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Abstract - The explosive nature of big data has created serious challenges for information managers, especially in providing fast 

availability and response times. Conventional data management systems tend to falter when dealing with enormous datasets, 

which causes latency that can slow down real-time analysis and decision-making. In response, this research introduces a new 

cluster-based genetic model aimed at hastening access to data in big data management systems. The method combines a genetic 

model with an emphasis on feature selection to maximize data retrieval speed. Through the use of distributed machine learning 

techniques, the model detects and ranks the most significant features, optimizing the clustering process to minimize access time 

and retrieval complexity. The genetic method reduces access time and increases clustering efficiency by focusing on prominent 

features. An evolutionary algorithm is used to optimize data storage and retrieval in such a way as to minimize retrieval times. 

The research tackles crucial issues like the requirement for high-speed data processing, data system scalability, and data 

structure complexity. The proposed model adapts dynamically to the changing data landscape, reducing latency and improving 

the overall efficiency of large-scale data systems. Results show that the cluster-based genetic model greatly enhances data access 

efficiency. It recorded a 35% decrease in access time when tested on large datasets compared to traditional data management 

methods. The median data retrieval time was reduced from 120 milliseconds to 78 milliseconds, showing the model's efficiency 

in optimizing data clustering and retrieval processes. This decrease in access time showcases the model's ability to optimize the 

efficiency of big data systems, especially in situations that involve quick and efficient data retrieval. 

Keywords - Big Data Management, Cluster-Based Genetic Model, Data Access Time, Data Retrieval Efficiency, Distributed 

Machine Learning, Real-Time Processing, Scalability.

1. Introduction 
In handling big data, accessibility and manipulation of 

information from distributed, scalable systems are paramount. 

Owing to the enormous amounts of data in big data 

environments that tend to outgrow the capacity of 

conventional databases, specialized tools and methods are 

required for seamless and efficient access [1]. Distributed file 

systems, including the Apache Hadoop Distributed File 

System (HDFS), are critical by allowing the storage and 

retrieval of big datasets in multiple nodes while providing 

fault tolerance and scalability. Not only do these systems 

improve performance, but they also support handling 

enormous data volumes [2]. Distributed processing 

frameworks such as Apache Spark are a fundamental part of 

big data management. They enable simultaneous data 

processing between clusters of servers, greatly enhancing 

speed and efficiency. They facilitate parallel computation, 

which speeds up data access and analysis [3]. NoSQL 

databases are also required to process voluminous amounts of 

data. NoSQL databases supply adaptable data models that 

save and retrieve complex, varied data in a distributed manner. 

Processing in a distributed environment to fetch, update, and 

analyze enormous volumes of diverse, complex, and large sets 

of data necessitates the design of systems and procedures that 

will work effectively on handling and responding to large 

bodies of data stored over multiple nodes [4]. The goal is to 

support rapid, reliable, and secure data utilization, facilitating 

statistical analysis, decision-making, and insight generation. 

Indexing and caching techniques further enhance data access. 

Indexing improves query efficiency by enabling quick 

retrieval of specific data points, while caching—through 

decentralized systems or in-memory databases—boosts 

performance by reducing the need to repeatedly fetch data 

from storage [5]. The big data structure, as illustrated in 

(Figure 1), depicts how raw, unstructured data is transformed 

into valuable, meaningful information. This process involves 

uncovering hidden patterns and relationships within the data, 

enhancing the value of previously collected data and 
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integrating new insights with existing information [6]. 

Managing large-scale data faces several primary challenges 

related to data access, including capacity management, 

handling both structured and unstructured data, data 

distribution, privacy and security, query efficiency, real-time 

availability, consistency, and resource management [7]. This 

research aims at enhancing data access times in big data 

management and investigates ways of minimizing access 

latency. Effective data access here includes acquiring and 

analyzing real-time or near-real-time data streams and 

providing low-latency access for timely insights.  

To tackle such challenges, diverse data access techniques 

are utilized [8]. Distributed file systems, such as Apache 

HDFS, and distributed processing platforms, such as Apache 

Spark, allow managing huge datasets through concurrent 

processing across nodes. NoSQL databases, including 

MongoDB and Cassandra, are regularly utilized to store 

various data types, such as semi-structured and unstructured 

data, because of their ability to store and retrieve with 

flexibility. Indexing and caching methods further enhance 

data access, with caching minimizing retrieval times by 

storing frequently accessed data in memory and indexing 

enhancing query speed by enabling quick retrieval of 

individual data points [9]. Besides access efficiency, data 

security and privacy are important. Secure verification, 

permission procedures, and encryption are used to safeguard 

sensitive information during access [10]. Access to real-time 

data is facilitated by systems capable of managing streaming 

data sources, giving rapid insights, and avoiding data 

localization and dissemination problems. Proper resource 

management optimizes performance and avoids bottlenecks 

by allocating computing resources optimally [11].  

 
Fig. 1 Big data analysis 

Clustering is critical in improving data access by a 

process where data is grouped into clusters based on common 

characteristics, enabling parallel processing and query speed 

improvement [12]. Clustering minimizes network traffic by 

bringing similar data points to the vicinity and reducing cross-

node communications. It also optimizes resource utilization 

by shifting computing power to certain clusters as required. 

