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Abstract - A common hopeless significance of diabetes is Diabetic Foot Ulcers (DFU), which require speedy and accurate 

analysis to avoid amputation and lower death. Computerized DFU identification has likely ended due to the rapid growth of 

deep learning; the computational requirements of existing high-performing models limit their application in quantifiable settings 

with limited resources. To overcome this challenge, this research focuses on addressing a key question: whether a lightweight 

DFU classification model can be strengthened using knowledge distillation and automated hyperparameter tuning to uphold the 

performance of the model that is suitable for edge development. This research presents an original, lightweight classification 

framework that combines the Binary Whale Optimization Algorithm (BWOA) with Knowledge Distillation (KD) to yield an 

effective and specialized DFU classification system. This technique creates soft probability labels by using a pretrained 

InceptionV3 model as a teacher. These are motivated by DFU-LWNet, a small convolutional neural network with little parameter 

overhead, which is a customizable student network. The baseline DFU-LWNet with KD imitates earlier best findings (96.23% 

accuracy) on experiments with the publicly available DFU Patch Dataset. The proposed model DFU-LWNet-BWOA achieves a 

significant accuracy gain of 96.8% compared to the previous models, and it also ensures real-time compatibility for the mobile 

applications by making the consistency of parameter count as 0.5M. This study mainly focuses on the deployable, intelligent, and 

scalable solution for the DFU model in an experimental setup and ensures the interaction between the model, knowledge 

distillation, and BWOA optimization.  

Keywords - Diabetic Foot Ulcer, DFU-LWNet, Knowledge Distillation, Binary Whale Optimization, DFU Classification. 

1. Introduction 
In the year 2021, the World Health Organization (WHO) 

estimated and showed that more than 537 million people 

across the globe are affected with diabetes mellitus, and it also 

predicts that by 20230 this measure will increase above 640 

million. One of the major concerns is diabetes mellitus, which 

is a chronic metabolic condition that is a big burden and 

threatens the lives of human beings [1].The major problem of 

diabetes is that it has the biggest complication, that is, diabetic 

foot ulcer, and this affects 15-25% of people worldwide who 

have diabetes mellites. It is a kind of ulcer, and these are the 

key reasons for non-traumatic lower limb problems. These 

wounds are non-curable and will cause physical and emotional 

imbalance to the person who is suffering from them.   It is a 

major concern to identify it earlier and prevent the 

complications to extend the lifespan of people who are 

suffering from diabetes mellitus. Deep learning techniques 

have improved medical image diagnosis, but the current DFU 

detection method using methods such as InceptionV3 and 

ResNet gives higher accuracy; their high computational needs 

are not reliable for mobile devices and smaller networks. This 

study focuses on implementing the lightweight models that are 

more efficient but this lightweight model performance 

depends on the manually selected hyperparameter 

temperature, loss weighting, dropout levels and dense layer 

size which needs trial and error to be done extensively. This 

approach makes the model less stable and limits the 

generalizability for different datasets. This approach focuses 

on adapting the key hyperparameters. To identify DFU, 

quantitative calculation and imaging approaches, such as 

thermal scans, RGB images, or hyperspectral images, have 

been employed. Graphic examination, though, is somewhat 

particular and depends on the doctor's information, which 

differs among healthcare systems, particularly in rural and 

underserved areas. Automated diagnosis architectures are a 

key point in deep learning models, which are renowned for 

their superior image classification capabilities, in response to 

the increasing need for investigative user-friendliness and 
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reliability. Due to their large model sizes, high data 

requirements, and latency issues, deep Convolutional Neural 

Networks (CNNs) have established an extraordinary 

diagnostic routine, but their practical application in clinical 

and mobile settings is still limited. For example, networks like 

InceptionV3 and ResNet101, despite their outstanding 

accuracy, comprise tens of millions of parameters and require 

high-performance GPUs for real-time understanding. Amjad 

et al.'s most recent work addressed this limitation by 

familiarizing DFU-LWNet, a lightweight CNN architecture 

intended particularly for operational DFU classification on 

edge devices.  This study focuses on a key question: how can 

a lightweight CNN model be improved using knowledge 

distillation and metaheuristic optimization to improve 

accuracy, which is much needed for real-time classification. 

Even if this model positively abridged the number of 

parameters to less than 0.5M and attained a 96.23% validation 

accuracy, it is still anticipated to routinely regulate Knowledge 

Distillation (KD) parameters, particularly the temperature (τ) 

and blending factor (α). Physical modification confuses users 

and lacks generalizability, often as soon as they associate 

datasets or deployment domains. DFU-LWNet is only 

applicable to working learning rates, dense layer sizes, and 

predefined dropout rates, which may not be optimal for a 

variety of training conditions or real-world noise scenarios. To 

advance performance and avoid generalization in the absence 

of a stabilizing economy, a flexible and adaptable 

optimization technique that can automatically adjust these 

parameters is greatly needed. 

By integrating the Binary Whale Optimization Algorithm 

(BWOA) into a Knowledge Distillation (KD) setup, this 

research proposes a new framework that builds upon the novel 

DFU-LWNet approach and addresses the recognized 

shortcomings in previous studies. The subsequent components 

make up this approach. To train the student model, a teacher 

model based on the pre-trained InceptionV3 system is exposed 

to soft labels. The proposed student model is an enhanced 

DFU-LWNet, a tunable lightweight CNN with dense units, 

layer configurations, and unsettled dropout. A Binary Whale 

Optimization Algorithm (BWOA) is employed to 

automatically determine and optimize the KD 

hyperparameters (α, τ), as well as the architectural 

components (dropout rate, dense units), and the learning rate. 

The binary whale optimization algorithm substitutes the 

outdated trial-and-error and physical grid search methods used 

in previous studies. Through BWOA with Knowledge 

Distillation, this research presents a lightweight, real deep 

learning system for DFU classification that incorporates 

metaheuristic hyperparameter optimization. The variable used 

in student architecture, based on DFU-LWNet, allows 

architectural aspects to be altered during training rather than 

being statically constrained. This research employs a BWOA 

version for CNN hyperparameter optimization, which is 

accomplished by enhancing discrete-valued vectors (such as 

[dropout, α, τ, lr, dense units]). By increasing the baseline 

DFU-LWNet accuracy from 96.23% to 96.80%, this 

technique attains state-of-the-art performance among 

lightweight models. The model is tested on the publicly 

available DFU patch dataset to confirm reproducibility and 

real-world pertinency [2]. 

The existing DFU classification is classified into two 

categories. One is the teacher model with higher accuracy that 

has poor deployment, and the other is the Lightweight 

Compact student model with manual configurations for 

training the data. There is no existing DFU work that 

integrates a lightweight model, teacher-student KD pipeline, 

and metaheuristic optimization for hyperparameter tuning. 

This makes the real-time deployment more difficult in low-

resource settings. 

1.1. Novelty of Proposed Work 

1. DFU-LWNet is a compact convolutional architecture for 

DFU classification and edge deployment. 

2. Knowledge distillation is applied to a pretrained 

InceptionV3 teacher model to improve the student 

accuracy instead of increasing model size. 

3. Binary Whale Optimization Algorithm (BWOA) is used 

to automatically tune KD and architecture 

hyperparameters by replacing the manual grid search. 

4. Validation is done on the KD+BWOA on the publicly 

available DFU dataset, and improved the accuracy while 

comparing to the DFU-LWNet Baseline. 

