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Abstract - The Internet of Things (IoT) Edge computing represents a paradigm shift in data processing and analytics, where data 

processing occurs closer to the source of data generation rather than being transmitted to centralized cloud servers. This 

approach addresses several critical challenges in traditional IoT architectures, including latency, bandwidth consumption, 

security, and reliability. By leveraging edge devices-such as sensors, gateways, and local servers-IoT Edge enables real-time 

data analysis, rapid decision-making, and localized actions essential for applications requiring immediate responses. IoT Edge 

faces challenges such as the need for robust edge device management, scalability issues, and the requirement for sophisticated 

security measures to protect distributed data. A multi-security scheme-based framework titled “IoT Edge Computing Security 

Framework powered by LSA, MLKEM and GLSKM (IECSF)” is submitted here to address the current challenges in IoT wireless 

sensor network edge computing environments. Lightweight Security Algorithm, Masked Location-based Key Exchange 

Mechanism, and Game of Life-based Security Key Mechanism are the background works behind the IECSF method. The 

proposed IECSF method has three novel functional modules, namely Least Hop Cluster Manager, Intra Cluster Data Distributor, 

and Inter-Cluster Data Aggregator. Performance metrics such as Throughput, Latency, End-to-End Delay, Packet Delivery Rate, 

Security and Energy consumption of the proposed method are compared with the performance of the most recent existing works.  

Keywords - Edge computing, Game-of-life based Security key exchange, Lightweight security, Masked location key, IoT, WSN. 

1. Introduction 
The core idea behind IoT is to create a smarter, more 

responsive environment by integrating the physical world with 

the digital world. IoT wireless sensor device can monitor their 

surroundings, process information, and communicate with 

each other, allowing for real-time data collection, analysis, 

and decision-making [1]. There is a list of various day-to-day 

activity examples, such as smart thermostats that can adjust 

home temperatures based on occupancy patterns, while 

connected medical devices can monitor patient health and 

send alerts to healthcare providers in case anomalies are in 

practice witnessed by current human generation [2, 3]. 

Integrating the Internet of Things-powered Wireless Sensor 

Network is pivotal in environmental monitoring, offering 

innovative solutions to track, manage, and analyze various 

environmental parameters in real-time [4]. This synergy 

enhances the capability to monitor ecosystems, detect 

environmental changes, and respond to potential hazards more 

effectively [5]. Several notorious key benefits include Real-

time data collection, Remote monitoring, Early warning 

systems, domain-specific customized network environments, 

pollution control, and Controlled biodiversity care achieved 

by using IoT-WSN edge network environment. The 

deployment of IoT-WSN for environmental monitoring has 

several challenges, including data security and privacy 

concerns, the need for robust and reliable communication 

networks, and the management of large volumes of data [6]. 

Addressing these challenges requires ongoing research, 

technological innovation, and collaborative efforts among 

governments, organizations, and communities. IoT edge 

computing brings numerous advantages, including reduced 

latency, improved bandwidth management, and enhanced data 

privacy [7, 8]. However, it also introduces several challenges 

that must be addressed to fully realize its potential. Securing 

data at the edge is crucial since sensitive information is 

processed locally. Ensuring robust encryption and data 

protection measures is essential to prevent unauthorized 

access and breaches. Edge devices are often less secure than 

centralized systems, making them more vulnerable to attacks 

[9]. Ensuring the security of these devices against hacking, 

malware, and physical tampering is one of the critical 

challenges. The lack of standardization in IoT-Edge 

computing can lead to compatibility issues between devices 

from different manufacturers. Developing and adopting 

common standards and protocols is necessary for seamless 

integration. Ensuring that new IoT-Edge solutions can 
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integrate with existing legacy systems can be difficult, 

requiring significant customization and adaptation. Security 

key generation is crucial in ensuring data integrity, 

confidentiality, authentication, access control, secure 

communication establishment, energy efficiency, and 

reliability against several attacks [10]. The challenges are 

relatively complex due to the resource-constrained nature of 

heterogeneous IoT-WSN devices. The IECSF enhances 

security and efficiency in IoT wireless sensor network edge 

computing by integrating three novel mechanisms: LSA, 

MLKEM, and GLSKM. It introduces three functional 

modules-Least Hop Cluster Manager, Intra Cluster Data 

Distributor, and Inter-Cluster Data Aggregator-to optimize 

data processing, minimize latency, and enhance reliability. 

The framework is evaluated against recent existing methods 

based on key performance metrics, including Throughput, 

Latency, Packet Delivery Rate, Security, and Energy 

Consumption, demonstrating its effectiveness. This multi-

layered security and data management approach significantly 

improves real-time decision-making, scalability, and security 

in IoT edge environments. 

2. Existing Methods 
Most recent security-energy balanced protocols have 

been chosen from both highly secure, energy-intensive 

protocols and energy-efficient, low-security protocols to 

provide a clear evaluation comparison with the proposed 

method. They are Machine-Learning-Based IoT-Edge 

Computing Healthcare Solutions [11], Brainyedge: An ai-

enabled framework for IoT edge computing [12], an efficient 

IoT group association and data sharing mechanism in edge 

computing paradigm [13], and Node Selection Algorithm for 

Federated Learning Based on Deep Reinforcement Learning 

for Edge Computing in IoT [14].  

