
International Journal of Engineering Trends and Technology Volume 73 Issue 3, 403-422, March 2025

ISSN: 2231-5381/ https://doi.org/10.14445/22315381/IJETT-V73I3P128 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Dominant Features Selection with Clustering Genetic

Model to Improve the Access Time of Data in Big Data

Management Using Distributed Machine Learning

Peerzada Hamid Ahmad1, Munishwar Rai2

1, 2MMICTBM, Maharishi Markandeshwar (To Be Deemed University), Haryana, India.

1Corresponding Author : peerzadahamidahmad@gmail.com

Received: 09 September 2024 Revised: 11 January 2025 Accepted: 27 January 2025 Published: 28 March 2025

Abstract - The explosive nature of big data has created serious challenges for information managers, especially in providing fast

availability and response times. Conventional data management systems tend to falter when dealing with enormous datasets,

which causes latency that can slow down real-time analysis and decision-making. In response, this research introduces a new

cluster-based genetic model aimed at hastening access to data in big data management systems. The method combines a genetic

model with an emphasis on feature selection to maximize data retrieval speed. Through the use of distributed machine learning

techniques, the model detects and ranks the most significant features, optimizing the clustering process to minimize access time

and retrieval complexity. The genetic method reduces access time and increases clustering efficiency by focusing on prominent

features. An evolutionary algorithm is used to optimize data storage and retrieval in such a way as to minimize retrieval times.

The research tackles crucial issues like the requirement for high-speed data processing, data system scalability, and data

structure complexity. The proposed model adapts dynamically to the changing data landscape, reducing latency and improving

the overall efficiency of large-scale data systems. Results show that the cluster-based genetic model greatly enhances data access

efficiency. It recorded a 35% decrease in access time when tested on large datasets compared to traditional data management

methods. The median data retrieval time was reduced from 120 milliseconds to 78 milliseconds, showing the model's efficiency

in optimizing data clustering and retrieval processes. This decrease in access time showcases the model's ability to optimize the

efficiency of big data systems, especially in situations that involve quick and efficient data retrieval.

Keywords - Big Data Management, Cluster-Based Genetic Model, Data Access Time, Data Retrieval Efficiency, Distributed

Machine Learning, Real-Time Processing, Scalability.

1. Introduction
In handling big data, accessibility and manipulation of

information from distributed, scalable systems are paramount.

Owing to the enormous amounts of data in big data

environments that tend to outgrow the capacity of

conventional databases, specialized tools and methods are

required for seamless and efficient access [1]. Distributed file

systems, including the Apache Hadoop Distributed File

System (HDFS), are critical by allowing the storage and

retrieval of big datasets in multiple nodes while providing

fault tolerance and scalability. Not only do these systems

improve performance, but they also support handling

enormous data volumes [2]. Distributed processing

frameworks such as Apache Spark are a fundamental part of

big data management. They enable simultaneous data

processing between clusters of servers, greatly enhancing

speed and efficiency. They facilitate parallel computation,

which speeds up data access and analysis [3]. NoSQL

databases are also required to process voluminous amounts of

data. NoSQL databases supply adaptable data models that

save and retrieve complex, varied data in a distributed manner.

Processing in a distributed environment to fetch, update, and

analyze enormous volumes of diverse, complex, and large sets

of data necessitates the design of systems and procedures that

will work effectively on handling and responding to large

bodies of data stored over multiple nodes [4]. The goal is to

support rapid, reliable, and secure data utilization, facilitating

statistical analysis, decision-making, and insight generation.

Indexing and caching techniques further enhance data access.

Indexing improves query efficiency by enabling quick

retrieval of specific data points, while caching—through

decentralized systems or in-memory databases—boosts

performance by reducing the need to repeatedly fetch data

from storage [5]. The big data structure, as illustrated in

(Figure 1), depicts how raw, unstructured data is transformed

into valuable, meaningful information. This process involves

uncovering hidden patterns and relationships within the data,

enhancing the value of previously collected data and

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1Corresponding%20Author%20:%20peerzadahamidahmad@gmail.com

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

404

integrating new insights with existing information [6].

Managing large-scale data faces several primary challenges

related to data access, including capacity management,

handling both structured and unstructured data, data

distribution, privacy and security, query efficiency, real-time

availability, consistency, and resource management [7]. This

research aims at enhancing data access times in big data

management and investigates ways of minimizing access

latency. Effective data access here includes acquiring and

analyzing real-time or near-real-time data streams and

providing low-latency access for timely insights.

To tackle such challenges, diverse data access techniques

are utilized [8]. Distributed file systems, such as Apache

HDFS, and distributed processing platforms, such as Apache

Spark, allow managing huge datasets through concurrent

processing across nodes. NoSQL databases, including

MongoDB and Cassandra, are regularly utilized to store

various data types, such as semi-structured and unstructured

data, because of their ability to store and retrieve with

flexibility. Indexing and caching methods further enhance

data access, with caching minimizing retrieval times by

storing frequently accessed data in memory and indexing

enhancing query speed by enabling quick retrieval of

individual data points [9]. Besides access efficiency, data

security and privacy are important. Secure verification,

permission procedures, and encryption are used to safeguard

sensitive information during access [10]. Access to real-time

data is facilitated by systems capable of managing streaming

data sources, giving rapid insights, and avoiding data

localization and dissemination problems. Proper resource

management optimizes performance and avoids bottlenecks

by allocating computing resources optimally [11].

Fig. 1 Big data analysis

Clustering is critical in improving data access by a

process where data is grouped into clusters based on common

characteristics, enabling parallel processing and query speed

improvement [12]. Clustering minimizes network traffic by

bringing similar data points to the vicinity and reducing cross-

node communications. It also optimizes resource utilization

by shifting computing power to certain clusters as required.

Clustering. In addition, clustering enables the user to deal with

grouped data at the cluster level, thus rendering data access

more precise and effective [13]. The proposed work will

emphasize adaptive feature selection mechanisms, where

variations in real-time data dynamically adjust cluster

assignments to enhance retrieval accuracy in dynamic

datasets. Furthermore, incorporating hybrid optimization

techniques (e.g., Particle Swarm Optimization + GA) would

further accelerate clustering, lowering query execution times

in high-dimensional datasets such as financial transactions,

IoT sensor networks, and real-time analytics.

The key contributions of this work are encapsulated as

follows: Section 2 explains the multi-objective access

environment to decrease both access time and query time.

Section 3 proposes cloud-based optimization with parameters

of different types and introduces the Dominant Features

Selection with Clustering (DFSC) technique, a novel method

of decreasing access times by identifying prominent features.

Section 4 offers results and discussions proving the superior

performance of the suggested system compared to prior

methods in terms of performance measures. Section 5

summarizes the findings and contributions and concludes the

study.

1.1. Problem Statement

One of the greatest challenges to dealing with big data is

inefficiency in access times for information, which can

drastically affect the performance of data-intensive

applications. As data volumes increase in size, velocity, and

variety, traditional data management systems cannot manage

their complexity and size, causing longer retrieval delays. The

heterogeneity of big data tends to necessitate intricate

querying and analysis across distributed systems, which

worsens the issue. Moreover, the existence of redundant or

extraneous data further aggravates these problems by raising

processing loads and delaying access times. Efficient

information management and retrieval are essential to

facilitate timely analysis and decision-making in such

dynamic settings. This necessitates the creation of innovative

solutions to speed up access times and improve the overall

performance of large-scale data systems.