The base work [3] introduced DFU-LWNet as an 

effective lightweight student model with Knowledge 

distillation. This method used a manual approach for selecting 

KD parameters and fixed student architecture settings. The 

existing study with larger networks, such as InceptionV3, do 

not address edge deployment. This study focuses on 

combining DFU-LWNet with BWOA inside the KD loop and 

produces a more accurate model suitable for edge 

performance. 

1.2. Problem Statement 

Patients who have DFU have a poorer than ideal view, 

particularly in nations with high diabetes rates but limited 

access to contemporary medical facilities. The initial 

identification and reliable authorization of DFUs are still 

typically contingent on the manual clinical staff, 

notwithstanding developments in healthcare diagnostics. The 

traditional methods are affected by variance, diagnostic 

repeatability and are not available in isolated and rural areas 

that have limited resources. Medical diagnosis is automated 

nowadays, and this shows higher potential and expands 

intense learning mechanisms by incorporating artificial 
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intelligence. This makes a changeover from research to 

practical clinical implementation tight with difficulties. 

The study faces the challenge of the inherent balance 

between deployment and model complexity. The deep 

learning models like InceptionV3 and ResNet50 are deep 

convolutional neural networks that produce higher results in 

medical image classification, which includes DFU 

classification [2]. These models are high memory usage, 

computationally costly, and unsuitable for deployment on 

edge devices such as mobile devices or portable screening kits 

that are frequently used in low-resource environments.  

Lightweight models are computationally efficient, but 

these models will not achieve higher accuracy due to their 

small volume. To close this gap, methods that enhance the 

performance of lightweight networks without increasing their 

computational load must be explored. Knowledge Distillation 

(KD) [3], which involves transforming the representations of 

a large, accurate teacher model into a smaller student model, 

is a technique that has been extensively researched. Although 

numerous zones have proven this technique effective, the 

architectural design of the student network and the choice of 

hyperparameters (such as temperature, loss weighting, and 

network architecture) are crucial to its effectiveness. 

Using InceptionV3 as the instructor, the existing method 

employed KD and presented DFU-LWNet as a lightweight 

CNN [4], demonstrating significant gains. Yet, this technique 

utilized predetermined hyperparameter setups that were 

selected through experiential testing. This kind of manual 

alteration can be complex, inefficient, and not movable to 

dissimilar hardware setups or datasets. Little research has been 

done in the literature on the systematic optimization of KD-

based pipelines using metaheuristic algorithms, specifically 

binary swarm intelligence techniques. 

The research objective of this study is to enhance the 

accuracy and generalizability of DFU classification by 

applying a lightweight model that combines knowledge 

distillation with an automated hyperparameter optimization 

technique, which is Binary whale Optimization (BWOA). 

Knowledge distillation (KD) and Binary Whale Optimization 

method (BWOA) [5] are used to optimize the lightweight 

model's hyperparameters, learning dynamics, and increase 

performance without the need for extensive computational 

resources or human intervention. InceptionV3 will have 

complexity because of its accuracy, making it unsuitable for 

edge devices. In the previous study, DFU-LWNet in a KD 

framework is demonstrated, but it completely relied on 

manually defined parameters and specifics that limited its 

scalability and generalizability. 

1.3. Motivation 

The study focuses on the technical and practical 

difficulties in the current literature. In the previous study, KD 

has been used to transfer information from deeper networks to 

compact models, but there is only a limited study on 

combining KD with hyperparameter optimization in the field 

of medical imaging, especially for DFU identification. 

These are the motivation factors for the proposed research 

work. 

• Feasibility of  Deployment: Most of the high-performing 

CNNs need hardware that is not available in many clinical 

settings with limited resources. 

• Hyperparameter Sensitivity: It is frequently selected at 

random; dropout rate, learning rate, and dense layer size 

have a substantial impact on model performance. 

• Manual Tuning: Grid and random search techniques are 

expensive and ineffective. 

• Need for Lightweight Accurate Models: DFU 

classification models will help balance efficiency and 

accuracy. 

1.4. Objectives 

The main objective is to develop a model that is 

lightweight and produces higher accuracy, and aims to bridge 

the performance efficiency gap in classifying diabetic foot 

ulcers. The lightweight student model DFU-LWNet can be 

hyperparameter-tuned by combining Knowledge distillation 

and the Binary Whale Optimization algorithm [6]. The 

previous study by Amjad et al [3] is highlighted by higher 

accuracy but used a fixed parameter implementation of KD in 

DFU Classification and demonstrates the extent of invention 

and experimentation required to reach this aim. This was made 

to develop a computationally efficient deep learning 

architecture exclusively used for DFU image patching and 

then apply it in practice. To implement binary classification, 

the design should minimize the number of trainable 

parameters that uphold important spatial and semantic 

information. This research uses adaptable components, while 

the existing methodology uses a modest 3-block CNN that has 

static dense units and a dropout rate. Inception V3 is a teacher 

model that is used to train the student model.    

The teacher model acts as a reliable source of 

information, and the model will be frozen. To train the student 

model, the Kullback-Leibler divergence of soft targets with 

categorical cross entropy is used, which has the dual objective 

loss function. While the existing research work focuses on the 

fixed parameter, this research used BWOA to find the effects 

of KD parameters by combining with the network 

architecture. 

The research also focuses on utilizing the BWOA and 

automates the selection of the important hyperparameters, 

including the learning rate, dropout rate, and dense layer units, 

instead of using the human grid search. The settings that are 

implemented with BWOA can be used for diverse datasets. 

BWOA is a metaheuristic algorithm that allows flexibility in 
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discrete search spaces that outperforms the capacity of 

traditional optimizers such as Adam or SGD [7]. The publicly 

accessible DFU datasets are used to conduct extensive tests. 

The evaluation of the proposed method can be verified by 

using metrics such as classification accuracy, sensitivity, 

specificity, F1-score, and inference time.  

The final model performance after the deployment can be 

verified by identifying the performance factors like utilization 

of memory, storage capacity, and inference latency on edge 

devices. This research focuses on developing a training and 

optimization pipeline that requires minimal modification for 

use in various medical image classification applications.  

The KD framework and BWOA hyperparameter tuning 

can be made public by providing community validation and 

adaptation. The integration of KD and BWOA in DFU 

classification can be made by developing and incorporating a 

standardized and repeatable investigative procedure. This kind 

of integration will help the medical research community to 

have a balance between accuracy and efficiency.  

In conclusion, the goal of this research work is to exceed 

the DFU-LWNet significance of the existing work and try to 

establish a new standard for the training, optimization, and 

valuation of dense deep learning models for the classification 

of medical images.  

2. Literature Review 
2.1. Deep Learning Approaches for DFU Detection 

Machine learning is one of the key techniques in the 

prediction and diagnosis of diabetes, and techniques such as 

Supervised learning are used for initial analysis of Electronic 

Health Records (EHRs), and this has been the focus of 

numerous studies. Afolabi et al. applied some general 

algorithms, like support vector machine and decision tree, to 

the EHR dataset and identified that these methods were 

effective in predicting diabetes [8]. The blood content features 

and their importance in highlighting prediction accuracy were 

explained by Nurdin et al [9]. Parkhi et al. found that the 

machine algorithm-based models to predict the postpartum 

prediabetes in females who were affected by gestational 

diabetes mellitus. Their research displayed that features like 

insulin usage and BMI had an immense influence on the 

growth of type 2 diabetes [10]. 