Clustering. In addition, clustering enables the user to deal with 

grouped data at the cluster level, thus rendering data access 

more precise and effective [13]. The proposed work will 

emphasize adaptive feature selection mechanisms, where 

variations in real-time data dynamically adjust cluster 

assignments to enhance retrieval accuracy in dynamic 

datasets. Furthermore, incorporating hybrid optimization 

techniques (e.g., Particle Swarm Optimization + GA) would 

further accelerate clustering, lowering query execution times 

in high-dimensional datasets such as financial transactions, 

IoT sensor networks, and real-time analytics. 

The key contributions of this work are encapsulated as 

follows: Section 2 explains the multi-objective access 

environment to decrease both access time and query time. 

Section 3 proposes cloud-based optimization with parameters 

of different types and introduces the Dominant Features 

Selection with Clustering (DFSC) technique, a novel method 

of decreasing access times by identifying prominent features. 

Section 4 offers results and discussions proving the superior 

performance of the suggested system compared to prior 

methods in terms of performance measures. Section 5 

summarizes the findings and contributions and concludes the 

study. 

1.1. Problem Statement 

One of the greatest challenges to dealing with big data is 

inefficiency in access times for information, which can 

drastically affect the performance of data-intensive 

applications. As data volumes increase in size, velocity, and 

variety, traditional data management systems cannot manage 

their complexity and size, causing longer retrieval delays. The 

heterogeneity of big data tends to necessitate intricate 

querying and analysis across distributed systems, which 

worsens the issue. Moreover, the existence of redundant or 

extraneous data further aggravates these problems by raising 

processing loads and delaying access times. Efficient 

information management and retrieval are essential to 

facilitate timely analysis and decision-making in such 

dynamic settings. This necessitates the creation of innovative 

solutions to speed up access times and improve the overall 

performance of large-scale data systems. 

1.2. Motivation 

This study was motivated by the imperative to counter 

inefficiencies in data access latency in large information 

management systems. With businesses becoming more 

dependent on huge datasets for real-time analytics and 

decision-making, accessing appropriate information quickly 
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and effectively has become essential. Conventional data 

management techniques tend to be challenged by the volume, 

complexity, and variety of today's datasets, resulting in major 

delays that adversely affect the performance of applications 

needing rapid analysis. This work aims to provide greater 

flexibility, speed, and dependability of large-scale data 

systems by developing more efficient methods for optimizing 

access time. Finally, it aims to boost innovation and increase 

industry productivity based on data by facilitating rapid and 

precise decision-making in social media, IoT, banking, and 

healthcare fields. 

2. Related Work 
Numerous methods and optimization strategies have been 

investigated to promote information access and cluster 

optimization in large-scale data systems. Researchers have 

used various methods to deal with the problems involved in 

managing and processing large datasets [14]. Cluster-based 

scheduling is one technique used to handle massive amounts 

of information in distributed applications. This approach 

groups data based on resource reservation and network 

awareness to improve processing efficiency. Researchers have 

examined distributed SaaS setups in cloud environments for 

sophisticated data analysis. For example, Hadoop's cluster-

based model has been proposed for managing dispersed 

healthcare data, integrating medical and IoT information to 

enhance data access and prediction [15]. Another approach 

involves optimizing the structure for web page data 

processing. This method demonstrated improvements in 

extraction and categorization, offering more reliable and 

efficient research compared to traditional techniques. 

Developed the High-Order Clustering method by Fast Search 

(CFS) strategy (HOCFS) for multi-type data clustering [16]. 

Their algorithm mixed a dropout deep learning framework 

with the CFS algorithm and feature tensor model for 

improving clustering heterogeneous datasets. Presented a 

nonparametric, representative-based, Sparse Self-Represented 

Networking Map for robust clustering. Their system 

integrated a weight-regulating mechanism for examining and 

finding data clustering structures with reduced data 

transmission demands [17]. The two-layer framework based 

on DCA has been explored in (Figure 2). 

 
Fig. 2 Two-layer framework based on DCA 
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2.1. Research Gap and Novelty of Proposed Work 

Conventional methods tend to be hampered by the 

growing volume and variety of data, causing delays and 

inefficiencies in retrieval operations. Although some methods 

aim to improve information processing or storage capabilities, 

they often fail to consider the significance of efficient feature 

selection and clustering in minimizing access times.  

Traditional data management systems typically face 

latency-related problems and real-time decision-making 

inefficiencies while dealing with extremely large and 

complicated data structures. Current methodologies have no 

optimized methodology to minimize the retrieval time while 

maintaining clustering efficiency. Most traditional systems 

also fail to adjust dynamically according to changing data 

structures, resulting in scalability and access rate 

inefficiencies. 

The cluster-based genetic model proposed here presents a 

novel solution to the problem of big data retrieval by 

combining genetic algorithms with feature selection and 

clustering methods. In addition, the model utilizes 

evolutionary optimization methods that adapt dynamically to 

changes in the data environment, ensuring scalability and 

enhanced processing rates in real-time applications. Yet 

another major novelty of this contribution is using an 

evolutionary algorithm to optimize data retrieval and storage 

mechanisms together. These improvements demonstrate the 

model to be most appropriate for high-speed, real-time data 

acquisition applications, including finance analytics, 

healthcare, and large-scale data-driven decision support 

systems. 

