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Abstract - NSCLC - Non-Small Cell Lung Cancer, which holds almost 85% cases of lung cancer, is one of the deadliest diseases 

worldwide and a leading cause of death related to cancer. Types of NSCLC are Adenocarcinoma, Large cell carcinoma, and 

Squamous cell carcinoma. Among these, adenocarcinomas account for 40%-50% of NSCLC cases that occur more among 

youngsters, non-smokers, and East Asians and are often diagnosed at advanced stages, which remains a challenge for their 

better treatment. NSCLC occurs due to a wide range of targetable alterations, among which EGFR, ALK, KRAS, and PDGFR 

account for numerous cases. The emergence of artificial intelligence has accelerated the early detection of NSCLC using various 

machine learning and deep learning models based on numerical or image datasets, but there is a huge requirement to shift the 

focus to identifying a novel drug that could work effectively at an early or advanced stage. Existing drugs may become resistant 

after some time, and there will always be a huge requirement to develop a new drug, which perhaps requires a lengthy amount 

of time and more cost using traditional approaches, and it is even a risky process since 97% of drug discoveries fail. Hence, it 

is necessary to build and use machine learning or deep learning models to estimate the ability of a new drug as a part of lead 

identification before moving to further processing. To address this, a multifaceted and multitargeted approach using Graph 

Attention Networks has been proposed, designing a model that is trained using 15 FDA-approved drugs and a vast library of 

1.048 million drug molecules to predict the efficiency of a new drug, which achieved 89% accuracy. In the drug discovery 

process, this highlights the potential of deep learning, which provides enhanced, cost-effective, and efficient means to identify 

novel drugs for the treatment of NSCLC. 

Keywords - NSCLC, EGFR, ALK, KRAS, PDGFR, Deep Learning, Graph Attention Network. 

1. Introduction 
Lung cancer(LC) is one of the leading causes of cancer-

related deaths worldwide [1]. In 2020, LC was the second 

most common cancer in India, accounting for 11.4% cancer 

cases and 18% cancer-related deaths [2].  

In 2022, it had the highest number of new cases globally, 

accounting for 2.5 million, representing 12.4% of all cancer 

cases, and also led to deaths of about 1.8 million, representing 

18.7% of all cancer-related deaths, as depicted in Figures 1(a) 

and  1(b). Among males, lung cancer ranked as the most 

commonly diagnosed cancer, while among females, it held the 

second position. Also, it had the highest rates in Asia 

according to the region-wise analysis [3], and if it continues at 

the same rate as in 2022, the number of new lung cancer cases 

may increase to about 4.62 million and deaths to about 3.55 

million by 2050 [4]. Smoking remains the leading cause of 

LC, while other risks include exposure to biomass smoke, 

asbestos, arsenic, and radon, particularly in poorly ventilated 

homes or unsafe workplaces [5]. Non-Small Cell LC 

(NSCLC) and Small Cell LC (SCLC) are the common types 

of LC, among which the most common is NSCLC, 

representing approximately 85% of cases, and grows slowly 

[6]. Historically, NSCLC has been associated with poor 

outcomes due to limited options for treating as well as late 

diagnosis [7].  

NSCLC comprises three subtypes: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma. 

Adenocarcinoma represents 40% of NSCLC cases and 34% of 

LC, squamous cell carcinoma accounts for about 25-30% and 

23% of LC, and large cell carcinoma accounts for about 5-

10% and 6% of LC [8]. Among these subtypes, 

adenocarcinoma’s high prevalence highlights the need to 

focus more on it to improve the treatment and management of 

NSCLC. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sandhi Kranthi Reddy & S V G Reddy / IJETT, 73(12), 244-265, 2025 

 

245 

 
Fig. 1(a) Distribution of 20 million global cancer cases in 2022 

 
Fig. 1(b) Distribution of 9.7 million global cancer-related deaths in 2022 

Molecular analysis is a key aspect in NSCLC 

management, transforming the process of diagnosis, 

prognosis, and treatment. Next-generation sequencing (NGS)-

based molecular testing has identified alterations in NSCLC, 

such as EGFR, ALK, KRAS, MET, ROS1, BRAF, RET, and 

ERBB2, that influence both disease progression and response 

to treatment over time, particularly with FDA-approved 

targeted drugs [9, 10]. 

The rapid growth in AI, especially deep learning, has 

enhanced the process of drug discovery, predictions of cancer 

alteration and survival rate [11-15].  These technological 

improvements allow us to do many tasks in minimal time 

compared to traditional approaches, such as analyzing 

volumes of molecular data and predicting how a new drug 

might work. However, despite these advancements, treating 

NSCLC remains a major challenge because of the difficulty in 

identifying the alterations and development of resistance 

among patients over a period of time [16]. Hence, there is a 

requirement to discover new drugs that are effective and 

capable of targeting multiple alterations. To address this, two 

identifications are required:  

i) Identifying the key alterations that cause NSCLC, 

ii) identifying the most effective FDA-approved drugs, and 

determining which new drugs can be developed. 

Traditional approaches to developing new drugs take 

several years and are expensive, and the majority of drugs fail 

during clinical trials [17]. However, the recent integration of 

molecular biology and computational techniques, especially in 

implementing Deep Learning (DL), has greatly advanced drug 

discovery. By analyzing huge amounts of data, DL models 

identify the complex hidden patterns and find potential drug 

candidates, which enables rapid and efficient drug discovery, 

especially in the critical phase of lead identification. Among 
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the various DL techniques, Graph Neural Networks (GNNs) 

are gaining significance because of their ability to model drug 

molecules in a graph-based structure, where atoms are 

represented as nodes and chemical bonds as edges. GNNs are 

used to identify the important features from molecular graphs 

that are critical to predict the drug effectiveness. Graph 

Attention Networks (GATs) are a type of GNNs that are 

capable of finding insights from huge, complex data 

represented in graphs due to their attention mechanisms [18, 

19]. In the field of drug discovery, they are widely used for 

various tasks, such as the prediction of the effectiveness of 

drug combinations and drug-target interactions [20, 21]. 

