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Abstract - The process selection policy of the linux load balancer pays no attention to the origin of the processes while selecting 

them for migration in NUMA Multiprocessor Systems. Consequently, the migrated processes may experience large memory 

latencies, and the load balancer may degrade the system performance, particularly when the number of memory access levels is 

large. This paper proposes a novel load balancing algorithm for NUMA Multiprocessors that attempts to keep the processes on 

or near their originating nodes and thereby reduces the memory access overheads to zero or minimum, resulting in significant 

performance gain (ranging from 7 to 23% for various NUMA systems) over the existing load balancer. 
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1. Introduction 
Non Uniform Memory Access (NUMA) architecture is 

commonly used for designing modern multiprocessor and 

multicore systems. A NUMA Multiprocessor/ Multicore 

system is designed in terms of Nodes. Each node contains a 

set of processors and a portion of the main memory placed on 

a common bus. A high-speed interconnection network 

connects the nodes with one another. Memory in a specific 

node is at a distance (referred to as latency) from the 

processors of other nodes, causing non-uniform access times 

of on-Node and off-Node memories [1, 13]. Figure 1 

represents a NUMA multiprocessor system with two Memory 

Access Levels (MALs). It is said to have two MALs because 

of two different memory latencies: When an access of memory 

is made by a processor in its own node and when an access is 

made in a different node [3]. 

1.1. Dynamic Load Balancing 

Linux incorporates a Dynamic Load Balancer in its 

scheduler to keep the load of the processors balanced in 

NUMA Multiprocessors. This load balancer uses a data 

structure called ‘sched domain’ to organize the processors in 

a hierarchy that imitates the physical hardware. It consists of 

a group of processors sharing the properties and scheduling 

policies [16]. Figure 2 shows the scheduling domain hierarchy 

for the NUMA system depicted in Figure 1. The lowest level 

scheduling domains are named CPU/Core domains, each of 

which comprises all the processors of a specific node and 

points to a higher domain, the node domain,  comprising of 

this node and all the nodes that are located at some distance 

from it [3]. The scheduling domain hierarchy defines the 

scope/extent of load balancing for each processor. The Load 

balancer performs the load balancing when triggered in the 

following conditions [11, 15]:  

• Periodically at regular time intervals: The complete 

scheduling domain hierarchy is periodically traversed, 

beginning at the scheduling domain of the current 

processor,  and a balancing operation is initiated. At each 

level, the most loaded processor of the most loaded 

scheduling group is looked for, and migration of tasks 

takes place from that processor to the current processor if 

the busiest processor’s load is greater than the current 

processor’s load according to the load threshold, which is 

normally 25%. 

• When a new task is created or a task wakes- up: This task 

is allocated the least loaded processor of the least loaded 

scheduling group (node) in its current domain. 

• Whenever a processor goes idle, idle load balancing is 

carried out by the idle processor, and tasks are migrated 

from the busiest processor of the busiest scheduling group 

in its current domain to this processor. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1  NUMA  multiprocessor system having two memory access levels (P1, P2…  are CPUs) 

 
Fig. 2 Scheduling domain hierarchy for NUMA multiprocessor system having two memory access levels 

 
Fig. 3  NUMA multiprocessor system with six memory access levels 
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The preceding description makes it clear that dynamic 

load balancing involves a large number of process migrations, 

resulting in significant memory access overheads due to the 

penalty incurred when data is accessed from a remote memory 

instead of local memory. However, the process selection 

policy of the load balancer does not keep the origin of the 

processes in view while selecting them for migration. 

Consequently, the linux load balancer results in large memory 

latencies, especially when the number of memory access 

levels are higher.  

2. Process Migration in Linux: An Analysis 
In order to understand the process migration policy of the 

linux load balancer and to explore the possibility of its 

improvement, the load balancing operation for a NUMA 

system with an architecture similar to the system shown in 

Figure 3,  with  6 Memory Access Levels, 16 Nodes and 2 

Processors per Node  [3], is explained here.  

