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Abstract - This research investigates the challenges of implementing machine learning models in keyword-spotting applications 

on embedded devices. A convolutional neural network for the Arabic keyword-spotting model is utilized in embedded devices 

represented by microcontrollers. The assessments are conducted on both the trained and pre-trained models. The QCoNet is the 

proposed model that considers the resource constraints of embedded devices by employing the quantization technique to decrease 

the necessary computational and memory capacity. Furthermore, MobileNet v4, a pre-trained model, is assessed under the same 

conditions. MobileNet v4 achieves a better accuracy of 99.2% compared to QCoNet, which achieves an accuracy of 96.7%. 

Nevertheless, it incurs additional expenses for processing and storage. The Arduino Nano 33 BLE is utilized for data collection 

and model deployment. With different noise level circumstances, the Arabic words were recorded. Furthermore, data 

augmentation techniques are employed to enhance the likelihood of the system's responsiveness to various environmental 

situations. 
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1. Introduction 
Keyword spotting identifies particular sentences or words 

in an audio stream, typically intending to initiate a specific 

response. In recent years, it has been used in a spread of 

applications, such as “OK, Google” and “Hey, Siri,” that are 

applied to computing-constrained devices. It has the capability 

of recognizing speech in circumstances with a variety of levels 

of noise, such as a room filled with people or outdoor settings. 

It is utilized for command recognition, enabling users to 

manipulate a device or application through predefined spoken 

commands. They are also applicable in wake-word 

applications. The device is triggered to execute more voice 

commands and/or perform complex tasks upon detecting the 

wake word. 

Various methodologies are employed in the design of 

keyword-spotting models. The early strategies included 

implementing Large-Vocabulary Continuous Speech 

Recognition (LVCSR) systems. These methodologies were 

employed to process the speech signal and locate particular 

phrases within the generated lattice structures. The lattices 

depict distinct sequences of phonetic units that are highly 

likely based on the speech data. A significant drawback of 

LVCSR-based Keyword Spotting (KWS) systems is their 

intensive computational requirements, which demand 

considerable processing power and result in latency issues [1]. 

Hidden Markov Models (HMM) have been used as an 

alternative method in the design of the KWS model. It relies 

on the probabilistic associations among observable sequences 

of events. A great deal of studies have been conducted in the 

field of speech recognition [2]. In keyword/fill HMM-based 

KWS, Gaussian Mixture Models (GMMs) were employed to 

represent the acoustic properties, leading to the generation of 

state emission likelihoods [3]. 

Deep neural networks are widely utilized in Keyword 

Spotting (KWS) applications and are the predominant 

technology in this field. Nevertheless, this comes with the 

drawback of requiring substantial processing resources. One 

attractive feature of Convolutional Neural Networks (CNNs) 

[4] is their capacity to restrict the number of model 

multiplications to comply with computational limitations. 

This may be achieved by altering several hyperparameters, 

such as filter stride, kernel size, and pooling size [5]. The 

current prevalent approach in machine learning for embedded 

devices involves training the proposed model on high-

performance devices like cloud computing and then adapting 

the trained model to limited devices using machine learning 

compression techniques. The training process is conducted 

separately from embedded devices due to the significant 

computational resources it demands, which can be spared 

during the execution phase. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Response time, storage capacity, and power consumption 

are indicators of the characteristics of the required resources 

in machine learning models [6]. The response time can be 

measured by determining the throughput and latency. It can be 

evaluated regarding the number of Floating-point Operations 

per Second (FLOPS) or Multiplier-Accumulate (MAC), 

representing the expense of matrix computation handling in 

machine learning. Memory capacity plays a vital role in 

machine learning in providing the storage resources for storing 

the model and sensor data that can be used in training or 

inference processes. Furthermore, the number of read-and-

write operations in memory has cast a shadow on processing 

time and energy consumption [7]. Finally, the use of energy, 

especially in embedded devices, has a significant effect on 

deploying machine learning paradigms.  It can be evaluated at 

the expense of run time and memory operations. 

The project's contributions can be succinctly summarized 

as follows:  

1. Create an Arabic dataset appropriate for the specific 

scenario in which an augmentation technique will be used 

to increase the amount of data by introducing a noise 

signal into the sensor data. 

2. Develop two convolutional neural networks specifically 

designed for audio categorization, incorporating 

quantization techniques to decrease the model's size.  