This paper proposes an efficient approach using GATs to 

predict the efficacy of a new SMILES/drug that targets 

multiple alterations causing NSCLC, using the corresponding 

drugs approved by the FDA as references before proceeding 

to further analysis. This helps in reducing the time taken when 

compared to traditional approaches. 

2. Literature Review 
To develop an efficient framework that predicts the 

efficacy of an SMILES, it is necessary to identify the most 

common key alterations that cause NSCLC, and FDA-

approved drugs that are effective against those key alterations. 

It is also required to review the recent and similar works in 

NSCLC using ML or DL techniques. 

2.1. Key Alterations in NSCLC 

The IASCLC conducted a survey in 2020, from the 

survey, it was identified that among several alterations, three 

are high in number(i.e., KRAS-68%,  ALK-83% and EGFR-

94%). These findings highlight the consideration of alterations 

as potential targets [23]. The importance of considering these 

three alterations is further supported by the many recent 

studies. Kumar and Kumar (2022) have studied various 

alterations in NSCLC, including the above three top 

alterations, and specified that target-specific treatments 

provide better survival outcomes. They also specified the need 

to identify new drugs [24]. De Jong et al. (2023) specified that 

identifying the key alterations provides improved diagnosis as 

well as treatment with better survival in NSCLC [25]. 

Similarly, Choi and Chang (2023) specified that there are 

better survival rates for the approved treatments that have 

targeted EGFR and ALK [26]. Sharma et al. (2025) analyzed 

5,219 lung cancer patients’ data in India, by considering 13 

alterations, and found that TP53, EGFR, KRAS, and ALK 

were the most occurring alterations [27]. The FDA has not 

approved drugs for TP53 alteration for any type of cancer [28]. 

All the above studies confirmed that EGFR, ALK, and KRAS 

are the most important alterations in NSCLC. Platelet-Derived 

Growth Factor Receptor (PDGFR) is emerging as a key 

alteration in NSCLC [29, 30]. Various Studies have proved its 

importance in NSCLC, specifying its role in tumor 

progression and treatment resistance [31]. Even in preclinical 

models, blocking PDGFR has shown good results in reducing 

the growth of the tumor and also improving its effectiveness 

towards resistance [32-34]. Clinical trials have also shown 

encouraging results, further supporting their potential use in 

NSCLC therapy [35]. 

All the above findings highlight that the EGFR, ALK, 

KRAS, and PDGFR are key alterations in NSCLC. 

2.2. FDA-Approved Drugs that Effectively Target Key 

Alterations in NSCLC 

2.2.1. EGFR 

1st generation TKIs (Tyrosine Kinase Inhibitors), 

Gefitinib and Erlotinib, that target EGFR mutations often 

develop resistance; their 2nd and 3rd generation TKIs, Afatinib, 

Dacomitinib, and Osimertinib, have improved survival rates 

compared to 1st generation TKIs [36]. 

2.2.2. ALK 

Similarly, 1st generation TKI, Crizotinib, targeting ALK 

rearrangements also acquired resistance, and their 2nd and 3rd 

generation TKIs, Ceritinib, Alectinib, Brigatinib, Lorlatinib, 

and Ensartinib, have improved survival rates compared to 1st 

generation TKIs [37, 38]. 

2.2.3. KRAS 

KRAS mutations are historically considered undruggable, 

but now have Sotorasib and Adagrasib as FDA-approved 

inhibitors that are equally potent [39]. 

2.2.4. PDGFR 

There are FDA-approved drugs targeting PDGFR in other 

cancers but not in NSCLC. So we reviewed the potential of 

PDGFR-targeting drugs that could efficiently help in treating 

NSCLC. Avapritinib is a potential drug targeting PDGFR in 

Gastrointestinal Stromal Tumors (GISTs). It has proven its 

efficiency in response rates and survival rates. Its structural 

features could help the design of next-generation inhibitors 

capable of overcoming drug resistance with minimal side 

effects. [40, 41], Hence, it can be considered as one of the 

reference drugs for targeting PDGFR in NSCLC. Anlotinib 

was approved by the FDA in China but not by the FDA in the 

USA, and it has shown better antitumor activity in patients 

with previously treated advanced NSCLC [42, 43]. Nintedanib 

has shown a survival benefit when compared to other TKIs 

targeting PDGFR in phase III trials conducted in advanced 

NSCLC [44]. In an NSCLC mouse model, crenolanib [45] and 

imatinib [46] have shown antitumor activity.These findings 

highlight that the selected FDA-approved TKIs targeting 

EGFR, ALK, KRAS, and PDGFR offer a strong foundation 

for designing a model to evaluate the efficacy of new 

multitargeted drugs. 

2.3.  Recent Advancements in NSCLC using AI 

Li et al. (2021) and Christie et al. (2021) studies show that 

AI improved diagnosis, treatment planning, and evaluating 

response and prediction of survival [47, 48]. 
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Wang (2022) performed a review on the Deep learning 

methods used for diagnosing lung cancer, especially in 

classifying nodules. The research indicates that the deep 

learning models, particularly convolutional neural networks, 

enhance precision, sensitivity, and overall diagnostic efficacy 

through quicker and specific image analysis [49]. 

Wankhade and Vigneshwari (2023) have proposed a 

method called CCDC-HNN (Cancer Cell Detection using 

Hybrid Neural Network). This method combines 3D-CNN 

(Convolutional Neural Networks) for identifying features and 

RNN (Recurrent Neural Networks) for extracting and 

classifying lung nodules as non-cancerous or cancerous. The 

method was performed on the LUNA16 dataset, which 

contains 888 patient CT scan images, and it has achieved an 

accuracy-95%, a specificity-90%, and a sensitivity-87% [50].  

