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Abstract - With the invention of Industry 4.0, a very revolutionary and smart manufacturing paradigm called Digital Twin (DT) 

was introduced. This system ensures deep penetration to the application of the massive data collected through the generation of 

information and digital technologies. Research and academia consider it a cutting-edge technology, as it has also successfully 

claimed its position in the industry. Due to the complex nature of handling and merging varied data types, the potential has been 

partially realized, and there is much more to be explored. It is essential for researchers and engineers to clearly identify the tools 

and technologies that suit the DT system. This review article provides a state-of-the-art review of key enabling technologies and 

the viability of DT with an industry approach. A generic framework consisting of tools, enabling technologies and their 

correlation with the digital twin is also explained. A generalized data flow and corresponding tools required for the DT system 

are explained. Finally, a brief discussion on challenges and future research outlook is provided.  
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1. Introduction 
The continuous demand for rapid growth in every sector 

resulted in an industrial revolution known as Industry 4.0 in 

the current scenario. Industry 4.0 is exemplified by digital 

transformation and interconnectedness of products, 

machinery, and business models. Small and Medium 

Enterprises (SMEs), which form the support of Indian 

manufacturing, can influence Industry 4.0 technologies to 

become more responsive, augment production, optimize costs, 

remote handling, and lower risks, etc. Digital Twin technology 

is a developing notion that has gathered noteworthy attention 

from industry and, recently, from academia as well. 

Technology is a very common term, and it has been upgrading 

itself every day.  

The development and upgradation in manufacturing 

started way back in the 18th century. Figure 1 depicts the 

journey of the Industrial Revolution and technology, which 

has updated itself to match ever-changing demand, increased 

flexibility, and customization with quality preferences by the 

end users. The first industrial revolution, called 

mechanization, happened in the late 18th century; this 

industrial machine was powered by water and steam. The 

laborious work by human beings was made easier by 

introducing mechanization and improved the value of life. The 

second revolution, known as Electrification, started in the late 

19th century. In this revolution, mass production machines 

and assembly lines were powered by electricity. Better, 

simpler, and compact machines were introduced to cater to 

demand, which was the key feature of this revolution. The 

third revolution, called automation, started in the late 20th 

century; in this, the use of electronics and computers was 

made to enhance production in many ways. Extensive use of 

embedded technology to support automation and robotic 

technology was successfully implemented.  

The fourth revolution, which started in the early 21st 

century and is said to be a Digitalization and Communication 

world, also refers to a seamless integration of industry with 

information technology. In this, extensive use of connected 

devices, sensors, cyber-physical systems, data analytics, 

Internet of Things (IoT), Artificial Intelligence (AI), Machine 

Learning (ML), and cloud computing is done. This advanced 

technology gathers real-time data for future analytics and 

decisioning. It facilitates a full set of industrial applications 

like adaptable automation, predictive maintenance, and supply 

chain management optimizations. These significant 

advantages have been realized by the manufacturing sector, 

which has resulted in the transformation and upgrade of 

existing technology to a globally competent standard. The 

paper presents Section 2, which describes the literature survey. 

Section 3 introduces the key enabling technologies of DT.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Journey of the industrial revolution 

Section 4 explains a generalized conceptual framework 

showing the interlinking of DT and enabling technology at 

various steps.  Section 5 discusses the conclusion and future 

work. 

2. Literature Survey 
Digital Twin is an upcoming and promising technology in 

Industry 4.0 aiming at increased productivity and efficiency in 

manufacturing. A decent volume of literature surveys has been 

conducted in various industries and applications. A very 

important driver of smart manufacturing is Digital Twin 

technology. A digital twin is a digital imitation of a physical 

entity that provides necessary and meaningful output based on 

the true data. DT provides a mirror of the asset and 

environment for analyzing and making accurate decisions 

based on analytics [1, 2]. Many researchers and scientists have 

defined DT as their functionalities and applications. The 

National Aeronautics and Space Administration (NASA) 

