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Abstract - A common hopeless significance of diabetes is Diabetic Foot Ulcers (DFU), which require speedy and accurate
analysis to avoid amputation and lower death. Computerized DFU identification has likely ended due to the rapid growth of
deep learning; the computational requirements of existing high-performing models limit their application in quantifiable settings
with limited resources. To overcome this challenge, this research focuses on addressing a key question: whether a lightweight
DFU classification model can be strengthened using knowledge distillation and automated hyperparameter tuning to uphold the
performance of the model that is suitable for edge development. This research presents an original, lightweight classification
framework that combines the Binary Whale Optimization Algorithm (BWOA) with Knowledge Distillation (KD) to yield an
effective and specialized DFU classification system. This technique creates soft probability labels by using a pretrained
InceptionV3 model as a teacher. These are motivated by DFU-LWNet, a small convolutional neural network with little parameter
overhead, which is a customizable student network. The baseline DFU-LWNet with KD imitates earlier best findings (96.23%
accuracy) on experiments with the publicly available DFU Patch Dataset. The proposed model DFU-LWNet-BWOA achieves a
significant accuracy gain of 96.8% compared to the previous models, and it also ensures real-time compatibility for the mobile
applications by making the consistency of parameter count as 0.5M. This study mainly focuses on the deployable, intelligent, and
scalable solution for the DFU model in an experimental setup and ensures the interaction between the model, knowledge
distillation, and BWOA optimization.

Keywords - Diabetic Foot Ulcer, DFU-LWNet, Knowledge Distillation, Binary Whale Optimization, DFU Classification.

ResNet gives higher accuracy; their high computational needs
are not reliable for mobile devices and smaller networks. This
study focuses on implementing the lightweight models that are
more efficient but this lightweight model performance
depends on the manually selected hyperparameter
temperature, loss weighting, dropout levels and dense layer

1. Introduction

In the year 2021, the World Health Organization (WHO)
estimated and showed that more than 537 million people
across the globe are affected with diabetes mellitus, and it also
predicts that by 20230 this measure will increase above 640
million. One of the major concerns is diabetes mellitus, which

is a chronic metabolic condition that is a big burden and
threatens the lives of human beings [1].The major problem of
diabetes is that it has the biggest complication, that is, diabetic
foot ulcer, and this affects 15-25% of people worldwide who
have diabetes mellites. It is a kind of ulcer, and these are the
key reasons for non-traumatic lower limb problems. These
wounds are non-curable and will cause physical and emotional
imbalance to the person who is suffering from them. Itis a
major concern to identify it earlier and prevent the
complications to extend the lifespan of people who are
suffering from diabetes mellitus. Deep learning techniques
have improved medical image diagnosis, but the current DFU
detection method using methods such as InceptionV3 and

size which needs trial and error to be done extensively. This
approach makes the model less stable and limits the
generalizability for different datasets. This approach focuses
on adapting the key hyperparameters. To identify DFU,
quantitative calculation and imaging approaches, such as
thermal scans, RGB images, or hyperspectral images, have
been employed. Graphic examination, though, is somewhat
particular and depends on the doctor's information, which
differs among healthcare systems, particularly in rural and
underserved areas. Automated diagnosis architectures are a
key point in deep learning models, which are renowned for
their superior image classification capabilities, in response to
the increasing need for investigative user-friendliness and
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reliability. Due to their large model sizes, high data
requirements, and latency issues, deep Convolutional Neural
Networks (CNNs) have established an extraordinary
diagnostic routine, but their practical application in clinical
and mobile settings is still limited. For example, networks like
InceptionV3 and ResNetl01, despite their outstanding
accuracy, comprise tens of millions of parameters and require
high-performance GPUs for real-time understanding. Amjad
et al.'s most recent work addressed this limitation by
familiarizing DFU-LWNet, a lightweight CNN architecture
intended particularly for operational DFU classification on
edge devices. This study focuses on a key question: how can
a lightweight CNN model be improved using knowledge
distillation and metaheuristic optimization to improve
accuracy, which is much needed for real-time classification.

Even if this model positively abridged the number of
parameters to less than 0.5M and attained a 96.23% validation
accuracy, it is still anticipated to routinely regulate Knowledge
Distillation (KD) parameters, particularly the temperature (t)
and blending factor (o). Physical modification confuses users
and lacks generalizability, often as soon as they associate
datasets or deployment domains. DFU-LWNet is only
applicable to working learning rates, dense layer sizes, and
predefined dropout rates, which may not be optimal for a
variety of training conditions or real-world noise scenarios. To
advance performance and avoid generalization in the absence
of a stabilizing economy, a flexible and adaptable
optimization technique that can automatically adjust these
parameters is greatly needed.

By integrating the Binary Whale Optimization Algorithm
(BWOA) into a Knowledge Distillation (KD) setup, this
research proposes a new framework that builds upon the novel
DFU-LWNet approach and addresses the recognized
shortcomings in previous studies. The subsequent components
make up this approach. To train the student model, a teacher
model based on the pre-trained InceptionV3 system is exposed
to soft labels. The proposed student model is an enhanced
DFU-LWNet, a tunable lightweight CNN with dense units,
layer configurations, and unsettled dropout. A Binary Whale

Optimization Algorithm (BWOA) is employed to
automatically  determine and  optimize the KD
hyperparameters (o, t), as well as the architectural

components (dropout rate, dense units), and the learning rate.

The binary whale optimization algorithm substitutes the
outdated trial-and-error and physical grid search methods used
in previous studies. Through BWOA with Knowledge
Distillation, this research presents a lightweight, real deep
learning system for DFU classification that incorporates
metaheuristic hyperparameter optimization. The variable used
in student architecture, based on DFU-LWNet, allows
architectural aspects to be altered during training rather than
being statically constrained. This research employs a BWOA
version for CNN hyperparameter optimization, which is
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accomplished by enhancing discrete-valued vectors (such as
[dropout, a, T, Ir, dense units]). By increasing the baseline
DFU-LWNet accuracy from 96.23% to 96.80%, this
technique attains state-of-the-art performance among
lightweight models. The model is tested on the publicly
available DFU patch dataset to confirm reproducibility and
real-world pertinency [2].

The existing DFU classification is classified into two
categories. One is the teacher model with higher accuracy that
has poor deployment, and the other is the Lightweight
Compact student model with manual configurations for
training the data. There is no existing DFU work that
integrates a lightweight model, teacher-student KD pipeline,
and metaheuristic optimization for hyperparameter tuning.
This makes the real-time deployment more difficult in low-
resource settings.

1.1. Novelty of Proposed Work
1. DFU-LWNet is a compact convolutional architecture for
DFU classification and edge deployment.

Knowledge distillation is applied to a pretrained
InceptionV3 teacher model to improve the student
accuracy instead of increasing model size.