Nakarin et al. (2022) designed a deep learning model 

using principal neighborhood aggregation to predict the 

binding affinity of SMILES across seven targets (ALK, 

EGFR, ERBB2, ERBB4, MET, RET, and ROSI) of NSCLC. 

The model is trained on a labeled dataset of 16,345 unique 

SMILES with their binding affinities to targets. The model 

generated R2 scores ranging from 0.4344-ERBB4 to 0.7280-

ALK [51]. This work highlights the importance of 

multitargeted drugs for NSCLC, but it has not focused on the 

emerging targets KRAS and PDGFR. 

Gogoshin and Rodin (2023) conducted a review on how 

Graph Neural Networks (GNNs) are used in cancer, focusing 

on radiographic images, molecular structures, and gene 

expression data. The study illustrated the strength of GNNs in 

predicting the effectiveness of drug combinations, classifying 

types of cancer, and planning personalized treatments [52]. 

Zhang et al. (2023), Wang et al. (2023), and Chen et al. 

(2024) designed models based on GNNs and illustrated their 

efficiency in predicting how a drug will bind well to its target 

[53-55]. 

Wang et al. (2025) designed a hybrid model by combining 

CNNs and GATs on gene expression and molecular structure 

to predict drug response. GAT's mechanism helps the model 

to analyze complex data and achieve the highest Pearson 

correlation coefficient of 0.923[56]. 

All the above works used for predicting survival or drug-

target binding, drug combination effectiveness, or drug 

response have used either gene expression data, small labeled 

datasets of binding affinities, or drug-related features. They 

also specified the importance of considering multitargeted 

drugs and the use of GNNs, especially GATs. GATs can 

effectively analyze complex molecular structures and extract 

meaningful insights. This makes them the best choice for 

predicting drug efficacy. However, the usage of small labelled 

datasets with known affinities would limit the ability to predict 

the drug efficacy, whereas analyzing the large unlabelled 

datasets using GATs can be efficient to find new patterns 

based on structural similarities over FDA-approved drugs.  

3. Materials and Methods 
3.1. Dataset 

A dataset of 1.048 million drug-like molecules was 

downloaded from the ZINC database 

(https://zinc12.docking.org/subsets/clean-drug-like). This 

dataset includes chemically diverse molecules with drug-like 

properties, making it highly suitable for virtual screening and 

predictive modeling in drug discovery. Each compound in this 

dataset is available in a textual representation of chemical 

structures, known as SMILES (Simplified Molecular Input 

Line Entry System). It encodes molecular graphs into readable 

strings that are easily interpreted by both humans and 

machines. 

3.2. Reference Drugs 

A total of 15 FDA-approved drugs, 3 targeting EGFR 

(coded as E1, E2, E3), 5 targeting ALK (coded as A1, A2, A3, 

A4, A5), 2 targeting KRAS (coded as K1, K2), and 5 targeting 

PDGFR (coded as P1, P2, P3, P4, P5) were selected as 

reference drugs as depicted in Table 1, since they have proven 

their efficiency in suppressing tumor growth and improved 

survival rates. Each reference drug is represented in SMILES 

format. 

Table 1 summarizes the key TKIs targeting EGFR, ALK, 

KRAS, and PDGFR, including their approval status and their 

code used in the development of a model to assess the efficacy 

of a new multitargeted drug. 

Table 1. FDA-approved reference TKIs targeting identified key 

alterations to assess the efficacy of multitargeted drugs in NSCLC 

S. 

No. 

Drug / TKI 

Name 

FDA 

approved in 

Key 

Alteration 
CODE 

1 Afatinib July 2013 

EGFR 

E1 

2 Dacomitinib 
September 

2018 
E2 

3 Osimertinib 
November 

2015 
E3 

4 Ceritinib April 2014 

ALK 

A1 

5 Alectinib 
December 

2015 
A2 

6 Brigatinib May 2020 A3 

7 Lorlatinib March 2021 A4 

8 Ensartinib 
December 

2024 
A5 

9 Sotorasib May 2021 

KRAS 

K1 

10 Adagrasib 
December 

2022 
K2 

11 Avapritinib 
January 

2020 
PDGFR 

P1 

12 Anlotinib 
May 2018 

(Not by the 
P2 
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U.S. FDA, 

but 

approved by 

the China 

FDA) 

13 Nintedanib 
October 

2014 
P3 

14 Crenolanib 
December 

2017 
P4 

15 Imatinib 
February 

2001 
P5 

3.3. Pharmacophore Fingerprints (PFs) 

Molecular fingerprints are used to represent chemical 

structures for similarity searching, clustering, and predictive 

modelling. They encode the chemical structure of 

molecules/SMILES as bit vectors or numerical arrays, where 

each bit holds either 1 or 0. 1 indicates the presence, and 0 

indicates the absence of a particular property [57]. Many types 

of fingerprints are available to digitally represent chemical 

structures for various cheminformatics applications, among 

which PFs have been used in this work, as they offer an 

efficient representation with a bit length of 39,972, focusing 

on identifying key functional groups and spatial arrangements 

responsible for a compound’s biological activity, enhancing 

virtual screening by capturing the essential chemical features 

linked to drug-target interactions, and improving the 

identification of biologically active compounds with diverse 

chemical scaffolds [58, 59]. 

3.4. Jaccard Similarity (JS) 

Similarity metrics are mathematical tools used to evaluate 

how closely two different entities resemble each other. In 

cheminformatics and drug discovery, these metrics are crucial 

for comparing molecular structures and identifying potential 

leads [60]. Commonly used metrics include Cosine Similarity, 

Dice Coefficient, and Jaccard Similarity. Among them, JS is 

particularly well-suited for binary molecular fingerprints 

supported by RDKit. Its computational simplicity and 

effectiveness in handling sparse binary data make it ideal for 

virtual screening and identifying structurally similar 

compounds.  

