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Abstract - NSCLC - Non-Small Cell Lung Cancer, which holds almost 85% cases of lung cancer, is one of the deadliest diseases
worldwide and a leading cause of death related to cancer. Types of NSCLC are Adenocarcinoma, Large cell carcinoma, and
Squamous cell carcinoma. Among these, adenocarcinomas account for 40%-50% of NSCLC cases that occur more among
youngsters, non-smokers, and East Asians and are often diagnosed at advanced stages, which remains a challenge for their
better treatment. NSCLC occurs due to a wide range of targetable alterations, among which EGFR, ALK, KRAS, and PDGFR
account for numerous cases. The emergence of artificial intelligence has accelerated the early detection of NSCLC using various
machine learning and deep learning models based on numerical or image datasets, but there is a huge requirement to shift the
focus to identifying a novel drug that could work effectively at an early or advanced stage. Existing drugs may become resistant
after some time, and there will always be a huge requirement to develop a new drug, which perhaps requires a lengthy amount
of time and more cost using traditional approaches, and it is even a risky process since 97% of drug discoveries fail. Hence, it
is necessary to build and use machine learning or deep learning models to estimate the ability of a new drug as a part of lead
identification before moving to further processing. To address this, a multifaceted and multitargeted approach using Graph
Attention Networks has been proposed, designing a model that is trained using 15 FDA-approved drugs and a vast library of
1.048 million drug molecules to predict the efficiency of a new drug, which achieved 89% accuracy. In the drug discovery
process, this highlights the potential of deep learning, which provides enhanced, cost-effective, and efficient means to identify
novel drugs for the treatment of NSCLC.

Keywords - NSCLC, EGFR, ALK, KRAS, PDGFR, Deep Learning, Graph Attention Network.

asbestos, arsenic, and radon, particularly in poorly ventilated
homes or unsafe workplaces [5]. Non-Small Cell LC

1. Introduction
Lung cancer(LC) is one of the leading causes of cancer-

related deaths worldwide [1]. In 2020, LC was the second
most common cancer in India, accounting for 11.4% cancer
cases and 18% cancer-related deaths [2].

In 2022, it had the highest number of new cases globally,
accounting for 2.5 million, representing 12.4% of all cancer
cases, and also led to deaths of about 1.8 million, representing
18.7% of all cancer-related deaths, as depicted in Figures 1(a)
and 1(b). Among males, lung cancer ranked as the most
commonly diagnosed cancer, while among females, it held the
second position. Also, it had the highest rates in Asia
according to the region-wise analysis [3], and if it continues at
the same rate as in 2022, the number of new lung cancer cases
may increase to about 4.62 million and deaths to about 3.55
million by 2050 [4]. Smoking remains the leading cause of
LC, while other risks include exposure to biomass smoke,

(NSCLC) and Small Cell LC (SCLC) are the common types
of LC, among which the most common is NSCLC,
representing approximately 85% of cases, and grows slowly
[6]. Historically, NSCLC has been associated with poor
outcomes due to limited options for treating as well as late
diagnosis [7].

NSCLC comprises three subtypes: adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma.
Adenocarcinoma represents 40% of NSCLC cases and 34% of
LC, squamous cell carcinoma accounts for about 25-30% and
23% of LC, and large cell carcinoma accounts for about 5-
10% and 6% of LC [8]. Among these subtypes,
adenocarcinoma’s high prevalence highlights the need to
focus more on it to improve the treatment and management of
NSCLC.
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Fig. 1(a) Distribution of 20 million global cancer cases in 2022
35.00% 30.30%
g 30.00%
Q 25.00%
% 50.000 | 18:70%
Q
= 15.00% -
S 10.00% - 9.30%  7.80% 6.90% 6.80%
= o : 4.80% 4.60% 4.10% 0 o
23 5.00% - 3.60% 3.10%
SR . [] H B EH = =
) 0.00% -
2 & & S &&b o\é\ bbé & Qoé
£ % 3 & SH & v S . 2 N &
= 2 & Q’Q xO &‘Q Ct' Q) Q *’0
8 N ® = Q & g
o S o2 A
& < =
X2
&)
S
éo

Fig. 1(b) Distribution of 9.7 million global cancer-related deaths in 2022

Molecular analysis is a key aspect in NSCLC
management, transforming the process of diagnosis,
prognosis, and treatment. Next-generation sequencing (NGS)-
based molecular testing has identified alterations in NSCLC,
such as EGFR, ALK, KRAS, MET, ROS1, BRAF, RET, and
ERBB2, that influence both disease progression and response
to treatment over time, particularly with FDA-approved
targeted drugs [9, 10].

The rapid growth in Al, especially deep learning, has
enhanced the process of drug discovery, predictions of cancer
alteration and survival rate [11-15]. These technological
improvements allow us to do many tasks in minimal time
compared to traditional approaches, such as analyzing
volumes of molecular data and predicting how a new drug
might work. However, despite these advancements, treating
NSCLC remains a major challenge because of the difficulty in
identifying the alterations and development of resistance
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among patients over a period of time [16]. Hence, there is a
requirement to discover new drugs that are effective and
capable of targeting multiple alterations. To address this, two
identifications are required:

Identifying the key alterations that cause NSCLC,
identifying the most effective FDA-approved drugs, and
determining which new drugs can be developed.

i)
ii)

Traditional approaches to developing new drugs take
several years and are expensive, and the majority of drugs fail
during clinical trials [17]. However, the recent integration of
molecular biology and computational techniques, especially in
implementing Deep Learning (DL), has greatly advanced drug
discovery. By analyzing huge amounts of data, DL models
identify the complex hidden patterns and find potential drug
candidates, which enables rapid and efficient drug discovery,
especially in the critical phase of lead identification. Among
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the various DL techniques, Graph Neural Networks (GNNs)
are gaining significance because of their ability to model drug
molecules in a graph-based structure, where atoms are
represented as nodes and chemical bonds as edges. GNNs are
used to identify the important features from molecular graphs
that are critical to predict the drug effectiveness. Graph
Attention Networks (GATs) are a type of GNNs that are
capable of finding insights from huge, complex data
represented in graphs due to their attention mechanisms [18,
19]. In the field of drug discovery, they are widely used for
various tasks, such as the prediction of the effectiveness of
drug combinations and drug-target interactions [20, 21].