For this example system, Table 1 shows (partially for a 

few Nodes) the relative distance (memory latency) between 

the nodes. In the table, the value of a position Pi,j  denotes the 

distance from node i to node j. The distance from a node to 

itself is called SMP distance, and its default value is 1x. All 

other distance values are relative to SMP distances.  

For instance, the distance from node N0  to node N1 is 2x,  

meaning that a processor in N0 accesses a memory area in N1 

two times slower as compared to the memory area in N0 [3]. 

(N0, N1, N2 … N15 are Nodes; P0, P1 … P31 are Processors) 

Figure 4 depicts the nodes at various sched domain hierarchy 

levels for a particular node N0.  

As shown,  for node N0, nodes N1, N6, N11 are II-level 

nodes; N2, N7, and N12 are III-level nodes, and so on. The 

above information is used by a load balancer while selecting 

the processes for migration. 

Table 1. Memory latencies of different nodes from a particular node 

 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 

N0 1x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 

N1 2x 1x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 

N2 3x 2x 1x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 

N3 4x 3x 6x 1x 4x 5x 6x 2x 3x 4x 5x 6x 2x 3x 4x 5x 
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For a load balancing cycle, the load balancer executing on 

a processor (say P1, in Node N0) performs the load balancing 

in N0, then finds the busiest processor in the next level Nodes 

N1, N6, N11 (suppose it is P12,  in N6), and finding the load 

imbalance between P1 and P12, pulls the processes  p21, p9, 

and p88 which originally belong to distant nodes with 

reference to current node, even though processes p37, p45 and 

p17  belonging to N0 or the nearby nodes, are present. Figure 

5 depicts the runqueues of processors P1 and P12 and the 

process migration done to balance the load between these two 

processors.   

In order to analyze the Linux load balancer’s functioning, 

load balancing was performed for the NUMA system, for 

example,  with various workloads consisting of different 

numbers of CPU-bound processes having varying execution 

times and random arrival. As per the simulation results given 

in Table 2, a large % of processes remained away from their 

originating Nodes/processors throughout their lifespan. In 

general, a large number of processes are migrated away, and 

no attempt has been made to send them back to their parent 

nodes. This policy of migration results in large overheads 

related to memory access and, consequently, in the degraded 

or non-optimum performance of the system. In a load-

balancing scenario, the total memory access time of all the 

processes can be computed  as:  

Total Memory Access Time (TMAT)  =      

n        L 

∑       ∑      Pi_nmaMAL  *  TmaMAL 

 i=1     MAL=1 

Where,  n = No. of processes (P1 to Pn)    

 L = No. of Memory Access Levels 

(MAL=1 to L)     

 Pi_nmaMAL = No. of memory accesses done by 

process  Pi at a  particular Memory 

Access  Level  MAL 

 TmaMAL  = Time required for  one memory access 

at Memory Access Level MAL 

Table 2. No. of processes executed on the nodes distant from their 

parent nodes (for example, NUMA system and workload) 

Total No. 

of 

Processes 

Processes Executed on the Nodes 

Distant  from Respective Parent Nodes 

No. of such 

processes 
% of such processes 

100 46 46 % 

200 96 48 % 

300 129 43 % 
 

It is clear from the above expression that to reduce the 

TMAT and thus the Av. TAT of the processes and number of 

accesses done by any process to remote memories should be 

minimized. The foregoing analysis of linux load balancing 

reveals the key point for performance enhancement; that is, 

attention should be paid to the originating Node of any process 

while balancing the load of the processors. The load balancer 

proposed in this paper considers this point to reduce memory 

access time.  