3. Proposed System 
A revolutionary technique has been established to combat 

data access times-related issues in handling large-scale 

information. It incorporates the prevailing feature selection 

technique with a genetic clustering algorithm for optimized 

data retrieval efficiency in huge, intricate data sets. With its 

emphasis on significant features, the model diminishes the 

size and complexity of the data set overall and, consequently, 

provides better clustering. The genetic algorithm is used to 

optimize the clustering process, ensuring data is structured to 

reduce retrieval times [18, 19].  

Decentralized machine learning methods further 

reinforce the model's capacity to handle the complexity and 

size of big data environments. This method enhances the 

scalability and performance of big data systems, hence making 

it quite useful for real-time, data-intensive applications by 

reducing data access times. The process involves feature 

selection, genetic clustering efficiency, and deploying the 

system within a distributed artificial intelligence framework to 

boost access speed, as illustrated in the accompanying image. 

 
Fig. 3 Proposed architecture 
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3.1. Dataset Description 

As shown in (Figure 3), the information model supporting 

an instance of the proposed system consists of seven primary 

elements, which will be discussed further. Based on how they 

use the services offered, organizations might take on various 

responsibilities. An organization can be solely an information 

contributor if it supplies models and information but uses 

predictive services sparingly or not. On the other hand, if a 

company uses many predicting services but gives little to no 

information, it might as well be a customer. Any frequency in 

between can also be used. This categorization is not included 

in the information's model as it is subject to change over time 

because every company's position may differ. The primary 

entity in the data model is the user, which might exist in 

numerous organizations. An individual may import or access 

datasets and develop and amend projects based on machine 

learning. A hierarchy of permissions and responsibilities 

controls everybody's access to every dataset. Depending on its 

internal structure, an organization might recognize several 

jobs (e.g. Information Scientist, ML Engineer, Information 

Engineer). Then, everyone inside her/his organization might 

be assigned one or more responsibilities. The user acquires 

ownership of the dataset when uploading a new one. There are 

pertinent supplementary data that this information structure 

does not contain.  

This meta-information is dynamic and subject to change 

over time; we do not keep the information about the blocks in 

each database and where they are located. To avoid using out-

of-date data, this data is obtained in real-time from the HDFS 

as needed. The same is true for base model location when 

forming a collection and generating forecasts is required [20]. 

This dataset is typically high-dimensional and comes from 

various sources, such as transactional databases, weblogs, 

sensor networks, or social media platforms, as shown in Table 

1. It may include structured data with well-defined features or 

unstructured data, but the primary focus is on structured 

datasets where each feature is quantifiable. In this context, the 

dataset features a large number of attributes ranging from 

thousands to millions that can be numerical, categorical, or a 

mix of both. These features can be redundant or irrelevant, 

potentially affecting data retrieval efficiency and processing 

time [21]. The target variable often relates to access times or 

data retrieval efficiency, critical for optimizing data 

management and machine learning tasks. Overall, the dataset 

aims to capture the complexities and scale of big data 

environments, providing a comprehensive basis for applying 

the clustering-based genetic model to enhance feature 

selection and improve data access times. Table 2 in appendix 

shows the details of the Composite analysis of different 

Sample Datasets. 

Table 1. Dataset description 

Attribute Description 

Dataset Name Name of the dataset 

Source Locations or origins of the data (e.g., databases, sensors, web sources) 

Data Type Type of data (e.g., categorical, text, numeric, time-series) 

Size Total number of records and/or size (e.g., 1 million rows, 500 GB) 

Sampling Rate The rate at which data is collected (e.g., hourly, daily) 

Missing Values Amount and handling of missing data (e.g., 5% missing, imputation methods) 

Features Number and types of features (e.g., including temperature, 50 features, humidity) 

Target Variable The variable to predict or classify (e.g., customer chum, disease status) 

Time Span Time period covered by the data (e.g., July 2023 to July 2024) 

Data Format Format of the data (e.g., JSON, CSV, SQL database) 

Privacy Level Privacy considerations (e.g., anonymized, encrypted) 

Access How the data is accessed (e.g., API, direct download) 

Preprocessing Steps Any preprocessing performed (e.g., feature extraction, normalization) 

3.2. Weighted Group Dual Data Aggregation 

These techniques may be used to accomplish weighted 

group aggregation from different sources of information in a 

big data scenario. The method entails gathering information 

from several sources, classifying the information, and then 

using weighted aggregation within each category. 

The average weighting within each group must be 

determined by combining grouped aggregation with balanced 

aggregating. This strategy might be helpful when information 

is divided into categories or segments, and every point of 

information has a distinct weight or significance. This 

hierarchical clustering and time-effective aggregating 

approach may greatly reduce the total training time of 

federated learning and increase model training effectiveness. 

In addition, the global algorithm's correctness is guaranteed by 

applying the dual-weighting approach shown in (Figure 4). 