2.1. Machine-Learning-Based IoT-Edge Computing 

Healthcare Solutions (MLIEC) 

In 2023, Abdulrahman K. Alnaim et al. proposed the 

MLIEC method to achieve optimized data transfer in IoT edge 

networks by incorporating distributed computing and task-

level parallelism. A distributed Edge computing-based IoT 

framework backed by machine learning algorithms is used to 

combine the cloud and edge computing applicability in real-

time environments. The design of edge-based computing to 

collect patients’ data is critical for modern healthcare systems. 

Securing communication between edge nodes and ensuring 

the privacy of patient data are paramount. A new hybrid 

model, which consists of IoT and edge nodes, is being applied 

to predict and mitigate cyberattacks in medical healthcare 

systems. Additionally, new machine learning algorithms are 

being developed specifically for use on edge devices with 

limited resources. Privacy and security concerns surrounding 

collecting and transmitting personal health data are being 

thoroughly investigated. Studies are examining the 

effectiveness of IoT–edge-computing-based solutions for 

improving patient outcomes and reducing healthcare costs. 

The development of new IoT devices and sensors for 

healthcare applications is also being explored. Integrating 

IoT–edge computing with other technologies, such as 5G 

networks, aims to improve data transmission and processing 

capabilities. Different edge computing architectures, 

including fog computing and cloudlets, are being compared to 

assess their suitability for healthcare applications. The 

scalability and reliability of IoT–edge-computing-based 

solutions for healthcare are under investigation, alongside the 

development of models for data fusion and data analytics 

specifically tailored for healthcare applications. 

A handful of dedicated architectures are introduced in 

MLIEC work for different functionalities such as medical 

healthcare systems, security and privacy preservation, edge 

node-based IoT healthcare systems, edge distributed ledger 

models, public edge distributed ledger infrastructure, cloud-

based edge distributed ledger and privacy-centric strategy.  

The MLIEC method achieves higher accuracy, precision, and 

recall, effectively eliminating various attacks. However, using 

a stacked multiple cryptography procedure, specifically 

Blowfish, RSA, and AES, results in high processing time, 

adversely affecting overall throughput. This increased 

computational overhead is recognized as a key limitation of 

the MLIEC method. The trade-off between security and 

efficiency remains challenging despite its strong security 

measures. 

2.2. Brainyedge: An AI-Enabled Framework for IoT Edge 

Computing 

Brainyedge work was published in 2023 through 

ScienceDirect by Kim-Hung Le et al. to provide artificial 

intelligence for IoT-Edge computing environment. The 

authors state that the blending of AI along with IoT edge 

improves the Quality of Experience (QoE) altogether. A set of 

AI models are taken, and the authors of Brainyedge work carry 

out several enhancements. In the Bootstrap phase of the 

Brainyedge model, the selected model is packaged as a docker 

container with its environment. This micro-service is prepared 

for deployment to edge nodes using techniques such as 

initiating suitable machine learning platforms such as 

TensorFlow and PytorchandKeras, injecting necessary 

libraries, optimizing the model size, and defining access rights 

policies for edge device collaboration. In the Deployment 

phase, the model package is compressed and stored in a shared 

repository accessible to authorized edge nodes. Compression 

and pruning techniques are employed to minimize network 

costs during deployment. During the Operating and Learning 

phases, each edge node unpacks the model package, creates a 

container using docker files, and retrains the model with local, 

edge-private data upon its initial operation after booting. This 

approach enhances the model’s specificity to edge contexts 

and significantly improves inference accuracy. Additionally, 

incremental learning updates the model with recent data to 

maintain efficiency in response to changes in edge contexts. 

The BrainyEdge work achieves higher model accuracy and 
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reduced computational delay, making it a significant 

advantage. However, the model is tested in a computational 

environment with abundant resources, leading to a higher 

spike in deployment cost, which is identified as its limitation. 

While the approach enhances performance, its cost-

effectiveness remains a challenge. 

2.3. An Efficient IoT Group Association and Data Sharing 

Mechanism in Edge Computing Paradigm (IGADSM) 

In 2023, author Haowen Tan published IGADSM work to 

provide secure data communication in IoT Edge environments 

using group association and updating mechanisms. Slightly 

modified Edge Intelligence (EI) is used in IGADSM work to 

improve the group key generation and revocation processes.  

A key update flag-based revocation process is followed in 

the IGADSM work to improve the security features. A 

specialized certificate authentication procedure is introduced 

in IGADSM work to improve communication in the IoT Edge 

environment. Different phases of authentication processes, 

such as registration, verification, and key distribution, are 

defined by legacy procedures in IGADSM work. Trusted User 

(TU) registration and certain non-trivial key initialization 

preparations occur during offline registration.  

All TUs must register with Edge Intelligence (EI) before 

accessing the edge networks. Customized certificateless 

authentication methodology and the bilinear pairing strategy 

ensure security against intruder attacks. The author states that 

the IGADSM is suitable for practical circumstances in 

complex environments for edge communication. The 

IGADSM work enhances security by providing resilience 

against several attacks, which is recognized as its advantage. 

However, some IoT nodes among trusted users may undergo 

constant decryption procedures, allowing only limited key 

revocation. This limitation could lead to compromised nodes 

during the key update process, potentially impacting overall 

security. 

2.4. Node Selection Algorithm for Federated Learning 

Based on Deep Reinforcement Learning for Edge 

Computing in IoT (NSAFL) 

Shuai Yan et al. presented NSAFL work in 2023 for 

steadfast node selection based on the Deep Reinforcement 

Learning method. Personal privacy and data leakage are major 

concerns in IoT edge computing environments. A federated 

learning-based approach has been used in NSAFL work to 

improve privacy and eliminate data leakages. Achieving these 

in the heterogeneous network environment is a complicated 

task that needs to be resolved using the NSAFL method. 