3. Related Work 
The key to performance enhancement of load balancing 

techniques is to avoid unnecessary process migrations and to 

minimize the memory access overheads if all the migrations 

are necessary. This section presents the work done by the 

researchers in order to minimize the memory and cache access 

overheads. Focht et al. [5] discuss measures for performance 

improvement, such as localizing the memory references and 

input/output, executing the processes on their originating 

nodes, etc. Khawatreh in [18] discuss the methods of reducing 

the process migrations to make the load balancer efficient. 

Kermia et al. [12],  Pusukuri et al.  [14] and  Khawatreh et al. 

[17] have also made significant contributions in this direction. 

In a multithreaded environment, a load balancer should either 

avoid migration of threads among nodes or select the threads 

for migration so that memory access overheads are minimal. 

A technique to avoid the migration of threads to remote 

nodes by limiting their movement within smaller zones is 

proposed by authors in [9]. Diener et al. propose in [10]  a 
Kernel-based mechanism for thread and data mapping for improving 

memory affinity. Chiang et al. have also discussed the locality 

issue and designed the appropriate policies for selecting the 

threads for migration. Proper mapping of threads to cores and 

data access to their nodes significantly enhance the system 

performance; on the contrary, migration of inappropriate 

threads degrades it. Considering this important aspect related 

to selecting appropriate threads for migration, the authors 

presented two important policies.  In the first one, a memory‐

aware kernel mechanism and inter-node thread migration 

policies are proposed to reduce remote memory accesses. 

Modifications in the load balancing approach of Linux for 

inter-node thread migration were made to track the memory 

usage of each thread on each node. Based on this information, 

the load balancer can select appropriate threads for the 

migration [19]. 

 The second policy, the thread-aware selection policy, 

considers the distribution of threads on nodes for every thread 

group while migrating a thread for inter-node load balancing. 

The migrated threads must be selected effectively since the 

related operations run in the critical path of the scheduler. The 

experimental results show a performance improvement of 

approximately 11 % against the existing linux kernel [20]. The 

author in [4] describes the work on optimization of thread 

affinity and memory affinity for remote core locking 

synchronization in multithreaded programs for multicore 

systems. Another approach to minimize memory access 

overheads in NUMA systems is to use operating system page 

protection mechanisms to induce faults to find which thread 

accesses which pages to migrate the thread and its working set 
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of pages to the same node. However, many existing 

mechanisms do not fully fit the requirements of truly 

multithreaded applications with non-partitioned access to 

virtual pages. Thus, the fault of one thread may mask those of 

other threads on the same page, resulting in inaccuracy in 

estimating the working set of individual threads. To address 

this problem,  a lightweight O/S  support for linux, named 

‘multi-view address space’, is proposed in [7]. Transferring 

the memory pages of the process to the same node to which 

the process has been migrated can be an alternative solution to 

bring down memory access overheads to zero. However, the 

migration of memory pages is a resource-intensive operation 

and has an impact on the system’s overall performance. 

Therefore, an approach to migrate only the demanded pages, 

and not all the pages,  is proposed in previous study.  

The decision to migrate a process’s memory is, therefore, 

not trivial, and many factors need to be taken into account 

before making a final decision [6].  In recent work, Chiang et 

al. also reached a similar conclusion that memory page 

migration, if not done very carefully,  may degrade the 

performance. In [2], the authors point out that, though the 

current linux kernel transfers the referenced memory page of 

a process to the node it is presently executing, on the 

occurrence of a page fault, this migration incurs additional 

memory access overheads because of the costly page fault 

handling and page migration operations. In another work, 

Barrera et al. suggested a method to reduce the memory page 

migrations after a process migration by exploiting 

computation dependencies. The objective was to minimize the  

NUMA effects on performance in migrating threads, memory 

pages, and both [8]. When a process gets migrated from one 

node to another, its memory may get scattered on many nodes 

due to load-balancing operations. To minimize contention for 

remote memory access, Chiang et al. improve the kernel’s 

inter-node load balancing by migrating appropriate processes/ 

threads to remote nodes. 