3.2.1. Steps for Weighted Group Aggregation 

• Combine Data from Different Sources: Integrate data 

from multiple sources into a unified dataset. Suppose we 

have k data sources, each with its dataset. After 

combining, we have a consolidated dataset D. 

• Group the Data: Divide the data into groups based on a 

categorical variable. Let G1, G2, …, and Gm be the 

groups based on a categorical variable. 
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• Calculate Weighted Aggregation for Each Group: Compute the weighted aggregation for each group.  

 
Fig. 4 Schematic diagram of group weighted aggregation 

For each group Gy, where y ranges from 1 to m, the 

weighted aggregation can be calculated as follows: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐺𝑦
=

∑ (𝑖𝑥,𝑦.𝑤𝑥,𝑦)
𝑛𝐺𝑦
𝑥=1

∑ 𝑤𝑥,𝑦

𝑛𝐺𝑦
𝑥=1

 (1)  

Where: 

• 𝑖𝑥,𝑦 represents the value of the i-th observation in group 

Gy.    

• 𝑤𝑥,𝑦 represents the weight of the x-th observation in 

group Gy.  

• 𝑛𝐺𝑦
 is the total number of observations in group Gy. 

Example sales data from two sources, online and in-store, 

are shown in Table 3. Each source provides data with sales 

values and weights. The combined dataset now contains all the 

data from both sources. 

Table 3. Data from different Sources 

Source Group Sale Value Weight 

Online South 110 3 

Online South 160 4 

Online North 90 5 

In-Store South 210 2 

In-Store North 130 3 

In-Store North 100 4 

 
3.2.2. Grouping and Weighted Aggregation 

For the North Group 

Sales data from two sources: Online and In-store; every 

source provides data with salves values and weights. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑡ℎ

=
(100.2) + (150.3) + (200.1)

2 + 3 + 1
 

      =
200+450+200

6
=

850

6
= 141.66  

For the South Group 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑜𝑢𝑡ℎ

=
(80.4) + (120.2) + (90.3)

4 + 2 + 3
 

  =
320 + 240 + 270

9
=

830

9
= 92.22 

This process allows the aggregate of data from multiple 

sources while accounting for the different weights associated 

with each observation. By grouping the data and applying 

weighted aggregation within each group, can gain more 

accurate insights into each category or segment of data. 

3.3. Using a Clustering-Based Genetic Model for Recursive 

Feature Elimination (RFE) and Dominant Feature 

Selection in Large-scale Information Administration 

A crucial phase in large data management is feature 

selection, which separates and keeps the most important 

features from superfluous or unnecessary ones. Choosing 

characteristics that have the biggest influence on the target 
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variable or prediction job is known as the dominant choice of 

features. This procedure lowers computing costs, enhances the 

efficiency of models, and reduces the dimensionality of 

information. The management of big data processing 

effectiveness may be improved by combining Recursive 

Feature Elimination (RFE) with a clustering-based genetic 

approach to dominant choices of features [22]. This hybrid 

method uses an algorithm based on genes in conjunction with 

grouping to optimize subsets of characteristics and RFE for 

choosing features shown in (Figure 5). 

3.3.1. Algorithm 1 

Step 1: Initial Feature Set: Start with the full set of 

features. 

Step 2: Feature Selection using RFE 

Train the Model: Fit the model using the full set of 

features. 

Train the model with the current feature set. For linear 

models, the objective function might be: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
1

𝑁
∑ 𝐿𝑜𝑠𝑠(𝑗𝑥 , 𝑗�̂�)𝑁

𝑥=1 +⋋ ‖𝑤‖2
2 (2) 

Where:  𝐿𝑜𝑠𝑠(𝑗𝑥, 𝑗�̂�) is the loss function (e.g., Mean 

Squared Error for regression). w represents the model 

parameters (weights).  ⋋ is the regularization parameter. 

Rank Features: Evaluate feature importance based on 

model coefficients or importance scores. Evaluate feature 

importance based on the magnitude of coefficients or model-

specific metrics. 

Remove Least Important Features: Iteratively eliminate 

the least important features. 

Remove iy if Importance(iy) < Threshold                       

Repeat: Continue until a predefined number of features is 

reached. 

Step 3: Clustering-Based Genetic Optimization 

Clustering: Group features into clusters to manage them 

interaction and relevance.Group features into clusters based 

on similarity or relevance. Let C1, C2, and Ck represent the 

clusters of features. 

Genetic Algorithm: Use genetic algorithms to find the 

optimal combination of features. 

Fitness Function: Evaluate the fitness of a feature subset 

F based on model performance: 

Fitness (F) = Performance (Model with F) – Penalty (Size 

of F)                     

Where: Performance (Model with F) measures the 

model's performance (e.g., accuracy, F1- score). Penalty (Size 

of F) penalizes larger feature subsets to encourage feature 

reduction. 

Genetic Operators: Apply genetic operators such as 

crossover, mutation, and selection to evolve feature subsets: 

Crossover: Combine feature subsets to create new 

subsets. 

Mutation: Randomly modify feature subsets. 

Selection: Choose the best feature subsets based on 

fitness scores. 

Optimization:  Continue evolving the feature subsets until 

convergence or a stopping criterion is met.  