This paper proposes an efficient approach using GATs to
predict the efficacy of a new SMILES/drug that targets
multiple alterations causing NSCLC, using the corresponding
drugs approved by the FDA as references before proceeding
to further analysis. This helps in reducing the time taken when
compared to traditional approaches.

2. Literature Review

To develop an efficient framework that predicts the
efficacy of an SMILES, it is necessary to identify the most
common key alterations that cause NSCLC, and FDA-
approved drugs that are effective against those key alterations.
It is also required to review the recent and similar works in
NSCLC using ML or DL techniques.

2.1. Key Alterations in NSCLC

The TASCLC conducted a survey in 2020, from the
survey, it was identified that among several alterations, three
are high in number(i.e., KRAS-68%, ALK-83% and EGFR-
94%). These findings highlight the consideration of alterations
as potential targets [23]. The importance of considering these
three alterations is further supported by the many recent
studies. Kumar and Kumar (2022) have studied various
alterations in NSCLC, including the above three top
alterations, and specified that target-specific treatments
provide better survival outcomes. They also specified the need
to identify new drugs [24]. De Jong et al. (2023) specified that
identifying the key alterations provides improved diagnosis as
well as treatment with better survival in NSCLC [25].
Similarly, Choi and Chang (2023) specified that there are
better survival rates for the approved treatments that have
targeted EGFR and ALK [26]. Sharma et al. (2025) analyzed
5,219 lung cancer patients’ data in India, by considering 13
alterations, and found that TP53, EGFR, KRAS, and ALK
were the most occurring alterations [27]. The FDA has not
approved drugs for TP53 alteration for any type of cancer [28].
All the above studies confirmed that EGFR, ALK, and KRAS
are the most important alterations in NSCLC. Platelet-Derived
Growth Factor Receptor (PDGFR) is emerging as a key
alteration in NSCLC [29, 30]. Various Studies have proved its
importance in NSCLC, specifying its role in tumor
progression and treatment resistance [31]. Even in preclinical
models, blocking PDGFR has shown good results in reducing
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the growth of the tumor and also improving its effectiveness
towards resistance [32-34]. Clinical trials have also shown
encouraging results, further supporting their potential use in
NSCLC therapy [35].

All the above findings highlight that the EGFR, ALK,
KRAS, and PDGEFR are key alterations in NSCLC.

2.2. FDA-Approved Drugs that Effectively Target Key
Alterations in NSCLC
2.2.1. EGFR

1 generation TKIs (Tyrosine Kinase Inhibitors),
Gefitinib and Erlotinib, that target EGFR mutations often
develop resistance; their 2" and 3" generation TKIs, Afatinib,
Dacomitinib, and Osimertinib, have improved survival rates
compared to 1% generation TKIs [36].

2.2.2. ALK

Similarly, 1t generation TKI, Crizotinib, targeting ALK
rearrangements also acquired resistance, and their 2" and 3
generation TKIs, Ceritinib, Alectinib, Brigatinib, Lorlatinib,
and Ensartinib, have improved survival rates compared to 1%
generation TKIs [37, 38].

2.2.3. KRAS

KRAS mutations are historically considered undruggable,
but now have Sotorasib and Adagrasib as FDA-approved
inhibitors that are equally potent [39].

2.2.4. PDGFR

There are FDA-approved drugs targeting PDGFR in other
cancers but not in NSCLC. So we reviewed the potential of
PDGFR-targeting drugs that could efficiently help in treating
NSCLC. Avapritinib is a potential drug targeting PDGFR in
Gastrointestinal Stromal Tumors (GISTs). It has proven its
efficiency in response rates and survival rates. Its structural
features could help the design of next-generation inhibitors
capable of overcoming drug resistance with minimal side
effects. [40, 41], Hence, it can be considered as one of the
reference drugs for targeting PDGFR in NSCLC. Anlotinib
was approved by the FDA in China but not by the FDA in the
USA, and it has shown better antitumor activity in patients
with previously treated advanced NSCLC [42, 43]. Nintedanib
has shown a survival benefit when compared to other TKIs
targeting PDGFR in phase III trials conducted in advanced
NSCLC [44]. In an NSCLC mouse model, crenolanib [45] and
imatinib [46] have shown antitumor activity.These findings
highlight that the selected FDA-approved TKIs targeting
EGFR, ALK, KRAS, and PDGFR offer a strong foundation
for designing a model to evaluate the efficacy of new
multitargeted drugs.

2.3. Recent Advancements in NSCLC using AI

Lietal. (2021) and Christie et al. (2021) studies show that
Al improved diagnosis, treatment planning, and evaluating
response and prediction of survival [47, 48].
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Wang (2022) performed a review on the Deep learning
methods used for diagnosing lung cancer, especially in
classifying nodules. The research indicates that the deep
learning models, particularly convolutional neural networks,
enhance precision, sensitivity, and overall diagnostic efficacy
through quicker and specific image analysis [49].

Wankhade and Vigneshwari (2023) have proposed a
method called CCDC-HNN (Cancer Cell Detection using
Hybrid Neural Network). This method combines 3D-CNN
(Convolutional Neural Networks) for identifying features and
RNN (Recurrent Neural Networks) for extracting and
classifying lung nodules as non-cancerous or cancerous. The
method was performed on the LUNA16 dataset, which
contains 888 patient CT scan images, and it has achieved an
accuracy-95%, a specificity-90%, and a sensitivity-87% [50].