In this framework, JS is applied using RDKit [61], which 

calculates similarity as the proportion of the common features 

(intersection) to the complete set of unique features (union) 

across two molecules. By focusing on the overlap of key 

functional features, JS supports more accurate compound 

comparison [62, 63]. 

JS is defined by the formula: 

𝑇(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴∪𝐵|
 (1) 

Where A and B are two binary PFs. 

3.5. K-Means Clustering 

Clustering is an ML algorithm that groups the data into 

different clusters depending on their similar structures. There 

are various clustering algorithms that work effectively on 

large datasets, such as model-based clustering, density-based 

clustering, K-means clustering, and hierarchical clustering 

[64]. We choose K-means clustering to process the dataset 

obtained after computing Phase I, which contains high-

dimensional, unlabeled molecular data, because it provides 

quick and efficient computations [65, 66]. 

K-means clustering works as follows: 

• Determine the K value, which represents the ideal number 

of clusters. 

• Choose K centroids randomly from the dataset. 

• Form k clusters by assigning each data point to the nearest 

centroid based on the Euclidean distance. 

• Compute the new centroid for each cluster. 

• Reassign the data point based on the new centroid. 

• Repeat steps 4 and 5 until the centroid remains constant 

or predefined iterations are completed. 

The efficiency of this algorithm depends on the K value. 

3.6. Elbow Method - Determining K value 

The elbow method is efficient to determine the number of 

clusters (K), with the main idea of balancing the number of 

clusters. In this method, K varied from 1 to 15, and WCSS 

(Within-Cluster Sum of Squares) is calculated for each value 

of K. WCSS measures the total squared distance between each 

data point and its corresponding cluster centroid. As the 

number of clusters increases, WCSS decreases, and it is 

largest when K = 1 (all data in a single cluster). When we plot 

WCSS with the K value, it will have a rapid change at one 

point, making the plot look like an elbow. The K-value at that 

point gives the exact number of clusters [67]. Once the 

clustering is done, it is essential to evaluate the quality of 

clustering and the effectiveness of each and every cluster. 

3.7. Silhouette Score - Evaluating Quality of Clusters 

The Silhouette Score is used to evaluate the clustering's 

quality by measuring how well all the data points fit in their 

respective cluster compared to others [68, 69]. It ranges from 

-1 to +1. 

If the Silhouette score is close to 

• +1 means that the point is fitted well to its cluster. 

• -1 means that the point is not fitted to its cluster. 

• 0 means that the point may fit two clusters. 

3.8. Cluster Profiling – Evaluating Effectiveness of Each 

and Every Cluster 

The uniqueness of each and every cluster can be analyzed 

by using cluster profiling. It includes statistics such as range, 

mean, quartiles, etc. Based on statistical analysis, a label that 
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reflects its priority is assigned [70]. Cluster profiling and 

labelling are used in identifying the potential compounds [71]. 

3.9. GATs 

GATs are the advanced GNN techniques that use message 

passing, aggregation, and attention mechanisms, which help 

the model to analyze complex data and improve the 

performance [18-21]. 

The following are the steps that are performed at each 

layer [72]: 

• Linear Transformation: This step transforms the node 

features using a learnable weight matrix to enable the 

algorithm to understand complex patterns and allows the 

model to adjust the importance of node features during 

the process of training. The linear transformation of a 

node is computed as 

ℎ𝑖
′ = 𝑤ℎ𝑖 (2) 

Where, 

hi is the original feature vector of node i. 

w is the learnable weight matrix. 

hi
' is the transformed feature vector of node i. 

• Compute Attention Scores: This step helps the model to 

understand the importance of neighbors to each node by 

considering both node and edge features, which is done 

by comparing their transformed features. 

The attention score between node i and its neighbor node 

j is computed as 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[ℎ𝑖
′||ℎ𝑗

′]) (3) 

Where, 

LeakyReLU is an activation function that helps the model 

effectively continue its learning by assigning small non-

zero values to negative inputs. 

aT is the transpose of a learnable attention vector a 

|| is concatenation. 

hi
' and hj

' are the transformed feature vectors of the 

nodes i and j. 

• Softmax Normalization: This step normalizes the 

attention scores using the softmax function, making all 

attention scores sum to 1, allowing the model to focus on 

important neighbors. 

The normalized attention score between node i and node 

j is computed as 

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑒𝑖𝑘)𝑘ℇ𝑁(𝑖)
 (4) 

Where, 

N(i) is a Set of neighbors of node i (including itself). 

• Weighted Aggregation of Node Features: This step 

combines the node features with the features of its 

neighbor using attention weights. The attention weights 

are different for each neighbor node, reflecting their 

importance. 

The weighted aggregation of a node is computed as 

ℎ𝑖
′′ = ∑ 𝛼𝑖𝑗ℎ𝑗

′
𝑗ℇ𝑁(𝑖)  (5) 

• Final Aggregation of Transformation: This step is 

important to further process the combined features using 

another learnable weight matrix. 

It is computed as 

ℎ𝑖
′′′ = 𝑤′ℎ𝑖

′′ (6) 

Where, 

w' is a learnable weight matrix for the final 

transformation, which will be the same for all nodes. 

3.10. Evaluating GAT Model using Performance Metrics 

The deep learning classification models are evaluated 

using different performance metrics; these metrics are 

computed using the confusion matrix [73, 74].The following 

are the metrics that are used to evaluate the performance of the 

GAT model effectively: 

• Accuracy: It gives the proportion of correctly predicted 

predictions, and it is computed as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

• Precision: It gives the proportion of correctly predicted 

positive predictions among all positive predictions, and it 

is computed as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

• Sensitivity or Recall: It gives the proportion of correctly 

predicted positive predictions among all actual positives, 

and it is computed as 

Recall =  
TP

TP+FN
 (9) 

• F1 Score: It shows how the model balances both 

sensitivity and precision, and it is computed as 

F1 = 2 ∗  
Precision∗Recall

Precision+Recall
 (10) 
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3.11. Proposed Methodology 

To provide a multitargeted drug efficacy prediction, 

offering a computationally efficient and faster approach by 

reducing the need to consider gene expression data, this paper 

introduces MMDEP-GAT, a Multifaceted and Multitargeted 

Drug Efficacy Prediction Leveraging Graph Attention 

Networks, that leverages the features of FDA-approved drugs 

targeting key alterations in NSCLC. The schematic 

representation of MMDEP-GAT is depicted in Figure 2. 