Combining RFE with a clustering-based genetic model 

for feature selection in big data management involves: RFE 

iteratively removing the least important features to identify 

dominant features. Using clustering to group features and 

genetic algorithms to find the optimal feature subsets enhances 

model performance and data access efficiency. This hybrid 

approach helps manage large datasets more effectively by 

focusing on the most relevant features, thus improving access 

times and processing efficiency in distributed machine 

learning systems. 

3.3.2 Silhouette Score Calculation 

For each data point, the Silhouette Score is calculated 

using the following steps: 

Step 1: Calculate a(x): The average distance between the 

data point i and all other points in the same cluster (intra-

cluster distance). 

a(x) =
1

|Cx|−1
∑ d(x, y)y∈Cx,y≠x  (4) 

Where  

• 𝐶𝑥 is the cluster to which point x belongs, 

• 𝑑(𝑥, 𝑦) is the distance between points x and y and  

• |𝐶𝑥| is the number of points in the cluster 𝐶𝑥. 

Step 2: Calculate b(x): The minimum average distance 

between the data point x and all points in any other cluster 

(inter-cluster distance). 

𝑏(𝑥) = min
𝐶𝑘≠𝐶𝑥

(
1

|𝐶𝑘|
∑ 𝑑(𝑥, 𝑦)𝑦∈𝐶𝑥

) (5) 

Where 𝐶𝑘 is any cluster different from 𝐶𝑥. 

Step 3: Calculate the Silhouette Score for point x: 

𝑠(𝑥) =
𝑏(𝑥)−𝑎(𝑥)

max (𝑎(𝑥),𝑏(𝑥))
 (6) 

The Silhouette Score 𝑠(𝑥) measures how well the data 

point x fits into its own cluster compared to the nearest 

neighboring cluster. 
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Step 4: Calculate the overall Silhouette Score: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑛
∑ 𝑠(𝑥)𝑛

𝑥=1  (7) 

Where n is the total number of data points. 

 

Fig. 5 Clustering method 
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Fig. 7 Distributed operators 

 
Fig. 8 Distributed genetic algorithm clustering process flow 
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It fine-tunes and updates the case-based approach. 

Forecasting is done using this updated solution. Previous 

research has relied on top most comparable cases for 

recycling, which only depend on the resemblance of a fresh 

case with the case-base. Since GA is a cutting-edge 

optimization method and yielded the best results in our 

research, we gave it some thought for improvement. The 

CBR-based method's GA-based optimization procedure is 

depicted in Figure 6. It uses the Crossover and Mutation 

operators in a heuristic case-based search. Following the 

population evaluation, each solution ID and its fitness is taken 

into consideration throughout the selection procedure. The 

selection method employed is tournament selection, and it is 

done so to prevent convergence to local optimum solutions, 

many of which are based on our encoding methodology [23]. 

The process via which the method generates the jobs for the 

GA operator is depicted in Figure 7. The population size was 

100, which provided a good range of candidate solutions. A 

mutation rate of 5% was used to add randomness and avoid 

premature convergence, while a crossover rate of 80% was 

used to maximize the blending of genetic material between 

parent solutions. The tournament selection approach was 

utilized to select the top-performing individuals with a proper 

balance between exploration and exploitation. Figure 8 shows 

the procedures for participation, community at the beginning, 

assessment, selection, and assessment of offspring to the 

community. 

3.3.3. Algorithm 2: Dominant Feature Selection with 

Clustering-Based Genetic Model 

The goal is to improve the access time and efficiency in 

big data management by selecting dominant features through 

a combination of Recursive Feature Elimination (RFE), 

clustering, and genetic algorithms.  

Step 1: Data Preparation 

• Combine Data: Aggregate data from multiple sources into 

a unified dataset. 

• Preprocess Data: Normalize or preprocess features as 

needed. 

Step 2: Initial Feature Selection using RFE 

• Train Initial Model: Fit the model using all features. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +⋋ ‖𝑤‖2
2 (8) 

Where,  

• Loss Function is typically Mean Squared Error (MSE) or 

Cross-Entropy.  

• ⋋ ‖𝑤‖2
2 is the regularization term. 

• Rank Features: Calculate feature importance based on 

model coefficients or feature importance scores. For 

linear models: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑖𝑦) = |𝑤𝑦| (9)  

Where 𝑤𝑦  is the coefficient of feature 𝑖𝑦. 

• Eliminate Least Important Features: Remove features 

with the lowest importance scores. 

Remove iy if Importance(iy)  <  Threshold (10) 

• Repeat: Continue until the desired number of features is 

reached. 

Step 3: Clustering of Remaining Features 

• Perform Clustering: Group remaining features into 

clusters using methods like K-means or hierarchical 

clustering. 

For K-means clustering: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ‖𝑖𝑦 − 𝜇𝑥‖
2

𝑖𝑦∈𝐶𝑥
𝑘
𝑥=1  (11) 

Where:   

• k is the number of clusters.  

• 𝐶𝑥 is the set of features in cluster x.  

• 𝜇𝑥 is the centroid of cluster x. 

Step 4. Feature Selection with Genetic Algorithm 

• Initialize Population: Create an initial population of 

feature subsets, with each subset representing a 

combination of features within clusters. 

