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Abstract - Accurate prediction of consultation wait times significantly improves patient satisfaction and operational efficiency 

in outpatient clinics. This paper develops predictive models for consultation wait times using machine learning techniques, which 

include comprehensive predictors: patient demographics, temporal factors, queueing metrics, and historical wait time data. 

Fifteen Machine Learning models, including six regression and nine classification algorithms, were trained and evaluated using 

a dataset of 28,787 patient records from a multispecialty hospital. Results show that the tree-based models have better 

performance, in which the Decision Tree Regressor has the best performance among regression models with R² = 0.98, MAE = 

0.40, and RMSE = 3.75, while the Random Forest Classifier is among the classification models with Accuracy = 95.65%, ROC-

AUC = 98.91%. The analysis of feature importance using linear regression underscores the dominance of temporal factors and 

queueing metrics over demographic and historical wait time predictors in determining consultation wait times. This paper 

demonstrates that machine learning algorithms could be a good approach to predicting consultation wait time to help clinic 

operations. However, these findings need to be interpreted in the context of limitations in the dataset and the exclusion of some 

potentially important predictors. Future studies should validate the models in different clinical settings and include more 

variables to increase their generalizability and clinical usefulness. 

Keywords - Hospital management, Machine learning, Wait time, Outpatient clinic, Random forest, Decision tree. 

1. Introduction  
Waiting time in outpatient clinics is one of the important 

indicators of quality and efficiency in health care, but it is 

usually not given enough attention. Longer waiting times can 

have negative impacts on patients' satisfaction and probably 

lead to worse health outcomes because of increased anxiety 

and exacerbation of pre-existing medical conditions [1, 2]. 

Consultation wait time, defined as the time patients spend 

waiting to meet a physician, is one of the most important 

factors in shaping the patient experience [3, 4]. This metric is 

particularly difficult to forecast accurately due to the multi-

causal and complex nature of contributing factors. While 

previous literature has shown promise in the ability of ML 

algorithms to predict wait times, there are still large gaps. 

Indeed, ML models have been applied in fields such as 

radiation oncology [10], phlebotomy [11], and pediatric 

ophthalmology [12] for predicting wait time, showing their 

adaptability across healthcare settings. However, most of the 

studies have limitations, including using a narrow set of 

predictors and insufficient algorithm performance evaluation. 

These drawbacks restrain the reliability and generalizability of 

their findings. The current study will address these gaps with 

the following primary research questions: (1) How does 

consultation wait time prediction accuracy change when 

broader sets of predictors are incorporated into the models? 

(2) How does the effectiveness of different ML algorithms 

compare for this application? (3) Which algorithms work best 

when approached as a regression problem? (4) Which 

algorithms are best when treated as classification? 

Our approach also introduces feature engineering during 

data preprocessing, which empowers the models to take 

advantage of important variables such as demographic 

characteristics, temporal trends, queuing metrics, and 

historical wait time data. Such a combination of predictors has 

not been explored well in past research. What's more, this 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jeffinjoseph@hotmail.com


Jeffin Joseph et al. / IJETT, 73(2), 92-106, 2025 

 

93 

research performs a wide comparison among many ML 

algorithms: Decision Tree Regressor, Random Forest 

Regressor, Gradient Boosting Regressor, Bagging Regressor, 

Neural Network (Multilayer Perceptron), K-Nearest 

Neighbors Regressor, Decision Tree Classifier, Random 

Forest Classifier, Gradient Boosting Classifier, Bagging 

Classifier, Neural Network (Multilayer Perceptron), K-

Nearest Neighbors Classifier, Gaussian Naive Bayes, Linear 

Discriminant Analysis, and Logistic Regression. 

The distinctive contribution of this research lies in its 

comprehensive variable selection process and its systematic 

evaluation of algorithmic performance. Metrics such as R², 

MAE, and RMSE are used for regression models, while 

Accuracy, Sensitivity, Precision, F-measure, and ROC-AUC 

evaluate classification models. Based on our findings, it seems 

that among the regression models, the best performing is 

Decision Tree, while among classification models, Random 

Forest has the highest accuracy. Compared with previous 

studies, our approach has improved predictive performance 

and provided a stable framework for the management of 

consultation wait time in outpatient settings. The remainder of 

the paper is organized as follows: Section 1 introduces the 

study and states the problem statement; Section 2 gives a 

review of relevant literature; Section 3 focuses on model 

building and analyzing variables; Section 4 deals with the 

results, including the evaluation of models and feature 

importance; Section 5 interprets the findings of the study, 

including implications and limitations; while Section 6 

provides the conclusion. 

2. Related Studies 
Related studies are analyzed into three categories: the 

machine learning models used, the variables used, and the 

performance metrics used to evaluate the models. 

2.1. Machine Learning Models for Wait Time Prediction 

Efforts to improve the prediction accuracy of clinical wait 

time for patients in a healthcare setting have been widely 

investigated through many machine learning algorithms in the 

literature. The choice of the algorithm is critical to finding a 

proper trade-off between accuracy and efficiency. Linear 

Regression has been widely applied in predicting wait times 

by many studies, which show its applicability in various 

contexts [14], [10], [15, 16, 17], [6]. The Quartile Regression 

offers another view by focusing on the distributional aspects 

of the wait times, hence showing insight into different data 

segments [18]. Multiple linear regression extends this analysis 

by simultaneously accommodating multiple predictors, 

capturing more complex relationships within the data [19], 

[12]. Elastic Net Regression, combining the strengths of both 

ridge and lasso regression, has been successfully applied in the 

literature on wait time prediction and has shown its versatility 

and robustness [12], [15, 16], [20]. Moreover, the Multivariate 

Adaptive Regression Splines (MARS) show the elasticity of 

regression analysis in capturing complex non-linear 

relationships, which implies its potential usefulness in wait 

time prediction [16]. Of note, several studies that employ 

regression analysis coupled with ensemble machine learning 

approaches have all reported results showing that the 

ensemble approaches, particularly Random Forest, surpass the 

conventional regression methods in terms of accuracy as well 

as reliability [14], [10], [15]. 

