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Abstract - Material characterization is important to ensure the quality of composites. Traditional methods for assessing alcohol 

content involve intricate chemical processes. Complex permittivity measurement is a good method to characterize the composites. 

This paper focuses on binary polar liquid mixtures, particularly alcohol-water mixtures, essential in many industries. 

Characterizing dielectrics, such as polar liquids, is challenging due to their frequency dispersion. To address this challenge, the 

paper proposes an ensemble machine learning-based classification model that uses complex permittivity measurements and 

frequency to accurately identify the type and volume fraction of alcohol in aqueous solutions. This model offers an accuracy rate 

of 98.4% and can accommodate a measurement error of ±5.5%. This approach simplifies assessing aqueous alcohol solutions 

and can serve as a supporting tool for various measurement systems.    
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1. Introduction 

A composite is a unique material combining two or more 

substances with significantly different chemical and physical 

properties. Polar liquid composites, composed of liquids with 

polar molecules, offer a broad spectrum of applications. This 

work specifically examines binary polar liquid composites 

consisting of two polar liquids. In particular, the focus is on 

Alcohol-Water Mixtures (AWM). Alcohols are widely used in 

many industries, including chemical, pharmaceutical, food, 

and beverage sectors. Regular monitoring of alcohol content 

in these mixtures is essential to ensure product quality [1-4]. 

The work examines the most commonly used alcohols like 

methanol, ethanol, propanol, and isopropyl alcohol.  

These are highly soluble in water and have a wide range 

of uses. Traditional methods for identifying the type and 

concentration of alcohol include chemical and optical 

techniques. Chemical methods, such as titration, High-

Performance Liquid Chromatography (HPLC) and Gas 

Chromatography (GC) involve the use of hazardous chemicals 

like potassium dichromate and concentrated sulfuric acid. 

These methods typically require around 30 minutes. They are 

complex, time-consuming and require skilled operators. They 

also pose serious health risks, such as respiratory issues, due 

to prolonged exposure to harmful chemicals [5, 6]. Optical 

methods like Raman spectroscopy and Infrared (IR) 

spectroscopy use lasers for analysis. Although these methods 

are generally safer than chemical techniques, proper safety 

measures are essential due to the risks associated with laser 

usage [7]. Complex permittivity measurements employing 

microwave-based methods such as open-end coaxial probes 

and sensors are being considered as potential choices for 

identifying composite solutions. Coaxial probes 

are utilized for various frequencies, whereas sensors are only 

confined to a specific frequency range. However, the 

permittivity of polar liquids changes with frequency [8-14]. 

Identifying an unknown polar liquid requires measuring the 

complex permittivity and carefully examining the current 

standard report for near matches. In mixtures, this becomes 

even more complicated, as the composition of the mixture also 

influences the complex permittivity.  

The study on techniques for material characterization of 

liquid mixtures identifies a significant research gap: the need 

for faster and safer methods for alcohol characterization. 

Machine Learning (ML) is a powerful tool for material 

characterization. It can analyze complex data and uncover 

patterns that traditional methods often miss. Machine 

Learning (ML) techniques are proposed to address these 

challenges and make the process more efficient. The work 

introduces a classification model based on an ensemble 

machine learning approach. It is designed to identify the type 

and concentration of alcohol in AWM. The model achieves 

this using a minimal set of relevant and readily available 

parameters. This Machine Learning (ML) model uses the real 

and imaginary parts of complex permittivity (εʹ and εʺ) along 

with frequency (f) as inputs to analyze mixtures. It determines 

both the type and alcohol content in aqueous solutions over a 
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frequency range of 0.2 - 20 GHz at 25°C, with an accuracy of 

98.4%. Furthermore, Graphical User Interface (GUI) is 

developed to facilitate the application of the model. The 

proposed model has the novelty of achieving fast 

identification of AWM without any health risks.  

2. Methodology 
Machine learning plays a crucial role in categorizing data 

into various classes, and this work utilizes this capability 

through a classification-based Machine Learning (ML) model. 

