
International Journal of Engineering Trends and Technology Volume 73 Issue 3, 230-236, March 2025

ISSN: 2231-5381/ https://doi.org/10.14445/22315381/IJETT-V73I3P117 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Embedded Device Keyword Spotting Model with

Quantized Convolutional Neural Network

Salma A. Alhashimi1, Ali Aliedani2

1Department of Control and Computer Engineering, Almaaqal University, Basrah, Iraq.
2Department of Computer Engineering, University of Basrah, Basrah, Iraq.

1Corresponding Author : salma.ali.alhashimi@almaaqal.edu.iq

Received: 24 October 2024 Revised: 15 February 2025 Accepted: 20 February 2025 Published: 28 March 2025

Abstract - This research investigates the challenges of implementing machine learning models in keyword-spotting applications

on embedded devices. A convolutional neural network for the Arabic keyword-spotting model is utilized in embedded devices

represented by microcontrollers. The assessments are conducted on both the trained and pre-trained models. The QCoNet is the

proposed model that considers the resource constraints of embedded devices by employing the quantization technique to decrease

the necessary computational and memory capacity. Furthermore, MobileNet v4, a pre-trained model, is assessed under the same

conditions. MobileNet v4 achieves a better accuracy of 99.2% compared to QCoNet, which achieves an accuracy of 96.7%.

Nevertheless, it incurs additional expenses for processing and storage. The Arduino Nano 33 BLE is utilized for data collection

and model deployment. With different noise level circumstances, the Arabic words were recorded. Furthermore, data

augmentation techniques are employed to enhance the likelihood of the system's responsiveness to various environmental

situations.

Keywords - Keyword spotting, Convolution Neural Network, Quantization, MobileNet v4, QCoNet.

1. Introduction
Keyword spotting identifies particular sentences or words

in an audio stream, typically intending to initiate a specific

response. In recent years, it has been used in a spread of

applications, such as “OK, Google” and “Hey, Siri,” that are

applied to computing-constrained devices. It has the capability

of recognizing speech in circumstances with a variety of levels

of noise, such as a room filled with people or outdoor settings.

It is utilized for command recognition, enabling users to

manipulate a device or application through predefined spoken

commands. They are also applicable in wake-word

applications. The device is triggered to execute more voice

commands and/or perform complex tasks upon detecting the

wake word.

Various methodologies are employed in the design of

keyword-spotting models. The early strategies included

implementing Large-Vocabulary Continuous Speech

Recognition (LVCSR) systems. These methodologies were

employed to process the speech signal and locate particular

phrases within the generated lattice structures. The lattices

depict distinct sequences of phonetic units that are highly

likely based on the speech data. A significant drawback of

LVCSR-based Keyword Spotting (KWS) systems is their

intensive computational requirements, which demand

considerable processing power and result in latency issues [1].

Hidden Markov Models (HMM) have been used as an

alternative method in the design of the KWS model. It relies

on the probabilistic associations among observable sequences

of events. A great deal of studies have been conducted in the

field of speech recognition [2]. In keyword/fill HMM-based

KWS, Gaussian Mixture Models (GMMs) were employed to

represent the acoustic properties, leading to the generation of

state emission likelihoods [3].

Deep neural networks are widely utilized in Keyword

Spotting (KWS) applications and are the predominant

technology in this field. Nevertheless, this comes with the

drawback of requiring substantial processing resources. One

attractive feature of Convolutional Neural Networks (CNNs)

[4] is their capacity to restrict the number of model

multiplications to comply with computational limitations.