defines Digital Twin (DT) as an integrated Multiphysics, 

multiscale, and probabilistic simulation of a system or vehicle 

in its actual built form. It uses the finest accessible real 

models, sensor data, and past information to duplicate the life 

cycle of its equivalent operational complement [3]. The 

authors in [4, 5] focus on expanding specific components of 

Digital Twin (DT) and their implementation, custom-made to 

encounter the necessities of the respective application field 

using various tools. Qinglin Qi et al. have proposed a 5-

dimension digital twin model by adding two more dimensions, 

providing a greater understanding and ease of implementation 

of DT [6]. The dimensions include physical assets, virtual 

models, data, service, and connection. Weifei Hu et al. added 

one more dimension called Environmental coupling, which 

aids in delivering an accurate representation of virtual 

components compared to the current digital twin model [1]. A 

DT environment coupled with data analytics and some means 

to make decisions is a perfect combination for fault detection 

and predictive maintenance. Hence, a DT with Artificial 

intelligence makes the system smart and enables decision-

making. This is the biggest benefit realized in manufacturing, 

as monitoring machines and assets saves time and money, 

thereby increasing productivity and profit margins. Authors in 

[7] thoroughly review the key components of DTs and 

industrial applications of DT and summarize the supporting 

technologies for DT demonstration, simulation, data 

synthesis, interaction, and collaboration.  

The in-depth discussion of the appropriate definition, 

characterization, and implementation process of Digital Twin 

is carried out in [8]. The details of its components and the 

desired benefits should be driven by the detailed framework 

of DT. This, in turn, helps to set the needs for the essential 

data, prototypes, and procedures to update the prototypes 

based on the data.  

Also, a variety of enabling technologies required for DT 

implementations are explored. Barbara Rita Barricelli et al. in 

[9] present the results of the prime characteristics a DT should 

acquire and the various domains of DT applications presently 

being established. Further, the design propositions focused on 

the DT lifecycle and its impact on social and technical aspects. 

A framework for safety management using IoT and digital 

twin-enabled tracking solutions is proposed in [10]. A case 

study that demonstrated the implementation of the physical 

and cyber world with appropriate technologies is discussed. 
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The work carried out by authors in [11] comprised presenting 

a joint concurrent exploration of “Digital Twin” and 

“Maintenance” terms to examine the association between 

them and deliver a deeper understanding of the interactions 

between both theories. The impacts of flexibility on the 

favorable predictive maintenance scheme are discussed in 

[12]. With digital twins, the important components required 

for flexible production structures and different interfaces are 

also presented in detail. Panagiotis Aivalioti et al. [13] 

primarily reviews and describes the use of digital twin 

concepts for manufacturing applications like condition 

monitoring and predictive maintenance. The gaps in the 

previous studies are recognized and examined. In a brief 

scheme of the approach, the previously prevailing 

technologies can go further than is described. A greater 

understanding of the constraints and assets, challenges and 

opportunities of the current Predictive Maintenance issues is 

proposed in [14].  

The design summarizes some major research problems to 

be referred to for the successful expansion and deployment of 

IoT-enabled Prognostic Maintenance in manufacturing. The 

design of a digital twin and quality production check are 

discussed in [15]. The designed and tested digital twin 

architecture with digitalization of data supports a 

comprehensive digital prototype that can be used as a 

prototype for the actual manufacturing of SMEs. Authors in 

[16] review the sustainability of smart manufacturing using 

Digital Twin. The related matter of smart manufacturing, 

involving industrial apparatus, approaches, and facilities, is 

examined. An extensive literature survey on DT and 

subsequently on digital manufacturing, smart systems, 

enabling skills and challenges of Digital twin, and its 

implication on the manufacturing industry is carried out. 

Based on the gathered information and study, the research 

methodology is explained in the flow diagram shown in Figure 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

 

Fig. 2 Research methodology flow chart 
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Fig. 3 Conceptual framework for digital twin 
 

2.1. Introduction to Enabling Technologies for Digital Twin 

With the invention of Industry 4.0, various enabling 

technologies gained importance when implemented in areas 

like construction, manufacturing, healthcare and many more. 