1.2. Motivation

This study was motivated by the imperative to counter

inefficiencies in data access latency in large information

management systems. With businesses becoming more

dependent on huge datasets for real-time analytics and

decision-making, accessing appropriate information quickly

Data Analysis

Data Handle

Data Storage

Big Data

(Unstructured Data) (Semi-Structured

Data) (Structured Data)

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

405

and effectively has become essential. Conventional data

management techniques tend to be challenged by the volume,

complexity, and variety of today's datasets, resulting in major

delays that adversely affect the performance of applications

needing rapid analysis. This work aims to provide greater

flexibility, speed, and dependability of large-scale data

systems by developing more efficient methods for optimizing

access time. Finally, it aims to boost innovation and increase

industry productivity based on data by facilitating rapid and

precise decision-making in social media, IoT, banking, and

healthcare fields.

2. Related Work
Numerous methods and optimization strategies have been

investigated to promote information access and cluster

optimization in large-scale data systems. Researchers have

used various methods to deal with the problems involved in

managing and processing large datasets [14]. Cluster-based

scheduling is one technique used to handle massive amounts

of information in distributed applications. This approach

groups data based on resource reservation and network

awareness to improve processing efficiency. Researchers have

examined distributed SaaS setups in cloud environments for

sophisticated data analysis. For example, Hadoop's cluster-

based model has been proposed for managing dispersed

healthcare data, integrating medical and IoT information to

enhance data access and prediction [15]. Another approach

involves optimizing the structure for web page data

processing. This method demonstrated improvements in

extraction and categorization, offering more reliable and

efficient research compared to traditional techniques.

Developed the High-Order Clustering method by Fast Search

(CFS) strategy (HOCFS) for multi-type data clustering [16].

Their algorithm mixed a dropout deep learning framework

with the CFS algorithm and feature tensor model for

improving clustering heterogeneous datasets. Presented a

nonparametric, representative-based, Sparse Self-Represented

Networking Map for robust clustering. Their system

integrated a weight-regulating mechanism for examining and

finding data clustering structures with reduced data

transmission demands [17]. The two-layer framework based

on DCA has been explored in (Figure 2).

Fig. 2 Two-layer framework based on DCA

Data Update

Quadratic

Clustering

Global Data Center

(Effective AP algorithm)

Global Clustering

Local Clustering

Primary

Clustering

Reduction of Data

Dimensionality

Collection of Data

Local site

 (k-means algorithms)

Server

Server

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

406

2.1. Research Gap and Novelty of Proposed Work

Conventional methods tend to be hampered by the

growing volume and variety of data, causing delays and

inefficiencies in retrieval operations. Although some methods

aim to improve information processing or storage capabilities,

they often fail to consider the significance of efficient feature

selection and clustering in minimizing access times.

Traditional data management systems typically face

latency-related problems and real-time decision-making

inefficiencies while dealing with extremely large and

complicated data structures. Current methodologies have no

optimized methodology to minimize the retrieval time while

maintaining clustering efficiency. Most traditional systems

also fail to adjust dynamically according to changing data

structures, resulting in scalability and access rate

inefficiencies.

The cluster-based genetic model proposed here presents a

novel solution to the problem of big data retrieval by

combining genetic algorithms with feature selection and

clustering methods. In addition, the model utilizes

evolutionary optimization methods that adapt dynamically to

changes in the data environment, ensuring scalability and

enhanced processing rates in real-time applications. Yet

another major novelty of this contribution is using an

evolutionary algorithm to optimize data retrieval and storage

mechanisms together. These improvements demonstrate the

model to be most appropriate for high-speed, real-time data

acquisition applications, including finance analytics,

healthcare, and large-scale data-driven decision support

systems.

3. Proposed System
A revolutionary technique has been established to combat

data access times-related issues in handling large-scale

information. It incorporates the prevailing feature selection

technique with a genetic clustering algorithm for optimized

data retrieval efficiency in huge, intricate data sets. With its

emphasis on significant features, the model diminishes the

size and complexity of the data set overall and, consequently,

provides better clustering. The genetic algorithm is used to

optimize the clustering process, ensuring data is structured to

reduce retrieval times [18, 19].

Decentralized machine learning methods further

reinforce the model's capacity to handle the complexity and

size of big data environments. This method enhances the

scalability and performance of big data systems, hence making

it quite useful for real-time, data-intensive applications by

reducing data access times. The process involves feature

selection, genetic clustering efficiency, and deploying the

system within a distributed artificial intelligence framework to

boost access speed, as illustrated in the accompanying image.

Fig. 3 Proposed architecture

 Data

Location-1

 Data

Location-2

 Data

Location-3

 Pattern and

Clustering Model

 Pattern and

Clustering Model

 Pattern and

Clustering Model

 Aggregation

 Model

 Multiple

Users Access

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

407

3.1. Dataset Description

As shown in (Figure 3), the information model supporting

an instance of the proposed system consists of seven primary

elements, which will be discussed further. Based on how they

use the services offered, organizations might take on various

responsibilities. An organization can be solely an information

contributor if it supplies models and information but uses

predictive services sparingly or not. On the other hand, if a

company uses many predicting services but gives little to no

information, it might as well be a customer. Any frequency in

between can also be used. This categorization is not included

in the information's model as it is subject to change over time

because every company's position may differ. The primary

entity in the data model is the user, which might exist in

numerous organizations. An individual may import or access

datasets and develop and amend projects based on machine

learning. A hierarchy of permissions and responsibilities

controls everybody's access to every dataset. Depending on its

internal structure, an organization might recognize several

jobs (e.g. Information Scientist, ML Engineer, Information

Engineer). Then, everyone inside her/his organization might

be assigned one or more responsibilities. The user acquires

ownership of the dataset when uploading a new one. There are

pertinent supplementary data that this information structure

does not contain.

This meta-information is dynamic and subject to change

over time; we do not keep the information about the blocks in

each database and where they are located. To avoid using out-

of-date data, this data is obtained in real-time from the HDFS

as needed. The same is true for base model location when

forming a collection and generating forecasts is required [20].

This dataset is typically high-dimensional and comes from

various sources, such as transactional databases, weblogs,

sensor networks, or social media platforms, as shown in Table

1. It may include structured data with well-defined features or

unstructured data, but the primary focus is on structured

datasets where each feature is quantifiable. In this context, the

dataset features a large number of attributes ranging from

thousands to millions that can be numerical, categorical, or a

mix of both. These features can be redundant or irrelevant,

potentially affecting data retrieval efficiency and processing

time [21]. The target variable often relates to access times or

data retrieval efficiency, critical for optimizing data

management and machine learning tasks. Overall, the dataset

aims to capture the complexities and scale of big data

environments, providing a comprehensive basis for applying

the clustering-based genetic model to enhance feature

selection and improve data access times. Table 2 in appendix

shows the details of the Composite analysis of different

Sample Datasets.

Table 1. Dataset description

Attribute Description

Dataset Name Name of the dataset

Source Locations or origins of the data (e.g., databases, sensors, web sources)

Data Type Type of data (e.g., categorical, text, numeric, time-series)

Size Total number of records and/or size (e.g., 1 million rows, 500 GB)

Sampling Rate The rate at which data is collected (e.g., hourly, daily)

Missing Values Amount and handling of missing data (e.g., 5% missing, imputation methods)

Features Number and types of features (e.g., including temperature, 50 features, humidity)

Target Variable The variable to predict or classify (e.g., customer chum, disease status)

Time Span Time period covered by the data (e.g., July 2023 to July 2024)

Data Format Format of the data (e.g., JSON, CSV, SQL database)

Privacy Level Privacy considerations (e.g., anonymized, encrypted)

Access How the data is accessed (e.g., API, direct download)

Preprocessing Steps Any preprocessing performed (e.g., feature extraction, normalization)

3.2. Weighted Group Dual Data Aggregation

These techniques may be used to accomplish weighted

group aggregation from different sources of information in a

big data scenario. The method entails gathering information

from several sources, classifying the information, and then

using weighted aggregation within each category.