The socioeconomic features that affect forecasts are 

highlighted by Okere et al. [8], who employed machine 

learning models to examine the transition to diabetes in 

underprivileged U.S. populations [11]. When comparing 

machine learning (ML) models to logistic regression, Belsti et 

al. found that ML models had a more pronounced prognostic 

influence in culturally diverse groups [12]. A piecemeal 

machine learning model for medical policymaking in GDM 

was recommended by Zhou et al., emphasizing the worth of 

such devices in obstetric care [13]. Community-based 

prediction has been examined in recent publications. Jiang et 

al. confirmed that real-world longitudinal data can recover 

model pliability by using continuation data to construct 

community-oriented prediction models [14]. 

2.2. Lightweight CNNs and Efficiency in Medical Imaging 

By paying supervised models trained on publicly 

available datasets, Febrian et al. further reinforced this 

prerogative by receiving a better performance. One thoughtful 

side effect of diabetes that increases illness and medical 

expenses is DFU [15]. Initial detection is vital. A 

comprehensive assessment of deep learning techniques for 

DFU identification was conducted by Yap et al., which has 

established a standard for future studies in the field [1]. 

Dhatariya and Abbas examined the financial burden of 

treating DFU, considering the incidentals in various parts of 

the world and presenting a compelling argument for scalable 

technology outcomes [16]. 

Numerous researchers have cast off deep learning to 

advance DFU detection. 

To detect DFU, Thotad et al. and Biswas et al used 

Convolutional neural networks and found that multiscale 

feature fusion improves accuracy [17]. Biswas et al prolonged 

it to XAI-FusionNet and developed understandable AI for 

DFU detection [18]. Arnia et al used an innovative method 

that combines CNN with extreme learning machines and 

enhances classification [2]. Adnan et al. employed a 

manufacturing approach to develop a smart footwear system 

that utilizes pressure beams to detect DFU in real-time [19]. 

This delivers a continuing nursing instrument that improves 

the image-based models. FUSegNet, a deep CNN architecture 

designed explicitly for foot ulcer segmentation, was first 

introduced by [20] Dhar et al. 

2.3. Knowledge Distillation in Medical Imaging 

Transfer learning approaches were applied effectively in 

behavior and risk calculation by Daud et al., demonstrating 

how pre-trained models can yield precise predictions of ulcer 

curative outcomes [21]. Numerous studies have proven the 

effectiveness of deep learning in processing complex medical 

images. Ye and Yao achieved better analytic exactness by 

analyzing bone lesions in diabetic feet using improved MRI 

with deep learning [22]. Evangeline and Srinivasan are 

laboring on neural networks and thermal imaging to classify 

neuropathy, an indication of DFU, in diabetic patients [23]. 

Fourier-transform-based data augmentation was used in deep 

learning models by Anaya-Isaza and Zequera-Díaz to classify 

diabetic thermograms, indicating that data augmentation 

greatly improves the classification routine [24]. 

There is an increasing propensity towards hybrid and 

multi-modal models. Chee et al. presented heartening results 

in detecting diabetes irregularities based on gesture data by 

combining gait analysis with hybrid deep learning [25]. In a 
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pioneering move towards personalized treatment, Ali et al. 

extended the application of deep learning to diabetes 

medication design by proposing IP-GCN, a graph 

convolutional neural network to predict insulin requirements 

[26]. The interpretability of ML models is just as serious for 

clinical acceptance as accuracy. To assess diabetes prediction 

models, Pang conducted a valuation analysis using SHAP 

values. According to the training, feature connotation insights 

enhance doctors' confidence in model results [27]. 

Systematic research on the effect of ML on DFU 

prediction was conducted by Weatherall et al., who 

highlighted the importance of explainability and transparency 

[28]. Notwithstanding their incredible accuracy, the research 

suggests that many machine learning models are not 

explainable, which limits their clinical value. Biswas et al. 

partially address this issue by incorporating understandable AI 

into their DFU_MultiNet architecture [29]. Price et al. refined 

the decision-making procedure underlying ML model outputs, 

as their model perfectly simulated the selections made by 

doctors when treating type 2 diabetes [30]. 

2.4. Metaheuristic Optimization in Deep Learning  

Genetic algorithms, particle swarm optimization, and 

replicated tempering are examples of metaheuristic algorithms 

that have been applied to advance machine learning-based 

research on diabetes. Hybrid ML-metaheuristic frameworks 

were employed by Putra et al. and Alharby et al.to overcome 

system limitations in biomedical settings [31].  

Kharitonov et al. conducted detailed research on the 

combination of metaheuristics with machine learning 

processes [5]. Their investigation demonstrates how these 

amalgamations can aid in feature selection, recover model 

conjunction, and optimize hyperparameters. While Mesa et al. 

recommended ML-augmented metaheuristics for logistics 

encounters, which are obliquely related to medical supply 

chain optimization [6], Mohanty et al. assessed the efficiency 

of nature-inspired algorithms in robust systems [32]. 

Specifically, Saha and Pal proposed a hybrid method for 

diabetes prediction that enhances rule-based classification 

performance by combining information assimilation with 

biochemical response optimization [33].  

To upsurge model sturdiness, Zhou et al. and Nssibi et al. 

scrutinized feature selection based on metaheuristics. 

Wearable technology and non-invasive diagnostics are the 

emphasis of more recent research [13]. A notable progression 

is the burden sensor-enabled innovative footwear 

industrialized by Adnan et al. in remote patient monitoring 

[19]. Motion data can be used as diagnostic biomarkers, as 

demonstrated by the gait acceleration-based system developed 

by Chee et al. [25]. In their research on community-level DFU 

risk valuation, Silva-Tinoco et al. provide a novel approach 

for combining clinical and behavioral data in primary care 

settings [34]. By contributing prearranged data pipelines, 

Fitridge et al.'s worldwide ethics for normalizing DFU 

treatment indirectly facilitate the integration of AI [35]. For 

early DFU identification, Anaya-Isaza and Zequera-Díaz 

utilized thermographic imaging in combination with deep 

learning, a novel non-contact diagnostic technique.  

Likewise, neuropathic foot symptoms were positively 

recognized using thermographic pictures. Metaheuristics and 

machine learning are being applied to healthcare-related 

system optimization beyond clinical diagnosis. For example, 

CNNs and clustering were coupled by Fang et al. to find 

irregularities in diabetes datasets [4]. The flexibility of these 

algorithms was established by Kim et al., who employed ML-

metaheuristic amalgamations for production optimization 

[36]. Park et al. examined the claim of metaheuristics in 

physics-based modeling, providing fundamental ideas that 

might lead to imminent biomedical applications [37]. 

2.5. Summary of Gaps in Existing Literature 

Existing research on diabetes and Diabetic Foot Ulcer 

(DFU) prediction demonstrates the extensive use of machine 

learning and deep learning techniques across clinical and 

community applications. Early studies explored supervised 

learning models applied to electronic health records, 

emphasizing influential features such as blood chemistry, 

insulin usage, and socioeconomic factors. Some of the deep 

learning approaches, like CNN, advanced DFU detection 

improves ulcer classification by enabling multiscale feature 

extraction. To improve the diagnostic accuracy, some methods 

like multiscale fusion network, explainable AI models, and 

hybrid CNN-ELM have done their best. The expanding scope 

of non-invasive and multi-modal identification techniques has 

been demonstrated by DFU segmentation, thermographic 

imaging, gait analysis, and wearable sensors.  

The transformation of semantic features from large 

pretrained models to lighter student networks is demonstrated 

by Knowledge distillation. The bio-inspired optimized 

algorithms, which are metaheuristic methods like genetic 

algorithms, PSO, and hybrid optimization, have shown a great 

impact in enhancing ML models through feature selection and 

hyperparameter tuning. In recent years, deep learning models 

have been combined with metaheuristic techniques to do 

medical diagnosis. This research highlights the work 

integrating lightweight CNNS, KD, and automated 

optimization for DFU classification. 