Binary Whale Optimization Algorithm (BWOA) is used
to automatically tune KD and architecture
hyperparameters by replacing the manual grid search.

Validation is done on the KD+BWOA on the publicly
available DFU dataset, and improved the accuracy while
comparing to the DFU-LWNet Baseline.

The base work [3] introduced DFU-LWNet as an
effective lightweight student model with Knowledge
distillation. This method used a manual approach for selecting
KD parameters and fixed student architecture settings. The
existing study with larger networks, such as InceptionV3, do
not address edge deployment. This study focuses on
combining DFU-LWNet with BWOA inside the KD loop and
produces a more accurate model suitable for edge
performance.

1.2. Problem Statement

Patients who have DFU have a poorer than ideal view,
particularly in nations with high diabetes rates but limited
access to contemporary medical facilities. The initial
identification and reliable authorization of DFUs are still
typically contingent on the manual clinical staff,
notwithstanding developments in healthcare diagnostics. The
traditional methods are affected by wvariance, diagnostic
repeatability and are not available in isolated and rural areas
that have limited resources. Medical diagnosis is automated
nowadays, and this shows higher potential and expands
intense learning mechanisms by incorporating artificial
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intelligence. This makes a changeover from research to
practical clinical implementation tight with difficulties.

The study faces the challenge of the inherent balance
between deployment and model complexity. The deep
learning models like InceptionV3 and ResNet50 are deep
convolutional neural networks that produce higher results in
medical image classification, which includes DFU
classification [2]. These models are high memory usage,
computationally costly, and unsuitable for deployment on
edge devices such as mobile devices or portable screening Kits
that are frequently used in low-resource environments.

Lightweight models are computationally efficient, but
these models will not achieve higher accuracy due to their
small volume. To close this gap, methods that enhance the
performance of lightweight networks without increasing their
computational load must be explored. Knowledge Distillation
(KD) [3], which involves transforming the representations of
a large, accurate teacher model into a smaller student model,
is a technique that has been extensively researched. Although
numerous zones have proven this technique effective, the
architectural design of the student network and the choice of
hyperparameters (such as temperature, loss weighting, and
network architecture) are crucial to its effectiveness.

Using InceptionV3 as the instructor, the existing method
employed KD and presented DFU-LWNet as a lightweight
CNN [4], demonstrating significant gains. Yet, this technique
utilized predetermined hyperparameter setups that were
selected through experiential testing. This kind of manual
alteration can be complex, inefficient, and not movable to
dissimilar hardware setups or datasets. Little research has been
done in the literature on the systematic optimization of KD-
based pipelines using metaheuristic algorithms, specifically
binary swarm intelligence techniques.

The research objective of this study is to enhance the
accuracy and generalizability of DFU classification by
applying a lightweight model that combines knowledge
distillation with an automated hyperparameter optimization
technique, which is Binary whale Optimization (BWOA).
Knowledge distillation (KD) and Binary Whale Optimization
method (BWOA) [5] are used to optimize the lightweight
model's hyperparameters, learning dynamics, and increase
performance without the need for extensive computational
resources or human intervention. InceptionV3 will have
complexity because of its accuracy, making it unsuitable for
edge devices. In the previous study, DFU-LWNet in a KD
framework is demonstrated, but it completely relied on
manually defined parameters and specifics that limited its
scalability and generalizability.

1.3. Motivation
The study focuses on the technical and practical
difficulties in the current literature. In the previous study, KD
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has been used to transfer information from deeper networks to
compact models, but there is only a limited study on
combining KD with hyperparameter optimization in the field
of medical imaging, especially for DFU identification.

These are the motivation factors for the proposed research
work.

Feasibility of Deployment: Most of the high-performing
CNNs need hardware that is not available in many clinical
settings with limited resources.

Hyperparameter Sensitivity: It is frequently selected at
random; dropout rate, learning rate, and dense layer size
have a substantial impact on model performance.
Manual Tuning: Grid and random search techniques are
expensive and ineffective.

e Need for Lightweight Accurate Models: DFU
classification models will help balance efficiency and
accuracy.

1.4. Objectives

The main objective is to develop a model that is
lightweight and produces higher accuracy, and aims to bridge
the performance efficiency gap in classifying diabetic foot
ulcers. The lightweight student model DFU-LWNet can be
hyperparameter-tuned by combining Knowledge distillation
and the Binary Whale Optimization algorithm [6]. The
previous study by Amjad et al [3] is highlighted by higher
accuracy but used a fixed parameter implementation of KD in
DFU Classification and demonstrates the extent of invention
and experimentation required to reach this aim. This was made
to develop a computationally efficient deep learning
architecture exclusively used for DFU image patching and
then apply it in practice. To implement binary classification,
the design should minimize the number of trainable
parameters that uphold important spatial and semantic
information. This research uses adaptable components, while
the existing methodology uses a modest 3-block CNN that has
static dense units and a dropout rate. Inception V3 is a teacher
model that is used to train the student model.

The teacher model acts as a reliable source of
information, and the model will be frozen. To train the student
model, the Kullback-Leibler divergence of soft targets with
categorical cross entropy is used, which has the dual objective
loss function. While the existing research work focuses on the
fixed parameter, this research used BWOA to find the effects
of KD parameters by combining with the network
architecture.

The research also focuses on utilizing the BWOA and
automates the selection of the important hyperparameters,
including the learning rate, dropout rate, and dense layer units,
instead of using the human grid search. The settings that are
implemented with BWOA can be used for diverse datasets.
BWOA is a metaheuristic algorithm that allows flexibility in
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discrete search spaces that outperforms the capacity of
traditional optimizers such as Adam or SGD [7]. The publicly
accessible DFU datasets are used to conduct extensive tests.
The evaluation of the proposed method can be verified by
using metrics such as classification accuracy, sensitivity,
specificity, F1-score, and inference time.

The final model performance after the deployment can be
verified by identifying the performance factors like utilization
of memory, storage capacity, and inference latency on edge
devices. This research focuses on developing a training and
optimization pipeline that requires minimal modification for
use in various medical image classification applications.

The KD framework and BWOA hyperparameter tuning
can be made public by providing community validation and
adaptation. The integration of KD and BWOA in DFU
classification can be made by developing and incorporating a
standardized and repeatable investigative procedure. This kind
of integration will help the medical research community to
have a balance between accuracy and efficiency.

In conclusion, the goal of this research work is to exceed
the DFU-LWNet significance of the existing work and try to
establish a new standard for the training, optimization, and
valuation of dense deep learning models for the classification
of medical images.

