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Abstract - Channel estimation involves the process of estimating the characteristics of the communication channel, particularly 

the channel's impulse response or frequency response. This information is essential for the receiver to compensate for the effects 

of the channel and properly decode the transmitted signal. The novelty of this work is integrating the deep learning framework 

with the compressive sensing approach for channel estimation. Combining Compressive Sensing (CS) with Convolutional Neural 

Networks (CNNs) for channel estimation leverages the strengths of both approaches: the ability of CS to exploit sparsity and the 

powerful feature extraction and learning capabilities of CNNs. The output is then compared with the channel estimated using the 

pilot-based channel estimation, least square estimation, and maximum likelihood estimation. It is found that the results obtained 

with the proposed fusion give a lower RMSE (0.11) and lower BER (1.82 x 10-6) compared with the other methods. This indicates 

the effectiveness of the proposed method for channel estimation. 
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1. Introduction 
Channel estimation is crucial in wireless communication 

systems, especially in scenarios where the transmitted signal 

undergoes distortion and attenuation as it travels through the 

communication channel. The communication channel 

introduces various impairments, such as multipath fading, 

interference, and noise, which can affect the quality of the 

received signal. Channel estimation is needed in wireless 

communication systems for several important reasons: 

1. Mitigating Channel Effects: The wireless communication 

channel introduces various impairments, such as 

multipath fading, attenuation, and interference. These 

effects can distort the transmitted signal, leading to errors 

and degradation in signal quality at the receiver. Channel 

estimation allows the receiver to understand and 

compensate for these effects, improving the accuracy of 

signal decoding. 

2. Equalization: In scenarios where the channel introduces 

frequency-selective fading, the received signal may 

experience different attenuations at different frequencies. 

Channel estimation helps determine the channel's 

frequency response, enabling the receiver to apply 

equalization techniques to compensate for the frequency-

selective fading. 

3. Adaptive Modulation and Coding: Channel conditions 

can vary over time due to factors such as the movement 

of mobile devices, changes in the environment, and 

interference. Accurate channel estimation provides 

information about the channel's current state, allowing the 

system to adaptively adjust modulation and coding 

schemes to optimize data transmission under varying 

conditions. 

4. Spatial Diversity and MIMO Systems: Channel 

estimation becomes crucial for exploiting spatial diversity 

in multiple antenna systems, such as Multiple Input 

Multiple Output (MIMO) systems. The system can 

employ spatial processing techniques to enhance signal 

quality and increase data rates by estimating the channels 

associated with each antenna. 

5. Pilot Symbol Assisted Modulation (PSAM): Many 

communication systems use pilot symbols, known 

symbols inserted into the transmitted signal, for channel 

estimation. These symbols help the receiver estimate the 

channel response at specific points, allowing for more 

accurate compensation of the channel effects. 

6. Link Adaptation: Channel estimation is essential for link 

adaptation strategies, where the system dynamically 

adjusts transmission parameters such as modulation 

scheme and coding rate based on the estimated channel 

conditions. This adaptive approach improves overall 

system performance and efficiency. 

7. Improved Error Performance: Accurate channel 

estimation leads to improved demodulation accuracy and 

reduced bit error rates. This is crucial for maintaining 

reliable communication, especially in wireless networks 

where the channel conditions can be challenging and 

dynamic. 

http://www.internationaljournalssrg.org/
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To address these challenges and meet the needs of 

wireless channel estimation, researchers and engineers are 

developing advanced algorithms, machine learning 

approaches, and adaptive techniques that can efficiently 

estimate channel characteristics in diverse and dynamic 5G 

environments. These advancements aim to improve the overall 

performance, reliability, and efficiency of 5G communication 

systems. The details of the related works are discussed in the 

literature survey. 