2.6. Research Gap 

DFU-LWNet gives a deployment-ready, accurate, and 

compact model that is not dependent on the student model and 

the changes to the crucial KD Parameters. This research aims 

to identify the research gap in the existing research. 

• Lightweight CNN design 

• Knowledge Distillation 

• Metaheuristic hyperparameter optimization. 
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This research aims to enable the selection of the best 

configurations and promises excellent performance by 

preserving model robustness, which is a vital aspect in clinical 

settings that is done with limited resources and current 

constraints 

3. Materials and Methods 
3.1. Dataset Description and Preprocessing 

In this study, the DFU Patch Dataset is used, which is 

available on Kaggle. The dataset holds 1055 RGB images that 

are separated into two categories as follows: 

 

• Healthy: 543 images 

• Ulcerated: 512 images 

Each image is correctly extracted with a 224 by 224-pixel 

close-up patch of each image, and that represents whether the 

image is either normal or ulcerated. The image patch design 

identifies the crucial characteristic for distinguishing an ulcer 

from healthy tissue by using the spatial representation of skin 

texture, color abnormalities, and lesion boundaries. In the 

existing methodology, the same dataset is used, and thus, the 

splitting process is done [3]. The proposed method advances 

the baseline method to effectively handle variations in 

illumination, contrast, and skin tone variety. 

 Subsequent subsets are made from the entire dataset of 

1055 images using Graded sampling. 

 

• Training Set: 70%  

• Validation Set: 10%  

• Test Set: 20 % 

The stratification ensures that the proportion of abnormal 

and healthy images remains constant for every split. This is 

done to overcome class imbalance and thus increase the 

performance. The proposed research uses random shuffling 

for each epoch during training to deliver variation to mini-

batch building. After the random shuffling is done, the model 

is prevented from overfitting to specific image sequences.  

This method also uses a multi-step image groundwork 

pipeline to minimize overfitting and intra-class variation, but 

also optimize model generalization. The existing method 

focuses on resizing and normalization, but the proposed 

method uses a cumulative approach of doing adaptive 

histogram equalization, color space conversion, and 

sophisticated augmentation. All the images in the dataset are 

scaled to 224x224x3, which is consistent and ensures 

compatibility with pre-trained CNN architectures such as 

InceptionV3.Throughout the dataset, standardized input 

dimensions are ensured by this transformation, which is 

essential for batch processing in deep learning systems. To 

reduce the lighting fluctuations and to enhance the color 

consistency, this method uses a converted image from RGB to 

the LAB color space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Architectural flow of proposed methodology 

LAB color space is more reliable, and it allows 

upgradation of dissimilarity without altering the composition 

by separating luminance 𝐿 ∗ from chrominance 𝑎 ∗, 𝑏 ∗. This 

method applies CLAHE to the L channel to enhance local 

contrast in areas that are overexposed and darker. CLAHE is 

more suitable for subtle ulcer differences, as it does not over-

amplify noise, a common fault in standard histogram 

equalization. The current system lacks this development 

phase, which limits its ability to manage low-contrast 

situations. Each image is regularized to a zero-centered scale 

of [−1, 1] after being improved and then transformed back to 

RGB. This two-step standardization ensures numerical 

stability between batches and helps in mitigating gradients 

throughout backpropagation. The training set is dynamically 

expanded using a random mix of the following modifications 

to boost variety and enhance generalization, as denoted in 

Table 1. 

Table 1. Dataset modifications 

Augmentation Type Parameter Settings 

Rotation ±30 degrees 

Width/Height Shift Up to ±20% 

Zoom 0.8x to 1.2x 

Horizontal Flip True 

Shear 0.2 radians 

Fill Mode Nearest 

 

Input DFU Image Dataset 

Pre-processing CLAHE 

Normalization  

Re Size(222x224) 

Train Student Model  

(DFU-LWNet) 

BWOA OPTIMIZATION 

Prediction & Evaluation 

Teacher Model 

Pretrained on Image dataset 

Custom classification head 

Temp Scaled Max 
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A training batch's images may undergo one to three of the 

changes mentioned above. These assist the system learn 

invariant characteristics by mathematically creating a 

distributional change in the training domain. The existing 

approach required sophisticated geometric changes, rather 

than simply working on flipping and rotation. The 0.6% 

increase in classification accuracy observed in the ablation 

trials is primarily attributed to the augmentation policy. This 

method has previously shown pixel intensity histograms 

during CLAHE to assess the efficiency of preprocessing. 

Subsequent equalization, pictures showed: 

• Reduced overexposure in light skin tones 

• Improved visibility of ulcer boundaries 

• Balanced luminance across patches 

This method used t-SNE clustering on CNN-extracted 

features to assess class separability before and after 

augmentation. Results indicate better intra-class clustering 

post-transformation. 

Each image is allocated a binary label: 

• 0 → Healthy 

• 1 → Ulcer 

The effects of preprocessing are quantitatively confirmed 

using performance metrics from the same base architecture 

trained. It shows an accuracy of 87.3% without preprocessing, 

and with the full preprocessing pipeline, it shows an accuracy 

of 94.7%. The increase in accuracy of 7.4% signifies that 

preprocessing is done in an efficient way, which enhances 

discriminative learning. The existing methodology, after 

preprocessing, achieves a 3% gain since it uses only a minimal 

preprocessing technique. 

3.2. InceptionV3 as Teacher Model 

The teacher model represents strength and volume for 

generalization, which are crucial to the effectiveness of 

knowledge distillation. To efficiently define inter-class 

deviations and train a compact student network, a profound 

and expressive Convolutional Neural Network (CNN) is 

consequently desirable [3]. The research selects InceptionV3 

as the teacher model in this proposed approach, which is 

reinforced by its bare competence in multiscale exposed field 

learning and classified feature extraction. 

3.2.1. Overview of InceptionV3 

The achievement of Knowledge Distillation (KD) in deep 

learning-based medicinal image analysis is contingent on the 

wide choice of a high-performing instructor model. This 

research practice uses InceptionV3 as the instructor system for 

this investigation due to its excellent generalization 

capabilities and well-cultured architecture. InceptionV3 

utilizes numerous convolution kernels that run concurrently 

through its inception units to learn multiscale visual patterns. 

In the classification of DFU, where lesion size, shape, and 

color vary significantly, these dimensions are instrumental. 

3.2.2. Inception Module Operation 

The Inception module employs four parallel operations, 

and these feature maps are grouped along the channel axis to 

generate the module's output. It is mathematically expressed 

as Equations (1) to (4).  

F1 = Conv1×1(X) (1) 

F2 = Conν1×1 → Conv3×3(X) (2) 

F3 = Conν1×1 → Conv5×5(X) (3) 

F4 = MaxPool3×3 → Conv1×1(X) (4) 

Y = Concat[F1, F2, F3, F4] (5) 

The network is competently seized using this multi-

branch strategy, and it prepares for seizing hierarchical 

features with diverse agreeable fields. 

3.2.3. Model Adaptation for DFU Classification  

This model incorporates numerous architectural 

differences from InceptionV3 to inform it of the binary 

classification mission of DFU detection. The convolutional 

base was pre-trained on ImageNet and had the original 

classification head removed. Comprising the new 

categorization head are: 

• Global Average Pooling (GAP) 

• 128 ReLU units of a dense layer 

• Dropout layer rate is 0.3 

• 2 units of dense Layer with SoftMax activation 

Correctly, the prediction is given by Equation (6): 

Ŷ = Softmax(W2. Drop(σ (W1. GAP(f(X))) + b2 (6) 

Where f(x) is the feature map from the frozen base, W1 

and W2 are the weight matrices of the dense layers, and σ is 

the ReLU activation [3]. 