2. Literature Review
2.1. Deep Learning Approaches for DFU Detection
Machine learning is one of the key techniques in the
prediction and diagnosis of diabetes, and techniques such as
Supervised learning are used for initial analysis of Electronic
Health Records (EHRs), and this has been the focus of
numerous studies. Afolabi et al. applied some general
algorithms, like support vector machine and decision tree, to
the EHR dataset and identified that these methods were
effective in predicting diabetes [8]. The blood content features
and their importance in highlighting prediction accuracy were
explained by Nurdin et al [9]. Parkhi et al. found that the
machine algorithm-based models to predict the postpartum
prediabetes in females who were affected by gestational
diabetes mellitus. Their research displayed that features like
insulin usage and BMI had an immense influence on the
growth of type 2 diabetes [10].

The socioeconomic features that affect forecasts are
highlighted by Okere et al. [8], who employed machine
learning models to examine the transition to diabetes in
underprivileged U.S. populations [11]. When comparing
machine learning (ML) models to logistic regression, Belsti et
al. found that ML models had a more pronounced prognostic
influence in culturally diverse groups [12]. A piecemeal
machine learning model for medical policymaking in GDM
was recommended by Zhou et al., emphasizing the worth of
such devices in obstetric care [13]. Community-based
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prediction has been examined in recent publications. Jiang et
al. confirmed that real-world longitudinal data can recover
model pliability by using continuation data to construct
community-oriented prediction models [14].

2.2. Lightweight CNNs and Efficiency in Medical Imaging

By paying supervised models trained on publicly
available datasets, Febrian et al. further reinforced this
prerogative by receiving a better performance. One thoughtful
side effect of diabetes that increases illness and medical
expenses is DFU [15]. Initial detection is vital. A
comprehensive assessment of deep learning techniques for
DFU identification was conducted by Yap et al., which has
established a standard for future studies in the field [1].
Dhatariya and Abbas examined the financial burden of
treating DFU, considering the incidentals in various parts of
the world and presenting a compelling argument for scalable
technology outcomes [16].

Numerous researchers have cast off deep learning to
advance DFU detection.

To detect DFU, Thotad et al. and Biswas et al used
Convolutional neural networks and found that multiscale
feature fusion improves accuracy [17]. Biswas et al prolonged
it to XAI-FusionNet and developed understandable Al for
DFU detection [18]. Arnia et al used an innovative method
that combines CNN with extreme learning machines and
enhances classification [2]. Adnan et al. employed a
manufacturing approach to develop a smart footwear system
that utilizes pressure beams to detect DFU in real-time [19].
This delivers a continuing nursing instrument that improves
the image-based models. FUSegNet, a deep CNN architecture
designed explicitly for foot ulcer segmentation, was first
introduced by [20] Dhar et al.

2.3. Knowledge Distillation in Medical Imaging

Transfer learning approaches were applied effectively in
behavior and risk calculation by Daud et al., demonstrating
how pre-trained models can yield precise predictions of ulcer
curative outcomes [21]. Numerous studies have proven the
effectiveness of deep learning in processing complex medical
images. Ye and Yao achieved better analytic exactness by
analyzing bone lesions in diabetic feet using improved MRI
with deep learning [22]. Evangeline and Srinivasan are
laboring on neural networks and thermal imaging to classify
neuropathy, an indication of DFU, in diabetic patients [23].
Fourier-transform-based data augmentation was used in deep
learning models by Anaya-Isaza and Zequera-Diaz to classify
diabetic thermograms, indicating that data augmentation
greatly improves the classification routine [24].

There is an increasing propensity towards hybrid and
multi-modal models. Chee et al. presented heartening results
in detecting diabetes irregularities based on gesture data by
combining gait analysis with hybrid deep learning [25]. In a
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pioneering move towards personalized treatment, Ali et al.
extended the application of deep learning to diabetes
medication design by proposing IP-GCN, a graph
convolutional neural network to predict insulin requirements
[26]. The interpretability of ML models is just as serious for
clinical acceptance as accuracy. To assess diabetes prediction
models, Pang conducted a valuation analysis using SHAP
values. According to the training, feature connotation insights
enhance doctors' confidence in model results [27].

Systematic research on the effect of ML on DFU
prediction was conducted by Weatherall et al., who
highlighted the importance of explainability and transparency
[28]. Notwithstanding their incredible accuracy, the research
suggests that many machine learning models are not
explainable, which limits their clinical value. Biswas et al.
partially address this issue by incorporating understandable Al
into their DFU_MultiNet architecture [29]. Price et al. refined
the decision-making procedure underlying ML model outputs,
as their model perfectly simulated the selections made by
doctors when treating type 2 diabetes [30].

2.4. Metaheuristic Optimization in Deep Learning

Genetic algorithms, particle swarm optimization, and
replicated tempering are examples of metaheuristic algorithms
that have been applied to advance machine learning-based
research on diabetes. Hybrid ML-metaheuristic frameworks
were employed by Putra et al. and Alharby et al.to overcome
system limitations in biomedical settings [31].

Kharitonov et al. conducted detailed research on the
combination of metaheuristics with machine learning
processes [5]. Their investigation demonstrates how these
amalgamations can aid in feature selection, recover model
conjunction, and optimize hyperparameters. While Mesa et al.
recommended ML-augmented metaheuristics for logistics
encounters, which are obliquely related to medical supply
chain optimization [6], Mohanty et al. assessed the efficiency
of nature-inspired algorithms in robust systems [32].
Specifically, Saha and Pal proposed a hybrid method for
diabetes prediction that enhances rule-based classification
performance by combining information assimilation with
biochemical response optimization [33].

To upsurge model sturdiness, Zhou et al. and Nssibi et al.
scrutinized feature selection based on metaheuristics.
Wearable technology and non-invasive diagnostics are the
emphasis of more recent research [13]. A notable progression
is the burden sensor-enabled innovative footwear
industrialized by Adnan et al. in remote patient monitoring
[19]. Motion data can be used as diagnostic biomarkers, as
demonstrated by the gait acceleration-based system developed
by Chee et al. [25]. In their research on community-level DFU
risk valuation, Silva-Tinoco et al. provide a novel approach
for combining clinical and behavioral data in primary care
settings [34]. By contributing prearranged data pipelines,
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Fitridge et al.'s worldwide ethics for normalizing DFU
treatment indirectly facilitate the integration of Al [35]. For
early DFU identification, Anaya-Isaza and Zequera-Diaz
utilized thermographic imaging in combination with deep
learning, a novel non-contact diagnostic technique.

Likewise, neuropathic foot symptoms were positively
recognized using thermographic pictures. Metaheuristics and
machine learning are being applied to healthcare-related
system optimization beyond clinical diagnosis. For example,
CNNs and clustering were coupled by Fang et al. to find
irregularities in diabetes datasets [4]. The flexibility of these
algorithms was established by Kim et al., who employed ML-
metaheuristic amalgamations for production optimization
[36]. Park et al. examined the claim of metaheuristics in
physics-based modeling, providing fundamental ideas that
might lead to imminent biomedical applications [37].

