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Abstract - Emotional expressions, encompassing verbal and non-verbal communication, convey an individual’s emotional state 

or attitude to others. Understanding complex human behavior requires analyzing physical features across multiple modalities, 

with recent studies focusing extensively on spontaneous multi-modal emotion recognition for human behavior analysis. However, 

accurate Facial Emotion Recognition (FER) faces significant challenges due to partial facial occlusions caused by random 

objects and mask-wearing. The paper introduces a novel classification method, Pizam-ANFIS-based FER, which considers 

Occlusions and Masks (PAFEROM) to address this. Preprocessing the input image is the first step in the process, followed by 

cropping and face detection with the Viola-Jones Algorithm (VJA). Further, the skin tone is then analyzed, and several parts of 

the face are segmented using LSW-KCM. Furthermore, contour formation, edge detection by CGED, and extracting features are 

executed. Using Principal Component Analysis with Information Gain Analysis (PIGA), the retrieved features dimensionality is 

reduced before the CSE processes them for the identification of Action Units (AUs), and the proposed approach is utilized. 

Subsequently, the identified AUs and dimensionally reduced features are classified using Pizam-ANFIS to recognize human 

emotions. Experimental results indicate that the proposed model surpasses existing techniques in both effectiveness and 

accuracy. 

Keywords - Local Structural Weighted K-Means Clustering (LSW-KMC) algorithm, Canny Gaussian Edge Detector (CGED), 

PizMamdani (Pizam)-Adaptive Neuro Fuzzy Interference System (Pizam-ANFIS), Correlated Swish Embedding Network (CSE). 

1. Introduction 
Facial expressions play an important role in human 

communication by providing essential nonverbal information 

that complements verbal interactions. Studies suggest that a 

significant portion of communication, ranging from 60% to 

80%, is conveyed through nonverbal cues. These include 

facial expressions, eye contact, vocal tone, hand gestures, and 

physical distance [1, 2]. Analyzing these facial expressions 

has garnered significant attention in research, particularly in 

the field of FER. FER technology is increasingly utilized in 

Human-Computer Interaction (HCI) applications, including 

autopilot systems, education, medical and psychological 

treatments, surveillance, and psychological analysis in 

computer vision [3]. By examining human facial expressions, 

FER systems aim to detect specific emotions such as anger, 

disgust, fear, happiness, sadness, surprise, and neutral states. 

The complexity of accurately estimating emotions is 

heightened by the diversity of human facial features and the 

variety of possible emotional expressions [4]. Automated 

recognition of facial expressions has garnered significant 

interest in recent years due to its broad spectrum of 

applications [5]. However, achieving high accuracy in 

recognizing facial expressions remains challenging because of 

their subtlety, complexity, and diversity [6]. A critical aspect 

of effective FER is obtaining precise facial representations 

from the original facial images [7].  

This system has two tasks: face detection and facial 

emotion classification. To extract significant and unique 

facial features, the human face is first recognized from the 

acquired image [8]. Then, the emotion represented by the 

identified face is classified using a FER algorithm. Formerly, 

researchers have tackled FER using various approaches such 

as the MLP Model, k-nearest Neighbors (KNN), and Support 

Vector Machines (SVM) [9]  have been used to extract 

information through methods such as Local Binary Patterns, 

Eigenfaces, Face-Landmark, and Texture features. Among 

these approaches, neural networks have gained significant 

popularity and are now widely utilized for FER [10]. 

Presently, advanced classifiers, including Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), 

and Random Forests, are extensively employed in this domain 

and are widely used for tasks such as healthcare recognition, 

biometric identification, handwriting analysis, and facial 

detection for security purposes. However, achieving precise 

emotion classification with state-of-the-art classifiers in FER 
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remains challenging due to issues like partial occlusion and 

the use of masks, which often need to be adequately addressed. 

1.1. Problem Statement 

Listed below are some of the shortcomings of the existing 

research approaches used to date: 

1. Although current facial expression classifiers have proven 

practically flawless in analyzing confined frontal faces, 

there is a need to improve when analyzing faces that are 

partially obscured or hidden behind masks, frequently 

seen in the wild. 

2. When wearing a face mask that covers the mouth and 

nose, it is impossible to accurately identify facial 

expressions of emotion. Classifying facial emotions using 

the half-face is more complex and challenging since the 

mouth area is one of the significant variables responsible 

for emotion detection. 

3. Current FER techniques for masked faces often disregard 

significant facial areas like the forehead. Instead, they 

isolate only the eye region using landmark detection 

methods, which ultimately reduces the accuracy of the 

FER system. 

The limitations of traditional FER systems become 

particularly evident in real-world scenarios involving partial 

occlusions and mask-wearing, which have become 

increasingly common in recent years. For instance, in 

healthcare settings, masked faces of medical personnel pose 

challenges for FER systems attempting to monitor stress or 

fatigue levels. Similarly, in surveillance applications, 

occluded faces due to scarves, helmets, or other coverings 

often result in inaccurate emotion detection, potentially 

undermining security measures. In education, where FER is 

used to assess student engagement during online learning, 

using face masks or partial visibility due to camera angles can 

lead to misclassification of emotions, reducing the efficacy of 

such tools. These real-world challenges underscore the need 

for robust FER systems capable of accurately detecting 

emotions under such conditions. This research addresses these 

limitations by introducing a novel framework designed to 

maintain high accuracy even in occlusion-prone scenarios, as 

demonstrated by its superior performance compared to 

existing techniques. 

This research suggests an improved FER system using a 

novel Pizam-ANFIS classifier to overcome these issues. The 

key research objectives of this system are outlined as follows: 

1. A novel Edge Detector has been developed to detect the 

exact boundaries of organs. 

2. A novel dimensionality reduction model is employed to 

select the interest features to mitigate training time. 

3. A novel neural network is employed 

4. To categorize the AU present in the mask-covered facial 

image. 

5. A rule-based novel technique is utilized to classify human 

emotions.  

Despite significant advancements in FER, existing 

techniques face notable challenges in accurately classifying 

emotions in real-world scenarios involving partial occlusion, 

such as mask-wearing or object obstruction. Addressing these 

gaps, this study introduces the Pizam-ANFIS classifier. This 

novel framework integrates advanced edge detection, 

dimensionality reduction, and action unit identification 

techniques to enhance FER performance under challenging 

conditions. Unlike prior approaches, the proposed model 

utilizes LSW-KMC for precise feature extraction and a PIGA-

based dimensionality reduction method to optimize 

computational efficiency.  