Nakarin et al. (2022) designed a deep learning model
using principal neighborhood aggregation to predict the
binding affinity of SMILES across seven targets (ALK,
EGFR, ERBB2, ERBB4, MET, RET, and ROSI) of NSCLC.
The model is trained on a labeled dataset of 16,345 unique
SMILES with their binding affinities to targets. The model
generated R? scores ranging from 0.4344-ERBB4 to 0.7280-
ALK [51]. This work highlights the importance of
multitargeted drugs for NSCLC, but it has not focused on the
emerging targets KRAS and PDGFR.

Gogoshin and Rodin (2023) conducted a review on how
Graph Neural Networks (GNN5) are used in cancer, focusing
on radiographic images, molecular structures, and gene
expression data. The study illustrated the strength of GNNs in
predicting the effectiveness of drug combinations, classifying
types of cancer, and planning personalized treatments [52].

Zhang et al. (2023), Wang et al. (2023), and Chen et al.
(2024) designed models based on GNNs and illustrated their
efficiency in predicting how a drug will bind well to its target
[53-55].

Wang et al. (2025) designed a hybrid model by combining
CNNs and GATSs on gene expression and molecular structure
to predict drug response. GAT's mechanism helps the model
to analyze complex data and achieve the highest Pearson
correlation coefficient of 0.923[56].

All the above works used for predicting survival or drug-
target binding, drug combination effectiveness, or drug
response have used either gene expression data, small labeled
datasets of binding affinities, or drug-related features. They
also specified the importance of considering multitargeted
drugs and the use of GNNSs, especially GATs. GATs can
effectively analyze complex molecular structures and extract
meaningful insights. This makes them the best choice for
predicting drug efficacy. However, the usage of small labelled
datasets with known affinities would limit the ability to predict
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the drug efficacy, whereas analyzing the large unlabelled
datasets using GATs can be efficient to find new patterns
based on structural similarities over FDA-approved drugs.

3. Materials and Methods
3.1. Dataset

A dataset of 1.048 million drug-like molecules was
downloaded from the ZINC database
(https://zinc12.docking.org/subsets/clean-drug-like). This
dataset includes chemically diverse molecules with drug-like
properties, making it highly suitable for virtual screening and
predictive modeling in drug discovery. Each compound in this
dataset is available in a textual representation of chemical
structures, known as SMILES (Simplified Molecular Input
Line Entry System). It encodes molecular graphs into readable
strings that are easily interpreted by both humans and
machines.

3.2. Reference Drugs

A total of 15 FDA-approved drugs, 3 targeting EGFR
(coded as E1, E2, E3), 5 targeting ALK (coded as A1, A2, A3,
A4, A5), 2 targeting KRAS (coded as K1, K2), and 5 targeting
PDGFR (coded as P1, P2, P3, P4, P5) were selected as
reference drugs as depicted in Table 1, since they have proven
their efficiency in suppressing tumor growth and improved
survival rates. Each reference drug is represented in SMILES
format.

Table 1 summarizes the key TKIs targeting EGFR, ALK,
KRAS, and PDGFR, including their approval status and their
code used in the development of a model to assess the efficacy
of a new multitargeted drug.

Table 1. FDA-approved reference TKIs targeting identified key
alterations to assess the efficacy of multitargeted drugs in NSCLC

S. | Drug/TKI FDA Key
No. Name approved in | Alteration CODE

1 Afatinib July 2013 El
o September

2 Dacomitinib 2018 EGFR E2
. .. November

3 Osimertinib 2015 E3

4 Ceritinib April 2014 Al
.. December

5 Alectinib 2015 A2

6 Brigatinib May 2020 ALK A3

7 Lorlatinib March 2021 A4
.. December

8 Ensartinib 2024 AS

9 Sotorasib May 2021 K1

. December KRAS
10 Adagrasib 2022 K2
11 | Avapritinib January P1
2020
PDGFR

12 | Anlotinib | May2018 P2

(Not by the
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U.S. FDA,
but
approved by
the China
FDA)
October
2014
December
2017
February
2001

13 Nintedanib P3

14 Crenolanib P4

15 Imatinib P5

3.3. Pharmacophore Fingerprints (PFs)

Molecular fingerprints are used to represent chemical
structures for similarity searching, clustering, and predictive
modelling. They encode the chemical structure of
molecules/SMILES as bit vectors or numerical arrays, where
each bit holds either 1 or 0. 1 indicates the presence, and 0
indicates the absence of a particular property [57]. Many types
of fingerprints are available to digitally represent chemical
structures for various cheminformatics applications, among
which PFs have been used in this work, as they offer an
efficient representation with a bit length of 39,972, focusing
on identifying key functional groups and spatial arrangements
responsible for a compound’s biological activity, enhancing
virtual screening by capturing the essential chemical features
linked to drug-target interactions, and improving the
identification of biologically active compounds with diverse
chemical scaffolds [58, 59].

3.4. Jaccard Similarity (JS)

Similarity metrics are mathematical tools used to evaluate
how closely two different entities resemble each other. In
cheminformatics and drug discovery, these metrics are crucial
for comparing molecular structures and identifying potential
leads [60]. Commonly used metrics include Cosine Similarity,
Dice Coefficient, and Jaccard Similarity. Among them, JS is
particularly well-suited for binary molecular fingerprints
supported by RDKit. Its computational simplicity and
effectiveness in handling sparse binary data make it ideal for
virtual screening and identifying structurally similar
compounds.

In this framework, JS is applied using RDKit [61], which
calculates similarity as the proportion of the common features
(intersection) to the complete set of unique features (union)
across two molecules. By focusing on the overlap of key
functional features, JS supports more accurate compound
comparison [62, 63].

JS is defined by the formula:

|ANB|
|AUB|

T(A,B) =

)

Where A and B are two binary PFs.
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3.5. K-Means Clustering

Clustering is an ML algorithm that groups the data into
different clusters depending on their similar structures. There
are various clustering algorithms that work effectively on
large datasets, such as model-based clustering, density-based
clustering, K-means clustering, and hierarchical clustering
[64]. We choose K-means clustering to process the dataset
obtained after computing Phase I, which contains high-
dimensional, unlabeled molecular data, because it provides
quick and efficient computations [65, 66].