MMDEP-GAT works in three phases:  

Phase-I: SMILES Processing and Computing Similarity 

Metric. 

Phase-II: Clustering and Labeling of Unlabeled Data 

Phase-III: Predicting Efficacy of a New Drug/SMILES using 

GAT Model. 

3.11.1. Phase-I: SMILES Processing and Computing 

Similarity Metric 

SMILES of 1.048 million drug-like compounds and 15 

reference drugs were converted into molecular structures 

using RDKit, an open-source cheminformatics toolkit that 

provides robust tools for conversion [61].  

After converting the SMILES to molecular structures, 

PFs will be generated for further processing. This is also done 

by using RDKit.  

Finally, JS is computed for 1.048 compounds with respect 

to 15 reference drugs. Figure 3 depicts the complete overview 

of the process of converting SMILES to molecular structures, 

generating PFs, and computing JS.  

After the computation of Phase I, a 16-column unlabeled 

dataset is obtained, with the first column holding a SMILES 

and the remaining 15 being the JS value of a SMILES with 

reference to 15 drugs. 

3.11.2. Phase-II: Clustering and Labeling of Unlabeled Data 

The elbow method is applied on an unlabeled dataset 

obtained in Phase I to produce the K-value for performing K-

means clustering, which helps in converting the unlabeled 

dataset into a labeled dataset. 

After K-means clustering, the Silhouette score is applied 

to evaluate its quality. Finally, cluster profiling is done to 

evaluate the effectiveness of each cluster formed by K-means 

and to label them. 

Figure 4 depicts the complete overview of the process of 

applying the elbow method, K-means clustering, evaluating 

the quality of clusters, and labelling clusters through profiling. 

After the computation of Phase II, a 19-column labeled 

dataset is obtained by adding three more columns to the 

dataset obtained in Phase-I.  

The first one is the cluster number, the second one is the 

label assigned to the cluster, and the third is the class value 

assigned to the cluster label, which is the outcome variable. 

 
Fig. 2 Schematic representation of the MMDEP-GAT 
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Fig. 3 Overview of phases-I in MMDEP-GAT - the process of converting SMILES to PFs and then generating a dataset with the values of JS 

 
Fig. 4 Overview of the phase II in MMDEP-GAT – the process of converting an unlabeled dataset obtained in phase I to a labelled dataset 
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Fig. 5 Generating PyTorch geometric objects from SMILES 

Fig. 6 Overview of the phase III in MMDEP-GAT – dividing labeled dataset and the process of obtaining GAT model 

3.11.3. Phase-III: Clustering and Labeling of Unlabeled Data 

To build a GAT model for the evaluation of drug efficacy, 

it is necessary to transform the data so that it can be easily 

processed using GATs. For this, all the SMILES of 1.048 

million drug-like compounds, along with the 15 reference 

drugs, are transformed into graphs and then to geometric 

objects using PyTorch, as depicted in Figure 5. After 

transforming to geometric objects, the torch geometric 

labelled dataset is divided into a train dataset for training the 

GATs and a test dataset for testing the model using a fixed 

random seed of 42. Finally, an optimized GAT model is 

obtained for predicting the efficacy of a new SMILES. The 

MMDEP-GAT framework used an attention-based message-

passing architecture using AttentiveFP, a GAT variant. Each 
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graph encodes 9 node features and 3 edge features. 6 message-

passing layers with 2 attention time-steps were used to 

iteratively refine node embeddings. Each layer uses a 

LeakyReLU activation followed by 0.2 dropout, with a hidden 

dimension of 70. The output layer produces four classes, 

representing the predicted efficacy of SMILES across EGFR, 

ALK, KRAS, and PDGFR targets. Training and testing were 

done for 25 epochs with a batch size of 32, using the Adam 

optimizer with a learning rate of 0.001 and a weight decay of 

1×10⁻⁴, with the cross-entropy loss function for multi-class 

classification. Finally, an optimized GAT model is obtained 

for predicting the efficacy of a new SMILES. Figure 6 depicts 

the overview of the dividing torch geometric labelled dataset, 

and the process of training and testing the GAT model.  

After the computation of Phase III, the optimized GAT 

model is obtained to predict the efficacy of a new SMILES. 

4. Results and Discussion 
4.1. Phase-I 

JS was computed between 1.048 million drugs and each 

of the 15 reference drugs. The summary statistics of JS w.r.t. 

the EGFR-targeting reference drugs coded as E1, E2, and E3 

are represented in Table 2 and also depicted in Figure 7. 

Table 2. Summary statistics of JS between 1.048 million drugs and EGFR reference SMILEs (E1, E2, and E3) 

 Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev 

E1_T 0.000 0.044 0.078 0.118 0.351 0.084 0.051 

E2_T 0.000 0.048 0.086 0.129 0.442 0.093 0.056 

E3_T 0.000 0.050 0.098 0.157 0.463 0.110 0.074 

 
Fig. 7 Line chart representing summary statistics of JS between E1, E2, E3, and 1.048 million drugs 

From Figure 7, it is observed that E3 (Osimertinib) shows 

the highest maximum (0.46) and average (0.11) similarity 

among the three drugs. This indicates that E3 shares stronger 

structural features with a major portion of the dataset. 

The summary statistics of JS w.r.t. the ALK-targeting 

reference drugs coded as A1, A2, A3, A4, and A5 are 

represented in Table 3 and also depicted in Figure. 8. 