2.5. Summary of Gaps in Existing Literature

Existing research on diabetes and Diabetic Foot Ulcer
(DFU) prediction demonstrates the extensive use of machine
learning and deep learning techniques across clinical and
community applications. Early studies explored supervised
learning models applied to electronic health records,
emphasizing influential features such as blood chemistry,
insulin usage, and socioeconomic factors. Some of the deep
learning approaches, like CNN, advanced DFU detection
improves ulcer classification by enabling multiscale feature
extraction. To improve the diagnostic accuracy, some methods
like multiscale fusion network, explainable AI models, and
hybrid CNN-ELM have done their best. The expanding scope
of non-invasive and multi-modal identification techniques has
been demonstrated by DFU segmentation, thermographic
imaging, gait analysis, and wearable sensors.

The transformation of semantic features from large
pretrained models to lighter student networks is demonstrated
by Knowledge distillation. The bio-inspired optimized
algorithms, which are metaheuristic methods like genetic
algorithms, PSO, and hybrid optimization, have shown a great
impact in enhancing ML models through feature selection and
hyperparameter tuning. In recent years, deep learning models
have been combined with metaheuristic techniques to do
medical diagnosis. This research highlights the work
integrating lightweight CNNS, KD, and automated
optimization for DFU classification.

2.6. Research Gap

DFU-LWNet gives a deployment-ready, accurate, and
compact model that is not dependent on the student model and
the changes to the crucial KD Parameters. This research aims
to identify the research gap in the existing research.
Lightweight CNN design
Knowledge Distillation
Metaheuristic hyperparameter optimization.
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This research aims to enable the selection of the best
configurations and promises excellent performance by
preserving model robustness, which is a vital aspect in clinical
settings that is done with limited resources and current
constraints

3. Materials and Methods
3.1. Dataset Description and Preprocessing

In this study, the DFU Patch Dataset is used, which is
available on Kaggle. The dataset holds 1055 RGB images that
are separated into two categories as follows:
e Healthy: 543 images
e  Ulcerated: 512 images
Each image is correctly extracted with a 224 by 224-pixel
close-up patch of each image, and that represents whether the
image is either normal or ulcerated. The image patch design
identifies the crucial characteristic for distinguishing an ulcer
from healthy tissue by using the spatial representation of skin
texture, color abnormalities, and lesion boundaries. In the
existing methodology, the same dataset is used, and thus, the
splitting process is done [3]. The proposed method advances
the baseline method to effectively handle variations in
illumination, contrast, and skin tone variety.

Subsequent subsets are made from the entire dataset of
1055 images using Graded sampling.
*  Training Set: 70%
Validation Set: 10%
Test Set: 20 %

The stratification ensures that the proportion of abnormal
and healthy images remains constant for every split. This is
done to overcome class imbalance and thus increase the
performance. The proposed research uses random shuffling
for each epoch during training to deliver variation to mini-
batch building. After the random shuffling is done, the model
is prevented from overfitting to specific image sequences.

This method also uses a multi-step image groundwork
pipeline to minimize overfitting and intra-class variation, but
also optimize model generalization. The existing method
focuses on resizing and normalization, but the proposed
method uses a cumulative approach of doing adaptive
histogram equalization, color space conversion, and
sophisticated augmentation. All the images in the dataset are
scaled to 224x224x3, which is consistent and ensures
compatibility with pre-trained CNN architectures such as
InceptionV3.Throughout the dataset, standardized input
dimensions are ensured by this transformation, which is
essential for batch processing in deep learning systems. To
reduce the lighting fluctuations and to enhance the color
consistency, this method uses a converted image from RGB to
the LAB color space.

285

Input DFU Image Dataset

Pre-processing CLAHE
Normalization
Re Size(222x224)

Teacher Model
Pretrained on Image dataset
Custom classification head
Temp Scaled Max

Train Student Model
(DFU-LWNet)

BWOA OPTIMIZATION

Prediction & Evaluation

Fig. 1 Architectural flow of proposed methodology

LAB color space is more reliable, and it allows
upgradation of dissimilarity without altering the composition
by separating luminance L * from chrominance a *, b *. This
method applies CLAHE to the L channel to enhance local
contrast in areas that are overexposed and darker. CLAHE is
more suitable for subtle ulcer differences, as it does not over-
amplify noise, a common fault in standard histogram
equalization. The current system lacks this development
phase, which limits its ability to manage low-contrast
situations. Each image is regularized to a zero-centered scale
of [-1, 1] after being improved and then transformed back to
RGB. This two-step standardization ensures numerical
stability between batches and helps in mitigating gradients
throughout backpropagation. The training set is dynamically
expanded using a random mix of the following modifications
to boost variety and enhance generalization, as denoted in
Table 1.

Table 1. Dataset modifications

Augmentation Type Parameter Settings
Rotation +30 degrees
Width/Height Shift Up to £20%
Zoom 0.8x to 1.2x
Horizontal Flip True
Shear 0.2 radians
Fill Mode Nearest
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A training batch's images may undergo one to three of the
changes mentioned above. These assist the system learn
invariant characteristics by mathematically creating a
distributional change in the training domain. The existing
approach required sophisticated geometric changes, rather
than simply working on flipping and rotation. The 0.6%
increase in classification accuracy observed in the ablation
trials is primarily attributed to the augmentation policy. This
method has previously shown pixel intensity histograms
during CLAHE to assess the efficiency of preprocessing.
Subsequent equalization, pictures showed:

Reduced overexposure in light skin tones
Improved visibility of ulcer boundaries
Balanced luminance across patches

This method used t-SNE clustering on CNN-extracted
features to assess class separability before and after
augmentation. Results indicate better intra-class clustering
post-transformation.

Each image is allocated a binary label:
0 — Healthy
1 — Ulcer

The effects of preprocessing are quantitatively confirmed
using performance metrics from the same base architecture
trained. It shows an accuracy of 87.3% without preprocessing,
and with the full preprocessing pipeline, it shows an accuracy
of 94.7%. The increase in accuracy of 7.4% signifies that
preprocessing is done in an efficient way, which enhances
discriminative learning. The existing methodology, after
preprocessing, achieves a 3% gain since it uses only a minimal
preprocessing technique.

3.2. InceptionV3 as Teacher Model

The teacher model represents strength and volume for
generalization, which are crucial to the effectiveness of
knowledge distillation. To efficiently define inter-class
deviations and train a compact student network, a profound
and expressive Convolutional Neural Network (CNN) is
consequently desirable [3]. The research selects InceptionV3
as the teacher model in this proposed approach, which is
reinforced by its bare competence in multiscale exposed field
learning and classified feature extraction.