The novelty of this work lies in its ability to achieve 

superior accuracy and robustness, particularly in scenarios 

involving occlusions, which outperform existing models. The 

outline of this paper is as follows: Section 2 offers an in-depth 

review of related work, emphasizing significant advancements 

and challenges within the field. Section 3 details the proposed 

methodology, highlighting the innovative techniques and 

algorithms employed. Section 4 then presents and analyzes the 

results, emphasizing performance metrics and comparative 

evaluation. At last, the 5th Section concludes the paper by 

summarizing the findings and suggesting potential directions 

for future research. 

2. Literature Survey 
In the field of FER, Mehendale et al. [11] introduced a 

modular framework that employs an AdaBoost cascade 

classifier for face detection and utilizes Neighborhood 

Difference Features (NDF) for feature extraction, which were 

then classified using a random forest classifier to address false 

detections. Despite outperforming methods on the SFEW and 

RAF datasets, the system’s omission of geometric elements 

led to inaccuracies. Liu et al. [12] introduced a FER technique 

that utilized landmark curvature and vectorized landmarks, 

blending SVM classification with a GA to select features and 

parameters.  

While this approach showed balanced performance on the 

CK+ and MUG datasets, image noise impacted the SVM 

classifier’s accuracy. Alreshidi et al. [13] employed NPCA for 

dimensionality reduction and SVM for emotion recognition, 

achieving high accuracy but struggling with varying input 

dimensions. Hassan et al. [14] utilized graph mining 

techniques to identify common sub-graphs within emotional 

classes, enhancing efficiency and accuracy but resulting in a 

more time-consuming process. Hussain et al. [15] developed a 

deep learning-based FER system structured in three phases: 

face detection, feature analysis using Keras CNN, and emotion 

classification. Although this system demonstrated proficiency, 

errors in facial landmark detection impacted overall accuracy. 
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Houshmand et al. [16] proposed a transfer learning approach 

with pre-trained VGG and ResNet networks for FER under 

VR headset occlusion, achieving comparable performance but 

needing refinement in preprocessing steps due to issues with 

histogram equalization. Monisha et al. [17] introduced a real-

time FER system using CNN for classification, demonstrating 

high accuracy but encountering recognition errors due to 

limited training data. Akhand et al. [18] utilized transfer 

learning within a Deep Convolutional Neural Network 

(DCNN), progressively enhancing FER accuracy but failing to 

preserve edge information crucial for detailed emotion 

recognition. Saha et al. [19] employed the Cosine Similarity-

Based Harmony Search Algorithm (SFHSA) for feature 

selection, optimizing feature vectors and improving 

classification accuracy, albeit with a time-consuming training 

process. Gautam et al. [20] combined HOG and SIFT for 

extracting features with classification using CNN, 

outperforming existing methods but struggling with the 

limitations of 2D data in handling facial pose variations. 

Castellano et al. [21] focused on recognizing emotions from 

masked faces using ResNet, achieving high accuracy with eye 

region analysis but increasing computational demands due to 

skipping connections.  

Wally et al. [22] developed an Occlusion-Aware Student 

Emotion Recognition system utilizing CNN and FCNN, which 

faced overfitting issues due to limited data. Elsayed et al. [23] 

showcased a hybrid CNN with LBP for feature extraction in 

masked faces, demonstrating improved recognition but facing 

challenges with imbalanced and noisy data. Mukhiddinov et 

al. [24] applied synthetic masks to input images, emphasizing 

head and upper facial features for FER, achieving higher 

accuracy but encountering orientation issues with landmark 

features. Finally, Zhu et al. [25] introduced HDCNet, 

leveraging a feature constraint methodology to mine attention 

consistency features, improving classification accuracy but 

posing substantial computational demands due to Class 

Activation Mapping. 

3. Proposed Framework for FER 
This study introduces a novel Pizam-ANFIS model for 

accurate and efficient human emotion recognition using visual 

features. Two key processes face detection and classification 

are finished in order to identify the facial mood. Features from 

the face are retrieved and fed into a trained network for 

emotion classification. The block diagram for the suggested 

model is illustrated in Figure 1. 

 
Fig. 1 Schematic of the projected framework 
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3.1. Preprocessing 

This section demonstrates how an image is initially taken 

as input and processed through preprocessing to eliminate 

unwanted elements. The input face expression image 

undergoes the preprocessing operation in three stages:  Image 

resizing, pixel reduction and normalization. 

3.1.1. Image Resizing 

The accuracy and computation time of the processing 

system can be adversely affected by unwanted pixels in the 

input image. The input image (I) is resized to 256×256 pixels 

using bilinear interpolation to address this. This method is 

particularly recommended for continuous data sets lacking 

distinct boundaries. Bilinear interpolation is a resampling 

method that computes a new pixel value by averaging the four 

nearest pixel values, weighted by their distances. This 

technique provides a smoother and more precise 

representation of the image. The resized image (Iresize) is,                                                     

𝐼𝑟𝑒𝑠𝑖𝑧𝑒 =  
Ψ𝑅S𝐿+ Ψ𝐿S𝑅+ Ψ𝑇S𝐵+ Ψ𝐵S𝑇

Ψ𝑅+Ψ𝐿+Ψ𝑇 +Ψ𝐵         (1) 

Here, R, L, T, and B refer to the distances corresponding 

to the missing pixel. And SL, SR, SB, and ST represents the source 

pixels located to the left, right, top, and bottom. 

3.1.2. Pixel Reduction 

After resizing the image, the noisy pixels from the resized 

image (Iresize) were removed by utilizing the Discrete Wavelet 

Transform (DWT). DWT is selected due to its ability to 

achieve a higher compression ratio. This process involves 

decomposing the image into coefficients (sub-bands) and then 

compared to a set threshold (Tthres). The coefficients that fall 

below this threshold are considered noiseless pixels and are 

retained in the image. In contrast, those above the threshold 

are identified as noisy pixels and are subsequently removed. 

This method ensures that only the low-low frequency sub-

bands, which contain the essential image information with 

reduced noise, are preserved. The resulting pixel-reduced 

image (Ired) can be represented as follows:  

𝐼𝑟𝑒𝑑 =  {
𝑛𝑜𝑖𝑠𝑦 𝑝𝑖𝑥𝑒𝑙, 𝑖𝑓 (𝐼𝑟𝑒𝑑)𝜌 > 𝑇𝑡ℎ𝑟𝑒𝑠

𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠 𝑝𝑖𝑥𝑒𝑙, 𝑖𝑓 (𝐼𝑟𝑒𝑑)𝜌 < 𝑇𝑡ℎ𝑟𝑒𝑠

   (2)                                

3.1.3. Normalization 

Unity normalization transforms the pixel-reduced image 

(Ired) into a range of pixel values. Unity normalization has 

better and faster execution. In order to reduce the inner-class 

feature mismatch, which can be seen as intensity offsets, 

image normalization is a crucial preprocessing approach. The 

normalized image can be denoted as Inor. 