The remaining part of this research is organized 

sequentially. Initially, a microcontroller is defined and 

explained. Subsequently, an examination of pertinent research 

in the domain will be presented. Currently, we will examine 

the sequence of machine learning models in detail. 

Afterwards, a thorough examination and evaluation of the 

execution of the suggested system will be conducted. The last 

segment is the concluding part. 

2. Microcontroller 
A microcomputer is a compact electronic device with a 

central processing unit, memory, and various peripheral 

devices in a single Integrated Circuit (IC). Microcontrollers 

have limited resources, Especially Regarding Memory 

(SRAM) and storage (Flash). The on-chip memory is 

considerably smaller than that of mobile devices, with a size 

that is three orders of magnitude smaller. It is even smaller 

than cloud GPUs, with a size of five to six orders of magnitude 

smaller [8]. The primary function of microcontrollers is to 

execute a designated task. These devices are frequently 

employed in scenarios with constrained resources, including 

wildlife monitoring, ocean health assessment, rescue 

missions, fitness tracking, troubleshooting industrial 

equipment, vehicle navigation systems, and unmanned aerial 

vehicles [9, 10]. The proliferation of Internet of Things (IoT) 

devices equipped with constantly operating microcontrollers 

is undergoing substantial and swift expansion, approaching a 

total of 250 billion. 

3. Related Work 
In general, there is extensive work adapting neural 

network models on embedded KWS devices to investigate 

three factors: performance, computation, and storage cost. 

Convolutional Neural Networks (CNNs) have the ability to 

achieve better performance in deep Keyword Spotting (KWS) 

tasks compared to fully connected Feedforward Neural 

Networks (FFNNs) while using fewer parameters. [11] 

utilized a conventional multilayer perceptron to attain 

substantial enhancements compared to prior HMM-based 

methods. Sainath and Parada expanded upon the previous 

research and attained superior outcomes by employing 

Convolutional Neural Networks (CNNs). The work in [12] 

handles the performance of the KWS system by shifting the 

required processing to the server side without considering the 

threat to user privacy and the end device draining power 

resources due to the connection to the server side, even in true 

negative and false positive conditions. In [13] introduced, the 

KWS model was introduced using a time-delay neural 

network. The work reduced the computation cost by skipping 

the framing aspect. [14] used a deep learning model 

represented by 3 convolution layers for implementing 

keyword spotting in Raspberry pi3. The work investigated the 

accuracy-related to phonetic variation by training the 

proposed system on global and local datasets. ResNet, which 

stands for Residual Neural Network, has been used in [15] to 

improve the accuracy of the keyword spotting model. [16] 

developed a multilingual keyword spotting system that 

identified the emergency keyword "help" in four languages: 

English, Arabic, Kurdish, and Malay. Arduino Nicla Vision 

was adopted in [17] for 14 English keywords that can be 

applied in home automation applications. In [18], a keyword-

detection system based on a deep convolutional spiking neural 

network was proposed. 

In embedded systems, quantization methods are essential, 

particularly for Convolutional Neural Networks (CNNs) and 

color processing. Fixed-point quantization can substantially 

decrease storage needs, computational requirements, and 

energy usage in embedded devices [19]; regarding color 

quantization, methods involving image decomposition and 

self-organized neural network classifiers have been suggested, 

offering efficient implementation for embedded systems [20]. 

These approaches divide images into smaller segments or 

windows, minimizing on-chip memory requirements and 

allowing for rapid processing with reduced power 

consumption. For CNNs, researchers have developed various 

quantization techniques to create stable fixed-point networks 

that maintain their performance levels [19]. A methodical 

approach to developing energy-efficient embedded systems 

involves initial algorithm creation using high-level 

programming languages, followed by quantization analysis 

and implementation in an assembly language specific to the 

target chip [21]. This strategy is particularly important for 

mobile and personal medical devices where battery longevity 

is a critical factor. 
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4. Tiny Machine Learning Life Cycle 
It refers to the stages of developing and deploying the 

process of machine learning. It involves the following stages.                                                                                                                                                                       

4.1. Feasibility Study 

It examines the extent to which machine learning may be 

applied, particularly in the context of tiny machine learning in 

embedded devices, considering the constraints imposed by 

hardware and software. Moreover, it assesses the 

characteristics of the observed environment, including 

requirements for data, such as the types of data sources and 

the level of data accuracy. 