K-means clustering works as follows:

Determine the K value, which represents the ideal number
of clusters.

Choose K centroids randomly from the dataset.

Form k clusters by assigning each data point to the nearest
centroid based on the Euclidean distance.

Compute the new centroid for each cluster.

Reassign the data point based on the new centroid.
Repeat steps 4 and 5 until the centroid remains constant
or predefined iterations are completed.

The efficiency of this algorithm depends on the K value.

3.6. Elbow Method - Determining K value

The elbow method is efficient to determine the number of
clusters (K), with the main idea of balancing the number of
clusters. In this method, K varied from 1 to 15, and WCSS
(Within-Cluster Sum of Squares) is calculated for each value
of K. WCSS measures the total squared distance between each
data point and its corresponding cluster centroid. As the
number of clusters increases, WCSS decreases, and it is
largest when K =1 (all data in a single cluster). When we plot
WCSS with the K value, it will have a rapid change at one
point, making the plot look like an elbow. The K-value at that
point gives the exact number of clusters [67]. Once the
clustering is done, it is essential to evaluate the quality of
clustering and the effectiveness of each and every cluster.

3.7. Silhouette Score - Evaluating Quality of Clusters

The Silhouette Score is used to evaluate the clustering's
quality by measuring how well all the data points fit in their
respective cluster compared to others [68, 69]. It ranges from
-1 to+1.

If the Silhouette score is close to

+1 means that the point is fitted well to its cluster.
-1 means that the point is not fitted to its cluster.
0 means that the point may fit two clusters.

3.8. Cluster Profiling — Evaluating Effectiveness of Each
and Every Cluster

The uniqueness of each and every cluster can be analyzed
by using cluster profiling. It includes statistics such as range,
mean, quartiles, etc. Based on statistical analysis, a label that
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reflects its priority is assigned [70]. Cluster profiling and
labelling are used in identifying the potential compounds [71].

3.9. GATs

GATs are the advanced GNN techniques that use message
passing, aggregation, and attention mechanisms, which help
the model to analyze complex data and improve the
performance [18-21].

The following are the steps that are performed at each
layer [72]:

e Linear Transformation: This step transforms the node
features using a learnable weight matrix to enable the
algorithm to understand complex patterns and allows the
model to adjust the importance of node features during
the process of training. The linear transformation of a
node is computed as

h; = wh; 2

Where,

h; is the original feature vector of node 1i.

w is the learnable weight matrix.

hi is the transformed feature vector of node i.

e Compute Attention Scores: This step helps the model to
understand the importance of neighbors to each node by
considering both node and edge features, which is done
by comparing their transformed features.

The attention score between node i and its neighbor node
j is computed as

e;j = LeakyReLU (a" [h||1}]) @

Where,

LeakyReLU is an activation function that helps the model
effectively continue its learning by assigning small non-
zero values to negative inputs.

a' is the transpose of a learnable attention vector a

|| is concatenation.

hi' and h; are the transformed feature vectors of the
nodes i and j.

e Softmax Normalization: This step normalizes the
attention scores using the softmax function, making all
attention scores sum to 1, allowing the model to focus on
important neighbors.

The normalized attention score between node i and node
j is computed as

o = —Pei)
Y Skene expleix)

“

Where,
N(i) is a Set of neighbors of node i (including itself).

e Weighted Aggregation of Node Features: This step
combines the node features with the features of its
neighbor using attention weights. The attention weights
are different for each neighbor node, reflecting their
importance.

The weighted aggregation of a node is computed as
hi' = Xjenq) @ijhj (%)

e Final Aggregation of Transformation: This step is
important to further process the combined features using

another learnable weight matrix.

It is computed as

W' = w'hy ©)
Where,
w is a learnable weight matrix for the final

transformation, which will be the same for all nodes.

3.10. Evaluating GAT Model using Performance Metrics

The deep learning classification models are evaluated
using different performance metrics; these metrics are
computed using the confusion matrix [73, 74].The following
are the metrics that are used to evaluate the performance of the
GAT model effectively:

e Accuracy: It gives the proportion of correctly predicted
predictions, and it is computed as

TP+TN

Accuracy = ———
Y = IPTTN+FP+FN

(7

e  Precision: It gives the proportion of correctly predicted
positive predictions among all positive predictions, and it
is computed as

.. TP
Precision = —— ()
TP+FP

e Sensitivity or Recall: It gives the proportion of correctly
predicted positive predictions among all actual positives,
and it is computed as

TP
Recall = ——
TP+FN

€
e F1 Score: It shows how the model balances both
sensitivity and precision, and it is computed as

F1=2+% Precision*Recall (10)

Precision+Recall
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3.11. Proposed Methodology

To provide a multitargeted drug efficacy prediction,
offering a computationally efficient and faster approach by
reducing the need to consider gene expression data, this paper
introduces MMDEP-GAT, a Multifaceted and Multitargeted
Drug Efficacy Prediction Leveraging Graph Attention
Networks, that leverages the features of FDA-approved drugs
targeting key alterations in NSCLC. The schematic
representation of MMDEP-GAT is depicted in Figure 2.

MMDEP-GAT works in three phases:
Phase-I: SMILES Processing and Computing Similarity
Metric.
Phase-II: Clustering and Labeling of Unlabeled Data
Phase-I11: Predicting Efficacy of a New Drug/SMILES using
GAT Model.

3.11.1. Phase-I: SMILES Processing and Computing
Similarity Metric

SMILES of 1.048 million drug-like compounds and 15
reference drugs were converted into molecular structures
using RDKit, an open-source cheminformatics toolkit that
provides robust tools for conversion [61].

After converting the SMILES to molecular structures,
PFs will be generated for further processing. This is also done
by using RDKit.

Finally, JS is computed for 1.048 compounds with respect
to 15 reference drugs. Figure 3 depicts the complete overview

of the process of converting SMILES to molecular structures,
generating PFs, and computing JS.

After the computation of Phase I, a 16-column unlabeled
dataset is obtained, with the first column holding a SMILES
and the remaining 15 being the JS value of a SMILES with
reference to 15 drugs.