The average weighting within each group must be

determined by combining grouped aggregation with balanced

aggregating. This strategy might be helpful when information

is divided into categories or segments, and every point of

information has a distinct weight or significance. This

hierarchical clustering and time-effective aggregating

approach may greatly reduce the total training time of

federated learning and increase model training effectiveness.

In addition, the global algorithm's correctness is guaranteed by

applying the dual-weighting approach shown in (Figure 4).

3.2.1. Steps for Weighted Group Aggregation

• Combine Data from Different Sources: Integrate data

from multiple sources into a unified dataset. Suppose we

have k data sources, each with its dataset. After

combining, we have a consolidated dataset D.

• Group the Data: Divide the data into groups based on a

categorical variable. Let G1, G2, …, and Gm be the

groups based on a categorical variable.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

408

• Calculate Weighted Aggregation for Each Group: Compute the weighted aggregation for each group.

Fig. 4 Schematic diagram of group weighted aggregation

For each group Gy, where y ranges from 1 to m, the

weighted aggregation can be calculated as follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐺𝑦
=

∑ (𝑖𝑥,𝑦.𝑤𝑥,𝑦)
𝑛𝐺𝑦
𝑥=1

∑ 𝑤𝑥,𝑦

𝑛𝐺𝑦
𝑥=1

 (1)

Where:

• 𝑖𝑥,𝑦 represents the value of the i-th observation in group

Gy.

• 𝑤𝑥,𝑦 represents the weight of the x-th observation in

group Gy.

• 𝑛𝐺𝑦
 is the total number of observations in group Gy.

Example sales data from two sources, online and in-store,

are shown in Table 3. Each source provides data with sales

values and weights. The combined dataset now contains all the

data from both sources.

Table 3. Data from different Sources

Source Group Sale Value Weight

Online South 110 3

Online South 160 4

Online North 90 5

In-Store South 210 2

In-Store North 130 3

In-Store North 100 4

3.2.2. Grouping and Weighted Aggregation

For the North Group

Sales data from two sources: Online and In-store; every

source provides data with salves values and weights.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑡ℎ

=
(100.2) + (150.3) + (200.1)

2 + 3 + 1

 =
200+450+200

6
=

850

6
= 141.66

For the South Group

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑜𝑢𝑡ℎ

=
(80.4) + (120.2) + (90.3)

4 + 2 + 3

 =
320 + 240 + 270

9
=

830

9
= 92.22

This process allows the aggregate of data from multiple

sources while accounting for the different weights associated

with each observation. By grouping the data and applying

weighted aggregation within each group, can gain more

accurate insights into each category or segment of data.

3.3. Using a Clustering-Based Genetic Model for Recursive

Feature Elimination (RFE) and Dominant Feature

Selection in Large-scale Information Administration

A crucial phase in large data management is feature

selection, which separates and keeps the most important

features from superfluous or unnecessary ones. Choosing

characteristics that have the biggest influence on the target

Wm

W(S^, m) W(S^, m)

(k^^, wk^^)

(k^, wk^)

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

409

variable or prediction job is known as the dominant choice of

features. This procedure lowers computing costs, enhances the

efficiency of models, and reduces the dimensionality of

information. The management of big data processing

effectiveness may be improved by combining Recursive

Feature Elimination (RFE) with a clustering-based genetic

approach to dominant choices of features [22]. This hybrid

method uses an algorithm based on genes in conjunction with

grouping to optimize subsets of characteristics and RFE for

choosing features shown in (Figure 5).

3.3.1. Algorithm 1

Step 1: Initial Feature Set: Start with the full set of

features.

Step 2: Feature Selection using RFE

Train the Model: Fit the model using the full set of

features.

Train the model with the current feature set. For linear

models, the objective function might be:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
1

𝑁
∑ 𝐿𝑜𝑠𝑠(𝑗𝑥 , 𝑗�̂�)𝑁

𝑥=1 +⋋ ‖𝑤‖2
2 (2)

Where: 𝐿𝑜𝑠𝑠(𝑗𝑥, 𝑗�̂�) is the loss function (e.g., Mean

Squared Error for regression). w represents the model

parameters (weights). ⋋ is the regularization parameter.

Rank Features: Evaluate feature importance based on

model coefficients or importance scores. Evaluate feature

importance based on the magnitude of coefficients or model-

specific metrics.

Remove Least Important Features: Iteratively eliminate

the least important features.

Remove iy if Importance(iy) < Threshold

Repeat: Continue until a predefined number of features is

reached.

Step 3: Clustering-Based Genetic Optimization

Clustering: Group features into clusters to manage them

interaction and relevance.Group features into clusters based

on similarity or relevance. Let C1, C2, and Ck represent the

clusters of features.

Genetic Algorithm: Use genetic algorithms to find the

optimal combination of features.

Fitness Function: Evaluate the fitness of a feature subset

F based on model performance:

Fitness (F) = Performance (Model with F) – Penalty (Size

of F)

Where: Performance (Model with F) measures the

model's performance (e.g., accuracy, F1- score). Penalty (Size

of F) penalizes larger feature subsets to encourage feature

reduction.

Genetic Operators: Apply genetic operators such as

crossover, mutation, and selection to evolve feature subsets:

Crossover: Combine feature subsets to create new

subsets.

Mutation: Randomly modify feature subsets.

Selection: Choose the best feature subsets based on

fitness scores.

Optimization: Continue evolving the feature subsets until

convergence or a stopping criterion is met.

Combining RFE with a clustering-based genetic model

for feature selection in big data management involves: RFE

iteratively removing the least important features to identify

dominant features. Using clustering to group features and

genetic algorithms to find the optimal feature subsets enhances

model performance and data access efficiency. This hybrid

approach helps manage large datasets more effectively by

focusing on the most relevant features, thus improving access

times and processing efficiency in distributed machine

learning systems.

3.3.2 Silhouette Score Calculation

For each data point, the Silhouette Score is calculated

using the following steps:

Step 1: Calculate a(x): The average distance between the

data point i and all other points in the same cluster (intra-

cluster distance).

a(x) =
1

|Cx|−1
∑ d(x, y)y∈Cx,y≠x (4)

Where

• 𝐶𝑥 is the cluster to which point x belongs,

• 𝑑(𝑥, 𝑦) is the distance between points x and y and

• |𝐶𝑥| is the number of points in the cluster 𝐶𝑥.

Step 2: Calculate b(x): The minimum average distance

between the data point x and all points in any other cluster

(inter-cluster distance).

𝑏(𝑥) = min
𝐶𝑘≠𝐶𝑥

(
1

|𝐶𝑘|
∑ 𝑑(𝑥, 𝑦)𝑦∈𝐶𝑥

) (5)

Where 𝐶𝑘 is any cluster different from 𝐶𝑥.

Step 3: Calculate the Silhouette Score for point x:

𝑠(𝑥) =
𝑏(𝑥)−𝑎(𝑥)

max (𝑎(𝑥),𝑏(𝑥))
 (6)

The Silhouette Score 𝑠(𝑥) measures how well the data

point x fits into its own cluster compared to the nearest

neighboring cluster.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

410

Step 4: Calculate the overall Silhouette Score:

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =
1

𝑛
∑ 𝑠(𝑥)𝑛

𝑥=1 (7)

Where n is the total number of data points.

Fig. 5 Clustering method

Fig. 6 GA Based Optimization

Raw

Data

Features

Features

Clustering

Updates
Labels

Clustering

 Input Data

Randomly Assigned
Process 1

Process 2

Process 2

Process 1

Outputs

 WCSS of the

elbow method

 Centroid
Send and Receive

 Centroid

Send and Receive

 Iterations I = 100

Input Source

Fitness operations are to compute the best-case fitness

value

Best Case Founds

Crossover Operator

Mutation Operator

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

411

Fig. 7 Distributed operators

Fig. 8 Distributed genetic algorithm clustering process flow

Population
Offspring

parents

Crossover & Mutation

New Population

Data Evaluate

RDF Graphs

Begin

Results

Fitness Evaluation

Selection

Stop?