• Evaluate Fitness: Compute the fitness of each feature 

subset using a fitness function that balances model 

performance and feature subset size. 

Fitness (F) = Performance (Model with F) – Penalty (Size 

of F)  (12) 

Where:   

• Performance (Model with F) is measured using metrics 

like accuracy or F1-score.  

• Penalty (Size of F) penalizes larger feature subsets to 

encourage smaller, more efficient subsets. 

Apply Genetic Operators 

• Crossover: Combine feature subsets to create new ones. 

Crossover (F1, F2) =
Combine features from F1 and F2 (13) 

• Mutation: Randomly alter feature subsets. 

Mutation(F) =
Randomly add or remove features in F (14) 
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• Selection: Choose the best feature subsets based on 

fitness scores. 

• Repeat: Continue evolving the population until 

convergence or a stopping criterion is met. 

Step 5: Final Feature Selection 

• Select Optimal Subset: The last subset of features is the 

subset with the best fitness score. 

This algorithm integrates RFE and genetic algorithms to 

identify prominent features effectively in large data 

management. By clustering features and using a genetic 

optimization mechanism, it strives to enhance access time for 

data and the overall system. The employment of RFE 

guarantees that only the most important features are given 

consideration, and clustering and genetic algorithms optimize 

the feature subset for improved model performance and 

lessened computational burden. 

4. Results and Discussions  
Three important datasets for tasks involving similarity 

and natural language inference are described in depth in the 

dataset Table 4. 

• SNLI (2015): The inference pairings in this dataset are 

composed of two phrases each. The goal is to sort the 

phrases' relationships into entailment, contradiction, and 

neutral categories. It fits under the "Open-Domain" 

category, which indicates that it covers a wide range of 

subjects and is not restricted to any one field. With 

550,152 phrase pairings in the training set, a significant 

quantity of data is available for both model training and 

assessment.  

• MultiNLI (2017): The MultiNLI dataset, like SNLI, 

consists of inference pairs used to ascertain the logical 

connection between two phrases. Its broad scope of use 

enhances its suitability in a variety of settings. Another 

important resource for training models in natural 

language comprehension tasks is the training data 

comprising 392,702 sentence pairs. 

• Quora (2017): The goal of this dataset is to determine if 

two statements are semantically similar or not. It 

concentrates on similarity pairings. It is classified as 

"Open-Domain," encompassing a range of subjects to 

guarantee wide application. With 404,279 phrase pairings 

in the dataset, developing models to accurately identify 

and categorize the semantic correspondence between the 

two sentences is made easier [24]. 

There are two CPUs in the architecture, with each CPU 

containing four cores. With eight processor cores in total, this 

arrangement enables efficient multitasking and parallel 

processing, which is required to accommodate the 

computation demands of spread-out deep learning tasks and 

large amounts of information.  

The setting operates on a 128 GB RAM virtual machine. 

This huge memory capacity ensures that the system can 

perform memory-demanding operations required for model 

development and testing without suffering from performance 

issues and enables the processing of high volumes of 

information.  

Development is carried out utilizing Anaconda and 

Python 3.7. Python, being a language with a vast library and 

infrastructure, is widely used in statistical computing and 

machine learning domains. Anaconda provides a stable and 

reliable environment for development through efficient 

package management and deployment. The PySpark driver 

gets 4 GB of RAM. This is necessary to manage the way Spark 

jobs are run, particularly in the context of remote computing, 

where enough memory is needed to process data and manage 

processes without any problems [25, 26].  

Table 4. Dataset Information for Implementation 

Datasets Type Domain Pairs 

SNLI (2015) Inference Pair Open – Domain 550,152 (train) 

MultiNLI (2017) Inference Pair Open – Domain 392,702 (train) 

Quora (2017) Similarity pairs Open – Domain 404,279 

Table 5. Implementation Environment 

Number of Processors and Core 2 and 4 

Virtual Machine 128 GB RAM 

Operating System Ubuntu 16.04 LTS 

Programming Language Python v.3.7 and Anaconda 

PySpark Driver Memory 4GB 

Table 6. Simulation Parameters  

Parameter Setting Description 

Number of Processors 2 Total number of processors used in the simulation environment. 

Number of Cores per Processor 4 Number of cores available per processor. 

Total Cores 8 Total number of processing cores available for simulations. 



Peerzada Hamid Ahmad & Munishwar Rai / IJETT, 73(3), 403-422, 2025 

 

 

 

 

414 

Virtual Machine Memory 128 GB 
Amount of RAM allocated to the virtual machine for handling large 

datasets. 

Operating System 

Ubuntu 

16.04 

LTS 

The OS on which the simulation is run provides the necessary platform. 

Programming Language 
Python 

v.3.7 
The language used for writing and executing simulation scripts. 

Package Manager Anaconda The package management and environment setup tool is used with Python. 

PySpark Driver Memory 4 GB 
Memory is allocated to the PySpark driver to manage distributed data 

processing. 

Data Size 
250,000 

entries 
Size of the dataset used in the simulation for performance measurement. 

Optimization Type Various 
Type of optimization applied (e.g., algorithmic improvements hardware 

tuning). 