The complete workflow is depicted in Figure 1. 

The dataset is generated by measuring the complex 

permittivity (ε*) of AWM solutions using a dielectric probe 

kit - N1501A of Keysight Technologies. These measurements 

include both the real part (εʹ) and the imaginary part (εʺ) of the 

complex permittivity, as well as the frequency (f) at which the 

measurements are taken. The data collection is conducted at a 

constant temperature of 25°C across a frequency range of 0.2 

to 20 GHz. This work focuses on four commonly used 

aliphatic alcohols: methanol, ethanol, propanol, and isopropyl 

alcohol. These alcohols are tested in various volume fractions 

within water: 25%, 50%, 75%, and 100%. For each volume 

fraction, 100 data points are measured across the specified 

frequency range, resulting in a total of 400 data points per 

alcohol type. Therefore, the entire dataset comprises 1600 data 

points representing four different mixtures. This dataset 

creates a multi-class classification problem with 16 distinct 

classes, named from 1 to 16, as detailed in Table 1. Each class 

corresponds to a specific combination of alcohol type and 

volume fraction. To train and evaluate the ML model, the 

dataset is split into two parts: 80% for training and 20% for 

testing. The training set is used to develop the model, while 

the testing set is employed to assess its performance.  

A variety of classification-based ML algorithms are 

applied to train the model. Hyperparameter optimization is 

performed by fine-tuning the parameters to ensure optimal 

performance. The performance of ML models is evaluated 

using performance metrics such as accuracy, precision, 

sensitivity, and specificity. 5 fold cross-validation and 

external datasets are used to validate the model.  

The stacking-based ensemble machine learning technique 

proved the most effective among the different approaches 

tested. This technique combines multiple learning algorithms 

to improve the overall accuracy and robustness of the model. 

The measurement setup used for dataset generation and the 

ensemble ML method used in the work are described in 

Sections 2.1 and 2.2

 
Fig. 1 Methodology 
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Table 1. Dataset formation 

No Inputs 

1 Frequency (f) in GHz 

2 Permittivity (Real part) 

3 Permittivity (Imaginary part) 

Output features 

No Liquid Number of Samples 

Volume Fraction of Alcohol (%) and Associated Class 

Assignment 

25% 50% 75% 100% 

1 Methanol – water 400 

Class 

Assigned 

1 2 3 4 

2 Ethanol – water 400 5 6 7 8 

3 Propanol – water 400 9 10 11 12 

4 
Isopropyl alcohol – 

water 
400 13 14 15 16 

 
2.1. Measurement Setup 

Measurement is carried out using a dielectric probe kit – 

N1501A of Keysight Technologies at a temperature of 25°C. 

Dielectric probe supports a broad frequency range. It provides 

high precision and enables rapid, non-destructive testing. The 

probe measures the reflected signal at the probe-material 

interface, calibrated to measure the complex permittivity. The 

device is user-friendly, works with small sample volumes and 

is versatile for various materials. 

Additionally, it is safer than chemical methods and 

ensures efficient and accurate measurements. The 

measurement setup is shown in Figure 2. Calibration is a 

crucial step in ensuring the accuracy and reliability of 

measurement instruments.  

Calibration of the probe is done using air, short and 

distilled water. Alcohol samples with a 99% purity level are 

procured from Alpha Chemicals, located in Cochin, Kerala, 

India. Aqueous solutions of alcohols are prepared by mixing 

them with distilled water.  

AWM of 10 ml is prepared, and the volume fraction of 

alcohol used in this work is 25%, 50%, 75% and 100%. The 

probe is immersed in the 10 ml mixture solution so there is no 

air gap between the tip and the solution. The probe position is 

shown in Figure 3. The systematic measurement system 

ensures consistent and reliable data, reducing the necessity for 

preprocessing or addressing outliers. The noise that may occur 

is handled by error analysis, as explained in Secion.3. 