This section deals with introducing key enabling technologies 

and the proliferation in the functioning of the DT system. The 

Internet of Things (IoT) is described as the system of physical 

entities linked with sensors and devices to exchange data 

wired or wirelessly with other systems over the internet with 

the help of advanced communication technology. When used 

for industrial applications, the system is recognized as the 

Industrial Internet of Things (IIoT). Sensors are deployed to 

monitor the modifications in parameters and environment in 

real-time. [17, 18] Cloud Computing can make the business 

process simple, effective, efficient, economical, and more 

powerful. Cloud helps in both storage and processing of data. 

DT can be considered a computational service representing 

models for integrating products, processes, and various life 

cycle stages of real-world entities [19]. A popular enabling 

technology called Machine learning is a subset of Artificial 

Intelligence; it is the set of instruction procedures given to the 

computer. Based on algorithms, the computer learns the data’s 

pattern, behavior, and characteristics. Machine learning uses 

sophisticated algorithms by which it can take up the data and 

analyze it autonomously [20, 21]. Deep learning is an 

autonomous learning by use of neural network method. It 

learns from unlabeled, unstructured data, as in the case of 

unsupervised learning. This learning takes comparatively 

longer time to train from the error it has committed as many 

layers of the neural network are involved. But, it offers much 

better accuracy and is commonly used [23]. Augmented 

Reality (AR) is an enhanced version of reality in which 

digitally generated information is superimposed on a physical 

world, thereby adding more value to the real environment. 

Thus, an amplified environment is available to the user, 

enabling an improved perception of reality [25]. Virtual 

Reality (VR) technology is a computer replication system for 

virtual space by creating three-dimensional artificial images 

with the help of interactive hardware and software. Mixed 

Reality (MR) technology is sometimes called hybrid reality 

[26, 27]. In MR, a new environment is obtained by fusing the 

real world and virtual space, giving a rich experience to the 

user. It is an upgrade of AR, wherein a new virtual world is 

formed with the same kind of physical conditions for 

simulated things. Blockchain collects the information in 

groups like a block. When multiple information blocks are 

connected to the parent or genesis block, the chain formed is 

called a Blockchain [28]. 
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3. Conceptual Frameworks of Enabling 

Technologies with Digital Twin   
With a clear understanding of the conceptual framework, 

specific goals of implementing enabling technologies in 

developing the DT system can be achieved. A common 

framework illustrated in Figure 3 indicates the impact of 

enabling technologies with DT. This framework clearly 

highlights the associativity of all the key technologies in 

assisting the design and functionality of the DT system and 

enhancing the industry 4.0 standards practically in every 

application area. 

3.1. Interaction of Internet of Things with Digital Twin 

Before Industrial Revolution 4.0, data acquisition from 

physical assets was a tedious task. Conventional devices were 

used to measure the physical properties of machines and 

structures, but there were several limitations. Inherent 

problems like low accuracy and sensitivity, high latency, low 

repeatability, size, portability, etc. IoT is a promising data 

generation and management method, irrespective of indoor or 

outdoor positioning, industrial safety, hazardous machines, 

and zones [29]. DT, combined with IoT concepts, have proven 

exceptionally well in extracting actual information from 

physical entities through sensors for safety, process, tracking, 

monitoring, scheduling, etc. [30].  

Figure 4 shows IoT devices and their connectedness with 

the DT.Sensors generate data by simultaneously sensing 

minute changes or variations from different sources for further 

usage. This eliminates the manual process of feeding 

unrealistic and irrelevant data. The data generated is 

communicated wired or wirelessly to the edge device, router, 

proxy server, and finally, the cloud. IoT plays a fundamental 

role in the functioning of DT by gathering online data from 

different sources without any losses and transmitting it to the 

storage device. Data sharing between the physical object and 

the digital twin and vice versa enables the smooth functioning 

of DT. This IoT service supports the massive data and 

contributes to the analytics of the gathered information. On the 

other hand, the edge IoT gateways implemented at specific 

locations communicate the information to the virtual world for 

decision-making; hence, IoT-enabling technology is very 

important in the entire DT system [31]. 