2. Literature Survey 
There are different techniques for channel estimation, and 

the choice of method depends on the specific characteristics 

of the communication system. Some common methods 

include: 

2.1. Pilot-based Channel Estimation 

In this approach, the transmitter inserts known pilot 

symbols into the transmitted signal. The receiver uses these 

pilot symbols to estimate the channel response at those 

specific locations. The estimated channel response is then 

used to interpolate the channel characteristics for the entire 

signal. Xu et al. [1] have discussed the pilot-based channel 

estimation for covert wireless channels. They have assumed a 

Rayleigh fading channel with AWGN. It is derived from a 

relationship between the covertness of the channel and the 

number of channel uses. Liu et al. [2] have compared least 

squares (LS), least mean square error (MMSE) and linear 

minimum error (LMMSE) algorithms for pilot-based channel 

estimation, and it is concluded that the MMSE algorithm is 

better than the LS algorithm. Raghunathrao et al. [3] have used 

a rider grey optimization technique to find the optimal number 

of pilots for insertion in cognitive radio channels. Anand et al. 

[4] have used Huffman sequences as pilot clusters for the 

channel estimation of doubly selective channels. They have 

shown an improvement in the channel estimation 

performance. Karn et al. [5] have used the LS technique for 

the channel estimation in the time domain for a Digital Video 

Broadcasting Terrestrial (DVB-T) system. Pilot-based channel 

estimation is particularly useful in scenarios where the channel 

conditions change over time or where there is a need to adapt 

to varying channel characteristics. It helps improve the 

reliability and performance of the communication system by 

providing the receiver with information about the channel 

state. 

2.2. Least Squares Estimation  

This method involves minimizing the squared error 

between the received signal and the estimated channel 

response. It provides a simple and computationally efficient 

solution but may be sensitive to noise. Sekokotoana et al. [6] 

have used two Least mean squares-based channel estimation 

approaches for a two-user downlink single-input-single-

output non-orthogonal multiple access (SISO-NOMA) 

system. The comparative results show that the MSE behaviour 

and the SNR performance depend on the step size in each case. 

Liao et al. [7] have exploited the channel sparsity for the 

wideband mm-wave MIMO systems channel estimation. LSE 

variations, including ordinary least squares (OLS) and 

weighted least squares (WLS), account for different 

considerations, such as the heteroscedasticity of errors or the 

presence of outliers in the data. 

2.3. Maximum Likelihood Estimation 

This technique aims to find the channel estimate that 

maximizes the likelihood of the received signal given the 

estimated channel response. It provides a statistically optimal 

solution but can be computationally more demanding. 

Maximum Likelihood Estimation (MLE) is used for pilot 

symbol-assisted modulation for underwater acoustic 

communication (Kumar & Kumar) [8]. ML is used in the time 

domain to improve the BER. For a multi-panel MIMO system, 

Zhao et al. [9] have proposed a method in which the MIMO 

channel is modelled as a block-sparse signal recovery 

problem. Then, ML based estimation technique is used to 

detect the support of the sparse channel response vector and 

then perform least square estimation. Elvira & Santamaria 

[10] have proposed a multiple-importance sampling method 

for Symbol Error Rate estimation in MIMO detection using 

ML. The Monte Carlo simulation technique has been used for 

the same, and the method has been shown to outperform the 

traditional methods employed. The work by Ming-Wei Wu et 

al. [11] compares Maximum Likelihood Estimation with Least 

Squares (LS) methods for channel estimation in OFDM 

systems. It evaluates the performance of MLE in terms of 

accuracy and complexity. The study investigate the use of 

Maximum Likelihood Estimation for time-varying channel 

estimation, addressing the challenges of dynamic channels 

and presenting efficient MLE algorithms. MLE can be applied 

to estimate parameters such as channel coefficients or noise 

characteristics. MLE provides estimates that are 

asymptotically unbiased, efficient and have desirable 

statistical properties under certain conditions. 

2.4. Kalman Filtering 

Kalman filters are recursive algorithms that can 

adaptively estimate the channel state over time. They are 

particularly useful in dynamic channel environments. Arya et 

al. [12] and Zhang et al. [13] present adaptive Kalman Filter 

techniques for channel estimation, focusing on how these 

techniques can adjust to dynamic wireless environments and 

improve estimation accuracy. Siebert et al. [14] and Zhu et al. 