Decision Trees, including the foundational Decision Tree 

approach and the more specific Classification and Regression 

Trees (CART), are utilized to segment datasets into more 

manageable subsets, facilitating a structured approach to 

decision-making. These models will be highly rated for their 

simplicity, interpretability, and ability to handle different 

variable types, thus making them able to provide effective 

predictions related to clinical wait times. Basic Decision Trees 

have been used in research works [10], [14], with a more 

detailed description of Classification and Regression Trees 

(CART) given in [16]. Ensemble models distinguish 

themselves by integrating the capabilities of various predictive 

models, thereby enhancing both precision and resilience. 

Thus, they are more likely to break through limitations in 

individual models towards a stronger model. In this category 

come the Random Forest, Gradient Boosting Machine, and 

Bagging; examples show their extensive uses within studies 

for clinical wait time predictions [21], [17], [22], [15], [23, 

24].  

In this respect, deep learning algorithms lead the way in 

advanced data modeling and are capable of handling big and 

complex datasets. Neural Networks have been in use for a long 

time in wait time estimation and offer strength in dealing with 

big data [26], [11], [14]. Also, more advanced techniques, 

such as the Support Vector Machine, K-nearest neighbours, 

and their variants, have been applied in the analysis and 

prediction of the wait time to offer different ways of solving 

the problem [13], [6], [17], [25], [22]. While many studies 

have reported the performance of different machine learning 

models, there is some inconsistency regarding the best-

performing algorithms. This gap is therefore filled to 

systematically compare a variety of algorithms based on 

decision trees, ensemble methods like Random Forest and 

Gradient Boosting, and Multilayer perceptron—neural 

networks belonging to the paradigm of deep learning. The 

tasks of regression and classification are realized to determine 

the best models to be used in predicting the consultation wait 

times. This paper also uses LDA, Logistic Regression, and 

Gaussian Naïve Bayes for the classification tasks so that the 

performance of the models can be fairly assessed.  

2.2. Essential Predictive Variables 

A vast literature review of the subject matter identifies a 

broad array of predictive variables for patient waiting times, 

which may be grouped into six categories: Demographic 

information, Temporal factors, Examination-specific 

characteristics, Queuing theory parameters, Historical waiting 
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time information, and Miscellaneous predictors. Of the 

demographic information, Age and Gender are the most 

prominent. These are independent health service needs and, 

therefore, relate to the design and delivery of health services 

[25], [15], [10], [17], [26]. Other demographic data that further 

specify predictive models include patient financial class, new 

versus returning patient status, country of birth, Indigenous 

status, and preferred language [12], [15]. Those are important 

variables that explain variability in patient behaviour and 

healthcare needs, which may have a very large impact on wait 

times.  

Temporal elements: capturing the changing nature of 

patient wait times, including "temporal snapshots" to 

accommodate short-term variations in queue lengths. Studies 

by [27], [12], [15], [26], [17], [11], and [16] emphasize the 

importance of the day of the week, specific times within the 

day, and public holidays in modulating seasonal and weekly 

trends. Including temporal factors addresses the dynamic 

nature of patient arrivals and services, which is very important 

for the accuracy of real-time predictions. Past patterns and 

trends can be observed from historical wait time data, 

enhancing the accuracy of predictions, such as those studies 

by [10], [16], and [12]. Historical data will help establish 

baseline patterns and variations on which future wait time 

forecasting depends. Queuing theory metrics, such as those 

measuring arrival and service rates, increase the accuracy of 

predictive models by several folds. Applications of the 

Pollaczek-Khinchine formula, prioritization in patient queues, 

and "measures of chaos" to quantify disruptions work quite 

effectively in unpacking patient flow dynamics [9], [16]. 

Attributes for each examination, such as the type of clinical 

examination, the preparations required, and the time allotted, 

all have an impact on determining wait times. Integrating 

variables such as the total number of patients, historical 

treatment durations, and International Classification of 

Diseases (ICD) codes by which patients have been treated 

makes the predictive models much richer [16], [19], [12], [25].  

Furthermore, the inclusion of Miscellaneous predictors, 

such as weather conditions [27], [21] and modes of arrival by 

patients [25], [15], and novel variables, including 

compensable status [15], has brought out the flexibility in 

applying machine learning models toward wait time 

prediction. The present study incorporates various predictors, 

including demographic information, temporal factors, queuing 

theory metrics, and historical wait time data, in developing 

comprehensive models for predicting consultation wait time. 

This rigorous selection is based on vast literature, bringing 

forth the importance of each category. 

2.3. Performance Measures of Previous Studies 

When predictive modeling is applied in clinical settings 

to predict wait times, there is a need to select an appropriate 

method for measuring model accuracy. Mean Absolute Error 

(MAE) is the most used due to its simplicity. For example, 

Hijry and Olawoyin proved that the Deep Learning with 

Stochastic Gradient Descent (SGD) algorithm shows a lower 

MAE of 10.80 minutes compared to other methods like 

RMSprop, Adam, and AdaGrad with MAEs around 12 

minutes [26].  

Another study using random forest regression reported an 

MAE of 4.6 minutes and explained 47% of the variation [10]. 

In other studies devoted to predicting wait times in pediatric 

outpatient services, Gradient Boosting Decision Tree (GBDT) 

and Random Forest (RF) performed well with MAEs equal to 

5.28 and 5.03 minutes, respectively [6]. Both had an R² of 

0.97.  

However, as MAE does not heavily penalize larger errors, 

using Root Mean Square Error (RMSE) and Mean Squared 

Error (MSE) provides a stricter evaluation of errors. For 

instance, in another study predicting wait time, RMSE values 

of 33.45 were found using a Random Forest in a Women's 

Clinic and 16.49 using a Support Vector Machine (SVM) in a 

Prompt Care Clinic [14]. 