This may be achieved by altering several hyperparameters,

such as filter stride, kernel size, and pooling size [5]. The

current prevalent approach in machine learning for embedded

devices involves training the proposed model on high-

performance devices like cloud computing and then adapting

the trained model to limited devices using machine learning

compression techniques. The training process is conducted

separately from embedded devices due to the significant

computational resources it demands, which can be spared

during the execution phase.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

231

Response time, storage capacity, and power consumption

are indicators of the characteristics of the required resources

in machine learning models [6]. The response time can be

measured by determining the throughput and latency. It can be

evaluated regarding the number of Floating-point Operations

per Second (FLOPS) or Multiplier-Accumulate (MAC),

representing the expense of matrix computation handling in

machine learning. Memory capacity plays a vital role in

machine learning in providing the storage resources for storing

the model and sensor data that can be used in training or

inference processes. Furthermore, the number of read-and-

write operations in memory has cast a shadow on processing

time and energy consumption [7]. Finally, the use of energy,

especially in embedded devices, has a significant effect on

deploying machine learning paradigms. It can be evaluated at

the expense of run time and memory operations.

The project's contributions can be succinctly summarized

as follows:

1. Create an Arabic dataset appropriate for the specific

scenario in which an augmentation technique will be used

to increase the amount of data by introducing a noise

signal into the sensor data.

2. Develop two convolutional neural networks specifically

designed for audio categorization, incorporating

quantization techniques to decrease the model's size.

The remaining part of this research is organized

sequentially. Initially, a microcontroller is defined and

explained. Subsequently, an examination of pertinent research

in the domain will be presented. Currently, we will examine

the sequence of machine learning models in detail.

Afterwards, a thorough examination and evaluation of the

execution of the suggested system will be conducted. The last

segment is the concluding part.

2. Microcontroller
A microcomputer is a compact electronic device with a

central processing unit, memory, and various peripheral

devices in a single Integrated Circuit (IC). Microcontrollers

have limited resources, Especially Regarding Memory

(SRAM) and storage (Flash). The on-chip memory is

considerably smaller than that of mobile devices, with a size

that is three orders of magnitude smaller. It is even smaller

than cloud GPUs, with a size of five to six orders of magnitude

smaller [8]. The primary function of microcontrollers is to

execute a designated task. These devices are frequently

employed in scenarios with constrained resources, including

wildlife monitoring, ocean health assessment, rescue

missions, fitness tracking, troubleshooting industrial

equipment, vehicle navigation systems, and unmanned aerial

vehicles [9, 10]. The proliferation of Internet of Things (IoT)

devices equipped with constantly operating microcontrollers

is undergoing substantial and swift expansion, approaching a

total of 250 billion.

3. Related Work
In general, there is extensive work adapting neural

network models on embedded KWS devices to investigate

three factors: performance, computation, and storage cost.

Convolutional Neural Networks (CNNs) have the ability to

achieve better performance in deep Keyword Spotting (KWS)

tasks compared to fully connected Feedforward Neural

Networks (FFNNs) while using fewer parameters. [11]

utilized a conventional multilayer perceptron to attain

substantial enhancements compared to prior HMM-based

methods. Sainath and Parada expanded upon the previous

research and attained superior outcomes by employing

Convolutional Neural Networks (CNNs). The work in [12]

handles the performance of the KWS system by shifting the

required processing to the server side without considering the

threat to user privacy and the end device draining power

resources due to the connection to the server side, even in true

negative and false positive conditions. In [13] introduced, the

KWS model was introduced using a time-delay neural

network. The work reduced the computation cost by skipping

the framing aspect. [14] used a deep learning model

represented by 3 convolution layers for implementing

keyword spotting in Raspberry pi3. The work investigated the

accuracy-related to phonetic variation by training the

proposed system on global and local datasets. ResNet, which

stands for Residual Neural Network, has been used in [15] to

improve the accuracy of the keyword spotting model. [16]

developed a multilingual keyword spotting system that

identified the emergency keyword "help" in four languages:

English, Arabic, Kurdish, and Malay. Arduino Nicla Vision

was adopted in [17] for 14 English keywords that can be

applied in home automation applications. In [18], a keyword-

detection system based on a deep convolutional spiking neural

network was proposed.