[15] explore the use of recursive Kalman Filtering for channel 

estimation in OFDM systems with high mobility. It highlights 

the challenges and solutions for estimating channels in rapidly 

changing environments. Singh et al. [16] and Sadr et al. [17] 

discuss adaptive Kalman Filter techniques for channel 

estimation in wireless networks, presenting methodologies to 

adapt the filter parameters based on network conditions. 

Pourkabirian and Anisi [18] have used the Tobit Kalman filter 

(TKF) method to estimate the hidden state vectors of wireless 

channels. It finds its use in the Multiuser Downlink 5G 



R. Aruna et al. / IJETT, 73(3), 315-323, 2025 

  

317 

Systems under channel uncertainties. The Kalman filter is 

known for its optimality under certain conditions and 

efficiency in real-time applications.  

2.5. Convolutional Neural Networks 

The use of Convolutional Neural Networks (CNNs) for 

channel estimation in wireless communication systems is a 

relatively recent but rapidly growing area of research. Zhao et 

al., 2024 [19] and Lv & Luo, 2023 [20] provide a 

comprehensive overview of how deep learning, including 

CNNs, can be applied to channel estimation. It discusses the 

basic principles and advantages of using deep learning models 

compared to traditional methods. CNNs can also be used to 

reduce the overhead and improve the accuracy of channel 

estimation, as shown by Mashhadi and Gündüz, 2020 [21]. 

Shilpa et al., 2023 [22] specifically address using CNNs for 

channel estimation in MIMO-OFDM systems. The authors 

show that CNNs can outperform traditional estimation 

techniques regarding BER and computational efficiency. 

Huang et al., 2020 [23] have written a review paper that 

provides a detailed survey of various deep learning 

techniques, including CNNs, used for channel estimation in 

MIMO systems. It highlights the strengths and weaknesses of 

different approaches and suggests future research directions. 

Hasini & Reddy [24] and Wong et al. [25] explore various 

deep learning techniques, including CNNs, for both channel 

estimation and signal detection, providing comparative 

analysis with traditional methods. 

2.6. Compressive Sensing  

In the context of channel estimation, CS can effectively 

estimate channel state information (CSI) in scenarios where 

the channel is sparse or has a limited number of dominant 

paths. Munshi & Unnikrishnan [26] and Albataineh et al. [27] 

explore the application of compressive sensing for sparse 

channel estimation and provide algorithms for efficient 

channel recovery. Manur & Ali [28] and Nair & Menon [29] 

discuss using compressive sensing for channel estimation in 

MIMO-OFDM systems, highlighting improvements in 

estimation accuracy and system performance. Dhanasekaran 

and Ramesh [30] present efficient algorithms for channel 

estimation using compressive sensing, focusing on wireless 

networks with sparse channel conditions. A review paper (Li 

et al., [31]) provides an overview of compressive sensing 

techniques for channel estimation and discusses various 

applications in wireless communication. The work by 

Baranidharan et al. [32] focuses on using compressive sensing 

for channel estimation in sparse MIMO channels, presenting 

experimental results and performance analysis. 

2.7. Combination Algorithms 

Combination algorithms for channel estimation often 

involve integrating multiple techniques to leverage their 

individual strengths and improve overall performance. The 

work by Srivastava et al. [33] explores hybrid channel 

estimation methods combining Least Squares (LS) and 

Minimum Mean Square Error (MMSE) techniques for 

MIMO-OFDM systems. It provides insights into how 

combining these approaches can improve estimation accuracy. 

The work by Arora and Chawla [34] presents adaptive hybrid 

algorithms that combine different channel estimation 

techniques, such as Kalman filtering and MMSE, for 

improved performance in OFDM systems. The paper by 

Pradheep et al. [35] discusses a combination of pilot-based and 

data-based channel estimation methods, offering a hybrid 

approach to enhance estimation accuracy in MIMO systems. 