Since the inter-node page migration is a costly affair, they 

improved the inter-node load balancing mechanism of Linux 

to minimize inter-node memory access. This is made possible 

by selecting the processes for migration while keeping their 

memory usage in view, such that the selected processes use 

the minimal number of page frames and/or share the minimum 

amount of memory with other processes [2]. Many other 

researchers have also proposed and discussed the techniques 

for enhancing the efficiency of the linux load balancing 

technique and, consequently, the efficiency of NUMA 

systems. However, in light of the intricacies of load-balancing 

operations and ongoing advancements of   NUMA machines, 

effective and efficient load-balancing techniques need to be 

developed to minimize the overheads of load-balancing. The 

work presented in this paper focuses on performing the 

process migration considering the originating nodes of the 

processes. It will make a significant contribution towards the 

performance improvement of NUMA Multiprocessor systems 

by developing cutting-edge load balancers. 

4. Origin Aware Load Balancing 
The novel load balancing algorithm proposed herein 

improves the performance of the existing load balancer by 

reducing the memory access overheads. While executing on a 

particular processor, the proposed load balancer prefers to pull 

the processes belonging to that processor/ node OR pushes the 

processes belonging to distant nodes (if present in the 

runqueue of the current processor) back to their parent 

processor/ node or a neighbour node. This approach reduces 

the memory access overheads to zero or minimum and, 

therefore, achieves significant performance gain. A load 

balancer, therefore,  should try to avoid migration of processes 

to distant nodes in order to avoid indirect overheads of load 

balancing, viz., the remote memory access and cache-miss 

overheads (Liu, 2018). 

 The Process Selection and Process Placement policy 

incorporated in the  Origin Aware Load Balancing Algorithm 

attempts to ensure the execution of any process on a processor 

in its parent node or nearby node for the maximum of its life 

span. The Origin Aware Load Balancer is composed of two 

components: the Receiver-Initiated Load Balancing (RI-LB) 

component and the Sender-Initiated Load Balancing (SI-LB) 

component. It performs the receiver-initiated load balancing 

and sender-initiated load balancing in alternate cycles of 

periodic load balancing. The proposed load balancer makes 

use of the following process selection  and  placement policy.  

4.1. Process Selection & Placement Policy 

The Receiver-initiated load balancing is performed 

similarly to linux load balancing but with a different process 

selection policy used. In RI-LB, according to the process 

selection policy, out of the processes eligible for migration 

from the busiest processor at a particular sched domain level, 

the processes that originated on the current processor/node are 

first migrated, followed by the other processes.  In the Sender-

initiated load balancing cycle, the load balancer attempts to 

send the processes back to their parent nodes while performing 

the load balancing. The load balancer checks the current 

runqueue to find whether it contains the processes originating 

on distant processors/nodes.  

For each of such processes, if found, the possibility of 

sending it back to its parent processor /node is examined. If 

the current processor is more loaded than the parent processor,  

the selected process is migrated (pushed) to its parent 

processor; otherwise, it is migrated to another processor of the 

parent node, if possible. The operation is repeated for all 

processors of the current node and then for each remaining 

node. This policy balances the load as well as makes the 

memory access time of the migrated process, a minimum. As 

per the above load balancing methodology followed by the 
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proposed algorithm,  a processor can offload its processes to 

their respective parent nodes, thereby reducing the memory 

access time of the migrated processes. However, sometimes, 

the parent processor or the node,  due to being overloaded, is 

not able to accept the processes from the other processors. To 

address this possibility, two variants of the SI-LB component 

of the Origin Aware Algorithm have also been developed, as 

described in the following sub-sections. 

4.2. Origin Aware Load Balancing (SI-LB): Variant1 

When it is not possible to migrate a process to its parent 

processor/node,  the parent processor or some other processor 

of the parent node is checked to find the presence of a process 

belonging to the current processor, and if found, the two 

processes are exchanged, i.e., the two processes are migrated 

to their respective parents. 