In embedded systems, quantization methods are essential,

particularly for Convolutional Neural Networks (CNNs) and

color processing. Fixed-point quantization can substantially

decrease storage needs, computational requirements, and

energy usage in embedded devices [19]; regarding color

quantization, methods involving image decomposition and

self-organized neural network classifiers have been suggested,

offering efficient implementation for embedded systems [20].

These approaches divide images into smaller segments or

windows, minimizing on-chip memory requirements and

allowing for rapid processing with reduced power

consumption. For CNNs, researchers have developed various

quantization techniques to create stable fixed-point networks

that maintain their performance levels [19]. A methodical

approach to developing energy-efficient embedded systems

involves initial algorithm creation using high-level

programming languages, followed by quantization analysis

and implementation in an assembly language specific to the

target chip [21]. This strategy is particularly important for

mobile and personal medical devices where battery longevity

is a critical factor.

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

232

4. Tiny Machine Learning Life Cycle
It refers to the stages of developing and deploying the

process of machine learning. It involves the following stages.

4.1. Feasibility Study

It examines the extent to which machine learning may be

applied, particularly in the context of tiny machine learning in

embedded devices, considering the constraints imposed by

hardware and software. Moreover, it assesses the

characteristics of the observed environment, including

requirements for data, such as the types of data sources and

the level of data accuracy.

4.2. Data Preparation

It covers nominating relevant data that simulates the

applied data in the applied domain. In addition, it requires

gathering a considerable amount of data used in training,

validation, and test models. The complexity of the involved

features and the included noisy data scaled the amount of data.

The transformation of the raw data to the applied format,

labeling data, and cleaning data processes are required to build

suitable machine learning models. Furthermore, it can be

appended with data processing techniques such as

normalization and augmentation.

Concerning audio applications, the preparation step

within the training and inference phases involves feature

extraction and representation of the received signals in image

format. Mel Frequency Cepstrum Coefficient (MFCC) is

commonly used. Prior research has demonstrated that the

human voice is discernible at significantly lower frequencies

[15]. As a result, raw spectrograms lack the full extent of their

potential meaning. An effective approach to improving this

situation is to assess the frequencies of the spectrogram in

decibels rather than the raw amplitudes. Due to the logarithmic

nature of decibels, spectrograms effectively represent the

extensive range of frequencies on a more easily

comprehensible scale.

The MFCC filter involves dividing the audio stream into

overlapping parts. The Fast Fourier Transform (FFT)

calculates the power spectrum. The Mel-filterbank is

implemented using the following formula to catch variations

in low frequencies. The discrete cosine transform is employed.

The purpose of this is to remove the relationship between the

energies of the filter bank, which were computed using

overlapping filters.

𝑀(𝑓) = 1125 ln (1 +
𝑓

700
)

4.3. Design Model

The process involves determining the quantity of neurons,

structuring them into multiple layers, and establishing

connections between these layers. A convolutional neural

network (CNN or ConvNet), a type of deep learning

architecture, learns directly from input data. CNNs excel at

identifying patterns within images for object recognition,

classification, and categorization. They are also effective in

classifying audio, time series, and signal data. During training,

filters were applied to each image at various resolutions, with

the resulting convolved image serving as input for the

subsequent layer.

Furthermore, activation functions (including sigmoid,

tanh, and Rectified Linear Units (RELU)) were employed to

capture intricate data patterns. After feeding the input data to

the input layer, the CNN comprises the following parts: The

next layer does the job of extracting features from the input

images by applying filters called convolutional layers. To

reduce spatial dimensions while retaining important features,

pooling layers are used to compute the average value in a

region or take the maximum value in a region. To enhance the

generalization and reduce overfitting, batch normalization and

dropout approaches are applied. Finally, the image category

was predicted at the classification layer. This can be achieved

using sigmoid activation and binary classification or softmax

activation to obtain the probability distribution of various

classification aspects.