Table 1. Overview of machine learning models and performance of best models in recent wait time prediction studies 

Study ML Model(s) Used Performance of Best Models in Recent Studies 

[11] Artificial Neural Networks (ANN) ANN: 88% Accuracy 

[15] Linear Regression, Random Forest, Elastic Net Regression Random Forest: MAE = 22.6-44.0 minutes 

[26] Deep Learning (DL) with ANN and optimization algorithms DL with SGD: MAE = 10.80 minutes 

[25] Logistic Regression ~52% Accuracy 

[27] OLS, Quantile, Ridge, LASSO Regression, Random Forest LASSO reduces MSPE by 21% 

[13] 
LDA, SVM, Logistic Regression, KNN, Decision Tree, 

Naive Bayes, Gradient Boosting, Elastic Net 
LDA: 99.02% Accuracy, SVM: 95.84% Accuracy 

[6] 
Linear Regression, Random Forest, Gradient Boosting, 

Decision Tree, KNN 
GBDT MAE = 5.28, RF MAE = 5.03, R² = 0.97 

[23] Random Forest, Neural Network 
Random Forest: RMSE = 2.81, MSE = 1.67, 

MAE = 0.88, R² = 0.996 

[20] 
Ridge, LASSO Regression, Decision Tree, Random Forest, 

ANN/DNN, Elastic Net Regression 
Random Forest: Lowest RMSE = 6.69 minutes 

[12] 
Random Forest, Elastic Net, Gradient Boosting Machine, 

SVM, Multiple Linear Regressions 

Random Forest: AUC = 81.55%, R² = 0.38, 

RMSE = 24.22 
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Another study compared the results from the Random 

Forest model to be excellent with RMSE of 2.81, MSE of 1.67, 

MAE of 0.88, and R² of 0.996 [23]. Comparatively, another 

study showed the Random Forest model yielding an RMSE of 

6.69 minutes [20].  For classification problems, the Area 

Under the Curve (AUC) is relevant, with studies showing 

AUCs such as 81.55% for Random Forest [12] and accuracy 

rates of 99.02% and 95.84% for LDA and SVM, respectively 

[13]. In the current work, the selected metrics for regression – 

R², MAE, RMSE, MSE; for classification – Accuracy, 

Precision, Recall, F-measure, ROC-AUC have been selected 

since they are successfully used in similar studies [26], [14], 

[12, 13]. Table 1 gives the overview of Machine Learning 

Models and the performance of the best models from previous 

studies. Given potential data imbalances, precision, recall, and 

F-measure also prove essential in performance evaluation. 

3. Model Development  
3.1. The Framework of the Study 

Data for the study is based on 28,787 patient records that 

the researchers had collected from the electronic health 

records of a multispecialty hospital in Kerala, India, for four 

months from October 2022 to January 2023. The data 

comprised the records from all seventeen outpatient 

departments of the hospital. Figure 1 illustrates the Patient 

Consultation Process in the outpatient departments. Patients 

come and register themselves at the counter shown, after 

which they sit in the waiting area until their name is called for 

consultation with the doctor. From this point, the patient may 

be referred to other departments, like the laboratory or 

pharmacy, for associated services.  

Meanwhile, the next patient moves forward for their 

consultation with the doctor, hence giving a smooth flow of 

the process in the system. The original data set had variables 

like patient ID, 'Age', 'Gender', 'Doctor', 'Department', date 

and time of registration and the time spent consulting with the 

doctor. The dependent variable, 'Consultation Wait Time', is 

determined as the difference between the registration time of 

the patient and the time of consultation by the doctor. In this 

step, during data cleaning and preprocessing, outliers were 

identified and removed to give a refined dataset of 27,151 

patient records. Specifically, those patient records where the 

wait times were more than 120 minutes were excluded based 

on the assumption that such longer wait times could be due to 

doctors attending to emergency cases rather than routine 

consultations. Some feature engineering techniques were used 

to improve the prediction accuracy. Temporal variables: 'Visit 

Day', 'Consulting Session', 'Time of Visit', and 'Weekday vs. 

Weekend' were extracted from the registration date and time 

data. The 'Consultation Start Time' variable, representing the 

time a consultation begins on a given day, was extracted from 

the consultation time data. 'Repeat Arrival' was found by 

analyzing patient IDs to track patients who visited the facility 

more than once.  

Added to that are variables like 'Avg Wait Time per 

Doctor', 'Avg Wait Time per Department', 'Median Wait Time 

per Doctor', 'Median Wait Time per Department', 'Avg Wait 

Time per Session', 'Median Wait Time per Session', 'Historic 

Avg Wait Time (3 days)', and 'Historic Median Wait Time (3 

days)' to describe the average and median wait time of 

different categories based on the consultation wait time. Also, 

queueing theory metrics were derived from the time of 

registration and consultation time, respectively: 'Arrival 

Interval per 30 minutes' and 'Service Interval per 30 minutes'. 

These derived features are included in our model concerning 

their established importance in the literature. See how the 

variables were analyzed in further detail in Section 3.2.  

The preprocessing also included one-hot encoding to 

refine the data for further analysis. The model was trained on 

75% of the dataset and tested on the remaining 25%. The 75%-

25% split ensures that there is sufficient data for training and 

testing, striking a practical balance between letting models 

learn enough and rigorously evaluating their performance. 

This approach avoids overfitting and ensures that the metrics 

obtained, RMSE and MAE, reflect the predictive power and 

generalizability of the models, given their complexity [28]. 

The study employed a chain of regressors and classifiers 

and carried out fifteen models to predict the consultation 

waiting time. Namely, the models are Decision Tree 

Regressor, Random Forest Regressor, Gradient Boosting 

Regressor, Bagging Regressor, Neural Network using 

Multilayer Perceptron MLP Regressor, K-Nearest Neighbors 

Regressor, Decision Tree Classifier, Random Forest 

Classifier, Gradient Boosting Classifier, Bagging Classifier, 

Neural Network using MLP Classifier, K-Nearest Neighbors 

Classifier, Gaussian Naive Bayes, Linear Discriminant 

Analysis and Logistic Regression. The models have been 

selected based on an in-depth analysis of the previous works. 