3.11.2. Phase-II: Clustering and Labeling of Unlabeled Data

The elbow method is applied on an unlabeled dataset
obtained in Phase I to produce the K-value for performing K-
means clustering, which helps in converting the unlabeled
dataset into a labeled dataset.

After K-means clustering, the Silhouette score is applied
to evaluate its quality. Finally, cluster profiling is done to
evaluate the effectiveness of each cluster formed by K-means
and to label them.

Figure 4 depicts the complete overview of the process of
applying the elbow method, K-means clustering, evaluating
the quality of clusters, and labelling clusters through profiling.

After the computation of Phase II, a 19-column labeled
dataset is obtained by adding three more columns to the
dataset obtained in Phase-I.

The first one is the cluster number, the second one is the
label assigned to the cluster, and the third is the class value
assigned to the cluster label, which is the outcome variable.

Fig. 2 Schematic representation of the MMDEP-GAT
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Labelled dataset
Fig. 4 Overview of the phase I1 in MMDEP-GAT - the process of converting an unlabeled dataset obtained in phase I to a labelled dataset
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1M SMILES transformed into graphs (NetworkX) and then to PyTorch Geomelric.

SMILES Molecular Structure

' "
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CONCOCOICT=CC-OCCL

CUPONCI=CO=CIO)C=C1

Graphs

»
“

torch geometric.data.Data

-

"
' Data(x=[13. 9], edge_index=[2, 26], edge_attr={26, 3])

,o'! &
P a Data(x={13, 9], edge_index={2, 26], edge_attr={26, 3])
@

El

. Data{x~{11, 9], edge_index—-[2, 22}, edge_attr—[22, 3])

Fig. 5 Generating PyTorch geometric objects from SMILES

GAT Trained to Predict the Effectiveness of Drug for NSCLC against Multiple Receptors

Torch Geometric Labelled dataset

LT

e - -

l

Train Dataset

0

~ Graph Attention |
, Network i

Test Dataset

ized GAT model

|

Efficacy of SMILE
Le., Class 0/1/2/3

Fig. 6 Overview of the phase 111 in MMDEP-GAT - dividing labeled dataset and the process of obtaining GAT model

3.11.3. Phase-1I1: Clustering and Labeling of Unlabeled Data

To build a GAT model for the evaluation of drug efficacy,
it is necessary to transform the data so that it can be easily
processed using GATs. For this, all the SMILES of 1.048
million drug-like compounds, along with the 15 reference
drugs, are transformed into graphs and then to geometric
objects using PyTorch, as depicted in Figure 5. After
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transforming to geometric objects, the torch geometric
labelled dataset is divided into a train dataset for training the
GATs and a test dataset for testing the model using a fixed
random seed of 42. Finally, an optimized GAT model is
obtained for predicting the efficacy of a new SMILES. The
MMDEP-GAT framework used an attention-based message-
passing architecture using AttentiveFP, a GAT variant. Each
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graph encodes 9 node features and 3 edge features. 6 message-
passing layers with 2 attention time-steps were used to
iteratively refine node embeddings. Each layer uses a
LeakyReLU activation followed by 0.2 dropout, with a hidden
dimension of 70. The output layer produces four classes,
representing the predicted efficacy of SMILES across EGFR,
ALK, KRAS, and PDGFR targets. Training and testing were
done for 25 epochs with a batch size of 32, using the Adam
optimizer with a learning rate of 0.001 and a weight decay of
1x107, with the cross-entropy loss function for multi-class
classification. Finally, an optimized GAT model is obtained
for predicting the efficacy of a new SMILES. Figure 6 depicts

the overview of the dividing torch geometric labelled dataset,
and the process of training and testing the GAT model.

After the computation of Phase III, the optimized GAT
model is obtained to predict the efficacy of a new SMILES.

4. Results and Discussion
4.1. Phase-1

JS was computed between 1.048 million drugs and each
of the 15 reference drugs. The summary statistics of JS w.r.t.
the EGFR-targeting reference drugs coded as E1, E2, and E3
are represented in Table 2 and also depicted in Figure 7.

Table 2. Summary statistics of JS between 1.048 million drugs and EGFR reference SMILEs (E1, E2, and E3)
Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev
E1 T 0.000 0.044 0.078 0.118 0.351 0.084 0.051
E2 T 0.000 0.048 0.086 0.129 0.442 0.093 0.056
E3 T 0.000 0.050 0.098 0.157 0.463 0.110 0.074
EGFR Summary Statistics (E1_T,E2 T,E3 T)
—t—E] T E2 E3_T « Highest Mean | Min: 0.00 | Max: 0.46 | Mean: 0.11
0.5
0.45
0.4 /A
0.35 v \
0.3 v, \
Q 0.25 v, \
2 02 /4 A\
> /4 A\
0.15 7
0.05 : /v \ .
0 —
Min 25% (Q1) 50% 75% (Q3) Max Mean Std Dev
(Median)
Statistic

Fig. 7 Line chart representing summary statistics of JS between E1, E2, E3, and 1.048 million drugs

From Figure 7, it is observed that E3 (Osimertinib) shows
the highest maximum (0.46) and average (0.11) similarity
among the three drugs. This indicates that E3 shares stronger
structural features with a major portion of the dataset.

The summary statistics of JS w.r.t. the ALK-targeting
reference drugs coded as Al, A2, A3, A4, and A5 are
represented in Table 3 and also depicted in Figure. 8.

From Figure 8, it is observed that A5 (Ensartinib) shows
the highest maximum and average similarity among the five
drugs. This indicates that A5 shares stronger structural
features with a major portion of the dataset. The summary
statistics of JS w.r.t. the KRAS-targeting reference drugs

coded as K1 and K2 are represented in Table 4 and also
depicted in Figure 9. From Figure 9, it is observed that both
K1 and K2 have shown the same maximum and average
similarity. This indicates that both K1 and K2 share stronger
structural features with a major portion of the dataset.