  𝐼𝑛𝑜𝑟 =
𝐼𝑟𝑒𝑑

||𝜈||
      (3) 

Here, ||𝜈|| denotes the vector of the pixels. 

3.2. Face Detection 

In this step, face detection from the preprocessed image 

using the VJS to facilitate the determination of the region of 

interest and subsequent feature extraction. The VJS process 

entails sliding feature boxes across the image and computing 

the difference in the total pixel values between adjacent 

regions, represented as (d). This difference is then compared 

to a threshold value (Tf) to determine if an object, such as a 

face, has been detected. This method simplifies the 

identification of the region of interest and ensures accurate 

feature extraction from the detected face. The detected face 

(Iface) is computed as follows, 

  𝑇𝑓 =  {
𝑓𝑎𝑐𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑇𝑓 > 𝑑

𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑇𝑓 < 𝑑
            (4) 

3.3. Cropping and Skin Tone Analysis 

The detected face image is cropped to remove all the 

unwanted things from the image, such as the background, and 

to keep only relevant information in the image. After that, skin 

tone analysis is done to differentiate the parts presented 

over the face. Then, the image of the skin analyzed is 

denoted as Iskin.       

3.4. Patch Generation 

In patch generation, the different facial parts are 

segmented from Iskin to encourage extracting discriminative 

features from the minute parts using the LSW-KMC 

algorithm. The LSW-KCM algorithm was employed for 

precise segmentation of facial regions. This method utilizes a 

weighted sum of image pixels to improve clustering accuracy, 

with the control parameter α set to balance spatial and 

structural relationships. The structural similarity index, 

combining luminance, contrast, and structural metrics, guides 

the clustering process until convergence. K means is favored 

over other segmentation methods because of its ease of use 

and rapid computation speed. However, the spatial Euclidean 

distance-based characterization of the relationship between 

the image pixels and cluster center is more difficult since this 

distance alone is insufficient to understand the general 

characteristics. In order to get over the drawbacks above, the 

weighted sum of the image pixels was used to estimate the 

distance between each image pixel and the cluster center. After 

that, the structural similarity index calculates a local distance 

measurement to determine how far apart two image pixels are 

from one another in the overall image. This local distance 

computation reflects not only the physical relationship 

between two picture pixels but also the relationship connected 

to luminance and contrast, as well as the structure of the image 

pixels revolving around them. As a result, LSW-KMC serves 

as the inspiration for the proposed KMC. The steps of LSW-

KMC are listed as: 

a) Initializing the pixels 𝜌𝑗 ∈ 𝐼𝑠𝑘𝑖𝑛
, presented as, 

𝜌𝑗 = {𝜌1, 𝜌2, 𝜌3, . . . . . . 𝜌𝑁}𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1,2. ,3, . . . . . . 𝑁 (5) 
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Here, j denotes the count of pixels of the skin tone 

detected image. 

b) Select the cluster numbers that are defined by respective 

centroids. Initially, the precise centers of the pixels are 

unknown, so the centroids Cm are chosen randomly to 

establish each cluster. 

𝐶𝑖 = 𝐶1, 𝐶2, . . . . . . . 𝐶𝑀         𝑖 = 1,2 … . . 𝑀 (6)     

Here, i represents the centroid (cluster centre). 

c) Calculate the weighted sum of the image pixels by 

considering the essential distance (𝑑(𝜌𝑗 ,  𝐶𝑖)). 

𝑆 = ∑ 𝑊𝑅𝑑(𝜌𝑗𝑟 , 𝐶𝑖𝑟)𝑍
𝑟=1  (7) 

Here, 𝑊𝑅 denotes the weight associated with the 

distance (𝑑(𝜌𝑗,  𝐶𝑖)), 𝜌𝑗𝑟 represents the value of the point in 

the image located around the 𝜌𝑗, 𝐶𝑖𝑟 denotes centroids, and Z 

denotes the number of points in the skin tone detected image.  

d) 𝑊𝑅 is determined by looking at the coordinate distance 

between 𝜌𝑗𝑟and 𝜌𝑗. Therefore, the weights are, 

𝑊𝑅 =
1

(1+𝑑𝑟)𝐶𝑝𝑎𝑟𝑎
                      (8) 

Here, 𝐶𝑝𝑎𝑟𝑎 represents the control parameter.  

e) Measure the structural similarity of the image. It considers 

the degree of similarity of luminance, contrast, and 

structure of the pixel and cluster center. The SSIM 

index(𝐷 ∈ 𝑆) between pixels and cluster center is defined 

as,  

𝐷 =
(2𝜆

𝜌𝑗𝜆𝐶𝑖
+𝜒1)(2𝜎

𝜌𝑗𝐶𝑖+𝜒2)

(𝜆
𝜌𝑗

2𝜆𝐶𝑖
2+𝜒1)(𝜎

𝜌𝑗
2𝜎𝐶𝑖

2+𝜒2)

 

(9) 

Here, 𝜆𝜌𝑗  and 𝜆𝐶𝑖
 denote the mean of 𝜌𝑗 and 𝐶𝑖 

respectively, 𝜎𝜌𝑗𝐶𝑖 signifies the cross-correlation between 𝜌𝑗 

and 𝐶𝑖, 𝜎𝜌𝑗
2 and 𝜎𝐶𝑖

2 specifies the standard deviation of 𝜌𝑗 

and 𝐶𝑖, respectively, 𝜒1 and 𝜒2 are the positive constants. 

f) Assign each pixel to the cluster whose centroid is closest, 

minimizing the distance between the pixel and the 

centroid.  