 
Fig. 1 Patient consultation process in the outpatient department 

Patient 
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Patient Waiting 
Doctor  
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Fig. 2 Framework of predicting consultation wait time 

This research uses the Python Scikit-learn library to 

implement models for predicting wait times. Regression 

models are considered for predicting the continuous variable 

"Consultation Wait Time Minutes.” Those are evaluated based 

on some metrics: Mean Squared Error—MSE, Root Mean 

Squared Error—RMSE, Mean Absolute Error—MAE, and the 

Coefficient of Determination—R². On the other side, 

classification models were used to predict the categorical 

outcome "Consultation Wait Time Multinomial." The 

following metrics were utilized in evaluating their 

performance: Accuracy, Precision, Recall, F-measure, and the 

Receiver Operating Characteristic Curve (ROC-AUC). Figure 

2 presents the comprehensive framework of the study.   

3.2. Analysis of Variables 

Categorical variables used for the prediction of the 

Consultation Wait Time are 'Gender', 'Department', 'Doctor', 

'Visit Day', 'Consulting Session', 'Repeat Arrival', and 

'Weekday vs weekend'. Continuous variables are 'Age', 

'Consulting Start Time', 'Avg Wait Time per Doctor', 'Avg 

Wait Time per Department', 'Median Wait Time per Doctor', 

'Median Wait Time per Department', 'Avg Wait Time per 

Session', 'Median Wait Time per Session', 'Historic Avg Wait 

Time 3 days', 'Historic Median Wait Time 3 days', 'Arrival 

Interval per 30 minutes' and ‘Service Interval per 30 minutes'. 

Thus, the research predicts the continuous variable: 

'Consultation Wait Time Minutes' and the categorical 

variable: 'Consultation Wait Time Multinomial' using the 

same set of predictor variables. 

The 'Consultation Wait Time Multinomial' variable is 

categorized into three classes: Low, Medium, and High, based 

on the waiting time. More precisely, a waiting time of fewer 

than 30 minutes is defined as "Low," between 30 and 60 

minutes as "Medium," and longer than 60 minutes as "High." 

The classification thresholds are based on some of the 

literature found in the references [29, 30, 31]. The paper 

carries out an in-depth descriptive analysis of the variables 

using different visualization techniques, such as bar charts and 

histograms. 

 

Regression Models 

1. Decision Tree Regressor  

2. Random Forest Regressor  

3. Gradient Boosting Regressor  

4. Bagging Regressor  

5. Neural Network (MLP Regressor)  

6. K-Nearest Neighbors Regressor 
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Regression Models 

1. Mean Squared Error (MSE)  

2. Root Mean Squared Error (RMSE)  

3. Mean Absolute Error (MAE)  

4. R-squared 

 

Classifier Models 

1. Decision Tree Classifier  

2. Random Forest Classifier  

3. Gradient Boosting Classifier  

4. Bagging Classifier  

5. Neural Network (using MLP 

Classifier)  

6. K-Nearest Neighbors Classifier  

7. Gaussian Naive Bayes  

8. Linear Discriminant Analysis  

9. Logistic Regression 

 

Performance Evaluation 

1. Accuracy  

2. Precision  

3. Recall  

4. F measure  

5. ROC-AUC 
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Fig. 3 Bar charts for each categorical variable

3.2.1. Analyzing the Categorical Variables 

Figure 3: Bar Charts for different categorical variables 

like 'Gender', 'Department', 'Doctor', 'Visit Day', 'Consulting 

Session', 'Repeat Arrival', and 'Weekday vs Weekend'. 

'Department' has 17 unique categories, which are General 

Surgery, Ophthalmology, Neurology, Pediatrics, ENT, 

Gynecology, General Medicine, Dermatology, 

Endocrinology, Cardiology, Psychiatry, Nephrology, 

Orthopedics, Pulmonology, Urology, Gastroenterology, and 

Rheumatology. The departments of General Medicine, 

Pediatrics, and General Surgery attract the greatest number of 

patients. The chart below, 'Doctor' distribution, shows that the 

doctor with ID CVT4577 gets the most visits from the 

patients. 'Gender' is divided into Male and Female, showing 

the distribution across sexes. The 'Visit Day' variable ranges 

from Monday to Sunday, with Monday having the most 

patients and Sunday the least. Consulting sessions are grouped 

into Morning and Evening, showing the spread of visits over 

these times. 'Repeat Arrival' is broken down into Yes and No, 

showing how often patients pay repeat visits. Finally, in the 

comparison between 'Weekday vs Weekends', one can see the 

trend of patient visits over these times. 

3.2.2. Analyzing Continuous Variables 

Figure 4: The histograms of the continuous variables: the 

histogram for 'Age' suggests a nearly normal distribution of 

ages with, however, a slight skewing to the right—that means 

there is a greater number of younger patients. One peak lies 

around the age range of 20–30 years, and the second one is 

less distinct, around 60–70 years of age. This bimodal 

distribution may indicate the presence of two large groups of 

patients visiting the health facility: younger adults and older 

people. The trend line smooths out the fluctuations and 

accentuates the normal distribution shape. These trend lines, 

or kernel density estimates (KDE), present a smoothed picture 

of the distribution of data, which can be very useful in the 

identification of patterns that may underlie the data [32].  

The following histogram has been prepared for 

'Consultation Start Time' minutes past midnight. Such 

conversion makes the time data numerical and thus amenable 

to analysis and visualization of the distribution of consultation 

start times throughout the day. This histogram shows the 

frequency of consultations starting at different times and helps 

understand the pattern and the peak consultation hours. This 

histogram has one cluster of consultations, beginning early in 

the morning, peaking at around 10 am; then, it just slightly 

decreases. The trend line shows that most consultations are 

during the morning hours. The 'Average Wait Time per 

Doctor' data points are very spread out, with a few peaks that 

show some doctors have an average much longer wait time.  