Various elements of the NSAFL method, such as Feature 

extraction, computational model design, communication 

model design, data quality model, equipment enumeration, 

network policy, and probability layer pattern, are discussed 

vividly in the document. NSAFL work significantly improves 

training accuracy by 30% in heterogeneous device IoT 

environments while ensuring the efficient participation of 

diverse devices. The findings underscore the potential impact 

of these advancements on enhancing privacy protection 

measures in IoT edge computing, offering innovative 

solutions that could be widely applicable in practical settings. 

The findings from this research highlight the transformative 

potential of federated learning in IoT edge computing, 

particularly in privacy-sensitive applications such as 

healthcare, finance, and smart cities. By strengthening privacy 

protection measures, NSAFL offers a pioneering solution that 

could be widely applicable in real-world IoT deployments, 

ensuring data confidentiality, security, and efficiency. 

Furthermore, NSAFL addresses potential challenges in 

federated learning, such as communication overhead, device 

synchronization, and adversarial attacks, making it a robust 

and scalable solution. Improved accuracy is found to be the 

advantage of NSAFL work, whereas unnoticed performance 

depletion in terms of overall throughput is observed as the 

limitation.  A summary of the methodologies, advantages and 

limitations of the discussed existing methods is given in Table 

1. 

Table 1. Existing methods outline 

Authors Work Year Methodology Advantages Limitations 

Abdulrahman K. 

Alnaim et.al., 

Machine-Learning-Based IoT–Edge 

Computing Healthcare Solutions 
2023 

Resource-constrained 

Machine Learning 

Higher Accuracy  

and Precision in 

attack detection 

diminished 

throughput 

Kim-Hung Le  

et al., 

BrainyEdge: An AI-enabled  

framework for IoT edge computing 
2023 

AI and IoT Edge  

blending 

Higher accuracy, 

lesser  

computational  

delay 

Higher 

implementation 

cost 

Haowen Tan, 

An efficient IoT group association  

and data sharing mechanism  

in the edge computing paradigm 

2023 

Edge Intelligence and 

Certificateless  

authentication 

Improved  

security 

Compromised 

node  

vulnerability 

Yan S et al., 

A. Node Selection Algorithm for Federated 

Learning Based on Deep Reinforcement  

Learning for Edge Computing 

2023 

Federated Learning 

based on Deep  

Reinforcement 

Learning 

Higher  

Accuracy 

Lower  

Throughput 
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3. Background 
The proposed IECSF framework consists of a 

Lightweight Security Algorithm, a Masked Location-based 

Key Exchange Mechanism, and a Game of Life-based 

Security Key Mechanism as the core component. A brief 

explanation of these functional components is given in this 

section.  

3.1. Lightweight Security Algorithm (LSA) 

The LSA model comprises two main functional 

components. The first module, MAC Address XOR key 

exchange authentication (MAXOR), initializes 

communication sessions between nodes. The second module, 

Legacy Random Number Generator (LRG), handles session 

key annihilation and updates. Together, these modules 

constitute LSA for IoT-based wireless sensor networks, 

facilitating secure and efficient communication setup and 

maintenance. The session key initialization process is 

streamlined to avoid power-intensive exponential operations 

and complex calculations using the MAXOR model. 

 Utilizing the inherent logical XOR operation within 

processor architecture ensures seamless initiation of sessions. 

In essence, MAXOR is a lightweight, hardware-friendly key 

generation procedure. Generating truly random numbers is 

critical for security protocols. Equally important is ensuring 

that different devices generate the same random numbers in a 

networked environment. This synchronization is essential for 

consistent session key updates during communication 

between nodes. Session key updates are necessary under 

various circumstances, such as session timeouts, high latency 

or packet loss, and during security threats like intruder attacks, 

to maintain network security. The Legacy Random Number 

Generator (LRG) achieves this using the Combined Linear 

Congruential Method with legacy seeds. 

3.2. Masked Location Based Key Exchange Mechanism 

(MLKEM) 

MLKEM method comprises two main components, 

namely, Dual Rosenberg Pairing Location Masker (DRPLM) 

and Fuzzy Miller’s Elliptic Curve Key Exchange (FMECKE).  

Together, they form the MLKEM, where DRPemployed 

for uniquely initializing communication session keys, and 

FMECKE is utilized for securely distributing these keys. 

DRLPM is devised with dedicated bitwise and block-wise 

diffusion procedures to mask geographical location-based 

hash and physical media access control address hash.  

Rosenberg’s strong pairing function combines the two 

different hash addresses into a single entity. FMECKE module 

performs the secure key exchange process in the MLKEM 

model. MLKEM is an energy-efficient security key handling 

procedure that reduces communication delays. MLKEM has a 

wide range of real-time IoT-WSN applications due to its 

evident performance.  

3.3. Game of Life-Based Security Key Mechanism (GLSKM) 

Random Seed and Iteration Limit Selector (RSILS) and 

Game of Life-based Key Exchange Mechanism (GoLKEM) 

are the Primary components of the GLSKM model. In an IoT 

network, devices vary widely in their hardware capabilities, 

which affects their ability to perform computational tasks. 

This heterogeneity means that some devices are not as 

powerful as others and are dedicated to specific functions. 