The criteria can be categorized according to a systematic

experiment that examines the relationship between the model's

performance and the scale of its architecture. Furthermore,

pruning processes can be employed during the learning phase

to eliminate superfluous neurons. An alternative approach to

specifying the model (transfer learning) involves starting with

a pre-trained neural network that does similar tasks and using

it as an initial prototype that can be fine-tuned depending on

the patterns observed in the input data. A major challenge in

deploying machine learning models on embedded devices is

the absence of a uniform operating system and system

architecture across different devices. Embedded device

designers typically prioritize cost and size reduction, as

evidenced by the diverse selection of device frameworks

available. This project employs Tensorflow, a popular

machine-learning framework developed by Google. The

platform provides a wide range of tools and libraries that may

be used to build machine-learning models. It is compatible

with a diverse array of hardware.

4.4. Training Model

Tensorflow Lite is a lightweight edition of Tensorflow

that applies to devices with constrained resources. It supports

a subset of operations required to run the inference on the edge

device. It provides an optimization approach, such as

quantizations, to shrink the trained models with less influence

on the system's performance. In addition, it converts the

trained models to flat buffer form, an array of bytes that

facilitates the load and storage on microcontrollers, especially

since most microcontrollers have file systems. Further, the

Tensorflow Lite interpreter is adopted to run the model on the

embedded device.

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

233

4.5. Model Evaluation

During the training phase, the model that has been trained

is assessed as part of the validation process. Neural network

validation, often referred to as validation during training or

evaluation of the validation set, is an essential and pivotal

stage in the training process of a neural network. It involves

regularly assessing the model's performance on a distinct

subset of the training dataset not utilized for training purposes.

This enables the practitioner to evaluate the model's

performance on data that has not been previously observed

and determine its capacity to generalize. The validation

process aids in identifying overfitting, optimizing

hyperparameters, and selecting the most effective model. The

gathered dataset is divided into two separate segments. One

application of the training is seen in the training and validation

datasets. The remaining portion of the dataset is utilized for

model testing.

4.6. Model Deployment

Once the trained model has been tested, the acceptable

test metrics, such as accuracy, loss rate, and inference time,

have been fulfilled. Before calling the models and identifying

the phrases, it is necessary to perform initialization actions.

Figure 1 depicts the primary components of the executed code

on the embedded device. The process starts with the startup

phases, including tasks such as declaring variables, initializing

the interpreter, allocating memory for intermediate results,

and specifying the sensor data sources. Moreover, the primary

component of the loop involves a series of actions to record

the audio stream from the microphone, extract the feature by

converting the signal to the frequency domain and calculating

MFCC, and subsequently provide the input to the model.

Ultimately, acknowledge and act upon the given directive.

Fig. 1 Main function parts implemented while running the model on the

embedded systems. These parts include initialization and the main loop

parts, which are executed periodically

5. Implementation
This study involves the assessment of an Arabic keyword-

spotting model utilizing two convolutional neural networks.

One specific convolutional neural network is created and

evaluated, while the other utilizes a pre-existing convolutional

network (MobileNet v4).

Based on references [21, 24], it is estimated that around

86.8% of the world's population lacks any level of competency

in the English language. Since the introduction of computers,

the majority of the computer ecosystem has been created using

the English language.

Currently, speech recognition models for languages other

than English are inaccurate due to the widespread use of

English as the predominant language for audio data [22]. In

order to make this ecosystem accessible to end users across

various products, services, and utilities, it is imperative to

translate it into several languages. Initially, we organized our

dataset to standardize the gathered sensor data in the

operational area.

An inherent obstacle in implementing neural networks is

the disparity that exists between the datasets used for training

and those used for actual execution. That can arise from the

presence of extra noise in the work environment and

fluctuations in the accent. The dataset has been tagged with

four keywords (go, back, left, and right), which can be used to

guide the robot. Furthermore, a comprehensive data

augmentation technique is employed to encompass a diverse

array of potential sensor data. The model under consideration

is trained via edge impulse cloud computing.