3.2.1. Overview of InceptionV3

The achievement of Knowledge Distillation (KD) in deep
learning-based medicinal image analysis is contingent on the
wide choice of a high-performing instructor model. This
research practice uses InceptionV3 as the instructor system for
this investigation due to its excellent generalization
capabilities and well-cultured architecture. InceptionV3
utilizes numerous convolution kernels that run concurrently
through its inception units to learn multiscale visual patterns.
In the classification of DFU, where lesion size, shape, and
color vary significantly, these dimensions are instrumental.
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3.2.2. Inception Module Operation

The Inception module employs four parallel operations,
and these feature maps are grouped along the channel axis to
generate the module's output. It is mathematically expressed
as Equations (1) to (4).

F; = Convy,; (X) (1)
F; = Conv,yy — Convsy;z(X) (2)
F3 = Conv,yy — Convsys(X) 3)
F, = MaxPool;,3; = Conv,y; (X) 4)
Y = Concat[F1, F2,F3,F4] 5)

The network is competently seized using this multi-
branch strategy, and it prepares for seizing hierarchical
features with diverse agreeable fields.

3.2.3. Model Adaptation for DFU Classification

This model incorporates numerous architectural
differences from InceptionV3 to inform it of the binary
classification mission of DFU detection. The convolutional
base was pre-trained on ImageNet and had the original
classification head removed. Comprising the new
categorization head are:
Global Average Pooling (GAP)
128 ReLU units of a dense layer
Dropout layer rate is 0.3
2 units of dense Layer with SoftMax activation

[ ]
Correctly, the prediction is given by Equation (6):
¥ = Softmax(W2. Drop(c (W1. GAP(F(X)) ) + b2 (6)

Where f(x) is the feature map from the frozen base, W1
and W2 are the weight matrices of the dense layers, and o is
the ReLU activation [3].

3.2.4. Loss Function and Optimization

To train the model, categorical entropy is used. The
predicted class probability is the one-hot encoded ground truth
as given by Equation (7).

L =—XE,yilog®) N

Adam is used for optimization with the following
measures: learning rate is le-4, batch size is 16, epochs is 20,
and early stopping patience is 5.

3.2.5. Temperature-Scaled SoftMax for KD

After training, the instructor uses a temperature-scaled
SoftMax to create "soft" objectives for knowledge distillation
by Equation (8):
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yi(‘[) — exP(Zi/T) (8)

zjexp(z/ 1)

Where 1> 1 controls the smoothness. Higher values yield
softer distributions, revealing more inter-class information.

The Teacher training InceptionV3 1is outlined in
Algorithm 1.

Algorithm 1: InceptionV3 Teacher Training

Input: Given the Dataset D = {(xi,yi)}, that is Pretrained
using InceptionV3 base

Output: Trained teacher model as T(x)

Step 1: The pretrained InceptionV3 base is loaded
e To reserve learned feature weights, all the
convolutional layers should be frozen.
Step 2: Figure out the classification head by
e Appending a Global Average Pooling (GAP)
layer after the base
e Add a Dense layer with 128 ReLU-activated
units
e Add a Dropout layer with a rate of 0.3 to
prevent overfitting
e  Add adense layer with two units and SoftMax
activation for doing the binary classification
Step 3: Compile the model. In this model, use
e Adam optimizer with learning rate 0,
e Set the loss function to Categorical Cross-
Entropy
e  Accuracy as an evaluation metric
Step 4: Train the model
Initialize early stopping monitor «— 0
e  For each epoch:
i. Shuffling dataset

ii. Forward pass: compute § =
T(x)
iii. Calculate loss Lcg
iv. Backpropagate and update
weights
Step 5: Apply early stopping if desirable
Step 6: Return the concluding trained teacher model T(x)

3.3. Student Model DFU-LW Net
3.3.1. Introduction

Predictable medical image classification tasks today
depend heavily on Convolutional Neural Networks (CNNs)
[2]. Although the mainstream high-performance networks,
such as ResNet and InceptionV3, are computationally
challenging and parameter-heavy, this limits their usage on
low-resource devices.

To resolve this, a brand-new, lightweight CNN
specifically designed for DFU classification with low
computational cost, known as DFU-LWNet (Diabetic Foot
Ulcer Lightweight Network), is utilized. DFU-LWNet
balances depth, filter sizes, and activation competence and is
precisely designed for binary medical classification tasks. It
draws motivation from the design principles of lightweight
networks, such as MobileNet and SqueezeNet. In contrast to
the baseline models, DFU-LWNet can be cast off as a student
model in knowledge distillation frameworks and is
constructed from the ground up to be enhanced for DFU
detection on small datasets

3.3.2. Architecture Description

A normalized dense layer, a SoftMax classifier, and a
flattening process follow the three convolutional blocks that
build DFU-LWNet. In each block, a Conv2D layer with ReLU
activation is added. This is done to downsample the spatial
resolution while preserving important features [18]. The
architecture description is presented in Table 2.

Table 2. Architecture description of DFU-LWNet

Layer Parameters Activation Output Shape
Input Layer - - (224, 224, 3)
Conv2D-1 32 filters, 3x3 ReLU (224, 224, 32)
MaxPooling2D-1 2x2 - (112,112, 32)
Conv2D-2 64 filters, 3x3 ReLU (112,112, 64)
MaxPooling2D-2 2x2 - (56, 56, 64)
Conv2D-3 128 filters, 3x3 ReLU (56, 56, 128)
MaxPooling2D-3 2x2 - (28, 28, 128)
Flatten - - (100352,)
Dropout rate = 0.3 - (100352,
Dense 128 units ReLU (128,
Dense Output 2 units SoftMax 2,

Convolutional Layers
DFU-LWNet is built on top of the convolutional layers.
To find local patterns, such as edges, corners, textures, and

287

contours, a set of learnable filters, or kernels, is applied. In
medical images, these patterns frequently indicate minor color
shifts, ulcer boundaries, and irregularities in skin texture,
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especially DFU patches, as denoted in Equation (9). By piling
the filters in a hierarchical style, respectively of which learns
to trigger in reply to a different sympathetic visual input, the
arrangement can progressively recognize more complex
features.

f(l) — a(w(l) % f(l—l) + b(l)) 9)
Max Pooling Layers

Each convolutional Layer is followed by max pooling
layers, which subordinate the spatial resolution of feature
maps while preserving the maximum critical statistics. The
network is more resilient to minor variations or
misrepresentations in ulcer pictures, spatial down-sampling,
which is used to increase computing efficiency and offers
some translation invariance, as specified in Equation. (10).
The pooling process highlights the strongest activations,
which typically correlate to significant medical pointers, by
procuring the maximum value in a assumed region.

O = MaxPool(f4Y, k = 2) (10)
Flatten Layer

The last convolutional block's 3D output is transformed
into a 1D vector by the Flatten Layer. This process connects
the dense layers, which carry out classification using learnt
features, with the convolutional layers, which record spatial
data. A simplified and abstract feature representation of the
input image is represented by the flattened vector, as specified
in Equations (11) and (12).

an
(12)

h = o(w; - flatten(f) + b,)
9 = Softmax(w, - h + by)

The final output JER? provides class probabilities for
healthy and ulcerated skin.