The summary statistics of JS w.r.t. the PDGFR-targeting
reference drugs coded as P1, P2, P3, P4, and P5 are
represented in Table 5 and also depicted in Figure 10. From
Figure 10, it is observed that both P2 and P3 have shown the
nearest maximum (0.39 and 0.34, respectively) and the same
average (0.10) similarity. This indicates that both P2 and P3
share stronger structural features with a major portion of the
dataset.
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Table 3. Summary statistics of JS between 1.048 million drugs and ALK reference SMILEs (A1, A2, A3, A4, and AS)

Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev
Al T 0.000 0.041 0.073 0.112 0.354 0.080 0.049
A2 T 0.000 0.045 0.075 0.107 0.313 0.078 0.043
A3 T 0.000 0.030 0.054 0.083 0.302 0.060 0.038
A4 T 0.000 0.045 0.081 0.124 0.347 0.088 0.055
A5 T 0.000 0.046 0.083 0.127 0.388 0.091 0.057
ALK Summary Statistics (Al T to A5 T)
Al T A2 T A3 T A4 T == A5 T « Highest Mean | Min: 0.00 | Max: 0.39 |
0.5
0.4
0.3
Q
= 0.2
<
S .
0.1
0 T T
Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev
Statistic
Fig. 8 Line chart representing summary statistics of JS between Al, A2, A3, A4, A5, and 1.048 million drugs
Table 4. Summary statistics of JS between 1.048 million drugs and KRAS reference SMILEs (K1 and K2)
Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev
K1 T 0.000 0.041 0.072 0.109 0.393 0.078 0.048
K2 T 0.000 0.041 0.072 0.109 0.393 0.078 0.048

KRAS Summary Statistics (K1_T & K2 _T)

——KI1_T | Min: 0.00 | Max: 0.39 | Mean: 0.08 < Highest Mean —#—K2 T | Min: 0.00 | Max: 0.39 | Mean: 0.08
0.5

0.1 ‘\.
O ./././ |
Min 25% (Q1) 50% (Median) 75% (Q3) Max Mean Std Dev
Statistic

Fig. 9 Line chart representing summary statistics of JS between K1, K2, and 1.048 million drugs

Table 5. Summary statistics of JS between 1.048 million drugs and PDGFR reference SMILEs (P1, P2, P3, P4, and P5)

Min 25% (Q1) | 50% (Median) | 75% (Q3) Max Mean Std Dev
PI T 0.00 0.04 0.07 0.11 0.39 0.08 0.05
P2 T 0.00 0.05 0.09 0.14 0.39 0.10 0.06
P3 T 0.00 0.05 0.09 0.13 0.34 0.10 0.05
P4 T 0.00 0.04 0.06 0.09 0.81 0.07 0.04
P5 T 0.00 0.04 0.08 0.12 0.42 0.09 0.05
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PDGFR Summary Statistics (P1_T to P5_T)
Legend
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Fig. 10 Line chart representing summary statistics of JS between P1, P2, P3, P4, P5, and 1.048 million drugs
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Fig. 11 Overview of the dataset obtained after phase I

The computation of JS between 1.048 million drugs and
each of the 15 reference drugs generates an unlabeled dataset
as depicted in Figure 11.

4.2. Phase-11

The elbow method is applied to an unlabeled dataset
obtained in Phase I, and Figure 12 represents the graph of the
elbow method.

From Figure 12, it is observed that there is a significant
difference in WCSS among the first 4 clusters. But from the

Sth cluster onwards, the change has become minimal. Hence,
the optimal number of clusters is considered to be 4.

Now, by using K values of 4, clustering is done. To
visualize these clusters clearly and effectively, Principal
Component Analysis (PCA) is used, which transforms high-
dimensional data into a two-dimensional space while
preserving as much variance as possible. The visualization of
clusters using PCA is depicted in Figure 13.The total number
of SMILES entries in each cluster is represented in Table 6
and depicted in Figure 14.
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Fig. 12 Elbow method graph - determining the number of clusters (K)
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Table 6. Cluster-wise count of SMILES After clusFering, an unlabeled dataset is cpnyerted to a labeled
S. No. Cluster Number SMILES Count dataset with an added column for specifying the cluster to
1 Cluster 0 279869 which SMILES belongs. Now, the labeled dataset has 17
5 Cluster 1 288415 columns, with 1 column as a SMILES string, 15 columns as
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Fig. 15 Overview of the labeled dataset with 17 columns obtained after clustering
Silhouette Score Now, to evaluate the effectiveness of every cluster, two
metrics have been considered from clustering profiling
" 1. min-max analysis, i.e., analyzing the minimum and
0.594 . .
maximum values of 15 JS values in every cluster.
2. Mean analysis, i.e., analyzing the cluster-wise mean.
(1,584
Cluster-wise min-max analyses are depicted in Figures
0.571 ® 17(a) to 17(d).
0.564 Figure 17(a) depicts the min-max analysis of 15 JS in
cluster 0 that contains 279869 SMILES, from which it is
0.554 observed that in cluster 0, the JS's maximum value ranges
from 0.21 to 0.32, its minimum from 0.03 to 0.06, and its
0.54- average value is 0.11.
Score

Fig. 16 Silhouette score representation for K-means clustering

Now, Silhouette Score is applied to evaluate the quality
of clustering done by K-means. It is computed as a score of
0.56, as depicted in Figure 16, which specifies that the
clustering done by K-means is efficient.