Balancing computational capabilities against performance and 

cost is crucial. For example, sensor nodes focus on measuring 

environmental parameters and don’t require high 

computational power. In contrast, data processing nodes need 

significant computational power to manage large volumes of 

data.  

Key agreement procedures biased towards specific nodes 

can strain low-powered devices or fail to provide adequate 

security in high-powered device zones. The RSILS module 

introduces a seamless bridging process to facilitate 

communication between devices of different categories. 

Traditional methods calculate computational power based on 

hardware characteristics such as processor frequency and 

memory. In RSILS, a simplified count-based procedure is 

introduced to quickly assess the computational power index of 

a node. Based on the power index, the security key size and 

the number of iterations to be performed are determined 

effectively using the GLSKM model. 

4. Proposed Method 
Least Hop Cluster Manager, Intra Cluster Data 

Distributor, and Inter-Cluster Data Aggregator are the 

essential core component modules of the proposed IECSF 

method. The algorithms and methodologies used to construct 

these modules and their services are explained in this section. 

4.1. Least Hop Cluster Manager (LHCM) 

The purpose of the LHCM module is to select cluster 

heads and construct a set of clusters based on the number of 

hops between the nodes. A novel Multi-criteria Dynamic 

Cluster Head Selection Algorithm (MDCHSA) is put forward 

in the LHCM module. The member nodes are assigned to the 

selected cluster heads based on the hop count. Residual 

energy, Computational power, Storage capacity, and Energy 

efficiency are the criteria used in the MDCHS algorithm. 

Measuring the residual energy of an IoT device typically 

involves assessing the amount of remaining battery capacity 

or power available for operation. IoT devices include circuitry 

to directly measure the voltage across the battery terminals. 

Battery voltage can provide an approximate indication of the 

remaining charge, assuming a known discharge characteristic. 

Let 𝑟𝑥 be the representation symbol of residual energy of node 

𝑥. In LHCM, the computational power is quantized based on 

the clock speed of the IoT device. The processor’s clock speed 

indicates how fast it can execute instructions per second. 

Higher clock speeds generally imply faster processing 

capabilities. Let 𝑐𝑥 be the symbol for representing the 
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computational power (clock speed) of node 𝑥. IoT devices are 

used to be equipped with both volatile and non-volatile 

memories. The Storage capacity 𝑠𝑥 of an IoT node 𝑥 is 

computed using the following equation. 

𝑠𝑥 =
𝑠𝑥𝑣+𝑠𝑥𝑛

2
 (1) 

Where 𝑠𝑥𝑣  refers to the volatile memory of nodes 𝑥, and 

𝑠𝑥𝑛  denotes the non-volatile memory, both measured in Bytes 

(B). Energy efficiency modes in IoT devices are designed to 

optimize power consumption based on different operational 

states and usage scenarios.  

These modes help extend battery life, reduce energy 

consumption, and manage resources effectively. LHCM uses 

a number of power modes such as Active mode, Sleep Mode, 

Idle Mode, Stand-by mode, Power saving mode, Hibernate 

mode, Doze mode, Low power wireless mode, and Active 

power management mode provided to an IoT node. Let 𝑒𝑥 be 

the energy efficiency symbol for node 𝑥. 

A cluster head selection coefficient 𝛤 is computed by 

Equation 2 given below.  

 𝛤𝑥 =

𝑟𝑥
𝑚𝑎𝑥(𝑟)

+
𝑐𝑥

𝑚𝑎𝑥(𝑐)
+

𝑠𝑥
𝑚𝑎𝑥(𝑠)

+
𝑒𝑥

𝑚𝑎𝑥(𝑒)

4
  (2) 

Where max() refers to the maximum quantity of a 

particular    resource available in the network. 

Algorithm 1: Multi-criteria Dynamic Cluster Head Selection 

(MDCHS) 

Input: ∀ⅈ = 1 → 𝑛 ≔ 𝑟𝑖 , 𝑐𝑖 , 𝑠𝑖 , 𝑎𝑛𝑑𝑒𝑖 
(𝑤ℎ𝑒𝑟𝑒𝑛ⅈ𝑠𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑜𝑑𝑒𝑠ⅈ𝑛𝑡ℎ𝑒𝑛𝑒𝑡𝑤𝑜𝑟𝑘) 

Output: Cluster heads 

Step 1: ∀ⅈ = 1 → 𝑛 ≔ 𝑟𝑒𝑎𝑑𝑟𝑖 , 𝑐𝑖 , 𝑠𝑖 , 𝑒𝑖 
Step 2: Determine max(𝑟) ,max(𝑐) ,max(𝑠) ,max(𝑒) 
Step 3: ∀ⅈ = 1 → 𝑛 ≔ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝛤𝑖  by Equation 2 

Step 4: Create a node array 𝐴∃𝑛 number of elements 

Step 5: ∀ⅈ = 1 → 𝑛 ≔ 𝐴(ⅈ) = ⅈ 
Step 6: ∀ⅈ = 1 → 𝑛 ∶ : ∀𝑗 = 1 → (𝑛 − 1) ⇔  ⅈ ≠ 𝑗 

Step 7: ⅈ𝑓(𝛤𝑖 < 𝛤𝑗) then 𝐴[ⅈ] ⊕ 𝐴[𝑗] ⊕ (𝐴[𝑗] = 𝐴[ⅈ] 