4.2. Data Preparation 

It covers nominating relevant data that simulates the 

applied data in the applied domain. In addition, it requires 

gathering a considerable amount of data used in training, 

validation, and test models. The complexity of the involved 

features and the included noisy data scaled the amount of data. 

The transformation of the raw data to the applied format, 

labeling data, and cleaning data processes are required to build 

suitable machine learning models. Furthermore, it can be 

appended with data processing techniques such as 

normalization and augmentation. 

Concerning audio applications, the preparation step 

within the training and inference phases involves feature 

extraction and representation of the received signals in image 

format. Mel Frequency Cepstrum Coefficient (MFCC) is 

commonly used. Prior research has demonstrated that the 

human voice is discernible at significantly lower frequencies 

[15]. As a result, raw spectrograms lack the full extent of their 

potential meaning. An effective approach to improving this 

situation is to assess the frequencies of the spectrogram in 

decibels rather than the raw amplitudes. Due to the logarithmic 

nature of decibels, spectrograms effectively represent the 

extensive range of frequencies on a more easily 

comprehensible scale. 

The MFCC filter involves dividing the audio stream into 

overlapping parts. The Fast Fourier Transform (FFT) 

calculates the power spectrum. The Mel-filterbank is 

implemented using the following formula to catch variations 

in low frequencies. The discrete cosine transform is employed. 

The purpose of this is to remove the relationship between the 

energies of the filter bank, which were computed using 

overlapping filters. 

𝑀(𝑓) = 1125 ln (1 +
𝑓

700
) 

4.3. Design Model 

The process involves determining the quantity of neurons, 

structuring them into multiple layers, and establishing 

connections between these layers. A convolutional neural 

network (CNN or ConvNet), a type of deep learning 

architecture, learns directly from input data. CNNs excel at 

identifying patterns within images for object recognition, 

classification, and categorization. They are also effective in 

classifying audio, time series, and signal data. During training, 

filters were applied to each image at various resolutions, with 

the resulting convolved image serving as input for the 

subsequent layer. 

Furthermore, activation functions (including sigmoid, 

tanh, and Rectified Linear Units (RELU)) were employed to 

capture intricate data patterns. After feeding the input data to 

the input layer, the CNN comprises the following parts: The 

next layer does the job of extracting features from the input 

images by applying filters called convolutional layers. To 

reduce spatial dimensions while retaining important features, 

pooling layers are used to compute the average value in a 

region or take the maximum value in a region. To enhance the 

generalization and reduce overfitting, batch normalization and 

dropout approaches are applied. Finally, the image category 

was predicted at the classification layer. This can be achieved 

using sigmoid activation and binary classification or softmax 

activation to obtain the probability distribution of various 

classification aspects. 

The criteria can be categorized according to a systematic 

experiment that examines the relationship between the model's 

performance and the scale of its architecture. Furthermore, 

pruning processes can be employed during the learning phase 

to eliminate superfluous neurons. An alternative approach to 

specifying the model (transfer learning) involves starting with 

a pre-trained neural network that does similar tasks and using 

it as an initial prototype that can be fine-tuned depending on 

the patterns observed in the input data.  A major challenge in 

deploying machine learning models on embedded devices is 

the absence of a uniform operating system and system 

architecture across different devices. Embedded device 

designers typically prioritize cost and size reduction, as 

evidenced by the diverse selection of device frameworks 

available. This project employs Tensorflow, a popular 

machine-learning framework developed by Google. The 

platform provides a wide range of tools and libraries that may 

be used to build machine-learning models. It is compatible 

with a diverse array of hardware. 

4.4. Training Model 

Tensorflow Lite is a lightweight edition of Tensorflow 

that applies to devices with constrained resources. It supports 

a subset of operations required to run the inference on the edge 

device. It provides an optimization approach, such as 

quantizations, to shrink the trained models with less influence 

on the system's performance. In addition, it converts the 

trained models to flat buffer form, an array of bytes that 

facilitates the load and storage on microcontrollers, especially 

since most microcontrollers have file systems. Further, the 

Tensorflow Lite interpreter is adopted to run the model on the 

embedded device. 
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4.5. Model Evaluation 

During the training phase, the model that has been trained 

is assessed as part of the validation process. Neural network 

validation, often referred to as validation during training or 

evaluation of the validation set, is an essential and pivotal 

stage in the training process of a neural network. It involves 

regularly assessing the model's performance on a distinct 

subset of the training dataset not utilized for training purposes. 