4.3. Origin Aware Load Balancing  (SI-LB): Variant2 

If it is impossible to migrate a process of the current 

processor to its parent processor or node even after performing 

the load balancing through SI-LB variant1, loads of the nearest 

neighbour nodes of the parent node are examined to find the 

possibility of migration. If possible, the process will be 

migrated. Otherwise, this procedure is repeated for the next 

level of hierarchy (upto the sched_domain hierarchy, which is 

one or two levels below the level to which the current Node 

belongs relative to the parent Node of the process). In this 

way, the Origin Aware Load Balancing algorithm makes all 

possible attempts to minimize memory latencies of the 

processes by making them execute on their parent or 

neighbour nodes.  

4.4. Functioning of the Origin Aware Load Balancer: An 

Illustration 

To illustrate the functioning of the Sender-initiated load 

balancing component of the Origin Aware Load Balancer,we 

consider a load balancing scenario shown in Figure 6 and the 

load balancer executing on processor P0 belonging to Node 

N0. When the sender-initiated load balancing cycle begins, the 

load balancer executing on P0  finds few processes in its 

runqueue, originating on distant nodes, as shown in Table 3. 

As per the policy, the load balancer migrates the farthest 

originated processes, p45 and p118, to the respective parent 

processors (P10) in  Node N5, the farthest node from the 

current Node N0. Next, while attempting to migrate p31, it 

was found that processor P11 was not underloaded, and P10 

was not underloaded.  

Thus, the two processes- p31 and p91are exchanged 

between P0 and P11 as per variant 1 of the algorithm. Next in 

sequence, an attempt is made to migrate p17 to P28 or P29, 

but this attempt fails; the exchange of processes between any 

of these processors and P0 could not be done, and therefore, 

as per variant2 of the algorithm, process p17 is migrated to a 

node (processor P24) nearer to its parent. Following this, 

process p1 is considered for migration; however, it could not 

be migrated, and therefore, it continues to execute on the 

current processor only. The remaining two processes, p9 and 

p37, are not migrated as p9 belongs to the next level node 

only; p37 belongs to the current processor only. 

4.5. Origin Aware Load Balancing Algorithm 

The Receiver-initiated load balancing component of the 

Origin Aware load balancer functions similarly to the linux 

load balancer, except that it prefers the processes belonging to 

the current processor or node for migration. The other 

component of the algorithm- the Sender-initiated load 

balancing component is described in this section.  

The Origin Aware Load Balancer carries out the initial 

load balancing in the same way as done by linux. Regarding 

idle load balancing, when the load balancing operation is 

triggered by a processor having zero load,  processes are 

pulled from heavily loaded processors, preferring the 

processes that originated on the current processor.  

Table 3. Processes originated on other nodes and currently present in 

the  runqueue  of  processor P0 

Process 
Node (and processor) on which  the 

process was originally created 

p37 N0 (P0) 

p1 N3 (P6) 

p9 N1 (P2) 

p45 N5 (P10) 

p31 N5 (P11) 

p17 N14 (P28) 

p118 N5 (P10) 

Algorithm 1: Origin Aware Load Balancing  (Sender-Initiated Load Balancing) 
// Periodic Load Balancing: The following steps (steps 1 to 42) are carried out when the load balancer is invoked during alternate 

cycles of Periodic Load Balancing to perform Sender-initiated load balancing. 

// For all the Nodes N=1 to n and processors P=1 to p of each Node,  execute this code on each processor. 