Dropout Layer

A technique called dropout is used to circumvent
overfitting, which is particularly vital in small medical
datasets where recall poses an apprehension. To strengthen the
network and simplify transversely numerous paths, an
arbitrary proportion (30%) of neurons in the Dropout layer are
silenced throughout training, as specified in Equation (13).

h=hor (13)

o signifies the Hadamard (element-wise) product A The
normalized feature vector is promoted to the dense Layer
throughout interpretation, dropout is inactivated, and
beginnings are increased to uphold reliability as denoted in
Equation (14):

hin ference

=p-h (14)
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Fully Connected (Dense) Layers

High-level perception is influenced by dense layers,
which are located at the network's end. The flattened feature
vector is abridged into a dense method suitable for
classification by the first dense Layer with ReLU activation.
The model's confidence scores for the two classes of healthy
and ulcerated skin are shaped by the last dense Layer, which
has two output units and SoftMax activation, as denoted in
Egs. (15), (16), and (17).

Zl = Wlh + bl (15)
Where hi=max (0, z) (element-wise ReLU)

Z2 = thl + b2 (16)
~ ezzi_

=T (17)

The model is trained using categorical cross-entropy as
denoted in Equation. (18):

Lep = —Xi1yilog®;) (18)
Where yi_is the one-hot encoded ground truth and §; is

the predicted softmax score for class i. The DFU-LWnet
Training is outlined in Algorithm 2.

Algorithm 2: DFU-LWNet Training
Input: Dataset D = {( Xu, Yb)}, learning rate n, batch size
B, epochs E
Output: Trained DFU-LWNet model
Step 1: Initialize model weights W using He initialization
Step 2: For epoch =1 to E do:
a. Shuffle the dataset D and divide it into mini-batches
of size B
b. For each mini-batch of (Xs, Yb)
i.  Perform forward pass to compute prediction:
Yo < DFU_LWNet(X)
Calculate cross-entropy loss using Equation (18)
iii. Backpropagate the gradients L concerning W
iv.  Update weights using Adam optimizer (which
applies adaptive moment estimates and learning rate
adjustments)
Step 3: Evaluate on the validation set at the end of each
epoch
Step 4: Save the weights W*, which correspond to the best
validation performance
Return the Final trained model DFU-LWNet with
weights W*

il.

3.4. Knowledge Distillation with DFU-LW Net

Even if large models like InceptionV3 achieve excellent
results on medical imaging tasks, their computational
requirements make it problematic to deploy them in resource-
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constrained environments or in real-time. Knowledge
Distillation (KD) provides a clear explanation of this complex
issue by allowing a lightweight student network to benefit
from the instructor's simplification without incurring the
expense. This section introduces DFU-LWNet, a lightweight
CNN designed for the classification of DFU. InceptionV3 bids
softened estimates that unswerving learning surpasses the
restraints of rigid labels, while KD is cast off to train DFU-
LWNet. The accuracy of the current method, which used
DFU-LWNet as the student model and InceptionV3 as the
Teacher, was 96.23%.

The research utilizes this setup, but by making significant
advancements in temperature scaling, loss balancing, and
optimization, it is able to achieve a higher performance of
96.80%.

3.4.1. DFU-LWNet Architecture with KD

With attuned hyperparameters, the DFU-LWNet
architecture used in this research closely resembles the one
obtainable in existing techniques. This convolutional neural
network is lightweight and designed to accurately classify
medical images. The following is a description of the entire
architecture as denoted in Table 3.

Table 3. DFU-LWNet architecture with KD

Layer Type Filter/Units Kernel Size Activation Output Shape
Input - - - (224, 224, 3)
Conv2D + MaxPool 32 3x3 ReLU (112,112, 32)
Conv2D +MaxPool 64 3x3 ReLU (56, 56, 64)
Conv2D+MaxPool 128 3x3 ReLU (28, 28, 128)
Flatten - - - (100352,)
Dropout - - p=0.3 (100352,)
Dense 128 - ReLU (128,)
Dense 2 - Softmax (2,)
The model contains approximately 2.5 million Where t is the temperature parameter that smooths the
parameters.  Hierarchical feature extraction, particularly predicted logits.

texture and edge patterns, which are vital for identifying
diabetic ulcers, is supported by the convolutional layers.
MaxPooling layers minimize the computational effort after
reducing the spatial dimensions and maintain the pertinent
characteristics. The problem of overfitting can be reduced by
including the Dropout Layer. Through the final dense layer
with SoftMax activation, binary classification probabilities are
generated.

Binary classification probabilities are generated through
a final dense layer with SoftMax activation. In contrast to the
existing standard, the resolution customs optimization
techniques discussed in subsequent sections aim to modify the
dense layer thickness and dropout rate. The overall parameter
count is ~2.5M, meaningfully slighter than InceptionV3's
28M, allowing faster inference and lower memory
consumption. However, this method integrates optimized
dropout and learning rate parameters, while the current
method uses the same architecture.

Let y € {0, 1} 2 be the one-hot encoded ground truth
label, nr be the SoftMax output from the teacher model, and
Pb_S be the SoftMax output from the student model.

Let x € R?2%2243 be the input image. The temperature-
scaled SoftMax is expressed in Equation (19).

91(1) _ e&xp@Ei/v

T Eexp(z /1)

19)

289

Hard Loss (Cross-Entropy) is denoted in Equation(20).

Lpgra = — Ziyilog (}A’s,i) (20)
This loss measures the distance between the one-hot
labels and student predictions.

Soft Loss (KL Divergence) is denoted by Equation (21).

Lyofe = %i 9, 1®log (7,9 /s, i @n
This loss helps the student mimic the Teacher's softened
prediction distribution. Combined KD Loss is denoted by
Equation (22).
Lyp = a-t*- Lsose + (1 = ). Lpara (22)
The coefficient that stabilizes hard and soft losses is
called a. The gradient magnitude is scaled by 2.

Wherever the two components are balanced by a € [0, 1].
The gradient scaling is remunerated for by 1.