The trend line would indicate that most of the doctors 

have relatively short wait times, with some outliers causing 

spikes in the graph. Similarly to the 'Average Wait Time per 

Doctor', the 'Average Wait Time per Department' is not 

distributed equally; there are departments with much longer 

waits. The trend line shows that more departments have 

shorter wait times than those with long wait times. The 

histogram for 'Median Wait Time per Doctor' is much less 

variable than the average, which may be an indication that the 

average is more sensitive to outliers than the median.  
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Fig. 4 Histograms for each continuous variable 

Also, the trend line is fairly flat, which could indicate that 

the median wait times are spread out somewhat equally across 

all doctors. The distribution of 'Median Wait Time per 

Department' is less variable than that of 'Average Wait Time 

per Department'. The trend line is flatter, which may suggest 

that median wait times across different departments are more 

homogeneous. The 'Average Wait Time per Session' metric is 

as follows: morning and evening sessions have an average 

wait time of about 33 minutes and 36 minutes, respectively. 

On the other hand, the histogram of 'Median Wait Time per 

Session' has a very narrow distribution, with most of the 

sessions having wait times of around 24 minutes and 25 

minutes for morning and evening sessions, respectively. This 

could also mean that the wait times for the sessions remain the 

same for the most part. For the variables 'Historic Avg Wait 

Time 3 days' and 'Historic Median Wait Time 3 days', the 

calculation is defined to look back over the last three days. The 

values for the earlier days are calculated using a smaller time 

window. Here's how it's done: For Day 1, the historical values 

are calculated using the values of Day 1 itself, as there are no 

previous days to use. Day 2 the historic values just have data 

from Day 1 and Day 2. For Day 3 The historic values now 

include data from Day 1, Day 2, and Day 3. From Day 4 

onward, the average is carried out as desired over the complete 

3-day window. This means that for the first three days, the 

historical values are effectively the same as the actual average 

and median for those days, limited to the available data. The 

'Historic Average Wait Time 3 days' variable has a right-

skewed distribution with a peak at the lower end. This 

indicates that typically, the average wait time is low, but there 

are periods with longer wait times. 'Historic Median Wait 

Time 3 days' distribution is also right-skewed.  
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Fig. 5 Heatmap showing the correlation between all continuous variables

The variable 'Arrival Interval (per 30 min)' indicates the 

time per arrival for each 30-minute session interval. It is 

calculated as the inverse of the number of arrivals in that 

interval. Similarly, the 'Service Interval (per 30 min)' indicates 

the time per service for each 30-minute interval, calculated as 

the inverse of the number of services completed in that 

interval. The histogram of 'Arrival Interval (per 30 min)' is 

skewed to the right with the mass of data concentrated at the 

lower end, which might hint at the fact that the time per arrival 

is typically short, suggesting a high arrival rate, but there are 

periods with significantly longer intervals between arrivals. 

Similarly, 'Service Interval (per 30 min)' is also skewed to the 

right with a peak at the lower end. This implies that the time 

per service is generally short, indicating a high service rate, 

but there are times when the intervals between services 

increase significantly. 

3.3. Correlation among Continuous Variables 

The heatmap in Figure 5 shows the correlation 

coefficients for a pair of continuous variables. The variables 

included are 'Age', 'Consultation Start Time', 'Avg Wait Time 

per Doctor', 'Avg Wait Time per Department', 'Median Wait 

Time per Doctor', 'Median Wait Time per Department', 'Avg 

Wait Time per Session', 'Median Wait Time per Session', 

'Historic Avg Wait Time 3 days', 'Historic Median Wait Time 

3 days', 'Arrival Interval (per 30 min)', 'Service Interval (per 

30 min)', and 'Consultation Wait Time Minutes'.   The lighter 

shades of blue in the heatmap represent a weak negative 

correlation; the transition through light orange into dark red 

shows an increasingly positive correlation. Light blue would 

suggest that there may be some sort of faint inverse 

relationship between the variables: as one goes up, the other 

tends to go down, but not strongly. The orange color in the 
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heatmap represents moderate positive correlations, which lie 

between the strong correlations represented by dark red and 

the negligible correlations represented by white. Numbers in 

Each Cell are actual values of correlation coefficients. From 

the heatmap, the following interpretations were drawn: Age is 

very weakly correlated with all other variables, as shown by 

values near 0.  

This would further suggest that age is not a strong 

predictor of wait times or other variables. Thus, other 

variables such as 'Average Wait Time per Doctor' or 'Average 

Wait Time per Department' might be much more critical in the 

prediction of wait times. Variables from 'Consultation Start 

Time' to 'Median Wait Time per Session' all show very high 

positive correlations with each other—very close to 1 and in 

red—meaning these metrics do tend to move together: when 

one goes up, so does the other. The 'Arrival Interval (per 30 

min)' and 'Service Interval (per 30 min)' show a moderate 

positive correlation with each other but a very low correlation 

with wait times, indicating relatedness without a strong 

influence on wait times.  

This may suggest that there is a moderate level of 

correlation between arrival and service intervals, which could 

be an indication that the scheduling and handling of patient 

arrivals and services are somewhat coordinated. 'Consultation 

Wait Time Minutes' moderately positively correlates with the 

'Avg Wait Time per Doctor', 'Median Wait Time per Doctor', 

'Avg Wait Time per Department', and 'Median Wait Time per 

Department' variables, meaning longer average and median 

wait times correlate with longer consultation wait times. The 

study used two of the most popular visualization Python 

libraries—Seaborn and Matplotlib—to generate various types 

of visualizations, including heat maps, histograms, and bar 

charts. 

4. Analyzing Performance 
4.1. Analysing Performance of Regression Models 

The performance of the regression models was evaluated 

using key metrics: the coefficient of determination, R²; Mean 

Absolute Error—MAE; Root Mean Square Error—RMSE; 

and Mean Squared Error—MSE. The metrics are very relevant 

to establishing the accuracy and effectiveness of the regression 

models in predicting wait time for outpatient consultation. 