3.2.4. Loss Function and Optimization 

To train the model, categorical entropy is used. The 

predicted class probability is the one-hot encoded ground truth 

as given by Equation (7). 

ℒcE = − ∑ yi log(ŷi)
2
i=1  (7) 

Adam is used for optimization with the following 

measures: learning rate is 1e-4, batch size is 16, epochs is 20, 

and early stopping patience is 5. 

3.2.5. Temperature-Scaled SoftMax for KD 

After training, the instructor uses a temperature-scaled 

SoftMax to create "soft" objectives for knowledge distillation 

by Equation (8): 
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ŷᵢ(𝜏)  =   
𝑒𝑥𝑝(𝑧ᵢ / 𝜏)

𝛴ⱼ 𝑒𝑥𝑝(𝑧ⱼ / 𝜏)
 (8) 

Where τ > 1 controls the smoothness. Higher values yield 

softer distributions, revealing more inter-class information.  

 The Teacher training InceptionV3 is outlined in 

Algorithm 1. 

Algorithm 1: InceptionV3 Teacher Training 

Input: Given the Dataset D = {(xi,yi)}, that is Pretrained 

using InceptionV3 base 

Output: Trained teacher model as T(x) 

Step 1: The pretrained InceptionV3 base is loaded 

• To reserve learned feature weights, all the 

convolutional layers should be frozen. 

Step 2: Figure out the classification head by  

• Appending a Global Average Pooling (GAP) 

layer after the base  

• Add a Dense layer with 128 ReLU-activated 

units 

• Add a Dropout layer with a rate of 0.3 to 

prevent overfitting   

•  Add a dense layer with two units and SoftMax 

activation for doing the binary classification 

Step 3: Compile the model. In this model, use 

• Adam optimizer with learning rate η, 

• Set the loss function to Categorical Cross-

Entropy  

•  Accuracy as an evaluation metric 

Step 4: Train the model 

           Initialize early stopping monitor ← 0 

• For each epoch: 

i. Shuffling dataset 

ii. Forward pass: compute ŷ = 

T(x) 

iii. Calculate loss LCE 

iv. Backpropagate and update 

weights 

Step 5: Apply early stopping if desirable         

Step 6: Return the concluding trained teacher model T(x) 

 

3.3. Student Model DFU-LWNet 

3.3.1. Introduction 

Predictable medical image classification tasks today 

depend heavily on Convolutional Neural Networks (CNNs) 

[2]. Although the mainstream high-performance networks, 

such as ResNet and InceptionV3, are computationally 

challenging and parameter-heavy, this limits their usage on 

low-resource devices.  

To resolve this, a brand-new, lightweight CNN 

specifically designed for DFU classification with low 

computational cost, known as DFU-LWNet (Diabetic Foot 

Ulcer Lightweight Network), is utilized. DFU-LWNet 

balances depth, filter sizes, and activation competence and is 

precisely designed for binary medical classification tasks. It 

draws motivation from the design principles of lightweight 

networks, such as MobileNet and SqueezeNet. In contrast to 

the baseline models, DFU-LWNet can be cast off as a student 

model in knowledge distillation frameworks and is 

constructed from the ground up to be enhanced for DFU 

detection on small datasets 

3.3.2. Architecture Description 

A normalized dense layer, a SoftMax classifier, and a 

flattening process follow the three convolutional blocks that 

build DFU-LWNet. In each block, a Conv2D layer with ReLU 

activation is added. This is done to downsample the spatial 

resolution while preserving important features [18]. The 

architecture description is presented in Table 2. 

Table 2. Architecture description of DFU-LWNet 

Layer Parameters Activation Output Shape 

Input Layer - - (224, 224, 3) 

Conv2D-1 32 filters, 3x3 ReLU (224, 224, 32) 

MaxPooling2D-1 2x2 - (112, 112, 32) 

Conv2D-2 64 filters, 3x3 ReLU (112, 112, 64) 

MaxPooling2D-2 2x2 - (56, 56, 64) 

Conv2D-3 128 filters, 3x3 ReLU (56, 56, 128) 

MaxPooling2D-3 2x2 - (28, 28, 128) 

Flatten - - (100352,) 

Dropout rate = 0.3 - (100352,) 

Dense 128 units ReLU (128,) 

Dense Output 2 units SoftMax (2,) 

Convolutional Layers 

DFU-LWNet is built on top of the convolutional layers. 

To find local patterns, such as edges, corners, textures, and 

contours, a set of learnable filters, or kernels, is applied. In 

medical images, these patterns frequently indicate minor color 

shifts, ulcer boundaries, and irregularities in skin texture, 
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especially DFU patches, as denoted in Equation (9). By piling 

the filters in a hierarchical style, respectively of which learns 

to trigger in reply to a different sympathetic visual input, the 

arrangement can progressively recognize more complex 

features. 

𝑓(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑓(𝑙−1) + 𝑏(𝑙)) (9) 

Max Pooling Layers 

Each convolutional Layer is followed by max pooling 

layers, which subordinate the spatial resolution of feature 

maps while preserving the maximum critical statistics. The 

network is more resilient to minor variations or 

misrepresentations in ulcer pictures, spatial down-sampling, 

which is used to increase computing efficiency and offers 

some translation invariance, as specified in Equation. (10). 

The pooling process highlights the strongest activations, 

which typically correlate to significant medical pointers, by 

procuring the maximum value in a assumed region. 

𝑓(𝑙) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓(𝑙−1), 𝑘 = 2) (10) 

Flatten Layer 

The last convolutional block's 3D output is transformed 

into a 1D vector by the Flatten Layer. This process connects 

the dense layers, which carry out classification using learnt 

features, with the convolutional layers, which record spatial 

data. A simplified and abstract feature representation of the 

input image is represented by the flattened vector, as specified 

in Equations (11) and (12). 

ℎ = 𝜎(𝑤1 ⋅ 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑓[3]) + 𝑏1) (11) 

𝑦̂ = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝜔2 ⋅ ℎ + 𝑏2) (12) 

The final output 𝑦̂∈R2 provides class probabilities for 

healthy and ulcerated skin. 

 Dropout Layer 

A technique called dropout is used to circumvent 

overfitting, which is particularly vital in small medical 

datasets where recall poses an apprehension. To strengthen the 

network and simplify transversely numerous paths, an 

arbitrary proportion (30%) of neurons in the Dropout layer are 

silenced throughout training, as specified in Equation (13). 

ℎ̃ = ℎ ∘ 𝑟 (13) 

∘ signifies the Hadamard (element-wise) product ℎ̃ The 

normalized feature vector is promoted to the dense Layer 

throughout interpretation, dropout is inactivated, and 

beginnings are increased to uphold reliability as denoted in 

Equation (14): 

ℎ̃𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑝 ⋅ ℎ (14) 

Fully Connected (Dense) Layers 

High-level perception is influenced by dense layers, 

which are located at the network's end. The flattened feature 

vector is abridged into a dense method suitable for 

classification by the first dense Layer with ReLU activation. 

The model's confidence scores for the two classes of healthy 

and ulcerated skin are shaped by the last dense Layer, which 

has two output units and SoftMax activation, as denoted in 

Eqs. (15), (16), and (17). 