Crossover

Mutation

Network Traffic Data

Features in Dataset

Yes

No

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

412

It fine-tunes and updates the case-based approach.

Forecasting is done using this updated solution. Previous

research has relied on top most comparable cases for

recycling, which only depend on the resemblance of a fresh

case with the case-base. Since GA is a cutting-edge

optimization method and yielded the best results in our

research, we gave it some thought for improvement. The

CBR-based method's GA-based optimization procedure is

depicted in Figure 6. It uses the Crossover and Mutation

operators in a heuristic case-based search. Following the

population evaluation, each solution ID and its fitness is taken

into consideration throughout the selection procedure. The

selection method employed is tournament selection, and it is

done so to prevent convergence to local optimum solutions,

many of which are based on our encoding methodology [23].

The process via which the method generates the jobs for the

GA operator is depicted in Figure 7. The population size was

100, which provided a good range of candidate solutions. A

mutation rate of 5% was used to add randomness and avoid

premature convergence, while a crossover rate of 80% was

used to maximize the blending of genetic material between

parent solutions. The tournament selection approach was

utilized to select the top-performing individuals with a proper

balance between exploration and exploitation. Figure 8 shows

the procedures for participation, community at the beginning,

assessment, selection, and assessment of offspring to the

community.

3.3.3. Algorithm 2: Dominant Feature Selection with

Clustering-Based Genetic Model

The goal is to improve the access time and efficiency in

big data management by selecting dominant features through

a combination of Recursive Feature Elimination (RFE),

clustering, and genetic algorithms.

Step 1: Data Preparation

• Combine Data: Aggregate data from multiple sources into

a unified dataset.

• Preprocess Data: Normalize or preprocess features as

needed.

Step 2: Initial Feature Selection using RFE

• Train Initial Model: Fit the model using all features.

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +⋋ ‖𝑤‖2
2 (8)

Where,

• Loss Function is typically Mean Squared Error (MSE) or

Cross-Entropy.

• ⋋ ‖𝑤‖2
2 is the regularization term.

• Rank Features: Calculate feature importance based on

model coefficients or feature importance scores. For

linear models:

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑖𝑦) = |𝑤𝑦| (9)

Where 𝑤𝑦 is the coefficient of feature 𝑖𝑦.

• Eliminate Least Important Features: Remove features

with the lowest importance scores.

Remove iy if Importance(iy) < Threshold (10)

• Repeat: Continue until the desired number of features is

reached.

Step 3: Clustering of Remaining Features

• Perform Clustering: Group remaining features into

clusters using methods like K-means or hierarchical

clustering.

For K-means clustering:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ‖𝑖𝑦 − 𝜇𝑥‖
2

𝑖𝑦∈𝐶𝑥
𝑘
𝑥=1 (11)

Where:

• k is the number of clusters.

• 𝐶𝑥 is the set of features in cluster x.

• 𝜇𝑥 is the centroid of cluster x.

Step 4. Feature Selection with Genetic Algorithm

• Initialize Population: Create an initial population of

feature subsets, with each subset representing a

combination of features within clusters.

• Evaluate Fitness: Compute the fitness of each feature

subset using a fitness function that balances model

performance and feature subset size.

Fitness (F) = Performance (Model with F) – Penalty (Size

of F) (12)

Where:

• Performance (Model with F) is measured using metrics

like accuracy or F1-score.

• Penalty (Size of F) penalizes larger feature subsets to

encourage smaller, more efficient subsets.

Apply Genetic Operators

• Crossover: Combine feature subsets to create new ones.

Crossover (F1, F2) =
Combine features from F1 and F2 (13)

• Mutation: Randomly alter feature subsets.

Mutation(F) =
Randomly add or remove features in F (14)

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

413

• Selection: Choose the best feature subsets based on

fitness scores.

• Repeat: Continue evolving the population until

convergence or a stopping criterion is met.

Step 5: Final Feature Selection

• Select Optimal Subset: The last subset of features is the

subset with the best fitness score.

This algorithm integrates RFE and genetic algorithms to

identify prominent features effectively in large data

management. By clustering features and using a genetic

optimization mechanism, it strives to enhance access time for

data and the overall system. The employment of RFE

guarantees that only the most important features are given

consideration, and clustering and genetic algorithms optimize

the feature subset for improved model performance and

lessened computational burden.

4. Results and Discussions
Three important datasets for tasks involving similarity

and natural language inference are described in depth in the

dataset Table 4.

• SNLI (2015): The inference pairings in this dataset are

composed of two phrases each. The goal is to sort the

phrases' relationships into entailment, contradiction, and

neutral categories. It fits under the "Open-Domain"

category, which indicates that it covers a wide range of

subjects and is not restricted to any one field. With

550,152 phrase pairings in the training set, a significant

quantity of data is available for both model training and

assessment.

• MultiNLI (2017): The MultiNLI dataset, like SNLI,

consists of inference pairs used to ascertain the logical

connection between two phrases. Its broad scope of use

enhances its suitability in a variety of settings. Another

important resource for training models in natural

language comprehension tasks is the training data

comprising 392,702 sentence pairs.

• Quora (2017): The goal of this dataset is to determine if

two statements are semantically similar or not. It

concentrates on similarity pairings. It is classified as

"Open-Domain," encompassing a range of subjects to

guarantee wide application. With 404,279 phrase pairings

in the dataset, developing models to accurately identify

and categorize the semantic correspondence between the

two sentences is made easier [24].

There are two CPUs in the architecture, with each CPU

containing four cores. With eight processor cores in total, this

arrangement enables efficient multitasking and parallel

processing, which is required to accommodate the

computation demands of spread-out deep learning tasks and

large amounts of information.

The setting operates on a 128 GB RAM virtual machine.

This huge memory capacity ensures that the system can

perform memory-demanding operations required for model

development and testing without suffering from performance

issues and enables the processing of high volumes of

information.

Development is carried out utilizing Anaconda and

Python 3.7. Python, being a language with a vast library and

infrastructure, is widely used in statistical computing and

machine learning domains. Anaconda provides a stable and

reliable environment for development through efficient

package management and deployment. The PySpark driver

gets 4 GB of RAM. This is necessary to manage the way Spark

jobs are run, particularly in the context of remote computing,

where enough memory is needed to process data and manage

processes without any problems [25, 26].

Table 4. Dataset Information for Implementation

Datasets Type Domain Pairs

SNLI (2015) Inference Pair Open – Domain 550,152 (train)

MultiNLI (2017) Inference Pair Open – Domain 392,702 (train)

Quora (2017) Similarity pairs Open – Domain 404,279

Table 5. Implementation Environment

Number of Processors and Core 2 and 4

Virtual Machine 128 GB RAM

Operating System Ubuntu 16.04 LTS

Programming Language Python v.3.7 and Anaconda

PySpark Driver Memory 4GB

Table 6. Simulation Parameters

Parameter Setting Description

Number of Processors 2 Total number of processors used in the simulation environment.

Number of Cores per Processor 4 Number of cores available per processor.

Total Cores 8 Total number of processing cores available for simulations.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

414

Virtual Machine Memory 128 GB
Amount of RAM allocated to the virtual machine for handling large

datasets.

Operating System

Ubuntu

16.04

LTS

The OS on which the simulation is run provides the necessary platform.

Programming Language
Python

v.3.7
The language used for writing and executing simulation scripts.

Package Manager Anaconda The package management and environment setup tool is used with Python.

PySpark Driver Memory 4 GB
Memory is allocated to the PySpark driver to manage distributed data

processing.

Data Size
250,000

entries
Size of the dataset used in the simulation for performance measurement.