2.2. Ensemble Machine Learning 

Stacking is a sophisticated ensemble technique in 

machine learning designed to enhance predictive accuracy by 

utilizing the strengths of multiple base models. These base 

models can include various algorithms such as decision trees, 

Support Vector Machines (SVMs) or neural networks [15-19]. 

The process begins by training these base models on the same 

dataset. The predictions from these models are then utilized to 

generate new features, referred to as meta-features.  

 
Fig. 2 Measurement setup 

 
Fig. 3 Position of the probe in the mixture 
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These meta features serve as inputs for a meta-model, 

which is trained to effectively combine and weigh the base 

models' predictions.The primary function of the meta-model 

is to synthesize the information provided by the base models, 

often resulting in superior predictive performance compared 

to any single base model. Once the meta-model is trained, it 

can be applied to new unseen data, thereby improving the 

overall accuracy and robustness of the predictions [20-22].  

In this work, the inherent nonlinearity in the data 

necessitates using nonlinear classification techniques. As base 

models, Support Vector Machines (SVMs) with polynomial 

and Radial Basis Function (RBF) kernels are employed.  

SVMs are well suited for this task due to their ability to 

handle complex decision boundaries through kernel functions. 

The polynomial kernel can capture interactions up to a certain 

degree, while the RBF kernel can model even more intricate 

patterns by mapping the data into a higher-dimensional space.  

Hyperparameters of each classifier are tuned to achieve 

optimal performance. For SVMs, this involves selecting the 

appropriate kernel parameters and regularization parameters. 

For the random forest meta classifier, the tuning process 

includes adjusting the number of trees (number of estimators), 

the depth of each tree and other relevant parameters [23-28].  

The stacking approach effectively captures the complex 

relationships in the data by combining SVMs with different 

kernels as base models and utilizing a random forest as the 

meta-classifier. This methodology is versatile and can be 

extended to other mixtures by systematically extending the 

dataset.   

3. Result and Analysis 
The complex permittivity of an Alcohol-Water Mixture 

(AWM) varies with changes in both the frequency of the 

applied electromagnetic field and the volume fraction of the 

liquids within the mixture. This work utilizes the complex 

permittivity measurements obtained using a dielectric probe to 

characterize the AWM solutions accurately. To validate the 

measurement procedure, the complex permittivity values of 

polar liquids (ε*) measured in this work are compared with the 

reference values documented for the frequency range 0.1 - 5 

GHz in the National Physical Laboratory (NPL) report MAT 

23 [13]. This comparison confirms the accuracy of the 

measurements, as the observed variations are within a range 

of ±1%, indicating a high degree of consistency with the 

established standards.  

A sample plot of the complex permittivity of ethanol is 

presented in Figure 4, illustrating the agreement between the 

measured values and the reference data. To identify the type 

and volume fraction of alcohol in mixtures accurately, several 

classification-based machine learning techniques are applied 

to the dataset. These techniques are evaluated based on various 

performance metrics, including accuracy, error rate, 

specificity and sensitivity, as detailed in Table 2. The results 

indicate that among the single classifiers tested, the Support 

Vector Machine (SVM) with a polynomial kernel achieves an 

accuracy of 94.0%. In addition to single classifiers, ensemble 

techniques are employed to further enhance the model's 

performance. Among the ensemble techniques tested, stacking 

proved to be particularly effective. Table 3 presents the 

accuracy of the stacking classifiers, showing a significant 

improvement compared to the performance of individual 

classifiers. 

Table 2. Performance comparison 

Technique Classifiers Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) 

Single 

classifier 

Random Forest 82.1 83.2 81.3 82.0 

Decision Tree 83.4 84.1 83.1 83.9 

KNN 87.5 87.4 87.3 87.5 

SVM 94.0 94.1 93.8 94.1 

Ensemble 

Boosting 81.6 82.0 79.6 81.5 

Bagging 86.2 86.4 85.1 86.4 

Stacking 98.4 98.2 98.5 99.7 

 

Table 3. Performance comparison of stacking classifier

Base Classifier Meta Classifier Accuracy (%) 

SVM (kernel = RBF) Decision tree 93.8 

SVM (kernel = RBF) Random forest 96.9 

SVM (kernel = polynomial) Decision tree 93.2 

SVM (kernel = polynomial) Random forest 97.8 

SVM (kernel = polynomial) + SVM (kernel = RBF) Decision tree 93.4 

SVM (kernel = polynomial) + SVM (kernel = RBF) Random forest 98.4 
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Fig. 4 Comparison of the measured value of complex permittivity (ε*) of      

ethanol with NPL data 

The characteristics of stacking employed in this work are 

as follows. 