𝑧1 = 𝑤1ℎ + 𝑏1 (15) 

Where h1=max (0, z1) (element-wise ReLU)  

𝑧2 = 𝑤2ℎ1 + 𝑏2 (16) 

𝑦̂𝑖 =
ⅇ𝑧2ⅈ⋅

∑ 𝑒𝑧2𝑗2
𝑗=1

 (17) 

The model is trained using categorical cross-entropy as 

denoted in Equation. (18): 

ℒ𝑐𝐸 = − ∑ yi log(ŷi)
2
i=1  (18) 

Where yi_ is the one-hot encoded ground truth and ŷi is 

the predicted softmax score for class i. The DFU-LWnet 

Training is outlined in Algorithm 2. 

Algorithm 2: DFU-LWNet Training 

Input: Dataset D = {( Xb, Yb)}, learning rate η, batch size 

B, epochs E 

Output: Trained DFU-LWNet model 

Step 1: Initialize model weights W using He initialization 

Step 2: For epoch = 1 to E do: 

    a. Shuffle the dataset 𝒟 and divide it into mini-batches 

of size B 

    b. For each mini-batch of (Xb, Yb) 

        i.     Perform forward pass to compute prediction:   

               Ŷb ← DFU_LWNet(Xb) 

        ii.    Calculate cross-entropy loss using Equation (18) 

        iii.   Backpropagate the gradients L concerning W 

        iv.    Update weights using Adam optimizer (which 

applies adaptive moment estimates and learning rate 

adjustments) 

Step 3: Evaluate on the validation set at the end of each 

epoch 

Step 4: Save the weights W*, which correspond to the best 

validation performance 

           Return the Final trained model DFU-LWNet with 

weights W* 

3.4. Knowledge Distillation with DFU-LWNet  

Even if large models like InceptionV3 achieve excellent 

results on medical imaging tasks, their computational 

requirements make it problematic to deploy them in resource-
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constrained environments or in real-time. Knowledge 

Distillation (KD) provides a clear explanation of this complex 

issue by allowing a lightweight student network to benefit 

from the instructor's simplification without incurring the 

expense.  This section introduces DFU-LWNet, a lightweight 

CNN designed for the classification of DFU. InceptionV3 bids 

softened estimates that unswerving learning surpasses the 

restraints of rigid labels, while KD is cast off to train DFU-

LWNet. The accuracy of the current method, which used 

DFU-LWNet as the student model and InceptionV3 as the 

Teacher, was 96.23%.  

The research utilizes this setup, but by making significant 

advancements in temperature scaling, loss balancing, and 

optimization, it is able to achieve a higher performance of 

96.80%. 

3.4.1. DFU-LWNet Architecture with KD 

With attuned hyperparameters, the DFU-LWNet 

architecture used in this research closely resembles the one 

obtainable in existing techniques. This convolutional neural 

network is lightweight and designed to accurately classify 

medical images. The following is a description of the entire 

architecture as denoted in Table 3. 

Table 3. DFU-LWNet architecture with KD 

Layer Type Filter/Units Kernel Size Activation Output Shape 

Input - - - (224, 224, 3) 

Conv2D + MaxPool 32 3x3 ReLU (112, 112, 32) 

Conv2D +MaxPool 64 3x3 ReLU (56, 56, 64) 

Conv2D+MaxPool 128 3x3 ReLU (28, 28, 128) 

Flatten - - - (100352,) 

Dropout - - p=0.3 (100352,) 

Dense 128 - ReLU (128,) 

Dense 2 - Softmax (2,) 

The model contains approximately 2.5 million 

parameters.  Hierarchical feature extraction, particularly 

texture and edge patterns, which are vital for identifying 

diabetic ulcers, is supported by the convolutional layers. 

MaxPooling layers minimize the computational effort after 

reducing the spatial dimensions and maintain the pertinent 

characteristics. The problem of overfitting can be reduced by 

including the Dropout Layer. Through the final dense layer 

with SoftMax activation, binary classification probabilities are 

generated. 

 Binary classification probabilities are generated through 

a final dense layer with SoftMax activation. In contrast to the 

existing standard, the resolution customs optimization 

techniques discussed in subsequent sections aim to modify the 

dense layer thickness and dropout rate. The overall parameter 

count is ~2.5M, meaningfully slighter than InceptionV3's 

28M, allowing faster inference and lower memory 

consumption. However, this method integrates optimized 

dropout and learning rate parameters, while the current 

method uses the same architecture. 

 Let y ∈ {0, 1} ² be the one-hot encoded ground truth 

label, ηT be the SoftMax output from the teacher model, and 

Ϸ_S be the SoftMax output from the student model.  

Let x ∈ ℝ²²⁴ˣ²²⁴ˣ³ be the input image. The temperature-

scaled SoftMax is expressed in Equation (19). 

ŷi
(τ)  =

ⅇxp (𝑧𝑖 / τ)

Σⱼ ⅇxp(zⱼ / τ)
 (19)               

Where τ is the temperature parameter that smooths the 

predicted logits. 

Hard Loss (Cross-Entropy) is denoted in Equation(20). 

𝐿ℎ𝑎𝑟𝑑 = − Σᵢ yᵢlog ( ŷ𝑠,𝑖) (20) 

This loss measures the distance between the one-hot 

labels and student predictions.  

Soft Loss (KL Divergence) is denoted by Equation (21). 

𝐿𝑠𝑜𝑓𝑡 = Σᵢ ŷ𝑇,, 𝑖(τ)log (ŷ𝑇,, 𝑖(τ)/ŷ𝑆,, 𝑖(τ) (21) 

This loss helps the student mimic the Teacher's softened 

prediction distribution. Combined KD Loss is denoted by 

Equation (22). 

𝐿𝐾𝐷 =  α · τ2 · 𝐿𝑠𝑜𝑓𝑡 + (1 − α). 𝐿ℎ𝑎𝑟𝑑   (22) 

The coefficient that stabilizes hard and soft losses is 

called α. The gradient magnitude is scaled by τ². 

Wherever the two components are balanced by α ∈ [0, 1]. 

The gradient scaling is remunerated for by τ2.  

This preparation ensures a stable influence of both hard 

and soft objectives, something that the existing technique did 

not exactly address. DFU-LWNet Student Model with KD is 

outlined in Algorithm 3. 
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Algorithm 3: DFU-LWNet Student Model with KD 

Input: Dataset D = {( Xb, Yb)}, Trained teacher T, 

temperature τ, balance α 

Output: Trained student model S 

Step1: Set student model S (·) with random weights   

Step 2: Freeze all the layers of the pretrained teacher model 

T (·)   

Step 3: For each epoch = 1 to E, do   

a. For each mini-batch (Xb, Yb) from 𝒟 do   

i. Get teacher soft targets with temperature-scaled 

SoftMax utilizing the SoftMax   Equation (19) 

ii. Calculate the student predictions using  

        ŷS ← S(Xb)   

iii. Apply the temperature-scaled SoftMax to the 

student outputs using Equation (19).     

iv. Calculate the hard loss using categorical cross-

entropy using Equation (20).       

v. Calculate soft loss using the KL divergence using 

Equation (21).      

vi. Syndicate losses using Equation (22).  

vii. Bring up-to-date student model S via 

backpropagation using LKD   

Step 4: Return the trained student model S. 

3.5. DFU-LWNet with Knowledge Distillation and Binary 

Whale Optimization Algorithm (BWOA) 

The Binary Whale Optimization Algorithm (BWOA) is a 

metaheuristic search technique that draws inspiration from the 

communal hunting habits of humpback whales. The original 

Whale Optimization Algorithm (WOA) was modified to 

generate BWOA, which is particularly suitable for binary 

search spaces, such as feature selection and hyperparameter 

tuning [7]. This method utilizes BWOA to tune the 

hyperparameters of the proposed student model, DFU-

LWNet, in a knowledge distillation framework for DFU 

classification. 