This preparation ensures a stable influence of both hard
and soft objectives, something that the existing technique did
not exactly address. DFU-LWNet Student Model with KD is
outlined in Algorithm 3.
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Algorithm 3: DFU-LWNet Student Model with KD

Input: Dataset D {( Xb, Yv)}, Trained teacher T,
temperature T, balance o
Output: Trained student model S

Stepl: Set student model S () with random weights
Step 2: Freeze all the layers of the pretrained teacher model
T()
Step 3: For each epoch =1 to E, do
a. For each mini-batch (X4, Yp) from D do

i. Get teacher soft targets with temperature-scaled
SoftMax utilizing the SoftMax Equation (19)
Calculate the student predictions using

¥s — S(Xb)

Apply the temperature-scaled SoftMax to the
student outputs using Equation (19).

ii.

iii.

iv. Calculate the hard loss using categorical cross-
entropy using Equation (20).
v. Calculate soft loss using the KL divergence using
Equation (21).
vi. Syndicate losses using Equation (22).
vii. Bring up-to-date  student model S via

backpropagation using Lkp
Step 4: Return the trained student model S.

3.5. DFU-LWNet with Knowledge Distillation and Binary
Whale Optimization Algorithm (BWOA)

The Binary Whale Optimization Algorithm (BWOA) is a
metaheuristic search technique that draws inspiration from the
communal hunting habits of humpback whales. The original
Whale Optimization Algorithm (WOA) was modified to
generate BWOA, which is particularly suitable for binary
search spaces, such as feature selection and hyperparameter
tuning [7]. This method utilizes BWOA to tune the
hyperparameters of the proposed student model, DFU-
LWNet, in a knowledge distillation framework for DFU
classification.

The addition of BWOA to the proposed pipeline was
motivated by two goals: to increase the lightweight model's
classification accuracy through hyperparameter tweaking, and
to automate and validate the procedure of detecting the best
configurations, thereby reducing manual labour and
guesswork [37]. The combination of metaheuristic
optimization and Knowledge Distillation (KD) in DFU-
LWNet proposals presents a collaborative method that meets
the efficiency and accuracy requirements of DFU
classification.

KD handovers softened output distributions from a deep,
pretrained teacher model to the student model, swelling its
representative capability. Here, this method utilizes the Binary
Whale Optimization Algorithm (BWOA) for automatic
hyperparameter tuning to suggestively enhance DFU-
LWNet's  performance, thereby circumventing the
disadvantages of traditional search.
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The reasoning, development, and application of KD in
conjunction with BWOA are presented in this section. The end
product is a lightweight, efficient network that may preserve
deployability while reaching classification performance
comparable to sophisticated designs. In KD, the student
network learns from both the soft labels P T*((T)) produced
by the teacher network at a higher temperature, as well as the
hard labels y € {0, 1} 2. The two goals are balanced in the final
KD loss function, as expressed in Equation (23).

Leg = T2 KLHO ) + (1 - 0).CE(y, §5)  (23)

Humpback whales search for food using a superior
technique known as bubble-net feeding. It includes two
Primary techniques: the whales socialize everywhere their
prey is in a spiral or weakening circle after approximating its
location. Whales engage in exploitation and exploration as an
alternative to lengthening their search in the vicinity of
potential solutions and altering their course to steer clear of
these local optima. DFU-LWNet's discrete hyperparameter
space is examined using BWOA. Among the hyperparameters
that were optimized are:

Dropout rate: {0.2, 0.4}
Dense layer units: {64, 128, 256}
Learning rate: {le-4, Se-4, le-3}

Each candidate solution (agent) in the whale population
is a binary string encoding one choice per hyperparameter, as
denoted in Equation (24).

A=2a.r—a,c:2.r,a:2—%D=|C—G*—

XflandX*! =G* —A.D (24)

Binary adaptation uses a sigmoid transfer function as
denoted in Equation (25).

The DFU-LWNet with KD and BWOA is outlined in
Algorithm 4.

1ifSX) >r
0 otherwise

SX) = 5 =>X; = (25)

Algorithm 4: DFU-LWNet with KD and BWOA
Input: Dataset D, teacher T, search space H, KD params (1,
o), BWOA params
Output: Optimized student model S*
Step 1: Use random binary vectors from H2 to initialize the
BWOA population.
Step 2: For every whale (agent) in the population:

Decode the hyperparameters (LR, dense, dropout).

b. Use the current parameters to train DFU-LWNet with
KD.

c. Assess the accuracy of validation and update fitness
Step 3: Use the BWOA update rules to update whale
positions.
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Step 4: Continue until convergence is achieved or the
maximum number of iterations is reached.

Step 5: Retrain the final DFU-LWNet after choosing the
optimal hyperparameter set.

This method closes the performance gap between deep
and lightweight CNNs by combining BWOA and KD
together. DFU-LWNet becomes a more powerful diagnostic
tool with the help of InceptionV3 and BWOA refinement in
real-time and with higher accuracy [32]. This method creates
a scalable framework for the exact Al healthcare systems.

4. Results and Discussion
4.1. Evaluation Metrics

This research method uses a range of statistical and
computational measures to evaluate the performance of the
models in DFU detection [18].

The metrics were chosen to provide a clear view of
diagnostic consistency, and they are mostly used in medical
imaging. The statistical measures are model size, parameter
count, inference time, recall (REC), specificity (SPEC),
accuracy (ACC), precision (PRE), and F1-score.

4.1.1. Accuracy (ACC)

Accuracy is the proportion of the correctly identified
cases and includes the true positive and true negative in the
total number of samples. In a medical dataset, if there is a class
imbalance, which is a common issue in medical datasets, the
final accuracy will provide a misleading impression of the
whole performance of the system.

4.1.2. Recall (TPR) or Sensitivity

The model is correctly identified, and recall is the
proportion of true positives. This is very crucial in medical
datasets, particularly for DFU diagnosis, as it is a missed
diagnosis and will lead to severe consequences.

4.1.3. Specificity (TNR)

Specificity ensures that healthy and ulcerated images are
not mistakenly identified, and this measure is used to
determine the actual negative rate and help avoid false alarms.

4.1.4. Inference Time

This is the number of milliseconds (ms) needed to classify
one image. Low inference times are crucial for real-time
applications, particularly in embedded and mobile medical
devices.

4.1.5. Parameter Count and Model Size

Parameter count is used to measure the storage footprint,
usually in MB, and also measures the quantity of trainable
parameters. Smaller models find difficulty with deployment in
edge devices with constrained memory and storage, smaller
than the models that are crucial. The InceptionV3 teacher
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model provides higher classification accuracy and contains
approximately 28 million parameters. It requires 90 MB of
storage, and this cannot be done for real-time deployment.

The proposed model, DFU-LWNet, is designed to be
more compact. It contains approximately 2.1 million trainable
parameters and comprises a model size of 8.4 MB. Knowledge
distillation improves DFU-LWNet learning capabilities
without increasing its model size, and the architectural
structure is not changed.

Binary whale optimization is used for optimization, and
hyperparameter tuning is done. There is a moderate increase
in the parameter count with 2.3 million parameters and a
model size of 9.2 MB. This is suitable for edge deployment
and provides improved classification performance.