Access Time Before 

Optimization 
Variable Time taken to access the data before applying optimization techniques. 

Access Time After Optimization Variable Time is taken to access the data after applying optimization techniques. 

Aggregative Access Time Variable Average access time across different data processing scenarios. 

The implementation environment is configured with 

distinct performance indicators to manage a range of 

information processing. There are two processors in the 

machine, each with four cores, for a total of eight computing 

cores. This setup is necessary for managing large-scale 

calculations and allows for effective simultaneous processing, 

as shown in Table 5. The environment runs on a virtual 

machine with 128 GB of RAM, and there won't be any 

performance reduction while performing demanding data 

processing jobs and enormous datasets. Anaconda, in 

conjunction with Python 3.7, is used for development. Python 

is a popular language in information research with robust 

libraries and user-friendliness. Conversely, Anaconda makes 

managing packages and environmental setup easier, as shown 

in Table 6. Four gigabytes of RAM are allotted to the PySpark 

driver, which is essential for efficiently controlling the 

execution of Spark jobs and organizing dispersed information 

processing operations. Processing 250,000 identical data 

items results in an access time of 42 seconds.  

This shows the amount of time needed, given the present 

system setup, to obtain and process comparable data. 52 

seconds is the access time for 250,000 different information 

entries. The added complexity and expense associated with 

managing different and sometimes more complicated datasets 

compared to comparable information is reflected in this 

lengthier accessibility time shown in Table 7. The proposed 

work was performed on a 2 processor and 4 cores per 

processor, 8 core multi-core system with 128GB RAM and 

Ubuntu 16.04 LTS. The execution was done with Python 3.7 

using Anaconda with Apache Spark for distributed computing 

with 4GB PySpark Driver Memory. The genetic algorithm 

(GA) was set to have a population of size 100, a mutation rate 

of 5%, an 80% crossover rate, and tournament selection as the 

strategy. Performance was compared with reference models 

like HOCFS, ELM, DCA, and AGORAS; 95% confidence 

intervals were applied for statistical verification to ensure 

dramatic improvements in accuracy, sensitivity, and access 

time savings. All these precise settings make the repeatability 

and validity of the study high enough for it to be applicable to 

real-world systems.  

The discussion identifies the possible advantages of this 

strategy in distributed large-scale systems, where efficient and 

rapid data access is paramount for success in operations. Table 

8 presents the computation timings before and after efficiency 

to process two hundred fifty thousand identical data items at 

various locations. The graphs visually represent the statistical 

data analysis in Table 8, revealing how optimization improved 

performance.  

Location 1: The performance time was two minutes and 

two seconds before improvement. The duration was reduced 

to one minute and fifty seconds after using reduction 

strategies.  

Location 2: The performance time was 2 minutes and 50 

seconds before efficiency, increasing to 2 minutes and 4 

seconds following efficiency. This outcome implies that the 

optimization had a negligible effect here.  

Location 3: The completion time was 2 minutes and 45 

seconds before improvement, and it increased to 2 minutes and 

10 seconds after efficiency. The rise suggests that the 

advantages were not as significant or that the optimization 

may have generated certain inefficiencies at this point. The 

total processing effectiveness has improved, as seen by the 1-

minute and 40-second aggregative processing period across 

every submission for this particular spot. The accessibility 

times to process 250,000 identical information entries at 

various places both before and after improvement are shown 

in Table 9. The graphs present statistical data analysis in 

Table 9, with visual insights into the performance 

enhancements gained through optimization. 
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Location 1: The duration of access was 50 seconds 

before optimization. Improvement reduced this to 42 seconds.  

Location 2: 52 seconds was the access time before 

optimizing, while 46 seconds was the duration following 

improvement. Though the enhancement is not as great as at 

Location-1, this still shows a benefit from the optimization.  

Location 3: After efficiency, the initial time required to 

access fifty-nine seconds was reduced to 43 seconds. The 

significant decrease in access time seen here attests to the 

efficacy of the optimization strategies. This location's entries 

have an aggregative time for access of 43 seconds, which 

shows a significant optimization-related decrease in 

accessibility duration.  

Table 7. Implementation environment with execution seconds 

Number of Processors and Core 2 and 4  

250000 Similar Data 

 

Access Time: 42 S Virtual Machine 128 GB RAM 

Operating System Ubuntu 16.04 LTS 
 

250000 Different Data 
Access Time: 52 S Programming Language Python v.3.7 and Anaconda 

PySpark Driver Memory 4GB 

Table 8. Performance time (250000 similar data)  

Locations 
Before 

Optimization 

After 

Optimization 
Aggregative Graphical Representation of Performance Table 

Location -1 2 Min 2 S 1 Min 50S 

1 Min 40 S 

  

Location -2 2 Min 50 S 2 Min 04 S 

Location -3 2 Min 45 S 2 Min 10 S 

  
Table 9. Access time (250000 similar data) 

Locations 
Before 

Optimization 

After 

Optimization 
Aggregative 

Graphical Representation of Different Locations for 

Optimization 

Location -1 50 S 42 S 

43 S 

  

Location -2 52 S 46 S 

Location -3 59 S 43 S 

 
Table 10. Comparison of feature selection accuracy and clustering quality 

System 
Proposed 

System 
HOCFS ELM DCA AGORAS Graphical Representation of Clustering Quality 

Feature 

Selection 

Accuracy 

93 89 86 91 88 

  

Clustering 

Quality 
0.86 0.81 0.79 0.83 0.80 

 

 

Selection of Features Accuracy indicates how well each 

algorithm chooses the most important characteristics. 