Step 8:  end ∀ⅈ 
Step 9: Let 𝑑𝑖 be the Euclidean distance between Node ⅈ and 

the Base station 

Step 10: Compute distance weight index as ∀ⅈ = 1 → 𝑛 ≔

𝑤𝑖 =
𝑑𝑖

𝑑𝑚𝑎𝑥
 

Step 11: Select Cluster heads from 𝐴 based on Distance based 

Weighted Cluster algorithm 

Let 𝐶𝐻1, 𝐶𝐻1, … 𝐶𝐻𝑛𝑐ℎ
 be the selected cluster heads 

where 𝑛𝑐ℎ refers to the number of cluster heads. Let 

𝐻1, 𝐻2, …𝐻𝑛𝑐ℎ
 be the Hop sets are directly mapped to the 

cluster heads 𝐶𝐻1, 𝐶𝐻1, … 𝐶𝐻𝑛𝑐ℎ
 in order. The maximum 

number of permitted hops is set to 5 since a greater number of 

hops is inappropriate for including edge computing medium-

range IoT applications.  

Therefore, any Hop set 𝐻𝑥can contain up to 5-member 

node sets, such as {ℎ1, ℎ1, ⋯ ℎ5}. The member nodes for all 

cluster heads are allocated through 𝐻𝑖using LHCM algorithm  

Algorithm 2: Least Hop Cluster Manager (LHCM) 

Input: Nodes and Cluster head information  

Output: Least Hop Cluster Manager 

Step 1: Load network environment 

Step 2: ∀ⅈ = 1 → 𝑛𝑐ℎ:=  

Step 3: Initialize 𝐻𝑖 = ∅ 

Step 4:∀𝑗 = 1 → 5 ≔ 

Step 5: (ℎ𝑗 ∈ 𝐻𝑖) = ∅ 

Step6:∀𝑘 = 1 → 𝑛:=(ℎ𝑗 ∈ 𝐻𝑖) ∪ 𝑘 ⇔

𝐻𝑜𝑝𝑐𝑜𝑢𝑛𝑡(𝐶𝐻𝑖 , 𝑘) ≡ 𝑗 
Step 7: end ∀𝑘 

Step 8: end ∀𝑗 
Step 9:  end ∀ⅈ 

Step 10: return {𝐻1 , 𝐻2, …𝐻𝑛𝑐ℎ
} 

An illustration of a typical LHCM network cluster 

circumstance is given in Figure 1. In this way, the proposed 

LHCM method gathers and arranges the cluster heads and 

nodes into hop-based clusters. 

4.2. Intra Cluster Data Distributor (ICDD) 

The process can be handled in an edge computing 

environment through methods such as Local execution, Task 

offloading, Hierarchical distribution, Dynamic Orchestration, 

Microservices Architecture, Data Localization, and 

Collaborative processing.  

The dynamic Orchestration method is applied in ICDD 

due to surrounding awareness of network congestion, device 

availability, and resource utilization.  

ICDD estimates the process into three categories: Simple, 

Moderate and High, based on the computational time 

complexity. The incoming processes are stored in a process 

Queue and served based on First-In First-Out (FIFO) in ICDD. 

Each process 𝑝𝑥is fetched sequentially from memory, and its 

complexity label 𝜆𝑖 is designated as defined in Equation 3. 

𝜆𝑖 = {

𝑆ⅈ𝑚𝑝𝑙𝑒ⅈ𝑓𝐶𝑜𝑚𝑝𝑙𝑒𝑥ⅈ𝑡𝑦(𝑝𝑥) < 𝑂(1)

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒ⅈ𝑓𝑂(1) ≤ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥ⅈ𝑡𝑦(𝑝𝑥) < 𝑂(log 𝑛)

𝐻ⅈ𝑔ℎⅈ𝑓𝐶𝑜𝑚𝑝𝑙𝑒𝑥ⅈ𝑡𝑦(𝑝𝑥) ≥ 𝑂(𝑛)
  (3) 

The “Simple” category processes are split into tasks and 

allocated to operate with𝑁𝑜𝑑𝑒𝑠 ∈ ℎ1 clusters, the 

“Moderate” category processes are split into tasks and 

allocated to operate with  𝑁𝑜𝑑𝑒𝑠 ∈ ℎ2 ∪ ℎ3. 



A. Anandhavalli & A. Bhuvaneswari  / IJETT, 73(3), 198-211, 2025 

 

203 

 
Fig. 1 LHCM Hop-based cluster formation 

Similarly, the “High” category processes are fragmented 

into different tasks and assigned to operate with  𝑁𝑜𝑑𝑒𝑠 ∈
ℎ3 ∪ ℎ4. In the ICDD method, each task is assigned with a 8 

byte unique ID constructed as 8 bits (cluster head id), 8 bits 

(Node ID), 5 bits (Day), 4 bits (Month), 12 bits (Year), 5 bits 

(Hour), 6 bits (Minutes), 6 bits (Seconds), and 10 bits 

(Milliseconds). The Millisecond precision ensures that every 

task could be assigned with a different ID.  

The secured communication between the cluster head and 

the designated nodes is furnished by the framework elements. 

That is, the secured communication is established through 

LSA for 𝑁𝑜𝑑𝑒𝑠 ∈ ℎ1 clusters, MLKEM for 𝑁𝑜𝑑𝑒𝑠 ∈ ℎ2 ∪
ℎ3 clusters, and GLSKM for 𝑁𝑜𝑑𝑒𝑠 ∈ ℎ3 ∪ ℎ4. A typical 

Task ID was generated in cluster head 3 for node 4 on 01-02-

2024 at 06:45:55:369, and its segmentation is presented in 

Table 2. 