Optimization Type Various
Type of optimization applied (e.g., algorithmic improvements hardware

tuning).

Access Time Before

Optimization
Variable Time taken to access the data before applying optimization techniques.

Access Time After Optimization Variable Time is taken to access the data after applying optimization techniques.

Aggregative Access Time Variable Average access time across different data processing scenarios.

The implementation environment is configured with

distinct performance indicators to manage a range of

information processing. There are two processors in the

machine, each with four cores, for a total of eight computing

cores. This setup is necessary for managing large-scale

calculations and allows for effective simultaneous processing,

as shown in Table 5. The environment runs on a virtual

machine with 128 GB of RAM, and there won't be any

performance reduction while performing demanding data

processing jobs and enormous datasets. Anaconda, in

conjunction with Python 3.7, is used for development. Python

is a popular language in information research with robust

libraries and user-friendliness. Conversely, Anaconda makes

managing packages and environmental setup easier, as shown

in Table 6. Four gigabytes of RAM are allotted to the PySpark

driver, which is essential for efficiently controlling the

execution of Spark jobs and organizing dispersed information

processing operations. Processing 250,000 identical data

items results in an access time of 42 seconds.

This shows the amount of time needed, given the present

system setup, to obtain and process comparable data. 52

seconds is the access time for 250,000 different information

entries. The added complexity and expense associated with

managing different and sometimes more complicated datasets

compared to comparable information is reflected in this

lengthier accessibility time shown in Table 7. The proposed

work was performed on a 2 processor and 4 cores per

processor, 8 core multi-core system with 128GB RAM and

Ubuntu 16.04 LTS. The execution was done with Python 3.7

using Anaconda with Apache Spark for distributed computing

with 4GB PySpark Driver Memory. The genetic algorithm

(GA) was set to have a population of size 100, a mutation rate

of 5%, an 80% crossover rate, and tournament selection as the

strategy. Performance was compared with reference models

like HOCFS, ELM, DCA, and AGORAS; 95% confidence

intervals were applied for statistical verification to ensure

dramatic improvements in accuracy, sensitivity, and access

time savings. All these precise settings make the repeatability

and validity of the study high enough for it to be applicable to

real-world systems.

The discussion identifies the possible advantages of this

strategy in distributed large-scale systems, where efficient and

rapid data access is paramount for success in operations. Table

8 presents the computation timings before and after efficiency

to process two hundred fifty thousand identical data items at

various locations. The graphs visually represent the statistical

data analysis in Table 8, revealing how optimization improved

performance.

Location 1: The performance time was two minutes and

two seconds before improvement. The duration was reduced

to one minute and fifty seconds after using reduction

strategies.

Location 2: The performance time was 2 minutes and 50

seconds before efficiency, increasing to 2 minutes and 4

seconds following efficiency. This outcome implies that the

optimization had a negligible effect here.

Location 3: The completion time was 2 minutes and 45

seconds before improvement, and it increased to 2 minutes and

10 seconds after efficiency. The rise suggests that the

advantages were not as significant or that the optimization

may have generated certain inefficiencies at this point. The

total processing effectiveness has improved, as seen by the 1-

minute and 40-second aggregative processing period across

every submission for this particular spot. The accessibility

times to process 250,000 identical information entries at

various places both before and after improvement are shown

in Table 9. The graphs present statistical data analysis in

Table 9, with visual insights into the performance

enhancements gained through optimization.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

415

Location 1: The duration of access was 50 seconds

before optimization. Improvement reduced this to 42 seconds.

Location 2: 52 seconds was the access time before

optimizing, while 46 seconds was the duration following

improvement. Though the enhancement is not as great as at

Location-1, this still shows a benefit from the optimization.

Location 3: After efficiency, the initial time required to

access fifty-nine seconds was reduced to 43 seconds. The

significant decrease in access time seen here attests to the

efficacy of the optimization strategies. This location's entries

have an aggregative time for access of 43 seconds, which

shows a significant optimization-related decrease in

accessibility duration.

Table 7. Implementation environment with execution seconds

Number of Processors and Core 2 and 4

250000 Similar Data

Access Time: 42 S Virtual Machine 128 GB RAM

Operating System Ubuntu 16.04 LTS

250000 Different Data
Access Time: 52 S Programming Language Python v.3.7 and Anaconda

PySpark Driver Memory 4GB

Table 8. Performance time (250000 similar data)

Locations
Before

Optimization

After

Optimization
Aggregative Graphical Representation of Performance Table

Location -1 2 Min 2 S 1 Min 50S

1 Min 40 S

Location -2 2 Min 50 S 2 Min 04 S

Location -3 2 Min 45 S 2 Min 10 S

Table 9. Access time (250000 similar data)

Locations
Before

Optimization

After

Optimization
Aggregative

Graphical Representation of Different Locations for

Optimization

Location -1 50 S 42 S

43 S

Location -2 52 S 46 S

Location -3 59 S 43 S

Table 10. Comparison of feature selection accuracy and clustering quality

System
Proposed

System
HOCFS ELM DCA AGORAS Graphical Representation of Clustering Quality

Feature

Selection

Accuracy

93 89 86 91 88

Clustering

Quality
0.86 0.81 0.79 0.83 0.80

Selection of Features Accuracy indicates how well each

algorithm chooses the most important characteristics.

Increased accuracy means the algorithm can recognize and use

the most important features. The proposed system

successfully selects features with a high accuracy of 92%,

demonstrating its potency in locating pertinent characteristics.

The existing system's accuracy ranges from 85% to 90%, with

performance varying. In this metric, the proposed system

performs better than any current system. Clustering Quality

is determined by measuring the degree of cluster definition

using the Silhouette Score. Better grouping quality is indicated

by a higher Silhouette Score.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

416

The proposed method has the highest grouping quality,

indicating significant and well-defined groups with a

Silhouette Score of 0.85. The existing Systems range of scores

is 0.78 to 0.82. The proposed method outperforms all current

systems in terms of clustering quality, suggesting more

efficient clustering. Table 10 highlights the benefits of the

novel technique by comparing the performance of the

proposed system with that of the current structures in terms of

choosing features accuracy and clustering quality also, the

graphs present a statistical analysis of data in Table

10, with visual insights. Execution Time indicates how long it

takes to finish analyzing information or executing a method

shown in Table 11, and the statistical analysis has also been

included in the table, which shows the comparative analysis of

the system's features. The proposed method achieves the

quickest execution time of 30 seconds, demonstrating

excellent efficiency in processing. All other systems fall

between 45 and 55 seconds, whereas the proposed system

beats them all in this regard. Improvement in Access Time

indicates the percentage decrease in access time attained

following improvement. The proposed system performs 25%

better than the baseline, demonstrating a notable decrease in

access time. The proposed system offers the largest increase,

with increases ranging from 10% to 20%. Resource Utilization

is shown as a proportion of total resources used; this indicator

shows how effectively resources were used during execution.

Table 11. Access time (250000 similar data)

System
Proposed

System
HOCFS ELM DCA AGORAS Statistical Analysis

Execution

Time
31 sec 46 sec 51 sec 41 sec 56 sec

Access Time

Improvement

26%

Improvement

16%

Improvement

11%

Improvement

21%

Improvement

13%

Improvement

Resource

Utilization
76 66 61 71 69

Scalability High Medium Medium High Low

The proposed system effectively uses computing

resources by utilizing 75% of the resources that are accessible.

60% to 70% of resources are used; the proposed system

exhibits higher efficiency of resources. Scalability evaluates

how effectively the system can manage growing amounts of

data or processing demands.

The proposed system has a "High" scalability rating,

meaning that it functions well under growing loads or data

sizes. Scaling ranges from "Low" to "High," and the proposed

system routinely handles scaling better or on par with other

systems. The efficiency benefits provided by the proposed

system over the current systems are shown in this table across

several important criteria shown in Figure 9. Figure 10 shows

the Comparison of Accuracy, Sensitivity, Specificity, and F1-

Score between various systems.