They were selected after an extensive review of the literature 

to ensure their appropriateness and common acceptance in 

evaluating predictive performance in the setting of wait time 

prediction. A comparative analysis of regression models 

shows that the Decision Tree Regressor does best with an R² 

of 0.98, MAE of 0.40, RMSE of 3.75, and MSE of 14.06 (refer 

to Table 2). The results for the Random Forest Regressor and 

the Bagging Regressor also look very good. On the other hand, 

Gradient Boosting Regressor and Neural Network—

MLPRegressor perform quite poorly, which could be a sign 

that there is an overfitting problem, or maybe it just needs 

more tuning with hyperparameters and feature engineering.   

Table 2. Performance measures of regression models for predicting 

consultation wait time 

Model R² MAE RMSE MSE 

Decision Tree Regressor 0.98 0.4 3.75 14.06 

Random Forest Regressor 0.97 2.57 5.08 25.82 

Gradient Boosting 

 Regressor 
0.4 17.57 23.03 530.24 

Bagging Regressor 0.96 2.84 5.97 35.59 

Neural Network 

(MLPRegressor) 
0.31 18.08 24.74 612.14 

K-Nearest Neighbors 

Regressor 
0.65 12.11 17.56 308.22 

 
Fig. 6 Real vs Predicted wait time for the decision tree regressor 

The K-Nearest Neighbor Regressor does moderately well 

but can surely be improved with some feature scaling and 

hyperparameter optimization. The Decision Tree Regressor is 

the best model because of its superior accuracy and lower error 

rates.  

Figure 6: Line graph showing real vs. predicted 

consultation wait times for a randomly selected sample of 100 

records from the test set using the decision tree model. The red 

line represents actual wait times, and the blue line represents 

predicted values. 

The difference between the two lines can serve as a gauge 

of how correct the model is in its prediction of the wait time 

for consultation. As one may see, the predicted values follow 

the real values, creating a purple color where the blue and red 

lines overlap, which means the decision tree model performed 

well. 

4.2. Analysing Performance of Classification Models 

The paper developed the classification models with the 

purpose of classifying waiting times into three classes: Class 

1, representing 'Low Waiting Time'; Class 2, representing 

'Medium Waiting Time'; and Class 3, representing 'High 

Waiting Time'. The methodology used here was to decompose 

the multiclass classification problem into several binary 

classification tasks by using the One-vs-Rest (OvR) strategy.  
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Table 3. Performance measures of classification models for predicting consultation wait time 

Model Accuracy Precision Recall F-measure ROC-AUC 

Decision Tree Classifier 94.5 94.5 94.5 94.5 95.53 

Random Forest Classifier 95.7 95.64 95.65 95.64 98.91 

Gradient Boosting Classifier 67.9 65.75 67.88 65.47 82.23 

Bagging Classifier 95.3 95.26 95.27 95.26 98.75 

Neural Network MLP Classifier 56.9 56.17 56.87 53.49 76.52 

K-Nearest Neighbor Classifier 71 70.4 71 70.65 88.73 

Gaussian Naive Bayes 61.2 59.72 61.17 58.74 75.08 

Linear Discriminant Analysis 63 59.24 63.03 59.91 76.99 

Logistic Regression 62.7 57.94 62.68 57.74 76.03 

Results from the individual binary classifiers were 

combined using a weighted average method to decide the final 

class [33]. The study assessed the performance of the classifier 

models on a panel of evaluation metrics: Accuracy, Precision, 

Sensitivity, the F measure, and the Area under the ROC 

(Receiver Operating Characteristic) Curve. To evaluate the 

multiclass problem in detail, the study averaged these key 

metrics from each binary classifier by using macro-averaging, 

hence providing a detailed assessment of the model's 

predictive accuracy. Among the classifiers, the Random 

Forest performed best with an accuracy of 95.65%, precision 

of 95.64%, recall of 95.65%, and a very strong ROC-AUC of 

98.91% (see Table 3). Similarly, the Bagging Classifier 

showed strong results in handling complex and high-

dimensional data and capturing feature interactions, which 

proved ideal in the prediction of wait times. The Decision Tree 

Classifier also performed well, which indicates that individual 

decision trees can model the underlying patterns in wait times, 

but using ensemble methods makes the models even more 

robust and stable. On the other hand, the Gradient Boosting 

Classifier resulted in lower metrics, which could be indicative 

of overfitting and sensitivity to noise, hence requiring careful 

tuning in the context of wait time prediction. 

 
Fig. 7 Real vs Predicted wait time for the random forest classifier 

The Neural Network MLP Classifier did not generalize 

well to the complexities in the wait time data, probably due to 

its nature, which usually requires large datasets and extended 

tuning. The K-Nearest Neighbors Classifier showed moderate 

performance, which can be explained by its limitations 

regarding dealing with complex relationships in wait time 

prediction because of high-dimensional data challenges. 

Gaussian Naive Bayes, Linear Discriminant Analysis, and 

Logistic Regression were poorer in accuracy since the 

mentioned models assume linearity and independence among 

the features—simplistic assumptions that do not explain 

complex, nonlinear interrelations found in wait-time data. 

This makes the Random Forest model selected as the best 

since it is relatively better than the other models. Figure 7: 

This is a stacked bar plot comparing real vs. predicted 

consultation waiting time over a sample of 100 records using 

a Random Forest model. On the x-axis are real wait time 

categories: Low, Medium, and High; the y-axis shows the 

count of records. Each of the bars is, in turn, made up of 

segments showing predictions: Low in purple, Medium in teal, 

and High in yellow, thus showing insights into the accuracy of 

the model and misclassification rates across the categories. 

Most of the Low wait times are predicted correctly, while 

there is some misclassification in the Medium and High 

categories.  