3.2. Interaction of Big Data Analytics with Digital twin 

Big data analytics is done on the cloud using its tools, 

models, and algorithms, as the cloud offers more effective 

storage and processing power [32, 33]. Most of the actual 

information gathered from sources like design, planning, 

manufacturing, inspection, maintenance, etc., is massive in 

size. Big data generation is because of the current scenario 

shift to rely on inspiration and experience based on real-time 

and analysis-based data [34, 36]. The large and complex 

dataset must be harvested and stored for further actions like 

configuration, monitoring, diagnostic and prognostic analysis. 

This collection, maintenance, and further processing of data is 

termed big data analytics. An analysis done on the cloud helps 

to identify the critical process, cause, and impact of the 

problem and subsequently helps find appropriate solutions 

[36]. From Figure 5, Big data and digital twins complement 

each other and contribute to the smart system [34]. An 

important function of Big data towards DT includes storage of 

historical as well as live stream of online data. The storage of 

actual data in sliced data nodes safeguards the loss of data in 

case of failure of the data node. This is termed fault tolerance, 

achieved by replicating data in various data nodes depending 

upon the replication factor.  

Also, huge volumes of data can be handled in very little 

time as the input data is mapped at multiple points. Thus, when 

operating digital twins, data management becomes lean, more 

efficient, and more comparative. In brief, with the help of 

models and algorithms, big data analytics help in 

optimization, rapid and accurate planning, detection of the 

root cause of malfunctioning, increase in quality output and 

proactive decision making. 

3.3. Interaction of Cloud Computing with Digital Twin 

Information analytics is an incredibly important phase in 

the process of setting up a digital twin. As mentioned earlier, 

clouds can make the business process simple, effective, 

efficient, economical, and more powerful. The continuous 

stream of data generated from the electronic device is 

extremely unstructured and unorganized, with undesirable 

characteristics and quality. This data needs to be gathered on 

the cloud through some communication devices and protocols. 

Hence, the cloud helps store huge amounts of data produced 

by sensing methods. In brief, data analytics is the extraction 

of significant evidence from the huge data generated through 

the field devices, sensors, actuators, etc., of the DT system.  

Cloud computing forms the service provider to DT by 

offering independent services for computing infrastructure 

over the internet whenever required. It offers high flexibility 

and scalability for simulation and excellent computing 

performance required for the functioning of DT. Working 

teams can collaborate to share common data and platforms 

from widespread locations over the internet. It provides high 

scalability, fidelity, and high synchronization, as well as 

execution to get information from real-world entities [37, 38]. 

Figure 6 shows the cloud interaction in the entire DT system.  

The cloud helps to assist the generated information of the 

real-world assets like condition and parameter changes, 

thereby providing a seamless interface between real entities 

and virtual models. It also offers a common platform and 

computing services for teams to work on the data from various 

remote locations [37]. Some of the cloud platforms and their 

capabilities are mentioned. Platforms like Predix help in 

creating DT. It provides a very simple ecosystem to analyze 

and monitor the targeted factory assets with the help of actual 

data. This platform is safe and scalable and provides 
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optimization of operations and condition assets. Thing-Worx 

is a very simple, powerful, and successful leading platform 

created by Parametric Technology Corporation (PTC) for 

various industrial uses. It is a fast and easy platform capable 

of deploying and extending industrial projects and 

applications. It provides excellent simplicity when connecting 

with electronic devices and can be operated remotely. It offers 

integration with machine learning for smart decision-making. 

Large-scale machine integration can be very well managed by 

IBM’s developed platform called Watson.  

It is simple and offers PaaS (Platform as a Service). It 

gives secure communication of real-time data exchange, also 

capable of handling bulk volumes of data. Cisco IoT Cloud 

Connect offers mobile connectivity. It has flexible and useful 

options in the deployment of various heterogeneous devices. 

Microsoft Azure provides profitability and productivity by 

offering multiple services through IoT solutions. It offers real-

time streaming and data registry. It is flexible, secure, and has 

a scalable platform for analyzing and visualization. 