4.2. Implementation Details and Hyperparameter Selection
The implementation of the model is done in Python using
TensorFlow 2.9 and the Keras Library. Uses NVIDIA Tesla
GPU and 16 GB of RAM in Google Colab. Early stopping,
model checkpointing, and real-time data augmentation are
done to ensure industry best practices and adhere to them.

The dataset used in this approach is a publicly available
dataset that is separated into 2 categories: Healthy and
Ulcerated skin. Each image in the dataset was resized to 224
x 224 pixels. The preprocessing pipeline was normalized to
the [-1, 1] range by following illumination normalization and
using Contrast-Limited Adaptive Histogram Equalization
(CLAHE).

4.3. Data Partitioning

80% of the training set

10% is the validation set.

10% is the test set.

32 is the batch size.

Optimizer-Adam.

Epochs- Up to 30 epochs with early stopping after five
consecutive non-improving epochs.

The Learning Rate was initially set and dynamically
adjusted during tuning.

4.3.1. Hyperparameters in BWOA

[0.2,0.4] are the rates of dropout.

[64, 128, 256] are the units of the Dense Layer.
[le-4, Se-4, 1e-3] are the learning rates.

The Binary Whale Optimization Algorithm was run with
population sizes of five and ten, with ten iterations in order to
balance search exploration and convergence duration. This is
done in contrast to the existing method that employed a set
configuration of learning rate (le-4), dense units (128), and
dropout (0.3).
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4.4. Teacher Model Performance: InceptionV3

The instructor model for knowledge distillation is
InceptionV3.InceptionV3 has a comprehensive architecture
and has shown efficiency in medical imaging tasks. This
method combines auxiliary classifiers, factorization, and
convolutions to enhance feature extraction at multiple level.
DFU-LWNet is a lightweight student model for edge
development in an environment that has fewer resources.

DFU-LWNet was trained using traditional supervised
learning on a ground truth table in its baseline configuration,
and this is done using knowledge distillation (KD). There are
three convolutional blocks, and each is followed by batch
normalization, ReLU activation, and max-pooling layers, as
well as by flattening and a fully connected classification head.

This model demonstrates good baseline results with an
average inference time of 22 ms per image and provides an
accuracy of 94.12% with 2.1 million parameters. This method
has a substantially lower computing cost that meets clinical
diagnostic requirements and gives slightly lower performance
than InceptionV3. DFU-LWNet is suitable for embedded
applications, and this has the capacity to overpredict ulcers
because of its limited capacity.

4.5. DFU-LWNet with Knowledge Distillation (KD)

DFU-LWNet’s Classification improved by incorporating
KD into its training pipeline. The student model was trained
to replicate the probabilistic behavior of the teacher model by
using the soft logits instead of completely relying on binary
labels. This enables a richer training signal and captures
similarities between classes. DFU-LWNet performance
increased with KD, and accuracy rises to 96.23% and the F1-
Score increases to 96.32%.

The same configuration is repeated as in the existing
methodology and confirms the generalizability of the KD
technique. There is a slight difference in inference time, which
is 1 ms, and this can be neglected when comparing to the
diagnostic advantages.

4.6. DFU-LWNet with KD and Binary Whale Optimization
Algorithm (BWOA)

The limits of the KD-based DFU-LWNet were tested by
automatically adjusting three key hyperparameters -learning
rate, dense layer size, and dropout rate - using BWOA. The
whale population changed over ten cycles, steadily increasing
its fitness score (1 - validation accuracy).

The optimal configuration discovered was:
*  Dropout: 0.2
*  Dense Units: 256
* Rate of Learning: 5e-4
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This configuration yielded the best-performing model
among all evaluated versions, outperforming both manually
and grid-search-tuned counterparts. In comparison to the fixed
KD configuration in the current method, BWOA improved
accuracy by 0.57% and F1-score by 0.6% while maintaining
computing performance. The slight increase in parameter
count (from 2.1 million to 2.3 million) is worthwhile for the
improvement in clinical performance.

This result demonstrates that BWOA can effectively
identify configurations that are close to optimal through
binary search.

4.7. Ablation Study

To assess the distinct effects of Knowledge Distillation
(KD) and the Binary Whale Optimization Algorithm (BWOA)
on the final model's performance, this research conducted an
ablation study. DFU-LWNet was systematically evaluated in
four configurations. The goal of the experiment is to determine
the optimal configuration due to its computational efficiency
and performance, and to investigate the impact of each
element on the final classification metrics.

The results of the experiment show how the Knowledge
distillation method transfers semantic information from the
instructor model and increases its performance. There is a
slight increase, which is offered by grid search, and that
signifies the limited capacity to investigate its optimal
configurations. BWOA provides the best performance
improvement at a very minimal computational cost.

The enhanced model is the same as the original model but
gives a 10x reduction in model size and over 3x faster
inference. This makes it more ideal for mobile health
applications, mainly in rural areas or areas that have poor
resources. The performance difference between KD-fixed and
KD-BWOA appears negligible when tested on large screening
datasets but leads to an important reduction in misclassified
instances.

4.8. Inference Time Analysis

Inference time is an important metric in real-time
diagnostic systems. If there is a long inference time, it reduces
user confidence in the mobile application and delays the
clinical diagnosis.

Table 4. Inference time analysis

Models Inference Time Analysis
InceptionV3 89 ms
DFU-LWNet (Baseline) 22 ms
DFU-LWNet - KD 23 ms
DFU-LWNet-KD with 24 ms
BWOA
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Fig. 2 TPR analysis of DFU on different deep learning models
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Fig. 3 TPR analysis of DFU on different deep learning models
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293




Ramya U & Saraswathi S/ IJETT, 73(12), 280-296, 2025

The inference benchmarks between the models show a
notable difference in latency and computational load. The
proposed model takes four times as long to deduce compared
to the teacher model. This shows the usefulness of the compact
model that can be enhanced by intelligent optimization and
knowledge distillation. BWOA shows a slight increase in the
number of parameters and inference time, and stays within the
acceptable bounds for real-time applications. The method KD
with the BWOA model demonstrates improved stability,
which is reliable for embedded deployment with the lowest
variation in the inference time. The proposed method, DFU-
LWNet-KD with BWOA, shows the best balance between
computational ~ cost, performance, and reliability.
InceptionV3's high accuracy disproves its computational cost
and unsuitability for real-time and in deployment with fewer
resources.

5. Conclusion

This research method develops a robust and lightweight
deep learning architecture for classifying DFU images using a
novel combination of Knowledge distillation and the Binary
Whale Optimization Algorithm (BWOA). The recommended
student model, DFU-LWNet, was designed for efficient
implementation in an environment with fewer resources. A
less resource-intensive environment can be embedded in a
mobile medical diagnostic device. The outcome provides
implementation of the approach in a feasible way. The teacher
model, with an accuracy of 96.91% performs as the
performing teacher model. The teacher model is difficult to
implement because of its numerous parameters and inference
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