Table 2. Task ID segmentation model 
 

Cluster Head ID Node ID Day Month Year 

0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 

Hour Minute Second Millisecond 

0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 
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Each node will return the completed task data to the 

cluster head after successful task accomplishment; if any node 

fails to return an executed task, data will be pinged by the 

cluster head for the current mode state of the node. If the node 

is active, the cluster head will wait for the node to complete 

the data. If the node is dead or not reachable beyond the TTL 

(Time-To-Live) instruction, then that particular task will be 

reallocated to a different node. ICDD ensures optimal 

performance and reliability during the data distribution phase 

by performing these task deployment strategies. 

4.3. Inter Cluster Data Aggregator (ICDA) 

The process details are stockpiled in the base station, 

where the ICDA module is deployed. Each process has a 

number of sub-tasks, which are managed as sets in the ICDA 

approach. Let 𝑝𝑥 = {𝜏1, 𝜏1…𝜏𝑛} is the process set where 

𝜏1…𝜏𝑛 refers to the subtasks. ICDA has access to ample 

computational resources since the base stations are relatively 

more equipped than other nodes in the network. ICDA 

acquires the fundamental information about the process 

details, such as process category and the number of sub-tasks 

involved in the completion of the process. For every process, 

the ICDA module allocates sufficient memory in the heap for 

every segmented task in the process. Heap memory is a region 

of a device memory used for dynamic allocation, allowing 

flexible runtime memory management for variable-sized data 

structures. This flexibility can lead to fragmentation and 

requires careful handling to avoid memory leaks.  Whenever 

ICDA receives task data from cluster heads, it identifies the 

process information based on the cluster head ID and Node 

ID. It can also identify the position to store the processed data 

in the heap based on the date and time fetched from the task 

ID. A typical representation of the ICDA memory heap is 

given in Figure 2. Whenever all the task memories of a process 

are filled in the heap memory, the situation refers that the 

particular process is completed. Those process details are 

further moved to non-volatile storage, and the allocated heap 

will be freed up for further processing. This is how the ICDA 

module aggregates the task information dynamically using 

heap memory. ICDA algorithm is given below.  

Algorithm 3: Inter-Cluster Data Aggregator 

Input: Processes information 𝑝1, 𝑝2…𝑝𝑛 

Output: Aggregated processed data 

Step 1: Read input information𝜋 

Step 2: If 𝜋 ∈ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
Step 3: Read 𝜋 header and create process 𝑝 

Step 4: Allocate heap memory to fitall𝜏 ∈ 𝑝 

Step 5: Else If 𝜋 ∈ 𝑇𝑎𝑠𝑘𝑠 

Step 6: Parse task header and find the associated process 

Step7: Insert task data in the appropriate process memory 

segment 

Step 8: If all memory segments for process 𝑝 are filled 

Step 9: Relocate Process Information to non-volatile memory 

Step 10: Release heap memory of 𝑝 

Step 11: End if // Step 8 

Step 12: End if // Step 2 

Step 13: Start over from Step 1 

Fig. 2 ICDA heap memory organization
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4.3.1. Applicability 

The proposed IECSF framework is highly applicable 

across various domains requiring secure, real-time edge 

computing. In smart cities, it enhances traffic management, 

smart grids, and energy security, while in healthcare, it ensures 

secure remote patient monitoring and medical device 

protection. Industrial IoT and manufacturing benefit from 

predictive maintenance and supply chain security, whereas 

autonomous vehicles leverage their low-latency decision-

making and secure V2X communication. The defense sector 

utilizes it for battlefield surveillance and cybersecurity, and in 

agriculture, it optimizes smart irrigation and livestock 

tracking. Smart homes and consumer IoT gain enhanced home 

automation security and energy efficiency, while financial 

services use it for fraud detection and ATM security. Retail 

and supply chain management benefit from secure in-store 

analytics, shipment tracking, and smart energy; they protect 

renewable assets and optimize grid performance. IECSF 

provides a robust, scalable security framework for diverse 

IoT-driven industries, ensuring efficiency, privacy, and 

resilience in edge computing environments. 

5. Experimental Setup 
The evaluation process uses the OPNET [15] network 

simulator, which can simulate various network components, 

protocols, nodes, and architectures in a realistic environment. 

This helps validate measures like operational performance, 

application troubleshooting, network planning and design, 

hardware validation, protocol modeling, and traffic modeling. 

Essential network performance metrics like throughput, 

communication delays, packet delivery rate, energy 

consumption, and security are measured during simulations, 

which can be conducted over different time periods and with 

varying numbers of nodes. OPNET has a comprehensive 

library of network components supporting many modern 

network communication devices, especially in the IoT and 

WSN categories. A user interface (UI) was created using 

Visual Studio, with communication scripts coded in C++20.0 

[16]. This UI manages loading network environments into 

OPNET, inputting details of network components, protocols, 

and security mechanisms, and receiving and plotting 

simulation results from OPNET. The simulation involves 

deploying between 100 to 1000 nodes randomly in a 10,000 

square meter environment, using nodes like ESP-32 [17], 

ESP-8266 [18], NodeMCU [19], and LoRa [20] IoT. These 

simulations run for 168 real-world hours, with nodes having 

RF ranges from 100 to 1000 meters. 

6. Results and Analysis 
The simulation process measures important network 

performance metrics such as throughput, end-to-end delay, 

latency, packet delivery ratio, average energy consumption, 

and security for networks with 100 to 1000 nodes in steps of 

100. This section analyzes and compares the performance 

evaluations of existing and proposed methods. 