3.4. Interaction of AI / ML with Digital Twin 

One of the significant impacts of artificial intelligence on 

the digital twin is simulation. Digital twin simulation can be 

greatly improved with the aid of machine learning models and 

procedures. A simulation explains the behavior of a product or 

process in a given environment. Considering historical and 

current data, ML helps predict the condition of physical 

entities and ultimately helps in decision-making.  

It reduces or sometimes eliminates prototyping, hence 

saving in cost, time, material, and energy resources. As the 

experimental data is very high, means each simulation is an 

experimental run. Machine learning algorithms help in faster 

solutions. Hence, it becomes practically easy to simulate the 

process for DT with the help of machine learning.  

The computerized model helps to decide and test the 

implemented strategies without actual visits to the asset, 

machine, process, or plant [39, 40]. Figure 7 shows a hybrid 

algorithm, i.e., with the help of a supervised and unsupervised 

algorithm, the pattern or path identification is done and further 

updated to decide the finalized pattern.  

Due to this enabling technology, DT can perform 

predictive, prescriptive analysis based on real-time online 

data. Condition-based monitoring and alerts by bottleneck 

processes and events can be obtained through machine 

learning algorithms, hence understanding current and future 

conditions for prognostic analysis and estimating remaining 

useful life [41, 42]. Hence, optimization in a product or 

process helps in adopting a better and more cost-effective way 

of operation. 

3.5. Interaction of 3R with Digital Twin 

A very innovative visualization technology of Industry 

4.0 is termed 3R, which involves augmented reality, virtual 

reality, and mixed reality. This technology finds its important 

place in a DT system. Figure 8 shows the interaction of 3R in 

the DT environment. In VR, only a single directional 

interaction occurs between the digital twin, 3R system, and 

user. There is no backward flow of information towards the 

DT from the user, as shown. The high-fidelity digital 

information from the virtual space is transferred to the user. 

The characteristics of a physical world are depicted digitally 

using the simulated entity technique. Whereas AR works on 

two-way interaction between virtual space and user. The AR 

system works in association with DT by taking information 

through the deployed sensors and feedback from virtual space.  

The AR system proves to be more interactive as compared 

to VR as the interaction is two-way, thereby improving the 

overall perception of the physical environment. MR system is 

more compressive in terms of interactive and immersive 

experience. This is because the MR system works on bi-

directional interaction between virtual space and the natural 

scenario. In addition, collaborative interaction exists between 

the AR approach and the user.  

Hence, the information is more reasonably overlapped to 

build the MR environment. Hence, the integration of DT and 

3R technology enhances the visualization of the virtual and 

physical world. It also provides comprehensive simulation 

assistance and flawless decision-making for equipment or 

assets. Technology can be extended, especially in industrial 

applications like visualization of inspection processes, failure 

detection on machine elements and products, planning 

processes and assemblies, equipment, safety training, etc. 

3.6. Interaction of Blockchain with Digital Twin 

Due to huge development in high-performance 

computing software, it help enable the creation of digital 

models conveniently and affordably. On the other hand, 

besides the significant expansion in sensor technology, 

microprocessors and controllers, and wireless sensor 

networks, the IoT has spread to every corner of the world [43, 

44].  

As shown in Figure 9, the process layer suggests the 

physical asset, product, process, equipment, etc. IoT devices 

generating the data serve as a foundation for connecting 

physical entities and digital replicas [45]. The connection 

layer generates a unique code called a cryptographic hash for 

every detailed information.  

Thus, the unique code representing the information 

describes the integration of digital twins with blockchain [46]. 