This process continues iteratively until the clusters 

stabilize and no further changes occur. This segmentation 

identifies and outlines standard and disease-affected regions in 

the resulting image, denoted as Iseg. The pseudocode for the 

proposed LSW-KMC means is: 

Input : Face-detected image 𝐼𝑠𝑘𝑖𝑛 

Output : Segmented image 𝐼𝑠𝑒𝑔 

Begin  

Initialize 𝜌𝑛, number of clusters 𝐶𝑚, iteration 
(𝑖𝑡𝑒𝑟), maximum iteration (𝑖𝑡𝑒𝑟𝑚𝑎𝑥())

 
Perform clustering 

Select the number of centroids 

Set 𝑖𝑡𝑒𝑟 = 1 

While 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  

For each pixel, do 

 Calculate the weighted sum of image pixels 

Compute distance 𝐷 

𝐷 =
(2𝜆𝜌𝑖𝜆𝐶𝑖

+ 𝜒1) (2𝜎𝜌𝑗𝐶𝑖 + 𝜒2)

(𝜆𝜌𝑖
2𝜆𝐶𝑖

2 + 𝜒1)(𝜎𝜌𝑖
2𝜎𝐶𝑖

2 + 𝜒2)
 

End for   

Check all the pixels are presented under the 

cluster 

If (𝜌𝑛 == 𝑢𝑛𝑑𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟) { 

Stop criteria 

}  

Else  

{ 

Set 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

}  

End if 

End While  

Return segmented image  

End 

3.5. Contour Formation and Edge Detection 

Here, the contour is formed over I s e g  using CGED to 

extract the facial parts more effectively from the occluded 

and mask-covered input images. For simplicity, the existing 

Canny Edge Detection (CED) is chosen for the proposed 

work. However, a drawback of the CED is that the default 

Sobel Operators are restricted to a fixed 3-by-3 window. This 

limitation can be problematic, particularly in noisy images, 

potentially compromising the final output. The work employs 

a broader 5-by-5 Sobel Operator window to address this issue. 

Additionally, the horizontal and vertical gradients are 

calculated using a Gaussian kernel, replacing the standard 

convolution kernel used in traditional CED. This adjustment 

reduces computational time while enhancing noise resistance 

and edge detection accuracy, making the CGED approach 

more robust and effective for occluded and mask-covered 

facial images. Denoise image before detecting the edge of the 

image usually use the 5-by-5 Sobel Operator to reduce noise, 

according to (10), 

 𝐼𝑑𝑒𝑛 = √𝛽𝑜
2 + 𝛽𝑡

2                                                            (10) 

To calculate the gradient intensity (B), use the Gaussian 

kernel and determine the edge direction (ϕ). Typically, the 

gradient direction is categorized into four angles: 0, 45, 90, 
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and 135 degrees. This process is defined by Equations (11) and 

(12), 

𝐵 = 𝑒𝑥𝑝 (
−‖𝛽𝑜−𝛽𝜄‖2

2𝜎2 ) (11) 

𝜙 = 𝑡𝑎𝑛−1 (
𝛽𝑜

𝛽𝜄
) (12) 

Where, 𝛽𝑜 and 𝛽𝜄 denote the pixel values in the 𝑜 -axis 

and 𝜄 -axis, respectively, 𝜎 denotes the signum function. After 

the gradient and magnitude calculation, the entire image is 

scanned, unwanted pixel intensities are suppressed to 0, and 

the edges present are given as 𝐸ℏ, ℏ = 1,2, . . . , 𝑓𝑖𝑛. Next, the 

hysteresis threshold is selected as high (𝑈𝑝𝑙) and low (𝐿𝑜𝑙). 

These thresholds analyze whether all the detected edges are 

edges or not. The thresholding function is given as, 

𝐼𝑒𝑑𝑔𝑒 = {

𝑆𝑢𝑟𝑒 𝑒𝑑𝑔𝑒 𝑖𝑓ℏ > 𝑈𝑝𝑙

𝑉𝑎𝑙𝑖𝑑 𝑒𝑑𝑔𝑒 𝑖𝑓𝑈𝑝 > ℏ > 𝐿𝑜𝑙

𝑛𝑜𝑛 𝑒𝑑𝑔𝑒 𝑒𝑙𝑠𝑒
 (13) 

Where ℏ depicts the edge, if the edge ℏlies between, then 

𝑈𝑝𝑙  and 𝐿𝑜𝑙  connected to a sure edge is considered a valid 

edge. If the edge ℏ does not connect to the sure edges and 

below, then 𝐿𝑜𝑙  it is removed from the image as a non-edge. 

Finally, the edge-detected image is denoted as 𝐼𝑒𝑑𝑔𝑒 .  

3.6. Feature Extraction 

After performing edge detection, the next step is to extract 

features to obtain detailed information from the input image. 

Texture features are extracted using the GF, a linear filter 

selected for its frequency and orientation representations that 

closely mimic the human visual system. The Gabor Filter (GF) 

comprises a sinusoidal plane wave modulated by a Gaussian 

kernel function. Based on the convolution theorem, the 

Fourier Transform (FT) of a harmonic function and the FT of 

a Gaussian function combine to produce the impulse response 

of a Gabor filter. This filter captures orthogonal directions 

with both real and imaginary components. The process 

involves applying the GF to the input image to obtain the 

sinusoidal plane wave response, modulating this response with 

the Gaussian kernel function to capture both frequency and 

orientation information, and combining the Fourier transforms 

of the harmonic and Gaussian functions to generate the GF’s 

impulse response. The real and imaginary components 

representing orthogonal directions are then extracted. These 

Gabor features (f1) are crucial for accurately capturing the 

texture information from the image, thereby enhancing the 

overall feature extraction process. 

𝑓1 = 𝑒𝑥𝑝(−(𝜌𝑖)2 + (𝜌𝑖)2/2𝜛2) ∗ 𝑐𝑜𝑠(2𝜋/ƛ) 𝜌𝑖  (14) 

Here, ƛ and 𝜛 denotes the wavelength and effective 

width, respectively. Additionally, various features such as 

geometrical features, appearance features, temporal features, 

HOG, SIFT, and Speeded-Up Robust Features (SURF) are 

extracted. The comprehensive set of extracted features (𝑓𝑘) 

can be summarized as follows:  

𝑓𝑘 = {𝑓1, 𝑓2, 𝑓3, . . . . . . . 𝑓𝐾}𝑤ℎ𝑒𝑟𝑒, 𝑘 = 1,2,3, . . . . . . 𝐾  (15) 

Here, K denotes the number of features.  

3.7. Dimensionality Reduction 

In this step, the dimensionality of features is reduced 𝑓𝑘 

to a lower-dimensional space using PIGA, which selects the 

most critical features to minimize training time during 

classification. Principal Component Analysis (PCA) is 

employed for its straightforward computation process and 

ability to eliminate correlated features. Principal Components 

aim to capture the maximum variance among the features. 

However, traditional PCA may lose some information 

compared to the original feature set due to the arbitrary 

selection of principal components. To address this limitation, 

the research incorporates the Information Gain (IG) 

mechanism, an entropy-based feature estimation method, to 

determine the optimal number of principal components. IG 

evaluates each feature individually, calculates its information 

gain, and assesses its importance concerning the class label.  

Each extracted feature is assigned a score ranging from 1 

to 0, indicating its relevance from most to least important for 

setting the number of principal components. The covariance 

matrix for PCA is computed using the normalized features, 

and eigenvalues are calculated using decomposition functions, 

which are then ranked based on IG scores to prioritize the most 

significant features. For this study, the threshold for IG was 

experimentally set at 0.5 to ensure a balance between feature 

retention and dimensionality reduction. By combining PCA’s 

ability to optimize variance with IG’s feature evaluation, 

PIGA ensures that principal component selection is fair and 

effective and preserves essential information while reducing 

dimensionality. 