De et al. [36] present a multi-stage approach that combines 

compressive sensing with Bayesian inference techniques for 

improved channel estimation. 

2.8. Research Gaps 

Although many algorithms have been implemented 

separately, a combination of the algorithms for pilot-based 

channel estimation has not been attempted. This work aims to 

combine the Compressive Sensing and the Convolutional 

Neural Network algorithms to reduce the RMSE error (hence 

the BER). 

3. Proposed Methodology 
The novelty of this work is combining the Convolutional 

Neural Networks and the Compressive sensing techniques for 

channel estimation. This work utilizes the Compressive 

Sensing technique to get the initial Channel Estimate. Further 

refinement is done using CNN. The main objective of using a 

CS for the initial estimation is that the number of meaningful 

parameters to be fed to CNN is drastically reduced. This 

enhances the performance of the model. The parameters of the 

simulation are given in Table 2. The methodology for the 

proposed work is shown in Figure 1. A brief explanation of 

each of the blocks is also given below.  

Fig. 1 Methodology for the proposed work 
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3.1. Generating the Input Data 

The typical method for channel estimation involves 

sending a known pilot symbol through the channel. As shown 

in Figure 1, in this work, the pilot symbols are generated 

synthetically using Python's random number generation 

function. Also, care is taken to have both real and imaginary 

numbers in the pilot symbols. In all, 1000 symbols are 

generated for the present work.  

3.2. Dividing the Generated Symbols into Training and 

Testing Sets 

Out of the generated symbols, 70% is kept for training, 

and the remaining 30% is kept for testing purposes.  

3.3. Compressive Sensing 

Compressive Sensing (CS) is a technique used in signal 

processing to reconstruct a signal from a small number of 

measurements, exploiting the signal's sparsity. In the context 

of channel estimation, CS can be particularly effective in 

scenarios where the channel impulse response is sparse, such 

as in millimeter-wave (mmWave) communication systems or 

channels with significant multipath components.  

The parameters of CS, which are typically used in channel 

estimation, are 

1. Sparsity Level (k): The number of non-zero elements in 

the sparse representation of the channel. It is a critical 

parameter because CS algorithms leverage this sparsity to 

reconstruct the channel with fewer measurements. 

2. Measurement Matrix (Φ): This matrix determines how 

the compressed measurements are taken. It should satisfy 

certain properties like the Restricted Isometry Property 

(RIP) to ensure accurate reconstruction. 

3. Number of Measurements (M): This is the number of 

compressed measurements taken, which should be greater 

than the sparsity level but much less than the original 

signal length. 

4. Reconstruction Error (ϵ\epsilonϵ): This parameter 

quantifies the error tolerance in the reconstruction 

process. Lower values of ϵ\epsilonϵ indicate more 

accurate reconstruction. 

5. Algorithm Parameters: Parameters specific to the chosen 

reconstruction algorithm, such as the OMP threshold or 

the LASSO regularisation parameter. 

The process generally involves the following steps: 

1. Modelling the Sparse Channel: The channel is assumed 

to be sparse in a certain domain (e.g., delay domain for 

multipath channels). 

2. Designing the Measurement Matrix: This involves 

selecting pilot symbols and their positions to form the 

measurement matrix that satisfies the RIP. 

3. Collecting Measurements: Transmit the pilot symbols 

through the channel and collect the received signals, 

which form the compressed measurements. 

4. Reconstructing the Channel: Use a CS algorithm to 

reconstruct the sparse channel from the compressed 

measurements. 

3.4. Convolutional Neural Network 

The Sequential CNN architecture with 7 layers is 

implemented as shown in Figure 2. The real parts and the 

imaginary parts are input separately to the CNN. For this, the 

training data is converted from a complex matrix to 2 real 

matrices so that the CNN considers the real and imaginary 

parts separately as 2D images.  