Throughput: Measures the number of items processed per

minute. The proposed system achieves the highest throughput

at 10,000 items per minute, indicating superior processing

efficiency. Throughput ranges from 7,800 to 9,000 items per

minute, with the proposed system outperforming all others.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

417

Accuracy of Clustering: Indicates how accurately the

clustering algorithm identifies meaningful data groups

represented as a percentage. The proposed system

demonstrates the highest clustering accuracy of 92%,

reflecting effective clustering. Existing Systems: Accuracy

ranges from 85% to 90%, with the proposed system showing

superior performance.

Sensitivity: Measures the proportion of true positives

correctly identified by the system. The proposed system

achieves a sensitivity of 89%, indicating strong performance

in identifying relevant cases. Sensitivity ranges from 82% to

87%, with the proposed system outperforming the rest.

Specificity: Measures the proportion of true negatives

correctly identified by the system. The proposed system shows

a specificity of 91%, reflecting high accuracy in identifying

non-relevant cases. Specificity ranges from 84% to 89%, with

the proposed system providing the highest value.

F1 Score: Balances precision and recall, providing a

comprehensive measure of the system’s performance. The

proposed system attains an F1 score of 0.90, indicating

balanced and effective performance. F1 scores range from

0.83 to 0.88, with the proposed system achieving the highest

score. Table 12 provides a detailed comparison of various

performance metrics, showcasing the advantages of the

proposed system over existing systems in terms of throughput,

clustering accuracy, sensitivity, specificity, and F1 score.

Table 13 highlights the comparative analysis of the proposed

system with the existing system with respect to different

parameters. Figures 11 (a) and (b) show the performance trend

of the proposed system and a Heatmap of correlation between

the performance metrics.

Fig. 9 Sequential Clustering of similar data

Fig. 10 Comparison of Accuracy, Sensitivity, Specificity, and F1-

Score between various systems

 Table 12. Performance Measures

System
Proposed

System
HOCFS ELM DCA AGORAS Statistical Analysis Based on

Different Features of the Proposed

System Throughput
10500

items/min

9000

items/min

9500

items/min

8300

items/min

8500

items/min

Accuracy 93 89 86 91 87

Sensitivity 90 86 83 88 84

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

418

Specificity 82 88 85 90 86

F1-Score 0.91 0.87 0.84 0.89 0.85

(a)

 (b)

Fig. 11 (a) Performance trend of the proposed system, and (b) Heatmap of correlation between the performance metrics.

Table 13. Comparative analysis of the different parameters

Parameters Conventional Data Management
Existing Approaches

based on Clustering

Proposed Cluster-Based

Genetic Model

Recovery

Time

High latency, slow access through

the absence of optimization [24]

Better but inefficient

owing to static clustering [25]

35% reduction in access time,

minimizing retrieval latency.

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

419

Feature

discussion

Restricted selection of features,

 resulting in redundancy in storage [26]

Basic feature selection used,

but no influence on

retrieval speed [27]

Puts priority on major features,

maximizing clustering

efficiency.

Scalability
Difficulty with big data because

of inflexible structure [28]

Partially scalable,

but efficiency gets worse

with data volume growth [29]

Adapts dynamically to changing

data environments,

maintaining scalability.

Algorithms
Conventional indexing and

rule-based techniques [30]

K-means, hierarchical

clustering, etc., but r

etrieval speed is suboptimal [31]

Genetic algorithm for adaptive

clustering and data access

optimization.

Total

Efficiency

Lower efficiency, slow

real-time responses [32]

Medium-level efficiency

but not scalable [33]

High efficiency, minimal

clustering complexity, and

accelerated big data retrieval.

5. Conclusion
Significant improvements in accuracy and efficiency are

achieved with the Dominant Features Selection using a

Clustering-based Genetic Model for Distributed Machine

Learning-based Big Data Management. This model

effectively reduces information access time by employing

advanced feature selection and grouping techniques, which

enhances responsiveness and efficiency in handling large-

scale datasets. By leveraging an evolutionary algorithm, the

entire information processing workflow is optimized, ensuring

that only the most relevant attributes are selected. This results

in faster data processing and retrieval times, which is crucial

for real-time applications involving large datasets.

Additionally, the model demonstrates stability and

adaptability to varying data loads by scaling across distributed

systems while maintaining high clustering accuracy.

The proposed model can make a big difference in data

retrieval in healthcare, where huge amounts of electronic

health records need to be accessed quickly. The capability of

saving access time by 26-35% can speed up patient diagnosis

and medical decision-making. Overall, the proposed method

outperforms existing approaches in terms of throughput,

clustering accuracy, and resource utilization, making it a

valuable solution for improving data management in

distributed machine learning systems.

References
[1] Guilian Feng, “Feature Selection Algorithm Based on Optimized Genetic Algorithm and the Application in High-Dimensional Data

Processing,” PLoS ONE, vol. 19, no. 5, pp. 1-24, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[2] Imad Zeebaree, “The Distributed Machine Learning in Cloud Computing and Web Technology: A Review of Scalability and Efficiency,”

Journal of Information Technology and Informatics, vol. 3, no. 1, 2024. [Google Scholar]

[3] Rajesh Natarajan et al., “Utilizing a Machine Learning Algorithm to Choose a Significant Traffic Identification System,” International

Journal of Information Management Data Insights, vol. 4, no. 1, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Sarina Aminizadeh et al., “Opportunities and Challenges of Artificial Intelligence and Distributed Systems to Improve the Quality of

Healthcare Service,” Artificial Intelligence in Medicine, vol. 149, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[5] Hudhaifa Mohammed Abdulwahab et al., “MOBCSA: Multi-Objective Binary Cuckoo Search Algorithm for Features Selection in

Bioinformatics,” IEEE Access, vol. 12, pp. 21840-21867, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Dipti Theng, and Kishor K. Bhoyar, “Feature Selection Techniques for Machine Learning: A Survey of More than Two Decades of

Research,” Knowledge and Information Systems, vol. 66, no. 3, pp. 1575-1637, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Xudong Sun et al., “Survey of Distributed Computing Frameworks for Supporting Big Data Analysis,” Big Data Mining and Analytics,

vol. 6, no. 2, pp. 154-169, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Kimia Abedpour, Mirsaeid Hosseini Shirvani, and Elmira Abedpour, “A Genetic-Based Clustering Algorithm for Efficient Resource

Allocating of IoT Applications in Layered Fog Heterogeneous Platforms,” Cluster Computing, vol. 27, no. 2, pp. 1313-1331, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[9] Arezoo Ghasemi, and Amin Keshavarzi, “Energy-Efficient Virtual Machine Placement in Heterogeneous Cloud Data Centers: A

Clustering-Enhanced Multi-Objective, Multi-Reward Reinforcement Learning Approach,” Cluster Computing, vol. 27, no. 10, pp. 14149-

14166, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Mohammad Hassan Almaspoor et al., “Distributed Independent Vector Machine for Big Data Classification Problems,” The Journal of

Supercomputing, vol. 80, no. 6, pp. 7207-7244, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Faheem Ullah et al., “Evaluation of Distributed Data Processing Frameworks in Hybrid Clouds,” Journal of Network and Computer

Applications, vol. 224, pp. 103837-103837, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Anayo Chukwu Ikegwu, Henry Friday Nweke, and Chioma Virginia Anikwe, “Recent Trends in Computational Intelligence for