3.7.1. Covariance Matrix Construction  

The PIGA constructs a covariance matrix for the 

recognition process to get the eigenvectors. The covariance 

matrix (ℜ) construction is formulated as, 

ℜ =
1

𝐾
∑ (𝑓𝑘)𝐾

𝑘=1 (𝑓𝑘)𝑇  (16) 

Where, (𝑓𝑘)𝑇 depicts matrix transpose. 

3.7.2. Eigenvalue Calculation 

The eigenvalue is calculated from the features as, 

𝐸 = 𝜗((1 𝐾⁄ ) × 𝑓𝑘) (17) 

Where E depicts the eigenvalue and 𝜗((𝑓𝑘)𝑇) depicts the 

decomposition function, which is given as, 
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𝜗 = 𝐷𝑐𝑜𝐷𝑚𝑎𝑖𝑛 (18) 

Here, 𝐷𝑐𝑜𝐷𝑚𝑎𝑖𝑛depicts the decomposition of two 

matrices of the features.  

3.7.3. Eigenvector Estimation 

For the features with high eigenvalues, the eigenvector 

(V) is calculated using the formula, 

𝑉 = ℜ − 𝜍. 𝐸 (19) 

Here, 𝜍 indicates a random constant value.  

3.7.4. Obtaining Principal Components 

After the eigenvalues are estimated, the features with high 

Eigenvalues are derived as the principal components. The 

principal components are calculated using IG, 

𝑝𝑐𝑜𝑚 = 𝑉 × 𝜑𝑐𝑒𝑛  (20) 

Where, 𝜑𝑐𝑒𝑛  depicts the kernel center. Thus, the selected 

features (𝐹𝑧
𝑠𝑒𝑙) are given as, 

𝐹𝑧
𝑠𝑒𝑙 = [𝐹1

𝑠𝑒𝑙 , 𝐹2
𝑠𝑒𝑙 , 𝐹3

𝑠𝑒𝑙 , . . . , 𝐹𝑍
𝑠𝑒𝑙]   (21) 

Where 𝑍𝑡ℎ represents the number of features.  

The methodology is designed as a cohesive pipeline 

where each stage builds on the outputs of the previous one to 

achieve accurate emotion recognition. Using the LSW-KCM 

algorithm, the segmentation stage extracts specific facial 

regions by clustering pixels based on spatial and structural 

similarities. This segmentation ensures that key facial features 

are isolated for further processing. The segmentation output is 

passed to the edge detection stage, where the CGED method 

is employed. By using a broader Sobel operator and Gaussian 

kernel, CGED effectively refines the contours of segmented 

regions, ensuring precise boundary detection even in noisy or 

occluded images. These refined edges provide a robust input 

for the feature extraction stage, where critical texture and 

structural features are identified using techniques like Gabor 

filters.The extracted features are then fed into the 

dimensionality reduction stage. PIGA selects the most 

informative features based on variance and information gain, 

reducing computational complexity while retaining essential 

data. This sequential integration ensures that each stage 

enhances the quality and relevance of the data passed to the 

next, resulting in a streamlined and efficient process that 

optimally prepares input for the final classification using the 

Pizam-ANFIS model. The seamless interaction of these stages 

maximizes the accuracy and robustness of the overall system. 

3.8. Action Unit Identification 

Here, the CSE network determines the human AUs 𝐹𝑧
𝑠𝑒𝑙  

for quickly identifying emotions during training. Human 

action units encompass various expressions and movements 

such as slit, eyes closed, squint, blink, wink, and others. They 

also include actions such as raising the inner and outer brows, 

lowering the brow, lifting the upper lid, wrinkling the nose, 

raising the cheeks, tightening the lids, and drooping the lids. 

A CNN is utilized for its capability to process high-

dimensional data effectively without significant information 

loss. However, in existing CNNs, many neurons still need to 

be updated because the ReLU activation function does not 

preserve negative values due to its monotonic and linear 

nature. The proposed method utilizes Hard Swish (HS), which 

is nonmonotonic and smooth, to address this issue. The 

nonmonotonic property of HS stabilizes the network’s 

gradient, allowing it to maintain small negative values. 

Additionally, the CNN’s embedding and correlated 

interference modules are crucial for effective recognition. 

These enhancements ensure that the network can better 

capture and process the nuances of human action units, leading 

to more accurate and robust recognition. The correlated 

interference module received and processed the discriminative 

AU features’ estimations from the embedded module. It 

calculates the correlations between the differentiating 

characteristics. As a result, the planned CNN is known as CSE. 

3.8.1. Input Layer 

The input layer of a neural network consists of artificial 

neurons that introduce the initial data into the system, setting 

the foundation for processing by the subsequent layers of 

artificial neurons. 

3.8.2. Convolution Layer 
In the convolution layer, an element-wise product is 

computed between each element of the kernel and the input 

array at every position within the tensor. The resulting 

products are then summed to produce the output value for the 

corresponding location in the output. array. This process is 

repeated with multiple kernels to generate diverse feature 

maps. Then, convolution (Lcon) is expressed as, 

Lcon = ∑
u

∑
u

(Fz
sel)(g − u, h − u) ∗ w(u, u)

  
(22) 

Where g and h are the input matrix dimension size, 

w(u, u) represents the kernel having 𝑢 × 𝑢 dimension size. 

The convolution parameters can reduce the model’s 

complexity.  

3.8.3. Nonlinear Activation Function 

The HS activation function is used for this purpose. The 

main task of using nonlinearity is to adjust or cut off the 

generated convolution output. The activation function is 

expressed in the mathematical representation as, 

𝐴 = 𝐿𝑐𝑜𝑛
𝑅6(𝐿𝑐𝑜𝑛+3)

6

 

(23) 

Where A denotes the output of the HS activation function 

and R denotes the ReLu activation function. 
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Fig. 2 Architecture of the proposed CSE 

3.8.4. Embedding Module and Correlated Interference 

Module  

In this step, the features derived from the nonlinear 

function are fed into the embedding module. This module 

utilizes a deeper convolutional network as a feature extraction 

mechanism, enhancing the capacity for feature representation 

by extracting discriminative AU features. Then, the output of 

the embedding module is calculated as,  

Aemb = Embed{(A) ∗ w(u, u)} (24) 

Here, Embed{ } signifies the embedding function. The 

discriminative AU features are given into the correlated 

interference module, which efficiently calculates the 

correlation between the features, and it is represented as, 

𝐴𝑐𝑜𝑟𝑟 =
∑ 𝑥𝐴𝑐𝑜𝑟𝑟

𝑦𝐴𝑐𝑜𝑟𝑟
−∑ 𝑥𝐴𝑐𝑜𝑟𝑟

∑ 𝑦𝐴𝑐𝑜𝑟𝑟

√(∑(𝑥𝐴𝑐𝑜𝑟𝑟
)

2
−(∑ 𝑥𝐴𝑐𝑜𝑟𝑟

)
2

)(∑(𝑦𝐴𝑐𝑜𝑟𝑟
)

2
−(∑ 𝑦𝐴𝑐𝑜𝑟𝑟

)
2

)

  (25) 

Here, 𝐴𝑐𝑜𝑟𝑟specifies the output of the correlated 

interference module. 