• The best performance is achieved by stacking two SVMs 

with kernel polynomial and Radial Basis Function (RBF) 

as a base classifier and random forest classifier as a meta 

classifier. 

• K- fold cross validation with K = 5 is applied on the 

dataset to ensure the performance of the model. 

• The hyperparameters of SVM and random forest are 

tuned to improve the performance. 

• In the SVM with a polynomial as the kernel, the degree 

of the polynomial is tuned to 3, and in the SVM with RBF 

as the kernel, the penalty parameter C is tuned to 6. 

• In the random forest classifier, the number of estimators 

is tuned to 70 to get the best result. 

• The overall accuracy achieved in this case is 98.4%. 

• All three input parameters (f, ε', and ε") are essential to 

achieving an accuracy of 98.4%. Removing any one of 

these parameters will negatively impact the performance 

of the model. 

Figure 5 illustrates the performance metrics of the model. 

The model achieves maximum performance with 70 

estimators attaining an accuracy of 0.984, precision of 0.982, 

sensitivity of 0.985 and specificity of 0.997. Figure 6 shows 

the performance of the proposed model on training and test 

sets. Since both training and test accuracy are comparable, 

overfitting is not observed. The confusion matrix for the test 

set is shown in Figure 7. The diagonal elements in the 

confusion matrix show the correct prediction, whereas the 

other elements show the misclassification. It shows that out of 

320 elements, only 5 elements (encircled) are misclassified, 

resulting in an accuracy of 98.4%. To evaluate the robustness 

of the model, errors that may occur from measurement 

variations, temperature fluctuations and sample purity are 

systematically introduced into the dataset. These errors are 

incrementally added as steps of ±0.5% from the original 

measured values. 

Fig. 5 Performance of stacking classifier 

 
Fig. 6 Tuning of stacking classifier 

Fig. 7 Confusion matrix of test set 

When the error exceeds ±5.5%, the accuracy of the 

proposed model drops to 97.1%. This is illustrated using a 

confusion matrix. Figures 7 and 8 present the confusion 

matrices for the model without any errors introduced and with 

errors, respectively.
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Fig. 8 Confusion matrix of the test set with the error of ±5.5% 

 
Fig. 9 Complex permittivity plot of propanol and isopropyl alcohol 

When an error greater than ±5.5% is introduced, the 

number of misclassified elements increases to 9 (enclosed in 

the box inside the confusion matrix), reducing the accuracy to 

97.1%. As depicted in Figure 8, these misclassifications 

predominantly occur between propanol and Isopropyl Alcohol 

(IPA) (classes 12 and 16). These classes are enclosed in the 

box outside the confusion matrix. The 4 misclassified 

elements in class 12 and class 16 are shown as encircled and 

boxed. To investigate this further, the complex permittivity of 

propanol and IPA is plotted in Figure 9, revealing that their 

values are particularly similar in the 0.2-3 GHz frequency 

range. These findings suggest that the model's accuracy is 

highly dependent on the precision of the permittivity 

measurements. This poses the limitation of the model. When 

detecting an unknown aqueous alcohol mixture using the 

proposed model, it is crucial to use well-calibrated instruments 

to measure complex permittivity with a measurement error 

margin of less than ±5.5%. This level of precision is necessary 

to minimize the likelihood of misclassification, particularly 

between substances with closely related permittivity values. 