This enables the practitioner to evaluate the model's 

performance on data that has not been previously observed 

and determine its capacity to generalize. The validation 

process aids in identifying overfitting, optimizing 

hyperparameters, and selecting the most effective model. The 

gathered dataset is divided into two separate segments. One 

application of the training is seen in the training and validation 

datasets. The remaining portion of the dataset is utilized for 

model testing. 

4.6. Model Deployment 

Once the trained model has been tested, the acceptable 

test metrics, such as accuracy, loss rate, and inference time, 

have been fulfilled. Before calling the models and identifying 

the phrases, it is necessary to perform initialization actions. 

Figure 1 depicts the primary components of the executed code 

on the embedded device. The process starts with the startup 

phases, including tasks such as declaring variables, initializing 

the interpreter, allocating memory for intermediate results, 

and specifying the sensor data sources. Moreover, the primary 

component of the loop involves a series of actions to record 

the audio stream from the microphone, extract the feature by 

converting the signal to the frequency domain and calculating 

MFCC, and subsequently provide the input to the model. 

Ultimately, acknowledge and act upon the given directive. 

 
Fig. 1 Main function parts implemented while running the model on the 

embedded systems. These parts include initialization and the main loop 

parts, which are executed periodically 

5. Implementation 
This study involves the assessment of an Arabic keyword-

spotting model utilizing two convolutional neural networks. 

One specific convolutional neural network is created and 

evaluated, while the other utilizes a pre-existing convolutional 

network (MobileNet v4).  

Based on references [21, 24], it is estimated that around 

86.8% of the world's population lacks any level of competency 

in the English language. Since the introduction of computers, 

the majority of the computer ecosystem has been created using 

the English language. 

Currently, speech recognition models for languages other 

than English are inaccurate due to the widespread use of 

English as the predominant language for audio data [22]. In 

order to make this ecosystem accessible to end users across 

various products, services, and utilities, it is imperative to 

translate it into several languages. Initially, we organized our 

dataset to standardize the gathered sensor data in the 

operational area.  

An inherent obstacle in implementing neural networks is 

the disparity that exists between the datasets used for training 

and those used for actual execution. That can arise from the 

presence of extra noise in the work environment and 

fluctuations in the accent. The dataset has been tagged with 

four keywords (go, back, left, and right), which can be used to 

guide the robot. Furthermore, a comprehensive data 

augmentation technique is employed to encompass a diverse 

array of potential sensor data. The model under consideration 

is trained via edge impulse cloud computing. 

The keyword spot process pipeline consists of four main 

stages. It starts by capturing the audio signal from the 

microphone as a waveform signal. Arduino Nano 33 BLE 

Sense Rev2 is used in this project. It is based on a 64 MHz 

Arm Cortex-M4F processor (with FPU), 1 MB of flash, and 

256 KB of RAM.  

After that, the spectrogram of the received raw signal is 

computed with 13 cepstral coefficients after transferring the 

signal to the frequency domain by FFT with 650 features, as 

demonstrated in Figure 2. The third stage represents the 

inferring process of the convolutional neural network. Firstly, 

the proposed model, named QConNet, as shown in Figure 3, 

is deployed.  

In this model, two sequential convolutional neural layers 

are adopted with adjectives to capture the complex features. 

This convolutional layer configuration describes a layer with 

8 filters, each using a 3x3 kernel, constrained by a maximum 

norm of 1, applying 'same' padding to the input, and using the 

ReLU activation function. In addition, it operates with a 

dropout layer with a rate of 0.5. 
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Waveform of Left Word 

 

Spectrogram 

 
Fig. 2 Example of the waveform of the left word and the corresponding 

spectrogram 

 
Fig. 3 Architecture overview of the QConNet model 

Dropout layers are a form of regularization used in neural 

networks to reduce the possibility of overfitting. During 

training, units and their connections are randomly removed 

from the neural network. This technique reduces dependence 

on individual features and compels the network to acquire 

more resilient features. 