3.8.5. Pooling Layer 

The pooling layer executes a standard down-sampling 

action that lowers the in-plane dimensionality of the feature 

maps. It produces the highest value detected within the pooling 

filter, using this value as the result. The pooling (Lpool) 

operation can be expressed as:  

𝐿𝑝𝑜𝑜𝑙 =
𝐴𝑐𝑜𝑟𝑟−𝑤

𝑆
+ 1

  

(26) 

Where S represents the kernel strides, the process 

continues until it reaches the last layer.  

3.8.6. Fully Connected Layer 

The output feature maps from the final convolution or 

pooling layer are flattened into a one-dimensional array of 

numbers. The last completely linked layer has an equal 

number of output nodes corresponding to the number of 

classes. Calculating the flattened output as, 

𝐿𝑓𝑢𝑙𝑙𝑦 = 𝐿𝑝𝑜𝑜𝑙 − (𝑤(𝑢 × 𝑢) − 1)
 

(27) 

Where, 𝐿𝑓𝑢𝑙𝑙𝑦is the output of the fully connected layer. 

3.8.7. Softmax Layer  

The activation function, primarily used in the output 

layer, normalizes the real values in the range (0, 1) from the 

last fully connected layer into target class probabilities. This 

is achieved using the softmax function, which is defined by 

the following equation, 

𝐿𝑠𝑜𝑓𝑡 =
𝑒

𝐿𝑓𝑢𝑙𝑙𝑦

∑ 𝐿𝑓𝑢𝑙𝑙𝑦

   

(28) 

Where Lsoft is the output of the softmax activation 

function. Later, the loss function is evaluated using the below 

equation,  

𝑙𝑜𝑠𝑠 = ‖𝑂𝑡 𝑎𝑟𝑔 𝑒𝑡 − 𝐿𝑠𝑜𝑓𝑡‖
 (29)

 

Here, Otarget specifies the target output. Finally, the 

identified AU is denoted as (Lsoft). The pseudocode of the 

proposed CSE is, 

Input : Dimension-reduced features (𝐹𝑧
𝑠𝑒𝑙) 

Output : Action units (𝐿𝑠𝑜𝑓𝑡) 
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Begin 

 Initialize parameters 𝐿𝑐𝑜𝑛, 𝑤(𝑢, 𝑢) 𝐿𝑝𝑜𝑜𝑙  

 Compute weight value  

 While 𝑗 = 1𝑡𝑜𝑍 

 For𝑗 = 1 

  Compute convolution operation 𝜂 

   Evaluate activation function 

   𝐴 = 𝐿𝑐𝑜𝑛
𝑅6(𝐿𝑐𝑜𝑛+3)

6

 

   

Compute Embedding Module 

  Perform Correlated Interference Module 

 End for  

 While 𝑗 = 2𝑡𝑜𝑍
 

 For𝑗 = 2 

  Compute convolution operation𝜂 

   Evaluate activation function 

    𝐴 = 𝐿𝑐𝑜𝑛
𝑅6(𝐿𝑐𝑜𝑛+3)

6

 
  

Compute pooling operation𝐿𝑝𝑜𝑜𝑙  

  End for  

 End while 

 Flattening all the layers 

 Evaluate the softmax activation function𝐿𝑠𝑜𝑓𝑡  

 If (𝑂𝑡 𝑎𝑟𝑔 𝑒𝑡 ≠ 𝑂𝐿𝑠𝑜𝑓𝑡) 

  Stop criteria 

 }  

 else  

 { 

Set 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
       }  

       End if 

 
Return 𝐿𝑠𝑜𝑓𝑡  

End  

3.9. Emotion Classification  

The Pizam-ANFIS is used to categorize the types of 

emotions by taking the input as selected features and action 

units from the occluded and mask-covered input images once 

the action units have been identified. The Adaptive Neuro-

Fuzzy Inference System (ANFIS) is a computational and 

predictive model that integrates the fuzzy Sugeno method with 

an adaptive neural network system. However, the adapted 

Sugeno fuzzy interference system introduces computational 

complexity while designing the higher-order fuzzy models.  

The Mamdani fuzzy interference system in the 

defuzzification process is induced with modification in the 

existing ANFIS to avoid this issue. It uses the center of gravity 

technique for the defuzzification process, and the bell 

membership is replaced with the Piz membership function, 

which reduces the computational complexity and produces 

effective outcomes. Here, the second layer performs the 

fuzzification process, with the nodes in this layer being 

adaptive. The fuzzified output for the 𝜄𝑡ℎ layer 𝛷𝜄 is, 

𝛷𝜄 = 𝜇1(𝜂𝑊ℎ
)
  

(30) 

𝛷𝜄 = 𝜇2(𝜂𝑊𝑣
)
    

(31) 

Where, 𝜇1 and 𝜇2 represent input node, 𝑊ℎ and 𝑊𝑣 

denotes the value of weights, 𝜂 denotes the Piz membership 

function (layer1), and it is calculated as,  

𝜂 =
1

1+(
𝐴𝐹𝑝𝑜 𝑖𝑛𝑡 𝑠−𝑃1

𝑃2 )

2 (32) 

Here, AFpoints denote the feature and AU points. In the 

third layer, the output signals from the previous layers are 

multiplied. This layer processes the outputs from the second 

layer 𝜀𝜄, resulting in:  

𝜀𝜄 = 𝜇1(𝜂𝑊ℎ
) ∗ 𝜇2(𝜂𝑊𝑣

)
  

(33) 

The output of each node represents the firing strength of 

the rules. In the fourth layer, the output, described as the 

normalized firing strength (𝜀𝜄)
∗, is mathematically represented 

using the Radial Basis Function (RBF) as follows, 

(𝜀𝜄)
∗ = ∑ 𝜂𝑊ℎ

𝜁𝑖 (𝜇2(𝜂𝑊𝑣
), 𝜀𝜄) + 𝑏 (34) 