Several techniques are available for measuring complex 

permittivity, including the coaxial probe, sensors and coaxial 

cell. The coaxial probe and sensors are the most frequently 

used among these methods due to their reliability and 

accuracy. Its performance is validated using a new test set to 

ensure that the proposed model can accurately follow these 

measurements. Complex permittivity values published in the 

scientific literature are gathered to create this new test set, 

resulting in a new test set of 30 samples in 8 classes. These 

values are deliberately chosen to highlight significant 

deviations from the measured data used in this work [2, 29]. 

This inclusion of values allows for a thorough assessment of 

the robustness of the model and accuracy.  

The newly compiled dataset is used to validate the 

performance of the model. The results indicate that the model 

successfully identifies the complex permittivity values for 27 

out of the 30 samples, achieving an accuracy rate of 90%. This 

high level of accuracy demonstrates the model's effectiveness 

in generalizing new data. A confusion matrix for the new test 

set is presented in Figure 10, providing a detailed view of the 

performance of the model across different classes. 

Additionally, the maximum permittivity error (E) between the 

measured values used in this work and the values reported in 

the literature is summarized in Table 4. The analysis reveals 

that most misclassifications occur when the error (E) exceeds 

±5.5%. 

The proposed approach serves as a valuable 

supplementary tool for complex permittivity measurement-

based characterization. To facilitate the testing of unknown 

AWM, a Graphical User Interface (GUI) has been developed 

using the Flask framework [30]. This user-friendly interface 

simplifies the process, requiring only the measured values of 

complex permittivity and the measurement frequency. 

 
Fig. 10 Confusion matrix of the new test set 
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Table 4. Robustness of the proposed model

Liquid  

[Ref. No.] 

Measurement 

Technique 
F (GHz) 

Max. Error in 

Permittivity E (%) 

Number of Samples 

Supplied to the Proposed 

Model 

Number of Samples 

Identified by the 

Proposed Model 

Methanol-

water [2] 
Probe 0.1 – 20 1.62 16 15 

Ethanol-

water [2] 
Probe 0.1 – 20 0.94 10 10 

Ethanol-

water [26] 
Sensor 4.5 5.97 4 2 

Total 30 27 

 

 
  (a)                                                                                                                 (b) 

Fig. 11 Graphical user interface (a) Appearance, and (b) Example

The GUI is designed to identify both the type and fraction 

of alcohol in the mixture for a frequency range of 0.2 to 20 

GHz at a constant temperature of 25°C. When the user inputs 

the necessary data, the system processes this information and 

displays the alcohol type and volume fraction. If the alcohol 

content in the sample falls below specific thresholds of 25%, 

50%, 75%, or 100%, the corresponding message is shown on 

the front end of the GUI. In addition, if the measurement 

frequency exceeds the specified range, a warning message is 

displayed to alert the user. Figures 11(a) and 11(b) visually 

represent the GUI. Figure 11(a) shows the overall appearance 

of the interface, whereas Figure 11(b) demonstrates an 

example. 

4. Conclusion 
This study focuses on a major challenge in identifying and 

analyzing composite solutions. It specifically examines 

alcohol-water mixtures, which are widely used in different 

industries. Traditional methods for determining alcohol 

content are time-consuming and pose potential health risks 

due to chemicals and laser exposure. This work introduces an 

innovative approach that overcomes these challenges by 

utilizing ensemble machine learning and complex permittivity 

measurements. The measurements are taken in the frequency 

range of 0.2 to 20 GHz at 25°C. This method helps to identify 

the type and volume fraction of alcohol in aqueous alcohol 

solutions. The proposed model uses only a minimum number 

of parameters – complex permittivity and frequency data to 

accurately determine the type and concentration of alcohol in 

aqueous solutions, achieving an accuracy of 98.4%. It can also 

tolerate an error of ±5.5% due to temperature, measurement or 

sample purity variations. This method simplifies the 

evaluation process while ensuring reliable results. A GUI is 

designed to improve accessibility and ease of use. The model 

ensures fast characterization of polar liquids with a minimum 

number of input parameters and without any health risk. 
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