The keyword spot process pipeline consists of four main

stages. It starts by capturing the audio signal from the

microphone as a waveform signal. Arduino Nano 33 BLE

Sense Rev2 is used in this project. It is based on a 64 MHz

Arm Cortex-M4F processor (with FPU), 1 MB of flash, and

256 KB of RAM.

After that, the spectrogram of the received raw signal is

computed with 13 cepstral coefficients after transferring the

signal to the frequency domain by FFT with 650 features, as

demonstrated in Figure 2. The third stage represents the

inferring process of the convolutional neural network. Firstly,

the proposed model, named QConNet, as shown in Figure 3,

is deployed.

In this model, two sequential convolutional neural layers

are adopted with adjectives to capture the complex features.

This convolutional layer configuration describes a layer with

8 filters, each using a 3x3 kernel, constrained by a maximum

norm of 1, applying 'same' padding to the input, and using the

ReLU activation function. In addition, it operates with a

dropout layer with a rate of 0.5.

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

234

Waveform of Left Word

Spectrogram

Fig. 2 Example of the waveform of the left word and the corresponding

spectrogram

Fig. 3 Architecture overview of the QConNet model

Dropout layers are a form of regularization used in neural

networks to reduce the possibility of overfitting. During

training, units and their connections are randomly removed

from the neural network. This technique reduces dependence

on individual features and compels the network to acquire

more resilient features.

The test model has an accuracy of 96.7%. Figure 3

illustrates the model's precision in terms of the F1 score. The

F1 score is a statistic utilized to evaluate the effectiveness of

a classification model. The computation is derived from the

harmonic mean of the recall and precision metrics of the test

model. Recall is the proportion of correctly classified positive

samples (true positives) out of all the actual positive samples

(true positives and false negatives), while precision is the

proportion of correctly classified positive samples (true

positives) out of all positive classification efforts (true

positives and false positives).

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

 BACK GO LEFT RIGHT

BACK 100% 0% 0% 0%

GO 0% 100% 0% 0%

LEFT 5.6% 5.6% 88.9% 0%

RIGHT 0% 0% 0% 100%

F1 SCORE 0.96% 0.96% 0.94% 1.00%
Fig. 4 The training confusion matrix

The Second approach, MobileNet v4 [23], is used on the

same dataset. It achieves better accuracy than QConNet at the

expense of higher computation costs.

Fig. 5 Data exploration of the same train dataset with respect to

QConNet (left side) and MobileNet v4 (right side)

Table 1. The usage of RAM and FLASH and the processing time

required for both QConNet and MobileNet V4

Inference

Time

RAM

Usage

Flash

Usage

QConNet 33 ms 12K 54.3K

MobileNet V4 532 ms 205K 677.6K

As shown in the tables above, MobileNet v4 outperforms

QCoNet in terms of accuracy, achieving 99.2% compared to

QCoNet's 96.7%. However, this higher accuracy comes at the

cost of increased RAM and Flash memory usage. MobileNet

v4 requires 205 KB of RAM and 677.6 KB of Flash, whereas

QCoNet utilizes only 12 KB of RAM and 543 KB of Flash.

Additionally, MobileNet v4 has a longer inference time,

exceeding QCoNet's by approximately 500 ms. The

quantization process reduces QCoNet’s model size by 50%

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

235

while maintaining an accuracy of 96.7%. Although MobileNet

v4 experiences a slight accuracy drop after quantization, it

remains computationally expensive.

MobileNet v4 is a pre-trained convolutional neural

network created by Google specifically designed to achieve

high accuracy while working within the limitations of edge

devices. The model reduces the number of parameters and

computation cost by employing depthwise separable

convolutions. This is achieved by splitting the regular

convolutional process into separate depthwise and pointwise

convolutional layers. During a depthwise convolutional layer,

each input channel of the feature map is convolved with a

separate filter. This technique maintains the depth of the

feature map, which refers to the number of channels, while

simultaneously capturing spatial information within each

channel. The pointwise convolution is performed by

convolving the intermediate feature maps derived from the

depthwise convolution with a collection of 1x1 filters. It has

the ability to adjust the number of output channels, allowing

for the manipulation of dimensionality by either decreasing or

increasing it as needed.