Here, 𝜁 and b denote kernel and bias. The consequent part 

of the fuzzy rules is executed in the fourth layer. The nodes in 

this layer are adaptive, and the node function is formulated as 

follows, 

(𝜀𝜄

−
)

∗
=

(𝜀𝑖)∗

(𝜑𝑖𝜇1+𝑎𝑖𝜇2+𝐿𝑖)

  

(35) 

Where, 𝜑𝑖 , 𝑎𝑖 and 𝐿𝑖 denote linear adaptive parameters, 

(𝜀𝜄

−
)

∗
represent defuzzification using the Mamdani interference 

system’s defuzzification process. Finally, the last layer 

predicts the emotions of the human (𝛤), and it is represented 

as, 

𝛤 = ∑(𝜀𝑖)
∗(𝜑𝑖𝜇1 + 𝑎𝑖𝜇2 + 𝐿𝑖)

  
(36) 

After training the proposed network, the image, which has 

to be tested, is given to the system for testing. By testing the 

data, the output layer classifies the emotions as Neutral, 

Happiness, Fear, Surprise, Anger, Disgust, and Sadness. 

4. Results and Discussion 
This section details the experiments performed on the 

PYTHON platform to validate the proposed scheme’s 

performance. The experiments utilized a synthetic dataset 

created from publicly available sources. The dataset was 

divided into two parts: 80% of the images were used for 

training, while the remaining 20% were set aside for testing. 

Figure 3 depicts how sample images from the dataset were 

preprocessed and incorporated into the operation. 
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Fig. 3 Sample images of a human face with an emotion (a) Input images, 

(b) Face detected image, (c) Patch generated image, and (d) Edge 

detected image 

4.1. Performance Analysis of Proposed CSE-Pizam-ANFIS 

To thoroughly assess channel estimation performance, the 

anticipated CSE-Pizam-ANFIS algorithm was benchmarked 

against several well-established methods. These included the 

ANFIS, CNN, LSTM network, and ANN.  

The efficacy and advantages of the CSE-Pizam-ANFIS 

approach in channel estimation were effectively validated by 

conducting a comprehensive comparison with these existing 

algorithms. Figure 4 presents a detailed assessment of the 

proposed CSE-Pizam-ANFIS model’s performance compared 

to existing models, focusing on key metrics like accuracy, 

precision, recall, sensitivity, specificity, and f-measure. 

Higher values in these metrics indicate more efficient model 

performance.  

The proposed CSE-Pizam-ANFIS model achieves an 

impressive accuracy of 99.28%, which is notably higher than 

the accuracy of the existing models: ANFIS at 97.22%, CNN 

at 95.24%, LSTM at 93.34%, and ANN at 90.97%. In addition 

to accuracy, the proposed model excels in other metrics. It 

records a precision of 99.67%, a recall of 99.35%, a sensitivity 

of 99.35%, a specificity of 99.09%, and an f-measure of 

99.51%.  

These values surpass those of the existing models, 

showcasing the superior performance of the proposed model 

across all evaluated aspects. This comprehensive analysis 

underscores the effectiveness of the proposed model in AU 

classification and emotion classification tasks, significantly 

outperforming current alternatives. 

 
Fig. 4 Illustrative comparison of the proposed and existing models (right-hand side): (a) Accuracy, Precision, Recall metrics, and (b) Sensitivity, 

Specificity, and F-measure parameters 

Table 1 presents a detailed performance evaluation of 

both the proposed and existing models using various metrics, 

including False Positive Rate (FPR), False Rejection Rate 

(FRR), False Negative Rate (FNR), Positive Predictive Value 

(PPV), Negative Predictive Value (NPV), and Matthews 

Correlation Coefficient (MCC). Higher values of FPR, FRR, 

and FNR indicate improved performance of the proposed 

model, while lower values of PPV, NPV, and MCC 

demonstrate its higher efficiency. For example, the proposed 

model shows a 63.78% improvement in FPR compared to 

ANFIS, 84.81% compared to CNN, and 92% compared to 

ANN. Additionally, the FRR of the proposed model is 94.51% 

better than that of LSTM and other existing models. Similarly, 

the FNR, PPV, NPV, and MCC metrics for both the proposed 

and existing models have been analyzed and compared.  

This detailed analysis reveals the superior efficiency and 

performance of the developed AU and emotion recognition 

system. Figure 5 illustrates the computational time analysis, 

comparing the proposed and existing models. Attaining a 

lower time for the proposed model indicates the efficient 

time of the proposed model.   
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Table 1. Performance evaluation of proposed and existing models 

Techniques FPR FRR FNR PPV NPV MCC 

Proposed CSE- Pizam-ANFIS 0.00900901 0.006451613 0.006452 0.996764 0.9821429 0.9871895 

ANFIS 0.02484472 0.11764706 0.029412 0.985075 0.9515152 0.971719 

CNN 0.05932203 0.04290429 0.042904 0.976431 0.8951613 0.8845861 

LSTM 0.0610687 0.068965517 0.068966 0.971223 0.8601399 0.8544533 

ANN 0.11764706 0.077192982 0.077193 0.942652 0.8450704 0.7963936 

 
Fig. 5 Computational time analysis 

The training time of the proposed model is given as 

47015ms, whereas the existing ANFIS (52009ms), CNN 

(58006ms), LSTM (63006ms), and ANN (67010ms) take 

more time to train the proposed model. This can be achieved 

by inducing the HS and embedding a correlated interference 

module to stabilize the network’s gradient and efficiently 

recognize action units. Additionally, the Piz membership 

function and the Mamdani defuzzification method was 

introduced, which aids in the classification of emotions for 

computational complexity. 

The confusion matrix in Figure 6 illustrates the high 

accuracy of the Pizam-ANFIS-based FER model, with the 

majority of predictions aligning correctly with actual labels. 

The strong diagonal values indicate precise classification 

across seven emotional categories-Angry, Disgust, Fear, 

Happy, Neutral, Sad, and Surprise-while minimal off-diagonal 

values reflect rare misclassifications.  

The model effectively differentiates emotions even under 

partial occlusion and mask-wearing, proving its robustness. 

Compared to traditional approaches like CNN, LSTM, and 

ANN, Pizam-ANFIS demonstrates superior performance with 

99.28% accuracy, making it a highly efficient FER solution 

for real-world applications. 

 
Fig. 6 Confusion matrix of the proposed Pizam-ANFIS model 

4.2. Performance Analysis of Patch Generation 

To highlight the advantages of the proposed model, the 

performance of the LSW-KMC was evaluated. Comparison 

was made with the existing models using metrics such as the 

Jaccard Index, Dice score, and Clustering Time. Table 2 

presents a detailed analysis of the Jaccard Index for both the 

proposed and existing models.  

