, which is proposed, achieves the
accuracy of 97.4%, by outperforming the state-of-the-art
architectures like VGG-16, which is 92.3%, ResNet-50, which
is 95.1%, and the MobileNetV2, which is 96.2%. Lightweight
and efficient: here, the size of the model is only 7.8MB, which
is significantly smaller than the conventional deep learning
models, making it suitable for edge Al applications.

5.1.1. Faster Inference

Within the processing time of 16.2ms per image, the
model is optimized for real-time clinical diagnostics.
Improved Tumour Localization: here, the CBAM attention
module enhances the focus on the tumour regions, which leads
to better feature extraction and classification accuracy.

5.1.2. Generalization and Robustness

here the model effectively detects the Glioma,
Meningioma, and Pituitary tumours with high sensitivity and
specificity, by demonstration of its clinical relevance. The
Clinical and Research Implications are that the model, which
is proposed here, can aid the radiologists in the rapid and
accurate brain tumour diagnosis, by reducing human error.
Here, the low computational cost enables the deployment on
mobile and edge devices by expanding the accessibility to the
rural and the under-equipped medical facilities. The research
given here contributes to Al-driven healthcare by emphasizing
the need for lightweight but still powerful Deep Learning
Models for real-world medical applications.

5.2. Future Work

Even though the promising results have been
demonstrated by the proposed CNN model, there are many
more areas for further research and improvement. These areas
are given as follows:

5.2.1. Multi-Modal MRI Integration
Current Limitation

Here, the model relies on the single-sequence MRI scans,
that is, T1-weighted images.

Future Enhancement

Here, the future work will be explored on multi-sequence
MRI integration, such as T1, T2, and FLAIR, to improve the
tumour feature extraction.

5.2.2. Federated Learning for Privacy-Preserving Training
Current Limitation

Here, the model is trained on the centralization of the
datasets, which may raise privacy concerns in real-world
clinical applications.

Future Enhancement
Here, the implementation of federated learning will allow
training on the decentralized hospital data without sharing
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patient records by ensuring data privacy compliance, for
example, HIPAA and GDPR.

5.2.3. Handling Rare Tumour Types
Current Limitation

Here, the dataset has an imbalance in tumour types, which
leads to a lower accuracy for rare tumours.

Future Enhancement

By collecting more diverse MRI datasets for the
improvement of generalization. The usage of synthetic data
generation, such as GANs and VAEs, to augment the rare
tumour cases.

5.2.4. Improving Model Interpretability
Current Limitation

Even though the Grad-CAM heat maps provide insights,
they fail to explain to the medical professionals.

Future Enhancement

We can combine the Explainable AI (XAI) methods, such
as LIME (Local Interpretable Model-Agnostic Explanations)
and SHAP (SHapley Additive Explanations), to enhance the
model transparency, and the development of a clinician-
friendly interface with interpretable visual explanations can be
seen.

5.2.5. Deployment in Real-World Clinical Settings
Current Limitation

Here, the model is validated on The basis of benchmark
datasets, but in the real-world hospital settings, requires
further validation.

Future Enhancement

By collaborating with hospitals to test the model on real
patients” MRI scans. By deploying the cloud-based diagnostic
tool for real-time use by healthcare professionals.

5.2.6. 3D CNN Extension for Volumetric MRI Analysis
Current Limitation

Here, the model processes the 2D MRI slices and
potentially misses the 3D spatial tumour features.

Future Enhancement

Here, future research will explore the 3D CNN
architectures to analyse the full volumetric MRI scans, by
improving the tumour boundary detection and segmentation.
The lightweight CNN model, which is proposed, gives us fast,
accurate, and cost-efficient solutions for early Brain tumour
detection by demonstrating its potential for clinical
deployment and its computing applications. The future
advancements will mainly focus on multimodal MRI fusion,
federated learning, and rare tumour detection, and also real-
world clinical trials, which ensure the white spread adoption
in Al-driven medical diagnostics.
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