 

Fig. 2 Architecture of the Sequential CNN model used 
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• Compressive Measurements: Transmit pilot symbols and 

receive compressed measurements 𝑦 = 𝛷ℎ + 𝑛, where ℎ 

is the sparse channel vector, and 𝑛 is noise. 

3.6.2. Initial Channel Estimation Using CS Algorithm 

• Sparse Reconstruction: Apply a CS algorithm (in this 

work, Basis Pursuit) to the compressed measurements to 

obtain an initial estimate of the sparse channel vector ℎ̂𝐶𝑆 

This initial estimate might be noisy or incomplete due to 

the limited number of measurements and the presence of 

noise. 

3.6.3. Refinement Using CNN 

• CNN Design: Design a CNN architecture suitable for 

denoising and refining the initial channel estimate. The 

CNN takes the initial CS-based estimate ℎ̂𝐶𝑆 as input and 

outputs, a refined channel estimate ℎ̂𝐶𝑁𝑁 

3.7. Performance evaluation  

In this work, the performance of the algorithms is 

evaluated using the Root Mean Square Error RMSE, and the 

accuracy of data transmission is measured using the Bit Error 

Rate (BER). RMSE is a standard metric in signal processing 

and wireless channel estimation because it aligns well with 

error variance in noisy signals.  

RMSE is a commonly used measure to evaluate the 

accuracy of channel estimation in communication systems. It 

quantifies the difference between the estimated channel 

parameters and the actual channel parameters. Lower RMSE 

values indicate better estimation accuracy. RMSE is widely 

used because it provides a single value that summarizes the 

estimation accuracy, making it easy to compare different 

estimation methods or system configurations. 

The mathematical formula for RMSE is given by 

Equation 1. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (ℎ̂𝑖 −  ℎ𝑖)

2𝑁
𝑖=1  (1) 

Where ℎ𝑖 = true channel value at the 𝑖 − 𝑡ℎ observation. 

ℎ̂𝑖 = estimated channel value at the 𝑖 − 𝑡ℎ observation. 

𝑁 = number of observations (or time samples). 

BER is defined as a measure of the number of bit errors 

that occur in a communication system, divided by the total 

number of bits transmitted. The formula for BER is given by 

Equation 2. 

𝐵𝐸𝑅 =  
𝑁𝑒

𝑁𝑡
  (2) 

Where 𝑁𝑒 = number of bit errors. 

𝑁𝑡 = total number of bits transmitted. 

4. Results and Discussion 
The channel estimation for 1000 symbols is implemented 

using Python with the tensorflow and keras framework. To 

begin with, the implementation was done with only CNN and 

only CS (separately), and the RMSE error was evaluated. 

Then, a combination of these two was implemented, and the 

results were tabulated in Table 1. An experiment was also 

carried out to evaluate the effect of the number of symbols 

generated on the RMSE. This experiment was implemented 

using the LS, MMSE, CNN, CS and CS+CNN algorithms. 

The simulation parameters are shown in Table 2. The results 

are tabulated in Figure 2. 

Table 1. Performance evaluation of the implementation 

No. of symbols  → 100 250 500 1000 1500 2000 

Algorithms Used RMSE 

Least Squares 0.66 0.61 0.53 0.41 0.39 0.35 

Minimum Mean Square Error 0.78 0.71 0.63 0.45 0.42 0.41 

Convolutional Neural Network 0.48 0.36 0.25 0.23 0.21 0.21 

Compressive Sensing 0.45 0.40 0.33 0.29 0.25 0.24 

Compressive Sensing + Convolutional Neural Networks 0.32 0.27 0.16 0.12 0.11 0.11 