The Jaccard Index measures the similarity between pixel 

groupings across different clusters, with one indicating that 

two clusters have perfectly extracted the same pixels and 0 

indicating no overlap. The proposed model achieved a Jaccard 

Index of 0.03263298, demonstrating superior performance 

compared to the existing models, which showed lower 

coefficients. This result underscores the enhanced 

effectiveness of the new patch generation technique in 

accurately identifying similar clusters. 

Table 2. Jaccard index 

Method Jaccard Index 

Proposed LSW- KMC 0.03263298 

K Means -0.0690296 

FCM -0.068997 

K Medoid -0.0690228 

CLARA -0.069018 
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Fig. 7 Dice score analysis 

Table 3. Clustering time analysis 

Method Clustering Time (ms) 

Proposed LSW- KMC 38010 

K Means 43005 

FCM 47011 

K Medoid 53010 

CLARA 56012 

Figure 7 comprehensively analyzes the Dice scores, 

comparing the proposed model with existing models. The Dice 

coefficient measures the pixel-wise agreement between 

predicted segmentation and the corresponding ground truth, 

showing that the proposed model achieved a Dice score of 

0.8245. This performance significantly surpasses that of the 

existing models: K-Means with a score of 0.60973, Fuzzy c-

Means (FCM) with 0.5582, K-Medoid with 0.52096, and 

Clustering Large Applications (CLARA) with 0.5007. This 

analysis highlights the superior performance of the proposed 

method. Furthermore, Table 3 presents the performance 

results, underscoring the proposed model’s efficiency in terms 

of clustering time. The proposed model’s clustering time is 

38010ms, showing an improvement of 4995ms over K Means, 

9001ms over FCM, and 18002ms over CLARA. This indicates 

that the LSW-KMC technique generates facial parts with 

greater accuracy and in a shorter time frame. The overall 

success of the proposed model is attributed to the careful 

selection and modification of existing patch-generation 

techniques, as established in previous studies. By refining 

these existing models, the proposed approach effectively 

generates accurate facial parts more efficiently. 

4.3. Comparative Evaluation of the Suggested and Earlier 

Approaches 

In this section, the performance of the proposed 

methodology with existing hybrid approaches developed by 

various researchers based on their classification accuracy is 

compared.  

 
Fig. 8 Comparison of accuracy between proposed and existing models 

Figure 8 illustrates the accuracy performance of the 

proposed framework under various conditions. The model 

consistently demonstrated superior performance across all 

tested scenarios.  

The existing models utilized different techniques: 

Hussain & Salim Abdallah Al Balushi (2020) [15] employed 

a graph mining scheme, Hassan & Mohammed (2020) [14] 

used a CNN model, and Mehendale (2020) [11] applied 

FERC. In contrast, the proposed PAFEROFA model achieved 

higher accuracy in emotion classification, which is attributed 

to using CSE and PIGA techniques for recognizing AUs and 

selecting optimal features for training, respectively. Therefore, 

it is evident that the overall performance of the proposed 

methodology surpasses that of the existing techniques. 

The proposed Pizam-ANFIS framework demonstrates 

superior performance compared to existing state-of-the-art 

techniques due to its innovative and robust methodology. 

Unlike traditional methods, which often struggle with 

occlusion and mask-related challenges, our framework 

integrates advanced techniques at every stage of the FER 

process. The LSW-KMC algorithm ensures precise 

segmentation by effectively isolating key facial regions, while 

the CGED method enhances edge detection, making it resilient 

to noisy and partially obscured inputs.  

The PIGA-based dimensionality reduction technique also 

optimizes feature selection, retaining the most critical features 

while reducing computational overhead. When compared to 

models such as CNN, LSTM, ANN, and ANFIS, the Pizam-

ANFIS framework consistently achieves higher performance 

metrics. For example, it achieves an impressive accuracy of 

99.28%, surpassing CNN’s 95.24% and ANFIS’s 97.22%. 

Furthermore, it records lower false positive and false rejection 

rates, reflecting its enhanced reliability across diverse 

scenarios. Including the Pizam-ANFIS classifier, featuring 
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optimized defuzzification processes and the Piz membership 

function, is crucial in improving classification accuracy while 

maintaining computational efficiency. These findings 

underscore the effectiveness of the proposed approach in 

overcoming the limitations of existing models, demonstrating 

its potential for robust and accurate emotion recognition in 

real-world applications. 

4.4. Ethical Implications of FER Technology 

While the technical advancements in occlusion handling 

significantly contribute to the field of FER, it is equally 

important to consider the ethical implications of emotion 

recognition technology. Deploying FER systems raises 

concerns about privacy, consent, and potential misuse. For 

instance, the indiscriminate use of emotion recognition in 

surveillance without clear consent could infringe on 

individuals’ privacy rights. Additionally, misinterpreting 

emotions due to algorithmic biases could lead to unjust 

outcomes in sensitive contexts such as law enforcement or 

recruitment. Ethical questions also arise around the storage 

and handling of facial data, especially when it pertains to 

minors or vulnerable populations. To address these concerns, 

FER implementations must prioritize transparency, seek 

informed consent, and comply with data protection regulations 

such as GDPR. Moreover, ensuring that these systems are 

designed with fairness and inclusivity in mind is crucial, 

reducing biases linked to demographic factors like age, 

gender, or ethnicity. Balancing innovation with ethical 

considerations will foster trust and pave the way for 

responsible deployment of FER technologies. 

5. Conclusion 
FER is a crucial method for assessing emotional states. 

However, traditional recognition models often struggle with 

accuracy due to challenges like partial occlusion and wearing 

face masks. To address these issues, a novel FER method is 

developed. The process begins with preprocessing the input 

image and detecting the face. Differential parts of the face are 

then extracted using the LSW-KMC method, which identifies 

a similarity score of 0.0326 within a time frame of 38010ms. 

Following this, feature extraction and selection are performed 

using the PIGA technique, which is known for its high 

efficiency.  

These selected features classify Action Units (AUs) with 

a trained neural network model. Later, the features and AUs 

are fed into the Pizam-ANFIS classifier to determine the 

emotions. The proposed CSE-Pizam-ANFIS model achieved 

an impressive accuracy of 99.28% and a computation time of 

47015ms. The proposed FER system demonstrated high 

efficacy, even under the challenging conditions of partial 

occlusion and face masks. Therefore, the proposed model 

outperforms existing methods. Currently, the model is 

designed to recognize emotions in individual subjects. Future 

research will focus on advancing emotion recognition from 

video inputs involving multiple people. 
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