To improve the robustness of the application by reducing

the rate of false positives. The continuous filtering of detecting

keywords was deployed on the edge device. The inference

process includes storing temporary instances of the detecting

keyword in a buffer to reduce the chance that the detecting

words are part of other words that can give different meanings.

For example, in the English language, the go word can become

"goodbye," "goal," or "gold." In technical terms, the audio is

sampled simultaneously with the inferencing and output

processes. While the inference is being executed, audio

sampling concurrently proceeds as a background

activity. Twofold buffering technology is employed. A single

buffer is used for the audio sampling process, which is filled

with recent sample data. The second buffer is used for the

inference process. It retrieves sample data from the buffer,

extracts the features, and performs the inference.

6. Conclusion
The integration of machine learning techniques and

embedded systems has become prevalent in a wide array of

applications. The limited resources of embedded systems have

hindered the use of machine learning methods that demand

substantial processing and storage capabilities. Embedded

systems necessitate compression approaches that decrease the

size of the implementation model and simplify processing

complexity in order to locate the machine learning model.

Quantization plays a crucial role in decreasing the size of

model parameters, hence reducing the computational

workload. However, this refers to measuring model

performance, which may be quantified by accuracy and

inference time. The impact of a decrease on system

performance can be assessed by considering the practical uses

of the model. For instance, the medical application

necessitates a high level of system accuracy, which poses a

potential risk to the patient's life. Conversely, the application

for home automation can function effectively with minimal

compromise in model accuracy. This study involved the

evaluation of two convolutional neural networks for a

microcontroller system. They provide varying levels of

accuracy and storage capacity needs.

References
[1] Ming Sun et al., “Compressed Time Delay Neural Network for Small-Footprint Keyword Spotting,” Amazon Science, pp. 1-5, 2017.

[Google Scholar] [Publisher Link]

[2] B.H. Juang, and L.R. Rabiner, “Hidden Markov Models for Speech Recognition,” Technometrics, vol. 33, no. 3, pp. 251-272, 1991.

[CrossRef] [Google Scholar] [Publisher Link]

[3] J.G. Wilpon, L.G. Miller, and P. Modi, “Improvements and Applications for Key Word Recognition Using Hidden Markov Modeling

Techniques,” International Conference on Acoustics, Speech, and Signal Processing, Canada, vol. 1, pp. 309-312 1991. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Tara N. Sainath, and Carolina Parada, “Convolutional Neural Networks for Small Footprint Keyword Spotting,” Interspeech, pp. 1478-

1482, 2015. [CrossRef] [Publisher Link]

[5] Iván López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview,” IEEE Access, vol. 10, pp. 4169-4199, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Sauptik Dhar et al., “A Survey of On-Device Machine Learning: An Algorithms and Learning Theory Perspective,” ACM Transactions

on Internet of Things, vol. 2, no. 3, pp. 1-49, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Vivienne Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12,

pp. 2295-2329, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Ji Lin et al., “Mcunet: Tiny Deep Learning on IoT Devices,” Advances in Neural Information Processing Systems, vol. 33, pp. 11711-

11722, 2020. [Google Scholar] [Publisher Link]