1. { 

2. curr_node= N; 

3. curr_processor= P; 

4. For curr_processor, find  all processes which are originated on other nodes 

(off-node  processes)  and  presently exist in its  runqueue; 

5. x=  no. of all  such processes; 
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6. if (x > 0) 

7. { 

8. For  processes K=1 to x  do    //for all off-node processes in the runqueue   of  curr_processor 

9. { 

10. curr_process= process K; 

11. target node=N’ ;                                 // N’ is parent node of curr_process 

12. curr_level_of_sched_domain= L       //Relative to N’, curr_node is at Lth                                                                                           

level of  sched_domain hierarchy 

13. target_processor=P’ ;                         //parent processor of curr_process 

14. check the load of target_processor; 

15. if (load of curr_processor > load of target_processor) 

16. { 

17. obtain lock on target_processor; 

18. obtain lock on curr_processor; 

19. migrate process K from curr_processor to target_processor;        //PUSH  migration 

20. migrated=TRUE; 

21. release lock on curr_processor; 

22. release lock on target_processor; 

23. } 

24. else      //if curr_process can not be migrated to parent processor 

25. { //Attempt to migrate the curr_process to some other processor, other than the parent processor, of the parent node  

(which is N’) 

26. target_node=N’ ; 

27. For all processors of target_node do 

28. { 

29. target_processor = next processor of target_node; 

30. execute steps 14 to 23; 

31. if (migrated)            //if curr_process is migrated to some  processor of  parent Node 

32. go to step 39; 

33. } 

34. }     //End of If statement at step no. 15 (and the Else part at step no. 24) 

35. if (not migrated)     //if curr_process could not be migrated to its parent Node 

36. attempt migration of curr_process to parent Node by exchanging this process with some 

process  on the parent node, as per Variant1 

37. if (not migrated)     //still if curr_process could not be migrated to its parent Node 

38. attempt migration of curr_process to nearest possible neighbor of its parent node, as per Variant2 

39. K= K+1;         //take up the next process 

40. }                     // End of FOR loop at step no. 8 

41. }       // End of If statement at step no. 6 

42. }       //End of Algorithm   (Sender-initiated component of the algorithm) 

5. Simulation and Results 
To assess the performance of the Origin Aware Load 

Balancer, experimentation was carried out  using a NUMA 

Multiprocessor/Multicore system simulator for linux [19]  for  

three NUMA Systems M1 to M3, with  number of  Nodes (N), 

number of  processors per Node (P/N) and  number of Memory 

Access Levels (MAL) as following:  

• M1:  N=16,  P/N=2,  MAL=6   

• M2:  N=16,  P/N=4,  MAL=6   

• M3:  N=8,    P/N=2,  MAL=3  

For each system, different workloads were generated with 

combinations of, 

• Number of processes,  

• Process Execution time: Fixed average time or varying 

time   

• Process arrival: same time, periodic or random  

• Process type: CPU bound or IO bound or a mix of  CPU 

and IO bound. 

5.1. Turn Around Time  and  Performance Gain 

The experimental results in terms of Turn Around Time 

(in ms) and Performance Gain (improvement in TAT in %) are 

presented in Tables 4 through 6 and also depicted in the graphs 

given after the corresponding Tables; W1, W2, W3 

characterize the workloads.  
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5.2. Information Obtained from Traces of the Processes   

Information obtained from the traces of processes 

regarding a number of processes migrated and executed on the 

nodes distant from respective parent nodes is presented in 

Table 7.  

Traces of a few processes are also given in Table 8, 

depicting how processes were migrated back to parent Node 

or neighbour Node in Origin Aware Load Balancing. 

5.3. Observations and Discussion  

The experimentation results clearly show that the Origin 

Aware Load Balancer outperforms the Linux Load Balancer. 

For  NUMA systems with varying configurations and different 

workload characteristics, it demonstrated improved average 

Turn Around Time ranging from 7 to 23 %.  

The acquired performance gain can be attributed 

primarily to the minimized memory access overheads.   

 

A few points of observation are as follows: 

• For NUMA systems having a large number of MALs, the 

performance gain is higher for the obvious reason:  in 

such systems, the probability of processes being migrated 

to far nodes is higher, and thus, more improvement is 

achieved in Origin Aware Algorithm. 