From Figure 8, it is observed that A5 (Ensartinib) shows 

the highest maximum and average similarity among the five 

drugs. This indicates that A5 shares stronger structural 

features with a major portion of the dataset. The summary 

statistics of JS w.r.t. the KRAS-targeting reference drugs 

coded as K1 and K2 are represented in Table 4 and also 

depicted in Figure 9. From Figure 9, it is observed that both 

K1 and K2 have shown the same maximum and average 

similarity. This indicates that both K1 and K2 share stronger 

structural features with a major portion of the dataset. 

The summary statistics of JS w.r.t. the PDGFR-targeting 

reference drugs coded as P1, P2, P3, P4, and P5 are 

represented in Table 5 and also depicted in Figure 10. From 

Figure 10, it is observed that both P2 and P3 have shown the 

nearest maximum (0.39 and 0.34, respectively) and the same 

average (0.10) similarity. This indicates that both P2 and P3 

share stronger structural features with a major portion of the 

dataset. 
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Table 3. Summary statistics of JS between 1.048 million drugs and ALK reference SMILEs (A1, A2, A3, A4, and A5) 

 Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev 

A1_T 0.000 0.041 0.073 0.112 0.354 0.080 0.049 

A2_T 0.000 0.045 0.075 0.107 0.313 0.078 0.043 

A3_T 0.000 0.030 0.054 0.083 0.302 0.060 0.038 

A4_T 0.000 0.045 0.081 0.124 0.347 0.088 0.055 

A5_T 0.000 0.046 0.083 0.127 0.388 0.091 0.057 

 
Fig. 8 Line chart representing summary statistics of JS between A1, A2, A3, A4, A5, and 1.048 million drugs 

Table 4. Summary statistics of JS between 1.048 million drugs and KRAS reference SMILEs (K1 and K2) 

 Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev 

K1_T 0.000 0.041 0.072 0.109 0.393 0.078 0.048 

K2_T 0.000 0.041 0.072 0.109 0.393 0.078 0.048 

 
Fig. 9 Line chart representing summary statistics of JS between K1, K2, and 1.048 million drugs 

Table 5. Summary statistics of JS between 1.048 million drugs and PDGFR reference SMILEs (P1, P2, P3, P4, and P5) 

 Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev 

P1_T 0.00 0.04 0.07 0.11 0.39 0.08 0.05 

P2_T 0.00 0.05 0.09 0.14 0.39 0.10 0.06 

P3_T 0.00 0.05 0.09 0.13 0.34 0.10 0.05 

P4_T 0.00 0.04 0.06 0.09 0.81 0.07 0.04 

P5_T 0.00 0.04 0.08 0.12 0.42 0.09 0.05 

0

0.1

0.2

0.3

0.4

0.5

Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev

V
al

u
e

Statistic

ALK Summary Statistics (A1_T to A5_T)

A1_T A2_T A3_T A4_T A5_T ← Highest Mean | Min: 0.00 | Max: 0.39 |

0

0.1

0.2

0.3

0.4

0.5

Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev

V
al

u
e

Statistic

KRAS Summary Statistics (K1_T & K2_T)

K1_T | Min: 0.00 | Max: 0.39 | Mean: 0.08 ← Highest Mean K2_T | Min: 0.00 | Max: 0.39 | Mean: 0.08



Sandhi Kranthi Reddy & S V G Reddy / IJETT, 73(12), 244-265, 2025 

 

255 

 
Fig. 10 Line chart representing summary statistics of JS between P1, P2, P3, P4, P5, and 1.048 million drugs 

 
Fig. 11 Overview of the dataset obtained after phase I 

The computation of JS between 1.048 million drugs and 

each of the 15 reference drugs generates an unlabeled dataset 

as depicted in Figure 11. 

4.2. Phase-II 

The elbow method is applied to an unlabeled dataset 

obtained in Phase I, and Figure 12 represents the graph of the 

elbow method. 

From Figure 12, it is observed that there is a significant 

difference in WCSS among the first 4 clusters. But from the 

5th cluster onwards, the change has become minimal. Hence, 

the optimal number of clusters is considered to be 4. 

Now, by using K values of 4, clustering is done. To 

visualize these clusters clearly and effectively, Principal 

Component Analysis (PCA) is used, which transforms high-

dimensional data into a two-dimensional space while 

preserving as much variance as possible. The visualization of 

clusters using PCA is depicted in Figure 13.The total number 

of SMILES entries in each cluster is represented in Table 6 

and depicted in Figure 14. 

 
Fig. 12 Elbow method graph - determining the number of clusters (K) 

0

0.5

1

Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev

V
al

u
e

Statistic

PDGFR Summary Statistics (P1_T to P5_T)

P1_T | Min: 0.00 | Max: 0.39 | Mean: 0.08 P2_T | Min: 0.00 | Max: 0.39 | Mean: 0.10

P3_T | Min: 0.00 | Max: 0.34 | Mean: 0.10 ← Highest Mean P4 T | Min: 0.00 | Max: 0.81 | Mean: 0.07

P5_T Min: 0.00 | Max: 0.42 | Mean: 0.09

Legend

43484

17194

10929
8533 7374 6444 5832 5289 4932 4635 4360 4131 3940 3773 3626

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
S

O
M

Number of Clusters

Elbow Method



Sandhi Kranthi Reddy & S V G Reddy / IJETT, 73(12), 244-265, 2025 

 

256 

 
Fig. 13 PCA visualization of clusters 

Table 6. Cluster-wise count of SMILES 

S. No. Cluster Number SMILES Count 

1 Cluster 0 279869 

2 Cluster 1 288415 

3 Cluster 2 145997 

4 Cluster 3 334290 

 
Fig. 14 Bar graph representing SMILES count of each and every cluster 

From Figure 14, it is observed that cluster number 3 has 

the highest number of SMILES entries among all the clusters. 