[9] Swapnil Sayan Saha et al., “Tinyodom: Hardware-Aware Efficient Neural Inertial Navigation,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 2, pp. 1-32, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Compressed+time+delay+neural+network+for+small-footprint+keyword+spotting&btnG=
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
https://doi.org/10.1080/00401706.1991.10484833
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hidden+markov+models+for+speech+recognition&btnG=
https://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484833
https://doi.org/10.1109/ICASSP.1991.150338
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improvements+and+applications+for+key+word+recognition+using+hidden+Markov+modeling+techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/150338
https://doi.org/10.21437/Interspeech.2015-352
https://www.isca-archive.org/interspeech_2015/sainath15b_interspeech.html
https://doi.org/10.1109/ACCESS.2021.3139508
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+spoken+keyword+spotting%3A+An+overview&btnG=
https://ieeexplore.ieee.org/abstract/document/9665775
https://doi.org/10.1145/3450494
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+on-device+machine+learning%3A+An+algorithms+and+learning+theory+perspective&btnG=
https://dl.acm.org/doi/abs/10.1145/3450494
https://doi.org/10.1109/JPROC.2017.2761740
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+processing+of+deep+neural+networks%3A+A+tutorial+and+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/8114708
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mcunet%3A+Tiny+deep+learning+on+iot+devices&btnG=
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html
https://doi.org/10.1145/3534594
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tinyodom%3A+Hardware-aware+efficient+neural+inertial+navigation&btnG=
https://dl.acm.org/doi/abs/10.1145/3534594

Salma A. Alhashimi & Ali Aliedani / IJETT, 73(3), 230-236, 2025

236

[10] Swapnil Sayan Saha et al., “Auritus: An Open-Source Optimization Toolkit for Training and Development of Human Movement Models

and Filters Using Earables,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 2, pp. 1-

3, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Guoguo Chen, Carolina Parada, and Georg Heigold, “Small-Footprint Keyword Spotting Using Deep Neural Networks,” 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, pp. 4087-4091, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[12] Assaf Hurwitz Michaely et al., “Keyword Spotting for Google Assistant Using Contextual Speech Recognition,” IEEE Automatic Speech

Recognition and Understanding Workshop, Okinawa, Japan, pp. 272-278, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[13] Samuel Myer, and Vikrant Singh Tomar, “Efficient Keyword Spotting Using Time Delay Neural Networks,” arXiv, pp. 1-5, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Yonatan Alon, “Real-Time Low-Resource Phoneme Recognition on Edge Devices,” arXiv, pp. 1-20, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Jong Ee Jeoung, You Kok Yeow, and Muhammad Mun`im Ahmad Zabidi, “Keyword Spotting on Embedded System with Deep

Learning,” Proceedings of 2019 Electrical Engineering Symposium, vol. 3, pp. 87-91, 2019. [Google Scholar]

[16] Danyar Nabaz, Noraimi Shafie, and Azizul Azizan, “Design of Emergency Keyword Recognition Using Arduino Nano BLE Sense 33

And EdgeImpulse,” Open International Journal of Informatics, vol. 11, no. 2, pp. 46-57, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[17] Jyoti Mishra, Tomithy Malche, and Amit Hirawat, “Embedded Intelligence for Smart Home Using TinyML Approach to Keyword

Spotting,” Engineering Proceedings, vol. 82, no, 1, pp. 1-9, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Emre Yılmaz et al., Deep Convolutional Spiking Neural Networks for Keyword Spotting,” Proceedings of the Interspeech, China, pp.

2557-2561, 2020. [Google Scholar] [Publisher Link]

[19] Motaz Al-Hami et al., “Towards a Stable Quantized Convolutional Neural Networks: An Embedded Perspective,” 10th International

Conference on Agents and Artificial Intelligence, vol. 2, pp. 573-580, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[20] A. Atsalakis et al., “Colour Quantisation Technique Based on Image Decomposition and its Embedded System Implementation,” IEE

Proceedings - Vision, Image and Signal Processing, vol. 151, no. 6, pp. 511-524, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[21] Neeraj Magotra et al., “Real-Time Energy Efficient Embedded System Development Methodology,” 2013 IEEE Digital Signal Processing

and Signal Processing Education Meeting (DSP/SPE), Napa, CA, USA, pp. 284-289, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[22] Yundong Zhang et al., “Hello Edge: Keyword Spotting on Microcontrollers,” arXiv, pp. 1-14, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[23] Raphael Tang, and Jimmy Lin, “Deep Residual Learning for Small-Footprint Keyword Spotting,” 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, pp. 5484-5488, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[24] Andrew G. Howard et al., “Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv, pp. 1-9, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[25] David Crystal, English as a Global Language, 2nd ed., Cambridge University Press, pp. 1-229, 2003. [Google Scholar] [Publisher Link]