• As compared to linux load balancing, less number of 

processes were migrated to far nodes; also, many of such 

processes were migrated back to their parent nodes, as 

shown in Table 8, resulting in improved TAT of the 

processes,  very significantly. 

• For I/O bound processes performance gain is relatively 

less as compared to CPU bound processes because of 

relatively less number of memory accesses done by the 

I/O bound processes. 

• For workloads having a very small number of processes, 

the performance gain is either –ve or very insignificant. 

This is due to the algorithm’s overheads for smaller 

workloads. Therefore, for very small workloads, variants 

of the proposed algorithm should not be invoked.

P10: 

  

P11: 

 

P0: 

 

 

P24:  

Fig. 6 Depiction of process migration in origin aware load balancing 

(P0, P10…. are runqueues of Processors P0, P10 … and  pi(Nj) is the process with pid=i  &  parent Node Nj) 

Table 4. Turn Around Time of processes and performance gain for origin aware load balancing  vs linux load balancing  for NUMA  system M1 

No. of 

processes 

W1- Process Type: CPU bound;  

Execu Time: 200 ms;  

Arrival- Same Time 

W2- Process Type: CPU Bound;  

Execu Time: 200 ms;  

Arrival- Random 

W3- Process Type: CPU Bound;  

Execu Time: 300 ms;  

Arrival- Random 

TAT: 

Linux  

Algo. 

Origin 

Aware   

Algo. 

Perf. 

Gain 

(%) 

TAT: 

Linux  

Algo. 

Origin 

Aware  

 Algo. 

Perf. 

Gain  

(%) 

TAT: 

Linux  

Algo. 

Origin 

Aware  

Algo. 

Perf. 

Gain  

(%) 

25 241 253 -4.98 322 338 -4.97 454 477 -5.07 

50 367 359 2.18 409 387 5.38 684 601 12.13 

100 613 573 6.53 610 491 19.51 1019 821 19.43 

200 1257 1088 13.45 989 791 20.02 1720 1391 19.13 

300 1834 1520 17.13 1399 1121 19.87 2451 1936 21.01 

400 2380 2033 14.58 1804 1478 18.07 3142 2437 22.44 

500 2751 2355 14.39 2199 1787 18.74 3847 2977 22.62 

p7(N9) 
 

 p99(N3) p90(N14) p166(N7)  …  … 

p87(N3)   p78(N9) p91(N0) p4(N6) p88(N3) … … … 

p37(N0) p1(N3) p9(N1) p45(N5) p31(N5) p17(N14) p118(N5) 
 

… … 

p2(N9)   p69(N3)  p197(N14)  … … … 
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Fig. 7 Turn Around Time of processes  for origin aware load balancing vs  Linux load balancing  for NUMA system M1 

 
         Fig. 8 Performance gain for origin aware load balancing  over linux load balancing  for NUMA system M1 
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Table 5. Turn Around Time of processes and performance gain for origin aware load balancing vs Linux load balancing for NUMA system M2 

No. of 

processes 

W1- Process type: CPU Bound; Execu 

time: 200 ms; Arrival- Random 

W2- Process Type: Mix of CPU & IO Bound; Execu  

Time: Varying  (50-400 ms);  Arrival- random 

TAT: Linux 

Algo. 

TAT: Origin 

Aware  Algo. 

Perf. Gain 

(%) 

TAT: Linux 

Algo. 

TAT: Origin Aware  

Algo. 

Perf. Gain 

(%) 

25 441 442 -0.22 568 590 -3.87 

50 515 517 -0.38 557 501 10.05 

100 670 592 11.64 678 565 16.67 

200 861 738 14.29 997 785 21.26 

300 1085 889 18.06 1253 1003 19.95 

400 1399 1123 19.73 1538 1238 19.51 

  

 
          Fig. 9 Turn Around Time of processes for origin aware load balancing vs Linux load balancing for NUMA system M2 

 
Fig. 10 Performance gain for origin aware load balancing over linux load balancing for NUMA system M2 
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Table 6. Turn around time of processes and performance gain for origin aware load balancing vs Linux load balancing for NUMA system M3 

No. of 

processes 

W1- Process type: CPU bound; 

Execu time: 200 ms; Arrival- 

random 

W2- Process type: CPU bound; 

Execu time: 300 ms;          

Arrival- random 

W3- Process type: IO bound; 

Execu time: 200 ms;     Arrival- 

random 

TAT: 

Linux 

Algo. 