After clustering, an unlabeled dataset is converted to a labeled 

dataset with an added column for specifying the cluster to 

which SMILES belongs. Now, the labeled dataset has 17 

columns, with 1 column as a SMILES string, 15 columns as 

JS values, and 1 column indicating cluster number, as depicted 

in Figure 15. 

 
Fig. 15 Overview of the labeled dataset with 17 columns obtained after clustering 

 
Fig. 16 Silhouette score representation for K-means clustering 

Now, Silhouette Score is applied to evaluate the quality 

of clustering done by K-means. It is computed as a score of 

0.56, as depicted in Figure 16, which specifies that the 

clustering done by K-means is efficient. 

Now, to evaluate the effectiveness of every cluster, two 

metrics have been considered from clustering profiling 

1. min-max analysis, i.e., analyzing the minimum and 

maximum values of 15 JS values in every cluster. 

2. Mean analysis, i.e., analyzing the cluster-wise mean. 

Cluster-wise min-max analyses are depicted in Figures 

17(a) to  17(d). 

Figure 17(a) depicts the min-max analysis of 15 JS in 

cluster 0 that contains 279869 SMILES, from which it is 

observed that in cluster 0, the JS's maximum value ranges 

from 0.21 to 0.32, its minimum from 0.03 to 0.06, and its 

average value is 0.11. 

Figure 17(b) depicts the min-max analysis of 15 JS in 

cluster 1 that contains 288415 SMILES, from which it is 

observed that in cluster 1, the JS's maximum value ranges 

from 0.08 to 0.11, its minimum from 0.00 to 0.00, and its 

average value is 0.03. Figure 17(c) depicts the min-max 

analysis of 15 JS in cluster 2 that contains 145997 SMILES, 

from which it is observed that in cluster 2, the JS's maximum 
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value ranges from 0.30 to 0.81, its minimum from 0.06 to 0.10, 

and its average value is 0.17. Figure 17(d) depicts the min-

max analysis of 15 JS in cluster 3, which consists of 334290 

SMILES with JS’s maximum and minimum values ranging 

from 0.14 to 0.24 and 0.01 to 0.03, with an average of 0.07. 

 

Fig. 17(a) Min-max analysis of 15 JS values in cluster 0 

Fig. 17(b) Min-max analysis of 15 JS values in cluster 1 

Fig. 17(c)  Min-max analysis of 15 JS values in cluster 2 
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Fig. 17(d) Min-max analysis of 15 JS values in cluster 3 

Table 7. Cluster-wise min-max and average JS analysis 

S. No. Cluster Number 
SMILES 

Count 

Range of 

Maximum JS 

Range of 

Minimum JS 
Average JS 

1 Cluster 0 279869 0.21 to 0.32 0.03 to 0.06 0.11 

2 Cluster 1 288415 0.08 to 0.11 0.00 to 0.00 0.03 

3 Cluster 2 145997 0.30 to 0.81 0.06 to 0.10 0.17 

4 Cluster 3 334290 0.14 to 0.24 0.01 to 0.03 0.07 

Min-max and average analyses of JS in each cluster, 

along with the SMILES count, are represented in Table 7. 

From the analysis of JS represented in Table 7, the descending 

order of clusters with respect to average JS is cluster 2, cluster 

0, cluster 3, and cluster 1. Cluster 2 shows the highest average 

JS of 0.17, indicating strong structural similarity; therefore, it 

can be labeled as “very high.”  

Next, Cluster 0 has the next highest average JS of 0.11; 

therefore, it can be labelled as “high.” In a similar way, Cluster 

3 with a moderate average JS of 0.07 is labeled as “moderate,” 

while Cluster 1 with the lowest average JS of 0.03, indicating 

weak similarity, is labeled as “low.” Figure 18 depicts the bar 

graph indicatig the cluster-wise count, mean values, and 

labeling of each cluster. 

Fig. 18 Bar graph representing cluster profiling with mean and count for each labeled cluster 

0.03 0.02 0.01
0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01

0.15
0.17

0.24

0.16

0.2

0.14

0.17
0.19

0.15 0.15 0.15
0.17

0.2 0.2 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

E1_T E2_T E3_T A1 T A2_T A3_T A4_T A5_T K1_T K2_T P1_T P2_T P3_T P4_T P5_T

T
an

im
o

to
 V

al
u
e

Tanimoto Columns

Cluster 2: Min and Max Tanimoto Similarities

Min Max

Mean: 0.11n=279869

Mean: 0.03 n = 288415

Mean: 0.17

n = 145997

Mean: 0.07 n = 334290

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Cluster 0 - High Cluster 1-Low Cluster 2 - Very High Cluster 3 - Moderate

A
v
er

ag
e 

T
an

im
o

to
 S

im
il

ar
it

y

Average Tanimoto Similarity per Cluster (With Mean and Count Displayed on Bars)



Sandhi Kranthi Reddy & S V G Reddy / IJETT, 73(12), 244-265, 2025 

 

259 

 
Fig. 19 Overview of the labeled dataset with 18 columns obtained after cluster profiling 

After clustering profiling, a labeled dataset has been 

added with one more column for specifying the cluster label 

that specifies its quality. Now, the labeled dataset has 18 

columns, with 1 column as a SMILES string, 15 columns as 

JS values, 1 indicating cluster number, and 1 indicating cluster 

label, as depicted in Figure 19. 

Now, the dataset has been added with one more column 

specifying the outcome variable by assigning the class value 

for a Cluster_Label as specified in Table 8. 

After assigning class values to each Cluster_Label, a 

labeled dataset has been added with one more column for 

specifying the class to which SMILES belongs, which is the 

outcome variable. Now, the labeled dataset has 19 columns, 

with 1 column as a SMILES string, 15 columns as JS values, 

1 indicating cluster number, 1 indicating cluster label, and 1 

indicating class, as depicted in Figure 20. 