4.3. Analysis of Feature Importance Using Linear 

Regression 

It is found from Table 4 that the feature importance 

analysis with linear regression revealed Average Wait Time 

per Doctor to be the most influential predictor of consultation 

wait times, with 8.46. This finding underlines the fundamental 

role that doctor-level efficiency plays in reducing delays. 

Other significant operational predictors were Average Wait 

Time per Department (5.99) and Median Wait Time per 

Doctor (5.87), which suggests that both departmental and 

individual performance measurements need to be considered 

for the better allocation of resources. Other temporal factors 

were also found to be of considerable importance, including 

the Consultation Start Time at 3.20, queuing-related metrics 

of Service Interval at 2.95, and Arrival Interval at 1.76. The 

results underline the predictive power of time-based variables, 

particularly in modeling dynamic patterns of patient arrivals 

and service bottlenecks. 
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Table 4. Feature importance based on linear regression 

Feature Importance 

Avg Wait Time per Doctor 8.46 

Avg Wait Time per Department 5.99 

Median Wait Time per Doctor 5.87 

Median Wait Time per Department 4.05 

Consultation Start Time 3.2 

Service Interval (per 30 min) 2.95 

Arrival Interval (per 30 min) 1.76 

Avg Wait Time per Session 1.19 

Consulting Session 1.19 

Median Wait Time per Session 1.19 

Repeat Arrival 1.19 

Doctor 0.43 

Visit Day 0.38 

Age 0.24 

Gender 0.13 

Historic Avg Wait Time (3 days) 0.12 

Weekday/Weekend 0.09 

Department 0.03 

Historic Median Wait Time (3 days) 0.03 

In contrast, demographic and categorical variables, 

including Gender (0.13) and Department (0.03), showed 

minimal influence, suggesting that operational and temporal 

factors far outweigh static characteristics in predicting wait 

times. Historical predictors, such as Historic Average Wait 

Time (3 days) (0.12) and Historic Median Wait Time (3 days) 

(0.03), also contributed marginally, indicating limited value in 

this context. The reason linear regression was chosen for 

feature importance analysis is that it is interpretable, providing 

clear coefficients that quantify the impact of each predictor on 

consultation wait times. These results emphasize the 

importance of healthcare systems focusing on time-sensitive 

and operational metrics in predictive modeling.  

5. Discussion  
This study compares the relative performance of 

predictive models for consultation wait times, covering both 

regression and classification techniques. It was determined 

that the Decision Tree Regressor and Random Forest classifier 

were the best models for the prediction of consultation wait 

times. This is following previous studies, which show the 

strong performance of Random Forest models in clinical 

applications [10], [12], 15]. However, there are large 

variations in model performance and metrics used across the 

studies. The conclusions of the current study are compared 

with those of earlier studies in the following sections, along 

with the study's limitations, practical implications, and 

suggestions for further research. 

5.1. Evaluation of Performance 

In the study, different regression techniques are 

considered, and the decision tree regressors, performance is 

excellent for R² to 0.98 and error metrics close to the 

minimum: MAE to 0.40, RMSE to 3.75, MSE to 14.06. 

Similarly, the Random Forest Regressor had a strong 

predicting power with R² equal to 0.97, with strong error 

metrics (MAE of 2.57, RMSE of 5.08, MSE of 25.82). In 

terms of classification accuracy, Random Forest Classifier and 

Bagging Classifier have done very well with 95.65% and 

95.27%, respectively.  

The Random Forest Classifier also scored highly, with 

ROC-AUC at 98.91%. On the other side, models like the 

Gradient Boosting Classifier and MLP Classifier performed 

worse, as shown by the lower accuracy and ROC-AUC scores. 

Compared with the previous studies on healthcare wait time 

using predictive modeling, the current study shows a 

substantial performance improvement. For example, in the 

study by Hijry and Olawoyin [26], the authors reported an 

MAE of 10.80 minutes for the SGD model, which is far 

outperformed by the 0.40 minutes MAE obtained from the 

Decision Tree Regressor in the present study. Similarly, 

Joseph et al. [10] had an MAE of 4.6 minutes with a Random 

Forest model, while Li et al. [6] stated that the GBDT reached 

an MAE of 5.28 minutes and the RF had an MAE of 5.03 

minutes. All are far above the Decision Tree Regressor in the 

present study, which had an MAE of 0.40 minutes and a 

Random Forest Regressor with an MAE of 2.57 minutes. In 

another study, Rastpour and McGregor [14] focused on 

predicting wait time at mental healthcare clinics. In that, his 

Random Forest model scored Root Mean Square Error 

(RMSE) values of 33.45 in the Women's Clinic and an RMSE 

score of 16.49 using an SVM model in the Prompt Care Clinic. 

The reported RMSE scores in the said study were higher 

compared to the RMSE recorded in this present study of 3.75 

from the Decision Tree Regressor. 

However, in a study conducted in an Emergency 

Department, Atalan [23] utilized the Discrete Event 

Simulation and reported smaller values for the RMSE—2.81. 

The Mean Square Error (MSE) is 1.67 with respect to the 

Random Forest Model compared to the best-performing one 

within the current research. These discrepancies show the 

power and impact of different clinical settings and variables in 

wait times, which flags the need for tailoring predictive 

models to the unique characteristics of each healthcare 

environment.  

Also, in the study by Amjed Al-Mousa et al. [20], an 

RMSE of 6.69 minutes was obtained for their Random Forest 

model; however, in the present study, the results are shown to 

be better by the Random Forest Regressor with an RMSE of 

5.08 and with a lower RMSE of 3.75 for the Decision Tree 

Regressor. Lin et al. [12] reported an AUC value of 81.55% 

for a Random Forest classifier; this is much below the ROC-

AUC score of 98.91% observed in this study for the Random 

Forest Classifier. Moreover, Ataman and Sarıyer [25] 

discussed an accuracy of 52.247% for the ordinal logistic 

regression model in predicting wait times, which is way below 
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the 95.65% accuracy of the Random Forest Classifier of this 

study. Overall, these comparisons underline the great 

improvements made by the machine learning models of the 

current study, especially the Decision Tree Regressor and 

Random Forest Classifier, in predicting wait times as 

accurately as possible. 