6.1. Throughput 

Throughput is a key network evaluation parameter that 

significantly influences overall user experience. It refers to the 

rate at which data communication messages are transferred 

from a source to a destination through a communication 

channel, commonly measured in bits per second (bps). A good 

network should support high throughput rates to ensure an 

improved user experience. Throughput values are logged for 

different node densities during the experiments, as shown in 

Table 3. An improvement of 8.56% in throughput is a notable 

improvement achieved by the proposed IECSF method. 

6.2. End-To-End Delay (E2ED) 

End-to-End Delay is the total time taken, including 

Transmission delay, Propagation delay, Processing delay, 

Queuing delay and jitter for all hops for a data packet to travel 

from the source to the destination. End-to-End delay is 

measured in milliseconds (mS) nits. End-to-End delay has a 

direct impact on several network performance factors, such as 

user experience, application performance, data 

synchronization, and overall user experience. A well-designed 

network infrastructure should minimize this end-to-end delay 

to prevent communication lags. The recorded end-to-end 

delay values are provided in Table 4.

                                                                         Table 3. Throughput

Throughput (kbps) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 33116 34169 33566 34421 37368 

200 31962 33328 32539 33146 36714 

300 30783 32180 31690 32047 35440 

400 29896 31233 30646 31168 34394 

500 28774 30408 29888 30457 33646 

600 28129 29067 28582 29254 32502 

700 26877 28187 27842 28126 31866 

800 25843 27316 26635 27432 30788 

900 24884 26341 25875 26302 29736 

1000 24147 25249 24696 25127 28890 
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Fig. 3 Throughput 

Table 4. End-to-end delay 

End-to-End Delay (mS) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 214 175 197 166 59 

200 256 206 235 213 83 

300 299 248 266 253 129 

400 331 282 304 285 167 

500 372 312 331 310 194 

600 395 361 379 354 236 

700 441 393 406 395 259 

800 478 425 450 421 298 

900 513 460 477 462 337 

1000 540 500 520 504 368 
 

 

Fig. 4 End-to-end delay 
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The observed results show that a drop of 36.64 % in the 

end-to-end delay average is achieved by the IECSF method. 

The performance rank lineup of the assessed methods is 

IECSF, BREDGE, NSAFL, IGADSM, and MLIEC, with end-

to-end delay averages of 213 mS, 336.2 mS, 336.3 mS, 356.5 

mS, and 383.9 mS chronologically listed from the best. A 

comparison graph for the end-to-end delay of compared 

methods is given in Figure 4. 

6.3. Latency 

Latency in an IoT edge network refers to the time delay 

between when data is generated by IoT devices at the 

network’s edge and when it reaches its destination, typically a 

central server or cloud service for processing and analysis. 

Low latency is critical in IoT edge networks for real-time 

applications like industrial automation, autonomous vehicles, 

and remote healthcare monitoring. Minimizing latency 

enhances responsiveness and improves IoT systems’ overall 

efficiency and reliability, ensuring timely data insights and 

actionable responses. Metered latency measures of the 

evaluated methods are given in Table 5, and a comparison 

graph is provided in Figure 5. The results indicate that the 

IECSF method has achieved a significant average reduction of 

36.85 % in end-to-end delay. The performance sequence of 

analyzed techniques is IECSF, NSAFL, BREDGE, IGADSM, 

and MLIEC, with the latency averages of 48.5 mS, 76.8 mS, 

76.9 mS, 81.6 mS, and 87.7 mS listed from the optimal. 

Table 5. Latency 

Latency (mS) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 49 40 45 38 13 

200 58 47 54 48 19 

300 68 57 61 58 29 

400 76 64 69 65 38 

500 85 71 76 71 44 

600 90 83 87 81 54 

700 101 90 93 90 59 

800 109 97 103 96 68 

900 117 105 109 106 77 

1000 124 115 119 115 84 

 

 
Fig. 5 Latency 

6.4. Packet Delivery Ratio 

Packet Delivery Ratio (PDR) in IoT edge networks refers 

to the ratio of successfully delivered data packets to the total 

number of packets sent by the source. It is a key performance 

metric that indicates the reliability and efficiency of the 

network. PDR is calculated using the formula, 

𝑃𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟𝑝𝑓𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
× 100.  
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A high PDR signifies that the network is effectively 

delivering data packets with minimal loss, which is crucial for 

the reliable functioning of IoT applications. Factors affecting 

PDR in IoT edge networks include network congestion, signal 

interference, packet collisions, and the efficiency of routing 

protocols. Maintaining a high PDR ensures that IoT devices 

communicate effectively, essential for real-time data 

processing and decision-making in edge computing 

environments. PDR for the compared methods for different 

node densities are charted in Table 6. The highest packet 

delivery ratio value during the entire simulation process is 

99.05%, achieved by the IECSF method. The rank sequence 

for the performance in terms of PDR is IECSF, NSAFL, 

BREDGE, IGADSM, and MLIEC, with the PDR averages of 

87.8282%, 78.852%, 78.8515%, 77.3885%, and 75.3878%.  

Notably, the performance in terms of PDR of NSAFL and 

BREDGE are nearly identical. The highest PDR average, 

excluding the proposed method, is 78.852%, achieved by the 

NSAFL method. The proposed IECSF has achieved 

87.8282%, an 11.38% improvement over the next in line. A 

comparison graph for PDR is provided in Figure 6.  