 The addition of BWOA to the proposed pipeline was 

motivated by two goals: to increase the lightweight model's 

classification accuracy through hyperparameter tweaking, and 

to automate and validate the procedure of detecting the best 

configurations, thereby reducing manual labour and 

guesswork [37]. The combination of metaheuristic 

optimization and Knowledge Distillation (KD) in DFU-

LWNet proposals presents a collaborative method that meets 

the efficiency and accuracy requirements of DFU 

classification.  

KD handovers softened output distributions from a deep, 

pretrained teacher model to the student model, swelling its 

representative capability. Here, this method utilizes the Binary 

Whale Optimization Algorithm (BWOA) for automatic 

hyperparameter tuning to suggestively enhance DFU-

LWNet's performance, thereby circumventing the 

disadvantages of traditional search. 

The reasoning, development, and application of KD in 

conjunction with BWOA are presented in this section. The end 

product is a lightweight, efficient network that may preserve 

deployability while reaching classification performance 

comparable to sophisticated designs. In KD, the student 

network learns from both the soft labels Ϸ_T^((T)) produced 

by the teacher network at a higher temperature, as well as the 

hard labels y ∈ {0, 1} ². The two goals are balanced in the final 

KD loss function, as expressed in Equation (23). 

LCE =∝. T2. KL(ŷ𝐓
(𝐓)

|ŷ𝐒
(𝐓)

) + (1 − α). CE(y, ŷS
 ) (23) 

Humpback whales search for food using a superior 

technique known as bubble-net feeding. It includes two 

Primary techniques: the whales socialize everywhere their 

prey is in a spiral or weakening circle after approximating its 

location. Whales engage in exploitation and exploration as an 

alternative to lengthening their search in the vicinity of 

potential solutions and altering their course to steer clear of 

these local optima. DFU-LWNet's discrete hyperparameter 

space is examined using BWOA. Among the hyperparameters 

that were optimized are: 

• Dropout rate: {0.2, 0.4} 

• Dense layer units: {64, 128, 256} 

• Learning rate: {1e-4, 5e-4, 1e-3} 

Each candidate solution (agent) in the whale population 

is a binary string encoding one choice per hyperparameter, as 

denoted in Equation (24). 

A = 2a. r − a, C = 2. r, a = 2 −
2t 

t
D = |C − G∗ −

Xi
t|andXi

t+1   = G∗ − A. D (24) 

Binary adaptation uses a sigmoid transfer function as 

denoted in Equation (25). 

S(X) =
1

1+ⅇ−x => Xi = {
1 if S(X) > r
0  otherwise

 (25) 

The DFU-LWNet with KD and BWOA is outlined in 

Algorithm 4. 

Algorithm 4: DFU-LWNet with KD and BWOA 

Input: Dataset D, teacher T, search space H, KD params (τ, 

α), BWOA params 

Output: Optimized student model S* 

Step 1: Use random binary vectors from H2 to initialize the 

BWOA population. 

Step 2: For every whale (agent) in the population: 

    Decode the hyperparameters (LR, dense, dropout). 

    b. Use the current parameters to train DFU-LWNet with 

KD. 

    c. Assess the accuracy of validation and update fitness 

Step 3: Use the BWOA update rules to update whale 

positions. 
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Step 4: Continue until convergence is achieved or the 

maximum number of iterations is reached. 

Step 5: Retrain the final DFU-LWNet after choosing the 

optimal hyperparameter set. 

This method closes the performance gap between deep 

and lightweight CNNs by combining BWOA and KD 

together. DFU-LWNet becomes a more powerful diagnostic 

tool with the help of InceptionV3 and BWOA refinement in 

real-time and with higher accuracy [32]. This method creates 

a scalable framework for the exact AI healthcare systems. 

4. Results and Discussion 
4.1. Evaluation Metrics 

This research method uses a range of statistical and 

computational measures to evaluate the performance of the 

models in DFU detection [18].  

The metrics were chosen to provide a clear view of 

diagnostic consistency, and they are mostly used in medical 

imaging. The statistical measures are model size, parameter 

count, inference time, recall (REC), specificity (SPEC), 

accuracy (ACC), precision (PRE), and F1-score. 

4.1.1. Accuracy (ACC) 

Accuracy is the proportion of the correctly identified 

cases and includes the true positive and true negative in the 

total number of samples. In a medical dataset, if there is a class 

imbalance, which is a common issue in medical datasets, the 

final accuracy will provide a misleading impression of the 

whole performance of the system. 

4.1.2. Recall (TPR) or Sensitivity 

The model is correctly identified, and recall is the 

proportion of true positives. This is very crucial in medical 

datasets, particularly for DFU diagnosis, as it is a missed 

diagnosis and will lead to severe consequences. 

4.1.3. Specificity (TNR) 

Specificity ensures that healthy and ulcerated images are 

not mistakenly identified, and this measure is used to 

determine the actual negative rate and help avoid false alarms. 

4.1.4. Inference Time 

This is the number of milliseconds (ms) needed to classify 

one image. Low inference times are crucial for real-time 

applications, particularly in embedded and mobile medical 

devices. 

4.1.5. Parameter Count and Model Size 

Parameter count is used to measure the storage footprint, 

usually in MB, and also measures the quantity of trainable 

parameters. Smaller models find difficulty with deployment in 

edge devices with constrained memory and storage, smaller 

than the models that are crucial. The InceptionV3 teacher 

model provides higher classification accuracy and contains 

approximately 28 million parameters. It requires 90 MB of 

storage, and this cannot be done for real-time deployment.  

The proposed model, DFU-LWNet, is designed to be 

more compact. It contains approximately 2.1 million trainable 

parameters and comprises a model size of 8.4 MB. Knowledge 

distillation improves DFU-LWNet learning capabilities 

without increasing its model size, and the architectural 

structure is not changed.  

Binary whale optimization is used for optimization, and 

hyperparameter tuning is done. There is a moderate increase 

in the parameter count with 2.3 million parameters and a 

model size of 9.2 MB. This is suitable for edge deployment 

and provides improved classification performance.  

4.2. Implementation Details and Hyperparameter Selection 

The implementation of the model is done in Python using 

TensorFlow 2.9 and the Keras Library. Uses NVIDIA Tesla 

GPU and 16 GB of RAM in Google Colab. Early stopping, 

model checkpointing, and real-time data augmentation are 

done to ensure industry best practices and adhere to them.  

The dataset used in this approach is a publicly available 

dataset that is separated into 2 categories: Healthy and 

Ulcerated skin. Each image in the dataset was resized to 224 

× 224 pixels. The preprocessing pipeline was normalized to 

the [-1, 1] range by following illumination normalization and 

using Contrast-Limited Adaptive Histogram Equalization 

(CLAHE). 

4.3. Data Partitioning 

• 80% of the training set 

• 10% is the validation set. 

• 10% is the test set. 

• 32 is the batch size. 

• Optimizer-Adam. 

• Epochs- Up to 30 epochs with early stopping after five 

consecutive non-improving epochs. 

• The Learning Rate was initially set and dynamically 

adjusted during tuning. 

4.3.1. Hyperparameters in BWOA 

• [0.2,0.4] are the rates of dropout. 

• [64, 128, 256] are the units of the Dense Layer. 

• [1e-4, 5e-4, 1e-3] are the learning rates. 