As shown in Table 1, it is seen that the RMSE error is the 

least for the combination of CS and CNN algorithms. To find 

out the effect of the number of symbols on the performance of 

the algorithms, experiments are conducted by varying the 

number of pilot symbols used for the training. It is seen from 

Table 1 that as the number of pilot symbols increases, the 

RMSE error decreases, but after a certain point (1000 

symbols), the RMSE error does not vary much. Hence, for the 

present work, the number of pilot symbols = 1000 can be 

considered as an optimal value. The changes in the RMSE 

with the changes in the number of pilot symbols are gradual 

and not very drastic. This applies to all the algorithms used 

here. It can also be noted that the decrease in the RMSE in the 

case of Compressive Sensing is very gradual. This is because 

compressive sensing is very computationally intensive, and 

hence, changes in the number of symbols do not contribute 

much to the change in RMSE. This is precisely the reason we 

need to combine CS with the CNN so that the decrease in the 

RMSE is remarkable. Increasing the number of pilot symbols 

also increases the overhead, reducing the effective data rate 

because more bandwidth is used for pilot transmission instead 

of actual data. Fewer pilot symbols might lead to less accurate 
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channel estimation, increasing the BER as the receiver might 

not correctly compensate for the channel effects. The 

effectiveness of pilot symbols also depends on the channel 

estimation algorithm used.  

Advanced algorithms might extract better channel 

estimates with fewer pilot symbols than simpler ones. One 

more metric used to evaluate the performance of 

communication systems is the Bit Error Rate (BER). RMSE 

and BER measure different aspects of the communication 

system. RMSE measures the accuracy of channel estimation, 

while BER measures the accuracy of data transmission. 

Accurate channel estimation (low RMSE) generally leads to 

better detection and decoding of transmitted symbols, which 

in turn can lower the BER. Conversely, poor channel 

estimation (high RMSE) can result in higher BER because the 

receiver may not correctly compensate for the channel effects. 

The change in the BER with the algorithms used is tabulated 

in Table 3. More pilot symbols generally provide a more 

accurate channel estimation because they offer more reference 

points for the receiver to characterize the channel variations. 

This improved accuracy can lead to a lower BER. As can be 

seen from Table 3, there is a trade-off between the number of 

pilot symbols and the BER of the system. Excessive pilot 

symbols can reduce the overall throughput. The least BER is 

achieved with the combination algorithm (CS + CNN). It is 

also seen that after the pilot symbols = 1500, the decrease in 

BER is very gradual because of the pilot overhead, as 

explained above. The graphs obtained for the BER with 

different algorithms are shown in Figure 4.

 
Fig. 3 Performance Evaluation vs No. of Symbols used in different Algorithms 

Table 2. Simulation parameters for the proposed work 

Parameters Values 

Modulation 16 QAM 

Channel Rayleigh Fading Channel 

Multiplexing Spatial Multiplexing 

SNR 10 dB 

Table 3. BER vs the Algorithm used (SNR = 10 dB) 

No. of symbols  → 100 250 500 1000 1500 2000 

Algorithms Used BER (x 10-6) 

Least Squares 7.6 6.2 5.8 4.3 4.1 3.96 

Minimum Mean Square Error 6.6 5.3 4.8 4.1 3.8 3.5 

Convolutional Neural Network 5.12 4.6 4.18 3.7 3.5 3.4 

Compressive Sensing 4.38 3.93 3.25 2.96 2.7 2.5 

Compressive Sensing + Convolutional Neural Networks 3.22 2.98 2.65 2.21 1.94 1.82 
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Fig. 4 BER vs the Algorithm used (SNR = 10 dB) 

5. Conclusion 
The main objective of this work is to improve the channel 

estimation (in turn the BER also) using a combination of 

algorithms. In this work, it is shown that the combination of 

Compressive Sensing and convolutional Neural Networks 

gives the least RMSE and the least BER. It is also shown that 

both these metrics depend on the number of pilot symbols used 

for the channel estimation.  

The relation between these parameters has been 

experimented with and tabulated. It is shown that the CS + 

CNN gives an RMSE of 0.11 and BER of 1.82x10-6 (both with 

pilot symbols = 2000). In conclusion, combining Compressive 

Sensing and Convolutional Neural Networks improves 

accuracy compared to the individual algorithms. As a future 

work, the same combination algorithm can be used to obtain 

the channel estimates of different channel models.  
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