Table 6. Packet delivery ratio 

PDR (%) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 87.77948 90.57063 88.97228 91.23859 99.05011 

200 84.72061 88.34142 86.25005 87.85899 97.31657 

300 81.59547 85.29845 83.99963 84.94592 93.93963 

400 79.24433 82.78827 81.23233 82.61598 91.16703 

500 76.27028 80.60147 79.22312 80.73135 89.18433 

600 74.5606 77.04693 75.76135 77.5426 86.15197 

700 71.24197 74.71434 73.79986 74.55265 84.46614 

800 68.50118 72.40561 70.60051 72.71309 81.60873 

900 65.95919 69.82121 68.586 69.71783 78.82022 

1000 64.00565 66.92668 65.46086 66.6033 76.57776 

 
Fig. 6 Packet delivery ratio 

6.5. Average Energy Consumption 

Average Energy Consumption in IoT edge networks 

refers to the mean amount of energy consumed by IoT devices, 

sensors, and edge nodes over a specific period of time. This 

metric is critical for evaluating the efficiency and 

sustainability of IoT systems, particularly in environments 

where devices are battery-powered or where energy resources 

are limited. Metered average energy consumption during the 

simulation for the compared methods is enumerated in Table 

7. Average energy consumption is typically measured in units 

such as Joules (J). It is calculated by taking the total energy 

consumed by all devices and dividing it by the number of 

devices or the duration of operation.  

The performance hierarchy for Average Energy 

Consumption is led by IECSF with an average of 312.4 uJ, 

followed by NSAFL with 431 uJ, BREDGE with 450.7 uJ, 

IGADSM with 467.9 uJ, and MLIEC with 505 uJ. A reduction 

of 27.52% in average energy consumption is achieved by the 

proposed IECSF method, highlighting the overall energy 

efficiency of the proposed method. A comparison graph of 

average energy consumption values is illustrated in Figure 7. 
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Table 7. Average energy consumption

Energy (uJ) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 443 389 413 376 254 

200 454 402 420 380 258 

300 471 411 434 399 270 

400 485 437 447 405 285 

500 506 444 463 432 303 

600 512 449 464 429 321 

700 516 470 487 455 338 

800 537 492 509 468 354 

900 552 498 515 472 359 

1000 574 515 527 494 382 

 
Fig. 7 Average energy consumption 

6.6. Security 

Security in IoT edge networks refers to the measures and 

protocols implemented to protect data, devices, and the 

network infrastructure from unauthorized access, cyber-

attacks, and other security threats. Due to the distributed and 

often resource-constrained nature of IoT devices, securing 

these networks poses unique challenges. Security for IoT edge 

networks is measured in OPNET through various metrics and 

techniques that evaluate the effectiveness of security measures 

and identify potential vulnerabilities.  

The security scores of compared techniques during the 

evaluation session are logged in Table 8. The order of 

performance in terms of Security is IECSF, NSAFL, 

BREDGE, IGADSM, and MLIEC, with the corresponding 

scores 99.65%, 98.46%, 97.62%, 97.25%, and 96.95% sorted 

from the best. An improvement of 1.21% achievement in 

terms of the proposed IECSF method is a deserving 

augmentation of proposed functional modules. A comparison 

graph for security scores of compared methods is presented in 

Figure 8. 

Table 8. Security score 

Security (%) 

Nodes MLIEC BREDGE IGADSM NSAFL IECSF 

100 96.79091 97.57273 97.45454 98.2 99.63568 

200 96.88182 97.39091 97.09091 98.38182 99.5706 

300 97.06364 97.39091 97.45454 98.47273 99.68893 

400 96.88182 97.84545 97.27273 98.56364 99.47 

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000

E
n
er

g
y

Nodes

Energy (uJ)

MLIEC BREDGE IGADSM NSAFL IECSF



A. Anandhavalli & A. Bhuvaneswari  / IJETT, 73(3), 198-211, 2025 

 

210 

500 97.24545 97.75455 97.45454 98.47273 99.83095 

600 96.88182 97.66364 97.45454 98.74545 99.77177 

700 96.79091 97.75455 97.09091 98.2 99.58243 

800 96.97273 97.48182 97.09091 98.74545 99.71852 

900 96.97273 97.75455 97.09091 98.65455 99.69486 

1000 97.06364 97.57273 97.09091 98.2 99.60609 

 
Fig. 8 Security score 

7. Conclusion 
In conclusion, the proposed IECSF has successfully 

demonstrated significant advancements in performance 

metrics such as Throughput, End-to-End Delay, Latency, 

Packet Delivery Ratio, Average Energy Consumption, and 

Security within IoT edge networks. Integrating the novel 

proposed functional modules, namely Least Hop Cluster 

Manager, Intra Cluster Data Distributor, and Inter-Cluster 

Data Aggregator, is a vivid accomplishment.  

This study has underscored the importance of efficient 

data processing at the edge, optimizing communication 

protocols, and enhancing device-to-cloud interactions by 

evaluating various methodologies and techniques. The 

findings reveal notable improvements in latency reduction, 

throughput enhancement, and reliability, paving the way for 

more responsive and scalable IoT applications. Moving 

forward, continued research and innovation in this field 

promise to further elevate the capabilities of IoT edge 

networks, ensuring they meet the increasingly demanding 

requirements of modern connected systems. 

Source Availability  

The complete source code for this work is available on 

GitHub, and the link will be shared by way of an e-mail 

request to the authors. 
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