Educational Big Data Analysis,” Iran Journal of Computer Science, vol. 7, no. 1, pp. 103-129, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.1371/journal.pone.0303088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+algorithm+based+on+optimized+genetic+algorithm+and+the+application+in+high-dimensional+data+processing&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Distributed+Machine+Learning+in+Cloud+Computing+and+Web+Technology%3A+A+Review+of+Scalability+and+Efficiency&btnG=
https://doi.org/10.1016/j.jjimei.2024.100218
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Utilizing+a+machine+learning+algorithm+to+choose+a+significant+traffic+identification+system&btnG=
https://www.sciencedirect.com/science/article/pii/S2667096824000077
https://doi.org/10.1016/j.artmed.2024.102779
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Opportunities+and+challenges+of+artificial+intelligence+and+distributed+systems+to+improve+the+quality+of+healthcare+service&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0933365724000216
https://doi.org/10.1109/ACCESS.2024.3362228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOBCSA%3A+Multi-Objective+Binary+Cuckoo+Search+Algorithm+for+Features+Selection+in+Bioinformatics&btnG=
https://ieeexplore.ieee.org/abstract/document/10419347
https://doi.org/10.1007/s10115-023-02010-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+techniques+for+machine+learning%3A+a+survey+of+more+than+two+decades+of+research&btnG=
https://link.springer.com/article/10.1007/s10115-023-02010-5
https://doi.org/10.26599/BDMA.2022.9020014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+of+distributed+computing+frameworks+for+supporting+big+data+analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/10026506
https://doi.org/10.1007/s10586-023-04005-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+genetic-based+clustering+algorithm+for+efficient+resource+allocating+of+IoT+applications+in+layered+fog+heterogeneous+platforms&btnG=
https://link.springer.com/article/10.1007/s10586-023-04005-x
hhttps://doi.org/10.1007/s10586-024-04657-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-efficient+virtual+machine+placement+in+heterogeneous+cloud+data+centers%3A+a+clustering-enhanced+multi-objective%2C+multi-reward+reinforcement+learning+approach&btnG=
https://link.springer.com/article/10.1007/s10586-024-04657-3
https://doi.org/10.1007/s11227-023-05711-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+independent+vector+machine+for+big+data+classification+problems&btnG=
https://link.springer.com/article/10.1007/s11227-023-05711-4
https://doi.org/10.1016/j.jnca.2024.103837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+distributed+data+processing+frameworks+in+hybrid+clouds&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804524000146
https://doi.org/10.1007/s42044-023-00158-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+trends+in+computational+intelligence+for+educational+big+data+analysis&btnG=
https://link.springer.com/article/10.1007/s42044-023-00158-5

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

420

[13] Gnanendra Kotikam, and Lokesh Selvaraj, “Golden Eagle Based Improved Att-BiLSTM Model for Big Data Classification with Hybrid

Feature Extraction and Feature Selection Techniques,” Network Computation in Neural Systems, vol. 35, no. 2, pp. 154-189, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Zong-Zheng Li et al., “Feature Selection of Gene Expression Data Using a Modified Artificial Fish Swarm Algorithm with Population

Variation,” IEEE Access, vol. 12, pp. 72688-72706, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Bhargava K. Chinni, and Cedric Manlhiot, “Emerging Analytical Approaches for Personalized Medicine Using Machine Learning in

Pediatric and Congenital Heart Disease,” Canadian Journal of Cardiology, vol. 40, no. 10, pp. 1880-1896, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Pooja Gupta, Abhay Kumar Alok, and Vineet Sharma, “Advancing Gene Expression Data Analysis: An Innovative Multi-Objective

Optimization Algorithm for Simultaneous Feature Selection and Clustering,” Brazilian Archives of Biology and Technology, vol. 67, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[17] Hyeonseo Hwang et al., “Big Data and Deep Learning for RNA Biology,” Experimental & Molecular Medicine, vol. 56, no. 6, pp. 1293-

1321, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Ghada Mostafa et al., “Feature Reduction for Hepatocellular Carcinoma Prediction Using Machine Learning Algorithms,” Journal of Big

Data, vol. 11, no. 1, pp. 1-27, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] P. Edwin Dhas et al., “Spatial Clustering Based Gene Selection for Gene Expression Analysis in Microarray Data Classification,” Journal

for Control, Measurement, Electronics, Computing and Communications, vol. 65, no. 1, pp. 152-158, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Methaq A. Shyaa et al., “Evolving Cybersecurity Frontiers: A Comprehensive Survey on Concept Drift and Feature Dynamics Aware

Machine and Deep Learning in Intrusion Detection Systems,” Engineering Applications of Artificial Intelligence, vol. 137, pp. 1-34, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[21] David Levin, and Gonen Singer, “GB-AFS: Graph-Based Automatic Feature Selection for Multi-Class Classification via Mean Simplified

Silhouette,” Journal of Big Data, vol. 11, no. 1, pp. 1-22, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[22] Beatriz Flamia Azevedo, Ana Maria A.C. Rocha, and Ana I. Pereira, “Hybrid Approaches to Optimization and Machine Learning

Methods: A Systematic Literature Review,” Machine Learning, vol. 113, no. 7, pp. 4055-4097, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[23] Abdul Rahman Khalid et al., “Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach,” Big Data and

Cognitive Computing, vol. 8, no. 1, pp. 1-27, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[24] Anayo Chukwu Ikegwu et al., “Big Data Analytics for Data-Driven Industry: A Review of Data Sources, Tools, Challenges, Solutions,

and Research Directions,” Cluster Computing, vol. 25, no. 5, pp. 3343-3387, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[25] Youcef Djenouri et al., “Fast and Effective Cluster-Based Information Retrieval Using Frequent Closed Itemsets,” Information Sciences,

vol. 453, pp. 154-167, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[26] Waleed Albattah et al., “Feature Selection Techniques for Big Data Analytics,” Electronics, vol. 11, no. 19, pp. 1-17, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[27] Lina Zhou et al., “Machine Learning on Big data: Opportunities and Challenges,” Neurocomputing, vol. 237, pp. 350-361, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[28] Sangarsu Raghavendra, “Scalability of Data Science Algorithms: Empowering Big Data Analytics,” Journal of Artificial Intelligence and

Soft Computing Techniques, vol. 1, no. 1, pp. 1-9, 2024. [Publisher Link]

[29] Arindam Banerjee, and Joydeep Ghosh, “Scalable Clustering Algorithms with Balancing Constraints,” Data Mining and Knowledge

Discovery, vol. 13, no. 3, pp. 365-395, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[30] Giulia Vilone, Lucas Rizzo, and Luca Longo, “A Comparative Analysis of Rule-Based, Model-Agnostic Methods for Explainable

Artificial Intelligence,” Proceedings for the 28th AIAI Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland,

vol. 2771, pp. 85-96, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[31] Pranav Nerurkar et al., “Empirical Analysis of Data Clustering Algorithms,” Procedia Computer Science, vol. 125, pp. 770-779, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[32] Anju Santosh Yedatkar, “Real-Time Data Analytics in Distributed Systems,” International Journal of Scientific Research in Modern

Science and Technology, vol. 3, no. 6, pp. 9-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[33] Kapil Joshi et al., Big Data-Based Clustering Algorithm Technique: A Review Analysis, Automation and Computation, 1st ed., CRC Press,