Through DT, a product or assemblies can be tested for their 

design, performance, and durability for their intended purpose 

to ensure authentic quality and safety. In this complete 

process, data exchange throughout various stages becomes 

essential.  
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Fig. 4 Interaction of IoT with DT 

 
Fig. 5 Interaction of bigdata with DT 
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Fig. 6 Interaction of cloud computing with DT 

Fig. 7 Interaction of AI/ML algorithms for data solution with DT 
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Fig. 8 Interaction of 3R system with DT 

Fig. 9 Role of blockchain with DT 
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Fig. 10 Generalized data flow and tools for digital twin system 

This data needs to be circulated in a very systematic, 

transparent, and trustable manner. Hence, in the blockchain 

layer, unique blocks are created for every code and are 

interconnected with each other, forming a blockchain that 

helps DT to provide trust, security, and protection to highly 

sensitive data. This feature of blockchain ensures originality 

and secure data transmission across various stages of DT. A 

blockchain strengthens security and offers many more benefits 

when associated with DTs. Immutability is one such feature 

that ensures indelibility while keeping its history unaltered. 

This helps to trace any unnecessary changes or data tampering 

at any process stage of DT. The originality of twins is also an 

essential attribute that needs to be protected. Blockchain takes 

care of the legitimacy and identity of DT so that any copy, 

modification, or fake replica of DT is avoided. With 

blockchain, the DT can be easily located or traced accurately, 

and the history associated with the DT can be easily assessed 

from any corner of the world. Table 1 highlights eight 

enabling technologies - IoT/IIoT, Big Data, Cloud 

Computing, AI/ML, AR/VR/MR, Blockchain, Edge 

Computing, and 5G Networks - along with their key features 

and recent real-world examples. These technologies drive 

advancements such as actual examination, predictive 

maintenance, data-driven insights, and enhanced connectivity. 

Companies like Siemens, Netflix, and Tesla are leveraging 

these innovations to enhance operations, amend management, 

and enable smarter systems through industries like 

manufacturing, entertainment, automotive, and more. 

4. Data Flow and Tools of Digital Twin System   
The architecture of DT is a complex phenomenon and 

depends on the area of application and its practical approach. 

The three main fragments of DT include the real world, virtual 

systems, and interconnection between each other. This 

connection is maintained with the help of the data, which 

flows through various devices, keeping the system connected.  

As shown in Figure 10, the process involves data 

procurement, data communication, data processing, data 

amalgamation and data visualization. The physical world 

could be anything, such as a human being, machine, material, 

equipment, etc. A complete understanding of the physical 

world is the utmost important element of successful DT. In-

depth knowledge of multidisciplinary engineering aspects 

may involve understanding material properties, machine 

dynamics, mechanics, acoustics, vibrations, thermodynamics 

and many more. Combining all these required parameters 

makes it impossible to develop a virtual system that best 

resembles the real domain. To accomplish this, the model 

needs to be verified, validated, and accredited in the real 

world. Hence, to develop a high-fidelity virtual system, one 

needs to be fully aware of the physical world. 
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Table 1. Overview of key enabling technologies and their real-world applications 

Sr. 

No. 

Enabling 

Technologies 
Features Recent Example 

1 IoT/IIoT 
Real-time monitoring, process 

optimization, predictive maintenance 

Siemens: Smart factories using IoT for 

optimization and predictive maintenance. 

2 Big Data 
Advanced analytics, predict product 

performance, data-driven insights 

Netflix: Uses big data to personalize content 

and optimize streaming. 

3 Cloud Computing 
Scalable data storage, on-demand access, 

remote collaboration 

AWS: Cloud solutions for scalable data 

processing and storage. 

4 AI/ML 
Predictive analysis, automation, real-time 

decision-making 

Tesla: AI-driven self-driving cars with 

continuous algorithm improvements. 

5 AR, VR, MR 
Visualization, virtual training, remote 

troubleshooting 

Microsoft HoloLens: Mixed reality solutions for 

training and remote support. 

6 Blockchain 
Data security, decentralized storage, fraud 

prevention 

IBM Food Trust: Blockchain for supply chain 

transparency and safety. 

7 Edge Computing 
Reduced latency, data optimization, 

resilience 

NVIDIA: Edge AI solutions for real-time 

processing in autonomous systems. 

8 5G Networks 
High-speed connectivity, real-time data, 

IoT support 

Verizon 5G: 5G networks supporting smart 

cities and IoT devices. 

 

The substantial data generated by the physical assets acts 

as fuel for the overall functioning of the digital twin system. 