[26] Pete Warden, and Daniel Situnayake, Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power

Microcontrollers, O'Reilly Media, pp. 1-149, 2020. [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3534586
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Auritus%3A+An+open-source+optimization+toolkit+for+training+and+development+of+human+movement+models+and+filters+using+earables&btnG=
https://dl.acm.org/doi/abs/10.1145/3534586
https://doi.org/10.1109/ICASSP.2014.6854370
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Small-footprint+keyword+spotting+using+deep+neural+networks&btnG=
https://ieeexplore.ieee.org/abstract/document/6854370
https://doi.org/10.1109/ASRU.2017.8268946
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Keyword+spotting+for+Google+assistant+using+contextual+speech+recognition&btnG=
https://ieeexplore.ieee.org/abstract/document/8268946
https://doi.org/10.48550/arXiv.1807.04353
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+keyword+spotting+using+time+delay+neural+networks&btnG=
https://arxiv.org/abs/1807.04353
https://doi.org/10.48550/arXiv.2103.13997
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+low-resource+phoneme+recognition+on+edge+devices&btnG=
https://arxiv.org/abs/2103.13997
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Keyword+spotting+on+embedded+system+with+deep+learning&btnG=
https://doi.org/10.11113/oiji2023.11n2.271
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+Emergency+Keyword+Recognition+Using+Arduino+Nano+BLE+Sense+33+And+EdgeImpulse&btnG=
https://oiji.utm.my/index.php/oiji/article/view/271
https://oiji.utm.my/index.php/oiji/article/view/271
hhttps://doi.org/10.3390/ecsa-11-20522
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Embedded+Intelligence+for+Smart+Home+Using+TinyML+Approach+to+Keyword+Spotting&btnG=
https://www.mdpi.com/2673-4591/82/1/30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+convolutional+spiking+neural+networks+for+keyword+spotting&btnG=
https://www.isca-archive.org/interspeech_2020/ylmaz20_interspeech.html
https://doi.org/10.5220/0006651305730580
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+stable+quantized+convolutional+neural+networks%3A+An+embedded+perspective&btnG=
https://www.scitepress.org/Papers/2018/66513/
https://doi.org/10.1049/ip-vis:20040552
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Colour+quantisation+technique+based+on+image+decomposition+and+its+embedded+system+implementation&btnG=
https://digital-library.theiet.org/doi/abs/10.1049/ip-vis%3A20040552
https://doi.org/10.1109/DSP-SPE.2013.6642605
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+energy+efficient+embedded+system+development+methodology&btnG=
https://ieeexplore.ieee.org/abstract/document/6642605
https://doi.org/10.48550/arXiv.1711.07128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hello+edge%3A+Keyword+spotting+on+microcontrollers&btnG=
https://arxiv.org/abs/1711.07128
https://doi.org/10.1109/ICASSP.2018.8462688
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+residual+learning+for+small-footprint+keyword+spotting&btnG=
https://ieeexplore.ieee.org/abstract/document/8462688
https://doi.org/10.48550/arXiv.1704.04861
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobilenets%3A+Efficient+convolutional+neural+networks+for+mobile+vision+applications&btnG=
https://arxiv.org/abs/1704.04861
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Crystal%2C+D.+%282003%29.+English+as+a+global+language+%282nd+ed%29.+Cambridge+University+Press.+&btnG=
https://culturaldiplomacy.org/academy/pdf/research/books/nation_branding/English_As_A_Global_Language_-_David_Crystal.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tinyml%3A+Machine+learning+with+tensorflow+lite+on+arduino+and+ultra-low-power+microcontrollers&btnG=
https://tinymlbook.com/wp-content/uploads/2020/01/tflite_micro_preview.pdf