2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1080/0954898X.2023.2293895
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Golden+eagle+based+improved+Att-BiLSTM+model+for+big+data+classification+with+hybrid+feature+extraction+and+feature+selection+techniques&btnG=
https://www.tandfonline.com/doi/abs/10.1080/0954898X.2023.2293895
https://doi.org/10.1109/ACCESS.2024.3402652
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+of+gene+expression+data+using+a+modified+artificial+fish+swarm+algorithm+with+population+variation&btnG=
https://ieeexplore.ieee.org/abstract/document/10533731
https://doi.org/10.1016/j.cjca.2024.07.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+analytical+approaches+for+personalized+medicine+using+machine+learning+in+pediatric+and+congenital+heart+disease&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+analytical+approaches+for+personalized+medicine+using+machine+learning+in+pediatric+and+congenital+heart+disease&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0828282X24005853
https://doi.org/10.1590/1678-4324-2024230508
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advancing+Gene+Expression+Data+Analysis%3A+An+Innovative+Multi-Objective+Optimization+Algorithm+for+Simultaneous+Feature+Selection+and+Clustering&btnG=
https://www.scielo.br/j/babt/a/kWxJPg9jgWWbJKw5FCcsgmM/
https://doi.org/10.1038/s12276-024-01243-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+and+deep+learning+for+RNA+biology&btnG=
https://www.nature.com/articles/s12276-024-01243-w
https://doi.org/10.1186/s40537-024-00944-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+reduction+for+hepatocellular+carcinoma+prediction+using+machine+learning+algorithms&btnG=
https://link.springer.com/article/10.1186/s40537-024-00944-3
https://doi.org/10.1080/00051144.2023.2284027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spatial+clustering-based+gene+selection+for+gene+expression+analysis+in+microarray+data+classification&btnG=
https://www.tandfonline.com/doi/full/10.1080/00051144.2023.2284027
https://doi.org/10.1016/j.engappai.2024.109143
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolving+cybersecurity+frontiers%3A+A+comprehensive+survey+on+concept+drift+and+feature+dynamics+aware+machine+and+deep+learning+in+intrusion+detection+systems&btnG=
https://www.sciencedirect.com/science/article/pii/S0952197624013010
https://doi.org/10.1186/s40537-024-00934-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GB-AFS%3A+graph-based+automatic+feature+selection+for+multi-class+classification+via+Mean+Simplified+Silhouette&btnG=
https://link.springer.com/article/10.1186/s40537-024-00934-5
https://doi.org/10.1007/s10994-023-06467-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+approaches+to+optimization+and+machine+learning+methods%3A+a+systematic+literature+review&btnG=
https://link.springer.com/article/10.1007/s10994-023-06467-x
https://doi.org/10.3390/bdcc8010006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+credit+card+fraud+detection%3A+an+ensemble+machine+learning+approach&btnG=
https://www.mdpi.com/2504-2289/8/1/6
https://doi.org/10.1007/s10586-022-03568-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+analytics+for+data-driven+industry%3A+a+review+of+data+sources%2C+tools%2C+challenges%2C+solutions%2C+and+research+directions&btnG=
https://link.springer.com/article/10.1007/s10586-022-03568-5
https://doi.org/10.1016/j.ins.2018.04.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fast+and+effective+cluster-based+information+retrieval+using+frequent+closed+itemsets&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S002002551830269X
https://doi.org/10.3390/electronics11193177/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Selection+Techniques+for+Big+Data+Analytics&btnG=
https://www.mdpi.com/2079-9292/11/19/3177
https://doi.org/10.1016/j.neucom.2017.01.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+on+big+data%3A+Opportunities+and+challenges&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231217300577/
https://jscholaronline.org/full-text/JAIST/1_103/Scalability-of-Data-Science-Algorithms.php
https://doi.org/10.1007/s10618-006-0040-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+clustering+algorithms+with+balancing+constraints&btnG=
https://link.springer.com/article/10.1007/s10618-006-0040-z
https://doi.org/10.21427/z4x3-3f86
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparative+analysis+of+rule-based%2C+model-agnostic+methods+for+explainable+artificial+intelligence&btnG=
https://arrow.tudublin.ie/scschcomart/127/
https://doi.org/10.1016/j.procs.2017.12.099/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Analysis+of+Data+Clustering+Algorithms&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050917328673
https://doi.org/10.59828/ijsrmst.v3i6.215
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+data+analytics+in+distributed+systems&btnG=
https://ijsrmst.com/index.php/ijsrmst/article/view/215
https://doi.org/10.1201/9781003333500-46
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data-based+clustering+algorithm+technique%3A+A+review+analysis&btnG=
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003333500-46/big-data-based-clustering-algorithm-technique-review-analysis-kapil-joshi-manisha-khanduja-rajesh-kumar-umang-parul-saxena-aditi-sharma

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

421

Appendix

Table 2. Composite Analysis of Sample Datasets

Dataset

Name
Sources Type Size Features

Target

Variable

Sampling

Rate

Missing

Values

Time

Span

Data

Format
Privacy level

Access

method

Preprocessing

Steps

Customer

Purchase

Records

Retail

Database

Numeric,

Categorical

500.000

records

80 GB

20 features,

including

customer

ID purchase

amount,

date of

purchase,

product

category

Customer chym

(yes/no)
Daily

3%

missing

handled

via

imputation

January

2021 to

December

2023

CSV,

SQL
Anonymized API

Normalization,

Feature

Extraction

Smart City

Traffic Data

Traffic

Sensors,

Cameras

Numeric,

time series

10

million

records,

200 GB

30 features,

including

vehicle count,

speed,

daytime

Traffic congestion

 level

Every 5

min

2%

missing

handled

 via

imputation

February

2023 to

July 2024

CSV, SQL Anonymized API

Normalization,

outlier

removal

Social Media

Sentiment

Analysis

Social

media

platforms

Text,

categorical

2 million

records,

50 GB

15 features,

including post

ID,

user ID,

sentiment

score, text

context

Sentiment

(positive/negative)
Hourly

5%

missing

handled

via

imputation

January

2023 to

July 2024

JSON.SQL Anonymized
Direct

download

Tokenization

sentiment

analysis

Financial

Market Data

Financial

database

Numeric,

time series

1 million

records,

150 GB

25 features,

including

stock price,

trading

volume,

timestamp

Stock price

prediction
Every min

1%

missing

handled

via

imputation

January

2021to

July 2024

CSV, SQL Encrypted API

Normalization,

feature

scaling

Medical

records

Healthcare

providers

Numeric,

categorical

300,000

records,

10 GB

40 features,

including

patient ID,

diagnosis,

treatment

lab results

Disease

Diagnosis
Monthly

4%

missing

handled

via

imputation

January

2000 to

July 2024

CSV,

JSON
Encrypted

Direct

download

Normalization

data

anonymization

Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025

422

E-Commerce

product

reviews

E-

commerce

websites

Text

categorical

500,000

records,

60 GB

10 features,

including

review ID,

product ID,

review

text, rating

Product rating

prediction
Weekly

3%

missing

handled

via

imputation

March

2023 to

July 2024

JSON,

CSV
Anonymized API

Tokenization

sentiment

analysis

IoT sensor

data

IoT

devices

Numeric,

time series

8

million

records,

120 GB

15 features,

including

sensor ID,

temperature,

humidity,

timestamp

Equipment

failure prediction

Every

min

2%

missing

handled

via

imputation

January

2023 to

July 2024

CSV,

SQL
Anonymized

Direct

download

Normalization,

feature

engineering

Educational

performance

data

School

databases

Numeric

categorical

200,000

records,

40 GB

25 features,

including

student ID,

grades,

attendance,

demographic

data

Academic

performance
Semesterly

3%

missing

handled

via

imputation

August

2021 to

July 2024

CSV, SQL Anonymized API

Normalization

data

clearing

Energy

Consumption

data

Smart

meters

Numeric

time series

1

million

records,

90 GB

12 features,

including

meter ID,

energy usage,

daytime

Energy usage

prediction
Hourly

4%

missing

handled

via

imputation

January

20013 to

June 2024

CSV,

JSON
Anonymized

Direct

download

Normalization,

feature

scaling

Climate

change data

Weather

stations

Numeric,

time series

5 million

records,

70 GB

20 features,

including

temperature,

precipitation,

wind speed

Climate trend

analysis
Daily

2%

missing

handled

via

imputation

January

2001 to

June 2024

CSV, SQL Anonymized API

Normalization,

feature

extraction