The test model has an accuracy of 96.7%. Figure 3 

illustrates the model's precision in terms of the F1 score. The 

F1 score is a statistic utilized to evaluate the effectiveness of 

a classification model. The computation is derived from the 

harmonic mean of the recall and precision metrics of the test 

model. Recall is the proportion of correctly classified positive 

samples (true positives) out of all the actual positive samples 

(true positives and false negatives), while precision is the 

proportion of correctly classified positive samples (true 

positives) out of all positive classification efforts (true 

positives and false positives).  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
 

 BACK GO LEFT RIGHT 

BACK 100% 0% 0% 0% 

GO 0% 100% 0% 0% 

LEFT 5.6% 5.6% 88.9% 0% 

RIGHT 0% 0% 0% 100% 

F1 SCORE 0.96% 0.96% 0.94% 1.00% 
Fig. 4 The training confusion matrix 

The Second approach, MobileNet v4 [23], is used on the 

same dataset. It achieves better accuracy than QConNet at the 

expense of higher computation costs. 

Fig. 5 Data exploration of the same train dataset with respect to 

QConNet (left side) and MobileNet v4 (right side) 

Table 1. The usage of RAM and FLASH and the processing time 

required for both QConNet and MobileNet V4 

 
Inference 

Time 

RAM 

Usage 

Flash 

Usage 

QConNet 33 ms 12K 54.3K 

MobileNet V4 532 ms 205K 677.6K 

 
As shown in the tables above, MobileNet v4 outperforms 

QCoNet in terms of accuracy, achieving 99.2% compared to 

QCoNet's 96.7%. However, this higher accuracy comes at the 

cost of increased RAM and Flash memory usage. MobileNet 

v4 requires 205 KB of RAM and 677.6 KB of Flash, whereas 

QCoNet utilizes only 12 KB of RAM and 543 KB of Flash. 

Additionally, MobileNet v4 has a longer inference time, 

exceeding QCoNet's by approximately 500 ms. The 

quantization process reduces QCoNet’s model size by 50% 
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while maintaining an accuracy of 96.7%. Although MobileNet 

v4 experiences a slight accuracy drop after quantization, it 

remains computationally expensive. 

MobileNet v4 is a pre-trained convolutional neural 

network created by Google specifically designed to achieve 

high accuracy while working within the limitations of edge 

devices. The model reduces the number of parameters and 

computation cost by employing depthwise separable 

convolutions. This is achieved by splitting the regular 

convolutional process into separate depthwise and pointwise 

convolutional layers. During a depthwise convolutional layer, 

each input channel of the feature map is convolved with a 

separate filter. This technique maintains the depth of the 

feature map, which refers to the number of channels, while 

simultaneously capturing spatial information within each 

channel. The pointwise convolution is performed by 

convolving the intermediate feature maps derived from the 

depthwise convolution with a collection of 1x1 filters. It has 

the ability to adjust the number of output channels, allowing 

for the manipulation of dimensionality by either decreasing or 

increasing it as needed. 

To improve the robustness of the application by reducing 

the rate of false positives. The continuous filtering of detecting 

keywords was deployed on the edge device. The inference 

process includes storing temporary instances of the detecting 

keyword in a buffer to reduce the chance that the detecting 

words are part of other words that can give different meanings. 

For example, in the English language, the go word can become 

"goodbye," "goal," or "gold." In technical terms, the audio is 

sampled simultaneously with the inferencing and output 

processes. While the inference is being executed, audio 

sampling concurrently proceeds as a background 

activity.  Twofold buffering technology is employed. A single 

buffer is used for the audio sampling process, which is filled 

with recent sample data. The second buffer is used for the 

inference process. It retrieves sample data from the buffer, 

extracts the features, and performs the inference. 

6. Conclusion 
The integration of machine learning techniques and 

embedded systems has become prevalent in a wide array of 

applications. The limited resources of embedded systems have 

hindered the use of machine learning methods that demand 

substantial processing and storage capabilities. Embedded 

systems necessitate compression approaches that decrease the 

size of the implementation model and simplify processing 

complexity in order to locate the machine learning model. 

Quantization plays a crucial role in decreasing the size of 

model parameters, hence reducing the computational 

workload. However, this refers to measuring model 

performance, which may be quantified by accuracy and 

inference time. The impact of a decrease on system 

performance can be assessed by considering the practical uses 

of the model. For instance, the medical application 

necessitates a high level of system accuracy, which poses a 

potential risk to the patient's life. Conversely, the application 

for home automation can function effectively with minimal 

compromise in model accuracy. This study involved the 

evaluation of two convolutional neural networks for a 

microcontroller system. They provide varying levels of 

accuracy and storage capacity needs.     
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