The Binary Whale Optimization Algorithm was run with 

population sizes of five and ten, with ten iterations in order to 

balance search exploration and convergence duration. This is 

done in contrast to the existing method that employed a set 

configuration of learning rate (1e-4), dense units (128), and 

dropout (0.3). 
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4.4. Teacher Model Performance: InceptionV3 

The instructor model for knowledge distillation is 

InceptionV3.InceptionV3 has a comprehensive architecture 

and has shown efficiency in medical imaging tasks. This 

method combines auxiliary classifiers, factorization, and 

convolutions to enhance feature extraction at multiple level. 

DFU-LWNet is a lightweight student model for edge 

development in an environment that has fewer resources.  

DFU-LWNet was trained using traditional supervised 

learning on a ground truth table in its baseline configuration, 

and this is done using knowledge distillation (KD). There are 

three convolutional blocks, and each is followed by batch 

normalization, ReLU activation, and max-pooling layers, as 

well as by flattening and a fully connected classification head. 

This model demonstrates good baseline results with an 

average inference time of 22 ms per image and provides an 

accuracy of 94.12% with 2.1 million parameters. This method 

has a substantially lower computing cost that meets clinical 

diagnostic requirements and gives slightly lower performance 

than InceptionV3. DFU-LWNet is suitable for embedded 

applications, and this has the capacity to overpredict ulcers 

because of its limited capacity. 

4.5. DFU-LWNet with Knowledge Distillation (KD) 

DFU-LWNet’s Classification improved by incorporating 

KD into its training pipeline. The student model was trained 

to replicate the probabilistic behavior of the teacher model by 

using the soft logits instead of completely relying on binary 

labels. This enables a richer training signal and captures 

similarities between classes. DFU-LWNet performance 

increased with KD, and accuracy rises to 96.23% and the F1-

Score increases to 96.32%.  

The same configuration is repeated as in the existing 

methodology and confirms the generalizability of the KD 

technique. There is a slight difference in inference time, which 

is 1 ms, and this can be neglected when comparing to the 

diagnostic advantages. 

4.6. DFU-LWNet with KD and Binary Whale Optimization 

Algorithm (BWOA) 

The limits of the KD-based DFU-LWNet were tested by 

automatically adjusting three key hyperparameters -learning 

rate, dense layer size, and dropout rate - using BWOA. The 

whale population changed over ten cycles, steadily increasing 

its fitness score (1 - validation accuracy). 

The optimal configuration discovered was: 

• Dropout: 0.2 

• Dense Units: 256 

• Rate of Learning: 5e-4 

This configuration yielded the best-performing model 

among all evaluated versions, outperforming both manually 

and grid-search-tuned counterparts. In comparison to the fixed 

KD configuration in the current method, BWOA improved 

accuracy by 0.57% and F1-score by 0.6% while maintaining 

computing performance. The slight increase in parameter 

count (from 2.1 million to 2.3 million) is worthwhile for the 

improvement in clinical performance.  

This result demonstrates that BWOA can effectively 

identify configurations that are close to optimal through 

binary search. 

4.7. Ablation Study 

To assess the distinct effects of Knowledge Distillation 

(KD) and the Binary Whale Optimization Algorithm (BWOA) 

on the final model's performance, this research conducted an 

ablation study. DFU-LWNet was systematically evaluated in 

four configurations. The goal of the experiment is to determine 

the optimal configuration due to its computational efficiency 

and performance, and to investigate the impact of each 

element on the final classification metrics.  

The results of the experiment show how the Knowledge 

distillation method transfers semantic information from the 

instructor model and increases its performance. There is a 

slight increase, which is offered by grid search, and that 

signifies the limited capacity to investigate its optimal 

configurations. BWOA provides the best performance 

improvement at a very minimal computational cost.  

The enhanced model is the same as the original model but 

gives a 10x reduction in model size and over 3x faster 

inference. This makes it more ideal for mobile health 

applications, mainly in rural areas or areas that have poor 

resources. The performance difference between KD-fixed and 

KD-BWOA appears negligible when tested on large screening 

datasets but leads to an important reduction in misclassified 

instances.  

4.8. Inference Time Analysis 

Inference time is an important metric in real-time 

diagnostic systems. If there is a long inference time, it reduces 

user confidence in the mobile application and delays the 

clinical diagnosis.  

Table 4. Inference time analysis 

Models Inference Time Analysis 

InceptionV3 89 ms 

DFU-LWNet (Baseline) 22 ms 

DFU-LWNet - KD 23 ms 

DFU-LWNet-KD with 

BWOA 
24 ms 
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Fig. 2 TPR analysis of DFU on different deep learning models 

 

 
Fig. 3 TPR analysis of DFU on different deep learning models 

 
Fig. 4 Classification accuracy analysis of DFU on different deep learning models 
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The inference benchmarks between the models show a 

notable difference in latency and computational load. The 

proposed model takes four times as long to deduce compared 

to the teacher model. This shows the usefulness of the compact 

model that can be enhanced by intelligent optimization and 

knowledge distillation. BWOA shows a slight increase in the 

number of parameters and inference time, and stays within the 

acceptable bounds for real-time applications. The method KD 

with the BWOA model demonstrates improved stability, 

which is reliable for embedded deployment with the lowest 

variation in the inference time. The proposed method, DFU-

LWNet-KD with BWOA, shows the best balance between 

computational cost, performance, and reliability. 

InceptionV3's high accuracy disproves its computational cost 

and unsuitability for real-time and in deployment with fewer 

resources. 

5. Conclusion 
This research method develops a robust and lightweight 

deep learning architecture for classifying DFU images using a 

novel combination of Knowledge distillation and the Binary 

Whale Optimization Algorithm (BWOA). The recommended 

student model, DFU-LWNet, was designed for efficient 

implementation in an environment with fewer resources. A 

less resource-intensive environment can be embedded in a 

mobile medical diagnostic device. The outcome provides 

implementation of the approach in a feasible way. The teacher 

model, with an accuracy of 96.91% performs as the 

performing teacher model. The teacher model is difficult to 

implement because of its numerous parameters and inference 

time, mainly in environments with fewer resources. DFU-

LWNet shows a reasonable balance between accuracy and 

efficiency in its basic setup. DFU-LWNet accuracy increases 

by 96.23% after doing KD training and demonstrates the 

efficiency of teacher semantic feature knowledge transfer. The 

important change occurred after the addition of BWOA, which 

automatically increases the student model hyperparameters. 

DFU-LWNet achieves 96.80% accuracy with 2.3 million 

parameters and 24 ms inference time. This kind of integration 

demonstrates the dual benefit of the method, which has high 

accuracy and efficiency. This methodology ensures that this 

can be applied to medical image classification issues beyond 

DFU. This method outperforms the existing method and the 

baseline system described in the existing methodology by 

replacing empirical tuning with a good optimization strategy. 

The integration of knowledge distillation and metaheuristic 

optimization into a lightweight CNN architecture is an 

innovative approach for medical image diagnostics. This kind 

of platform pushes the limits of performance and makes it 

easier to use a small deep learning model in practice. In the 

future, this research aims to extend to multi-class DFU phases 

and integrate temporal data from longitudinal case studies, and 

try to enhance its prediction modeling. This work aims to 

provide practical implications for real-world DFU monitoring 

and deliver an accurate, lightweight, and deployable model 

suitable for clinical settings with low resources. The 

framework can be extended in the future to multi-class stages 

and higher clinical followers. The future work also aims at the 

integration of longitudinal data and validates the system 

across the globe with diverse patients, and enhances 

generalizability. 
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