Figure 17(b) depicts the min-max analysis of 15 JS in
cluster 1 that contains 288415 SMILES, from which it is
observed that in cluster 1, the JS's maximum value ranges
from 0.08 to 0.11, its minimum from 0.00 to 0.00, and its
average value is 0.03. Figure 17(c) depicts the min-max
analysis of 15 JS in cluster 2 that contains 145997 SMILES,
from which it is observed that in cluster 2, the JS's maximum
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value ranges from 0.30 to 0.81, its minimum from 0.06 to 0.10, SMILES with JS’s maximum and minimum values ranging
and its average value is 0.17. Figure 17(d) depicts the min- from 0.14 to 0.24 and 0.01 to 0.03, with an average of 0.07.
max analysis of 15 JS in cluster 3, which consists of 334290

Cluster 0: Min and Max Tanimoto Similarities
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Fig. 17(a) Min-max analysis of 15 JS values in cluster 0
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Fig. 17(b) Min-max analysis of 15 JS values in cluster 1
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Fig. 17(c) Min-max analysis of 15 JS values in cluster 2
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Cluster 2: Min and Max Tanimoto Similarities
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Fig. 17(d) Min-max analysis of 15 JS values in cluster 3
Table 7. Cluster-wise min-max and average JS analysis
SMILES Range of Range of
S. No. Cluster Number Count Maximum JS Minimam JS Average JS
1 Cluster 0 279869 0.21 t0 0.32 0.03 to 0.06 0.11
2 Cluster 1 288415 0.08 t0 0.11 0.00 to 0.00 0.03
3 Cluster 2 145997 0.30 to 0.81 0.06 to 0.10 0.17
4 Cluster 3 334290 0.14 t0 0.24 0.01 to 0.03 0.07

Min-max and average analyses of JS in each cluster,
along with the SMILES count, are represented in Table 7.
From the analysis of JS represented in Table 7, the descending
order of clusters with respect to average JS is cluster 2, cluster
0, cluster 3, and cluster 1. Cluster 2 shows the highest average
JS of 0.17, indicating strong structural similarity; therefore, it
can be labeled as “very high.”

Next, Cluster 0 has the next highest average JS of 0.11;
therefore, it can be labelled as “high.” In a similar way, Cluster
3 with a moderate average JS of 0.07 is labeled as “moderate,”
while Cluster 1 with the lowest average JS of 0.03, indicating
weak similarity, is labeled as “low.” Figure 18 depicts the bar
graph indicatig the cluster-wise count, mean values, and
labeling of each cluster.

Average Tanimoto Similarity per Cluster (With Mean and Count Displayed on Bars)

Mean: 0.17
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145007
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0.02

Cluster 1-Low

Cluster 0 - High

Cluster 3 - Moderate

Cluster 2 - Very High

Fig. 18 Bar graph representing cluster profiling with mean and count for each labeled cluster
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Fig. 19 Overview of the labeled dataset with 18 columns obtained after cluster profiling

After clustering profiling, a labeled dataset has been
added with one more column for specifying the cluster label
that specifies its quality. Now, the labeled dataset has 18
columns, with 1 column as a SMILES string, 15 columns as
JS values, 1 indicating cluster number, and 1 indicating cluster
label, as depicted in Figure 19.

outcome variable. Now, the labeled dataset has 19 columns,
with 1 column as a SMILES string, 15 columns as JS values,
1 indicating cluster number, 1 indicating cluster label, and 1
indicating class, as depicted in Figure 20.

Table 8. Cluster-labels with their assigned class values based on analysis

of JS
Now, the dataset has been added with one more column SN cl Label Cluster gli‘ss
specifying the outcome variable by assigning the class value - NO. uster_Labe Number | a “ed
for a Cluster Label as specified in Table 8. _ ssigne
1 Very High Cluster 2 0
After assigning class values to each Cluster Label, a 2 High Cluster 0 1
labeled dataset has been added with one more column for 3 Moderate Cluster 3 2
specifying the class to which SMILES belongs, which is the 4 Low Cluster 1 3
SMES BT B! BT M1 NI BT O MIOMT R @I M R R R PT Ceser? Deserlsel Oms
CERX RO N0 EkaodCt TIUETY 0608 1IMOMS €060 OBESET NOINT NI0000 BI2NN OWISE ONISK ) NST JINS) LN JEEY 1Y ) )] 1
oo el ONCEORRoe )00 OINAS D ITEE) 2T £ QNN RILEN AN0 BIOE 0TS QUGIS JITUSE 1SS0 ONED JRON 11T 1 wigp 0
ColeordisTaINC=0xiana O DN LO368 LIS Q1SS OROD QWS 1080% LITSG QNN QRN 0006 11wmb 31T A0 RIS v L |
COOONCkciomy edooe? Q6NN R00TT EOMMN0 CDRN QENRS OMRSNN 100N IOMSE QDA QNDE 10NMD LOMAT JMICN JREW. 1006 ! i 1
SOOCTNI K Hm Oedoes AFRITY MOROM KORMGES EINR) OB QGHR YORE 10GAT ONTHE QLTI MMM NOOWE QMXN 10RO 100 \ T2 |
COTNV0xhmetedeee) QOUNISS AIZEN LOOEIN CISOET OMSES MnOfr ROOMYM LO0MED ANSLH JOSen fosen L0 CEMTH AL por t w 12
oot CING0kmmedones) QB0 AO0MT RODM! BILOY) QWM QCUTN AOMN| IOUST) OKATY QMIENY JONEN LONONS OBET J0NG0 ChMan ! (T |
coINECiamcioed QL9 TN BAUM! LMD 0EON Q05N JOION FONT DU Qe 0N KOOI QM ANTRY 10NS) t v ]
Fig. 20 Overview of the labeled dataset with 19 columns obtained after assigning the class value
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Fig. 21 Overview of the torch geometric objects for 1.048 million SMILES

4.3. Phase-111

To make the data ready for building a GAT model, each
SMILES string of 1.048 million drug-like molecules is
converted into the form of a graph by using the from_smiles()
function from the Torch Geometric library and then converted
into a Torch Geometric object by using torch.tensor().

Figure 21 depicts the overview of the transformed torch
geometric object data for 1.048 million SMILES.

Now, the above transformed dataset of torch geometric

objects is divided into a 75% train dataset and a 25% test
dataset.
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The GAT algorithm is trained on the training dataset by
using the Python torch geometric library. After training, the
GAT Model is evaluated on the test dataset over 25 epochs. In
all the epochs, the training and testing accuracy are increased

Train Loss
-~ Tram Los
® Min:o2oe0
® Max G278

Test Loss

® M 0230
® Max 0.2700

while the training and testing loss are decreased. Figure 22
depicts the graphs showing training, testing accuracy, and loss
over 25 epochs, and Table 9 summarizes the performance.