Table 8. Cluster-labels with their assigned class values based on analysis 

of JS 

S. No.      Cluster_Label 
Cluster 

Number 

Class 

Value 

Assigned 

1 Very High Cluster 2 0 

2 High Cluster 0 1 

3 Moderate Cluster 3 2 

4 Low Cluster 1 3 

Fig. 20 Overview of the labeled dataset with 19 columns obtained after assigning the class value 

 
Fig. 21 Overview of the torch geometric objects for 1.048 million SMILES

4.3. Phase-III 

To make the data ready for building a GAT model, each 

SMILES string of 1.048 million drug-like molecules is 

converted into the form of a graph by using the from_smiles() 

function from the Torch Geometric library and then converted 

into a Torch Geometric object by using torch.tensor(). 

Figure 21 depicts the overview of the transformed torch 

geometric object data for 1.048 million SMILES. 

Now, the above transformed dataset of torch geometric 

objects is divided into a 75% train dataset and a 25% test 

dataset. 
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The GAT algorithm is trained on the training dataset by 

using the Python torch geometric library. After training, the 

GAT Model is evaluated on the test dataset over 25 epochs. In 

all the epochs, the training and testing accuracy are increased 

while the training and testing loss are decreased. Figure 22 

depicts the graphs showing training, testing accuracy, and loss 

over 25 epochs, and Table 9 summarizes the performance. 

 
Fig. 22 Accuracy and loss obtained during training and testing over 25 epochs 

Table 9. Training and testing performance over 25 epochs 

 No. of 

Epochs 

Range of 

Accuracy 

Range of 

Loss 

Training 25 
88.20% to 

88.72% 

27.81% to 

26.61% 

Testing 25 
88.42% to 

90.17% 

27.08% to 

23.20% 

From the performance analysis of training and testing of 

GATs over 25 epochs, represented in Figure 22 and Table 9, 

it is observed that, 

➢ In training, accuracy has increased steadily from 88.20% 

to 88.72%, and the loss has decreased consistently from 

27.81% to 26.61%; this indicates the effectiveness and 

consistency of the model in learning patterns from the 

training data. 

➢ In testing, accuracy and the loss have sudden but little 

fluctuations between 88.42% and 90.17% and 27.08% 

and 23.20%, respectively; this indicates the efficiency of 

the model in processing new data. 

➢ There is a very small difference in the training and the 

testing accuracy; this indicates that there is no overfitting. 

Overall, the GAT model shows a generalized 

performance. 

The confusion matrix of testing, which had 262143 torch 

geometric objects, is depicted in Figure 23. 

From the confusion matrix depicted in Figure 23, 

➢ it is observed that the GAT model has balanced 

performance across all the classes, as it shows high true 

positives. 

➢ Class-wise performance metrics, such as precision, recall, 

and F1-score, are computed and are represented in Table 

10 and also depicted in Figure 24. 

➢ Overall performance metrics, such as accuracy, macro 

precision, macro recall, and macro F1-score, are 

computed and are represented in Table 11 and also 

depicted in Figure 25. 

Class-wise and overall performance metrics of the GAT 

model, represented in Figures 24 and 25, show that the model 

has shown a strong, consistent classification with an overall 

high accuracy of 89.5%. This demonstrates the GAT model’s 

robustness in predicting drug efficacy. 
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Now, when a SMILES is given as an input to the GAT 

Model, it predicts the output of that SMILES as either 0 or 1 

or 2 or 3, as depicted in Figure 26. Based on the output of the 

model, one can decide to proceed further or not. 

 
Fig. 23 GAT model's confusion matrix of testing after 25 epochs 

Table 10. GAT model's class-wise performance metrics of testing over 

25 epochs 

Class Precision Recall F1-Score 

0 94.6% 78.4% 85.8% 

1 82.5% 90.4% 86.2% 

2 88.3% 90.3% 89.3% 

3 96.5% 93.2% 94.8% 

 
Fig. 24 Line chart representing the GAT model's class-wise 

performance of testing 

Table 11. GAT model's overall performance metrics of testing over 25 

epochs 

No. of 

Epochs 
Accuracy Precision Recall 

F1-

Score 

25 89.5% 90.5% 88.1% 89.2% 

 
Fig. 25 Bar chart representing the GAT model's performance in testing 

 
Fig. 26 Efficacy prediction for a new SMILES using GAT model 
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Figure 26 demonstrates that the GAT model is capable of 

accurately predicting the efficacy class for a new SMILES 

representation. 

5. Conclusion 
NSCLC represents 85% of LC cases, is the deadliest 

disease with a higher occurrence in Asia, and is also the 

second most common cancer in India. NSCLC occurs due to 

various alterations, and it is difficult to find the exact alteration 

causing it. Even most of the drugs become resistant after being 

treated for some time. Hence, there will always be a huge need 

to develop a new drug, especially a multitargeted drug, but the 

traditional process of developing a drug is expensive and takes 

several years, and most of the drugs fail at clinical trials. To 

address this, MMDEP-GAT (Multifaceted and Multitargeted 

Drug Efficacy Prediction Leveraging Graph Attention 

Networks) is proposed. MMDEP-GAT works in 3 phases: the 

first phase is to obtain an unlabeled dataset using Jaccard 

similarities of 1.048 million SMILES with reference to 15 

FDA-approved drugs; the second phase is to convert the 

unlabeled dataset into a labeled dataset using K-means cluster 

profiling; and the third phase is to train GAT algorithm and it 

is evaluated on test dataset over 25 epochs to predict efficacy 

of new SMILES/Drug. The GAT Model showed an accuracy 

of 89.5% and it can be used at the initial step in designing a 

new drug for NSCLC before entering into the virtual 

screening, docking, and simulation step. 

5.1. Future Scope 

The current framework predicted the efficacy of new 

SMILES for identified key targets such as PDGFR, ALK, 

KRAS, and EGFR that cause NSCLC. Extending this method 

to another type of cancer increases the chance of identifying a 

new drug/SMILES very fast. Usage of these models in the 

laboratory will enhance the process of identifying a lead 

compound with reduced time and cost. 
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