TAT: 

Origin 

Aware  

Algo. 

Perf. 

Gain 

(%) 

TAT: 

Linux 

Algo. 

TAT: 

Origin 

Aware  

Algo. 

Perf. 

Gain 

(%) 

TAT: 

Linux 

Algo. 

TAT: 

Origin 

Aware  

Algo. 

Perf. 

Gain 

(%) 

100 785 734 6.50 1430 1402 1.96 533 495 7.13 

200 1498 1324 11.62 2764 2558 7.45 978 849 13.19 

300 2240 1930 13.84 4058 3711 8.55 1320 1215 7.95 

400 2880 2525 12.33 5441 4843 10.99 1726 1558 9.73 

 
Fig. 11 Turn around time of processes for origin aware load balancing vs Linux load balancing for NUMA system M3 

Fig. 12 Performance gain for origin aware load balancing over linux load balancing for NUMA system M3 
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Table 7. No. of  processes executed on the processors distant  from their respective parent nodes in origin aware load balancing as compared to linux 

load balancing 

Total No. of 

Processes 

Processes that Remained Far 

from Parent Nodes 

(in Linux Load Balancing) 

Processes that Remained   Far from Parent Nodes (in Origin 

Aware Load Balancing) 

No. of Such 

Processes 

% of Such 

Processes 
No. of  

Such Processes 
% of Such Processes 

100 46 46 % 22 (of which 09 were at II level Node) 22 % 

200 96 48 % 49 (of which 20 were at II level Node) 24.5 % 

300 129 43 % 53 (of which 19 were at II level Node) 17.7 % 

Table 8. Traces of few processes (obtained for a workload of 300 processes) showing the migration pattern in origin aware load balancing 

Process-

id 

Node (and Processor)            

on Which the Process was 

Originally Created 

Migration Took Place from Which Processor 

to Which Processor (and the Node on Which 

the Process Executed Most of the Time) 

Process Migrated Back 

to Which Node, from 

The Far Node 

87 N1 (P2) P2-P17; P17-P24 (N12) 
II level Node (Nearest 

Neighbour Node) 

184 N14 (P29) P29-P28; P28-P26; P26-P29 (N14) Parent Node 

251 N12 (P24) P24-P12; P12-P24  (N12) Parent Node 

183 N1 (P2) P2-P13; P13-P25 (N12) 
II level Node (Nearest 

Neighbour Node) 

197 N7 (P15) P15-P19; P19-P14; P14-P15 (N7) Parent Node 

240 N5 (P11) P11-P25; P25-P11(N5) Parent Node 

241 N2 (P5) P5-P30; P30-P5 (N2) Parent Node 

246 N6 (P12) P12-P9; P9-P13 (N6) Parent Node 

281 N15 (P30) P30-P31; P31-P19; P19-P4 (N2) 
II level Node (Nearest 

Neighbour Node) 

174 N7 (P15) P15-P14; P14-P8;P8-P14 (N7) Parent Node 

                                                                          

6. Conclusion 
In this paper, we investigated the process migration 

mechanism of the linux load balancer and proposed an Origin 

Aware Load Balancing Algorithm for NUMA Multiprocessor 

Systems based on the modified process placement policy. It 

ensures that the processes are either not migrated too far from 

their originating nodes or are brought back to those nodes, if 

they are migrated at all. The proposed algorithm greatly 

decreases memory access overheads and thereby improves 

performance significantly.   
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