The actual data could be the data on machining inputs, 

machining parameters, data related to production planning, 

equipment health data and many more. The data generated 

should be acquired completely without any data loss, which 

needs to be further filtered, corrected, and modulated to 

extract the maximum benefits of the data.  

The data generated is heterogeneous and comes from 

various sensors and electronic devices; secondly, the massive 

amount of information needs proper storage. The data should 

be systematically placed so that data retrieval becomes easier. 

Hence, data management becomes an important link in the 

overall digital twin system, whether the data is labeled, 

unlabeled, structured, unstructured, or in any other form. The 

acquired data is through the deployment of sensors capable of 

generating signals proportionally with the given parameters.  

The data could be transmitted through wires or without 

wire, i.e., wirelessly; wireless technology has helped deploy 

sensors and data transmission in the areas where the approach 

becomes difficult. For a shorter range, the generated data is 

transmitted to the storage space by means of advanced 

communication protocols like Wi-Fi, Zigbee, Sigfox, 

LORAWAN, 5G, etc. In contrast, the GPRS communication 

protocol is used for a longer range, the use of satellite 

communication.  

This overall activity of collection, filtering, and 

transmitting of the data could be mapped to IoT/IIoT enabling 

technology. Handling huge amounts of data and extracting 

meaningful information for subsequent use is challenging. As 

mentioned earlier, the data is available in huge volume, with 

variable content and high velocity. Effectively handling and 

simultaneously extracting meaning is not at all possible with 

the help of traditional means. To overcome this difficulty of 

big data storage with the help of SQL, New SQL, H Base, 

Cloud, MongoDB, etc. NewSQL is scalable and flexible, with 

high performance to handle all data types. The meaningful 

extraction of information is of utmost significance because the 

succeeding activity of data processing is largely dependent on 

it. It consists of noise cleaning, redundancy, raw data, 

smoothing and transformation. The tools used for data 

processing are Predix, Pig, Hive, MapReduce, etc. After 

processing, the data can be used for further analysis via the 

IoT platform. 

5. Conclusion 
The awareness of Digital twins is growing in every field, 

especially in manufacturing, and the potential seems to be 

much higher. It is obvious that the success of DT lies in vital 

supporting technologies like IoT, Artificial intelligence, 

Cloud computing, Bigdata, etc. However, some limitations 

still need to be tackled to penetrate this technology further. 

Challenges like lack of IT infrastructure, lack of 

standardization of implementation, security and safety of data, 

trust in performance, lack of skilled human resources, etc., are 

important barriers that must be worked upon.  

Also, the overall DT system is complex in nature and 

requires close integration of multidiscipline engineering, and 

complete awareness is not common. Using proper platforms, 

applications, tools, and enabling technologies is a crucial 

aspect of operational DT.  

However, the selection of proper communication protocol 

and their service restrictions also contribute to the delay in 

implementation. The main aim of this review is to attempt to 

put forward a common conceptual framework that will help 

understand the implementation, implication and interaction of 

each key enabling technology for Digital twin. This 
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framework is a common reference for accessing the impact 

and implementation of enabling technologies with DT on any 

physical assets. But still, it is a long journey of implementation 

of DT for every physical entity and in manufacturing 

industries, such as product life cycle management, predictive 

maintenance, condition-based monitoring, fault diagnosis, 

etc., so that potential benefits can be availed.  

However, creating a generalized methodology is a 

complex aspect, as the area of concern and purpose have a 

huge variability from case to case. Hence, it is very important 

to further work upon the stated challenges and try to fine-tune 

them. Besides, the contribution is still awaited in developing 

a common data format for real-time data, which should 

include all parameters essential for DT with ease of handling 

and storage of heterogeneous data, which is still a very 

important concern that needs further investigation.  

Also, the implementation of backward integration, i.e., 

the changes made in the virtual space, should be successfully 

reflected on the real asset, which could be the areas for future 

interest and investigation.  

Availability of Data and Materials 
The data supporting the findings of the article is available 

within the article. 
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