Train Accuracy

—o= Train ACCUraty - o,
® Mn:0oEE0 | w4 \/
® Max 0URT2 / N /!
Yy “'
e
i
Y
»d
p o
J -
)’/
»
&

Test Accuracy

Fig. 22 Accuracy and loss obtained during training and testing over 25 epochs

Table 9. Training and testing performance over 25 epochs

No. of Range of Range of
Epochs Accuracy Loss
- 88.20% to 27.81% to
Training 25 88.72% 26.61%
. 88.42% to 27.08% to
Testing 25 90.17% 23.20%

From the performance analysis of training and testing of
GATs over 25 epochs, represented in Figure 22 and Table 9,
it is observed that,

» In training, accuracy has increased steadily from 88.20%
to 88.72%, and the loss has decreased consistently from
27.81% to 26.61%; this indicates the effectiveness and
consistency of the model in learning patterns from the
training data.

In testing, accuracy and the loss have sudden but little
fluctuations between 88.42% and 90.17% and 27.08%
and 23.20%, respectively; this indicates the efficiency of
the model in processing new data.

There is a very small difference in the training and the
testing accuracy; this indicates that there is no overfitting.
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Overall, the GAT model shows a generalized

performance.

The confusion matrix of testing, which had 262143 torch
geometric objects, is depicted in Figure 23.

From the confusion matrix depicted in Figure 23,

it is observed that the GAT model has balanced
performance across all the classes, as it shows high true
positives.

Class-wise performance metrics, such as precision, recall,
and F1-score, are computed and are represented in Table
10 and also depicted in Figure 24.

Overall performance metrics, such as accuracy, macro
precision, macro recall, and macro Fl-score, are
computed and are represented in Table 11 and also
depicted in Figure 25.

Class-wise and overall performance metrics of the GAT
model, represented in Figures 24 and 25, show that the model
has shown a strong, consistent classification with an overall
high accuracy of 89.5%. This demonstrates the GAT model’s
robustness in predicting drug efficacy.
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Now, when a SMILES is given as an input to the GAT 2 88.3% 90.3% 89.3%
Model, it predicts the output of that SMILES as either 0 or 1 3 96.5% 93.2% 94.8%
or 2 or 3, as depicted in Figure 26. Based on the output of the
model, one can decide to proceed further or not. Line Chart of Classification Metrics with

Values
70000 —&— Precision ——Recall —#A—F1-score
= 7843 0 0
1.2
60000
1
50000
o g 08 74%.—44
5 40000
2 A 0.6
<
< 4 30000 0.4
20000 0.2
- 0 10000 0 T T T 1
0 1 2 3
0 1 2 3 o Class

Table 10. GAT model's class-wise performance metrics of testing over

Fig. 23 GAT model's confusion matrix of testing after 25 epochs

Predicied Fig. 24 Line chart representing the GAT model's class-wise

performance of testing

Table 11. GAT model's overall performance metrics of testing over 25

Score

25 epochs epochs
Class Precision Recall F1-Score No. of A Precision | Recall F1-
0 94.6% 78.4% 85.8% Epochs ceuracy | rrecisio €A 1 Score
1 82.5% 90.4% 86.2% 25 89.5% 90.5% 88.1% 89.2%
0.91 Evaluation Metrics Bar Chart
) 0.9046
0.905

0.9
0.895
0.89
0.885
0.88
0.875
0.87
0.865

Accuracy Macro Precision Macro Recall Macro F1 Score

SO TR | RN o 1

Fig. 25 Bar chart representing the GAT model's performance in testing
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predicted_class -~ predict_smiles(new_smiles, model, device)
print(F¥"Predicted Class: {predicted_class}")

Predicted Class: 3

new_smiles = "Cclicc(n2c(nl)nc(n2)CNC(=0)c3cccecec3Cl)C™
predicted_class ~ predict_smiles(new_smiles, model, device)
print(f"Predicted Class: {predicted_class}”)

Predicted Class: 1

Fig. 26 Efficacy prediction for a new SMILES using GAT model
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Figure 26 demonstrates that the GAT model is capable of ~ similarities of 1.048 million SMILES with reference to 15
accurately predicting the efficacy class for a new SMILES ~ FDA-approved drugs; the second phase is to convert the

representation. unlabeled dataset into a labeled dataset using K-means cluster
profiling; and the third phase is to train GAT algorithm and it
5. Conclusion is evaluated on test dataset over 25 epochs to predict efficacy

NSCLC represents 85% of LC cases, is the deadliest of new SMILES/Drug. The GAT Model showed an accuracy
disease with a higher occurrence in Asia, and is also the ~ ©f 89.5% and it can be used at the initial step in designing a
second most common cancer in India. NSCLC occurs due to ~ new drug for NSCLC before entering into the virtual
various alterations, and it is difficult to find the exact alteration screening, docking, and simulation step.
causing it. Even most of the drugs become resistant after being
treated for some time. Hence, there will always be a huge need 5.1. Future Scope
to develop a new drug, especially a multitargeted drug, but the The current framework predicted the efficacy of new
traditional process of developing a drug is expensive and takes ~ SMILES for identified key targets such as PDGFR, ALK,
several years, and most of the drugs fail at clinical trials. To ~ KRAS, and EGFR that cause NSCLC. Extending this method
address this, MMDEP-GAT (Multifaceted and Multitargeted ~ to another type of cancer increases the chance of identifying a
Drug Efficacy Prediction Leveraging Graph Attention  new drug/SMILES very fast. Usage of these models in the
Networks) is proposed. MMDEP-GAT works in 3 phases: the ~ laboratory will enhance the process of identifying a lead
first phase is to obtain an unlabeled dataset using Jaccard ~ compound with reduced time and cost.
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