5.2. Practical Implications 

This paper highlights some of the practical implications 

of the findings for healthcare organizations seeking to improve 

wait time prediction and its management. Implementation of 

machine learning models in the prediction of consultation wait 

time could help healthcare organizations achieve better 

utilization of resources, greater patient satisfaction, and a 

general improvement in the level of healthcare delivery. 

However, there is a quite high number of barriers to adoption. 

The first major one is the requirement for specialized expertise 

in ML and data science; healthcare organizations may be 

interested in investing in training or hiring personnel with the 

needed skills to correctly implement and maintain the models.  

Another possible barrier is related to concerns about data 

privacy and security when using ML models. While these 

barriers exist, some facilitators can enable an organization to 

adopt these models. For example, the potential to cut costs and 

improve patient satisfaction can motivate an organization to 

surmount the challenges in implementation. It can also be 

facilitated by collaboration with ML and data science experts 

and involvement in the implementation process stakeholders 

such as clinicians and administrators. An implementation 

framework is proposed (Figure 8) that is easily integrated with 

already existing healthcare information systems, considering 

critical aspects, such as compatibility with EHR systems, 

secure data-sharing protocols, and user-friendly interfaces for 

both clinicians and administrators.  

The framework starts with collecting data from EHR and 

then subjects it to stringent preprocessing for quality 

assurance. It applies state-of-the-art machine learning models 

to generate actionable insights, which are integrated through 

an intermediary layer in a secured manner. Such knowledge is 

brought to the end user by accessible dashboards, while a 

feedback loop ensures continuity in updating and 

improvement. Testing this framework in real clinical settings 

will further refine its practical utility and guide enhancements 

in integrating ML technologies into healthcare.  

 
Fig. 8 Implementation framework 
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5.3. Limitations and Future Research Recommendations 

The study's results must be interpreted cautiously, given 

the limitations associated with the size and source of the 

dataset. Data were exclusively retrieved from outpatient 

departments of a multispecialty hospital and are moderate in 

scale. The limitation was caused mainly by difficulties related 

to accessing the larger and more diverse dataset from the 

electronic health record system of the hospital. Secondly, a 

dataset emanating from a single multispecialty hospital may 

limit the generalizability of the findings to other clinical 

settings.  

Its unique characteristics—be it the patient population, 

clinical practices, or operational processes—may not be 

representative of other hospitals or healthcare facilities. 

Consequently, the predictive performance and generalizability 

of the machine learning models in the present study may not 

be the same when applied to different healthcare settings. 

Future research should, therefore, focus on the validation of 

the findings with data from several hospitals that are diverse 

in terms of patient population, clinical practice, and 

operational environment. 

Also, the variable scope was restricted to those available 

in the hospital's database. Such a limitation may have 

excluded potentially important variables to be included in the 

study. A major limitation is that no study-specific clinical 

variables are included in the dataset. Such variables, like the 

type of medical examination, duration of treatments, and 

International Classification of Diseases—ICD codes—are 

important for a deeper understanding of the dynamics within 

medical examinations [19], [25]. Including these variables 

might go a long way in increasing the model's accuracy since 

it provides more details on patient consultations.  

The class imbalance issue, which frequently impairs 

machine learning models' predicted performance in 

classification tasks, was another issue the study had to address. 

Future studies could also seek to balance this class imbalance 

problem, perhaps by using either oversampling, under-

sampling techniques, or synthetic data generation in general 

(like SMOTE). Furthermore, feature-selection methods like 

Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE) can reduce the number of features, making 

prediction easier, models easier to understand, and 

computations more efficient.  

Future research should be carried out in the following 

directions: 

• Expansion of the dataset to include multiple hospital 

settings to enhance generalizability. 

• Including examination-specific variables and other clinical 

details into the models for better prediction accuracy. 

• Exploration of the inclusion of real-time data streams 

emanating from healthcare information systems for a 

necessary dynamic prediction. 

• Handling class imbalance typical in classification 

problems by advanced resampling or algorithmic 

techniques to strengthen the models. 

• Feature selection methods can be applied to decide the 

most pertinent predictors for the reduction of complexity 

and optimization of performance. 

From these areas, future studies will further build on the 

present research and hence bring innovation in predicting and 

managing healthcare wait times. 

6. Conclusion  
This will generally show the potential of machine 

learning techniques for accurately predicting consultation wait 

time in outpatient clinics. This large-scale evaluation 

compares fifteen models, regression, and classification using 

a diverse set of predictors, thereby giving insight into the 

relative performance of different algorithms for this task. The 

Decision Tree Regressor and Random Forest Classifier have 

higher accuracy, which implies that tree-based models are 

practically viable for implementation in the operation of a 

clinic.  

However, given the study's limitations, the results should 

be viewed cautiously. Some of the limitations include 

dependence on data from a single hospital and not including 

some potentially important predictors, such as examination-

specific variables. Thus, future research will be important to 

validate the models proposed here in other clinical settings and 

consider additional relevant variables to increase their 

robustness and practical utility. 

While this study is not without limitations, it adds to the 

fast-growing body of research in machine learning 

applications in healthcare. These results underline the 

importance of using data-driven approaches when seeking to 

improve patient flow and resource allocation in outpatient 

clinics. Accurate prediction of consultation wait times allows 

health organizations to better manage patient expectations, 

decreasing frustration and optimizing operational efficiency.  

For ML-based wait time prediction to reach its full 

potential, a future focus of work needs to concentrate on 

developing user-friendly interfaces and integrating models 

into the existing clinical workflows. Collaboration among data 

scientists, healthcare providers, and clinic administrators will 

be important for successfully implementing and adopting the 

approaches. The approaches developed in this study have the 

potential to substantially impact the level of patient 

satisfaction and outpatient quality of care with further 

refinement and validation.   

Data Availability Statement 
The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 
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