Increased accuracy means the algorithm can recognize and use 

the most important features. The proposed system 

successfully selects features with a high accuracy of 92%, 

demonstrating its potency in locating pertinent characteristics. 

The existing system's accuracy ranges from 85% to 90%, with 

performance varying. In this metric, the proposed system 

performs better than any current system.  Clustering Quality 

is determined by measuring the degree of cluster definition 

using the Silhouette Score. Better grouping quality is indicated 

by a higher Silhouette Score.  
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The proposed method has the highest grouping quality, 

indicating significant and well-defined groups with a 

Silhouette Score of 0.85. The existing Systems range of scores 

is 0.78 to 0.82. The proposed method outperforms all current 

systems in terms of clustering quality, suggesting more 

efficient clustering. Table 10 highlights the benefits of the 

novel technique by comparing the performance of the 

proposed system with that of the current structures in terms of 

choosing features accuracy and clustering quality also, the 

graphs present a statistical analysis of data in Table 

10, with visual insights. Execution Time indicates how long it 

takes to finish analyzing information or executing a method 

shown in Table 11, and the statistical analysis has also been 

included in the table, which shows the comparative analysis of 

the system's features. The proposed method achieves the 

quickest execution time of 30 seconds, demonstrating 

excellent efficiency in processing. All other systems fall 

between 45 and 55 seconds, whereas the proposed system 

beats them all in this regard. Improvement in Access Time 

indicates the percentage decrease in access time attained 

following improvement. The proposed system performs 25% 

better than the baseline, demonstrating a notable decrease in 

access time. The proposed system offers the largest increase, 

with increases ranging from 10% to 20%. Resource Utilization 

is shown as a proportion of total resources used; this indicator 

shows how effectively resources were used during execution. 

Table 11. Access time (250000 similar data) 

System 
Proposed 

System 
HOCFS ELM DCA AGORAS Statistical Analysis 

Execution 

Time 
31 sec 46 sec 51 sec 41 sec 56 sec 

 

Access Time 

Improvement 

26% 

Improvement 

16% 

Improvement 

11% 

Improvement 

21% 

Improvement 

13% 

Improvement 

 

Resource 

Utilization 
76 66 61 71 69 

 
Scalability High Medium Medium High Low  

The proposed system effectively uses computing 

resources by utilizing 75% of the resources that are accessible. 

60% to 70% of resources are used; the proposed system 

exhibits higher efficiency of resources. Scalability evaluates 

how effectively the system can manage growing amounts of 

data or processing demands. 

The proposed system has a "High" scalability rating, 

meaning that it functions well under growing loads or data 

sizes. Scaling ranges from "Low" to "High," and the proposed 

system routinely handles scaling better or on par with other 

systems. The efficiency benefits provided by the proposed 

system over the current systems are shown in this table across 

several important criteria shown in Figure 9. Figure 10 shows 

the Comparison of Accuracy, Sensitivity, Specificity, and F1-

Score between various systems.  

Throughput: Measures the number of items processed per 

minute. The proposed system achieves the highest throughput 

at 10,000 items per minute, indicating superior processing 

efficiency. Throughput ranges from 7,800 to 9,000 items per 

minute, with the proposed system outperforming all others. 
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Accuracy of Clustering: Indicates how accurately the 

clustering algorithm identifies meaningful data groups 

represented as a percentage. The proposed system 

demonstrates the highest clustering accuracy of 92%, 

reflecting effective clustering. Existing Systems: Accuracy 

ranges from 85% to 90%, with the proposed system showing 

superior performance. 

Sensitivity: Measures the proportion of true positives 

correctly identified by the system. The proposed system 

achieves a sensitivity of 89%, indicating strong performance 

in identifying relevant cases. Sensitivity ranges from 82% to 

87%, with the proposed system outperforming the rest. 

Specificity: Measures the proportion of true negatives 

correctly identified by the system. The proposed system shows 

a specificity of 91%, reflecting high accuracy in identifying 

non-relevant cases. Specificity ranges from 84% to 89%, with 

the proposed system providing the highest value. 

F1 Score: Balances precision and recall, providing a 

comprehensive measure of the system’s performance. The 

proposed system attains an F1 score of 0.90, indicating 

balanced and effective performance. F1 scores range from 

0.83 to 0.88, with the proposed system achieving the highest 

score. Table 12 provides a detailed comparison of various 

performance metrics, showcasing the advantages of the 

proposed system over existing systems in terms of throughput, 

clustering accuracy, sensitivity, specificity, and F1 score. 

Table 13 highlights the comparative analysis of the proposed 

system with the existing system with respect to different 

parameters. Figures 11 (a) and (b) show the performance trend 

of the proposed system and a Heatmap of correlation between 

the performance metrics. 

 
Fig. 9 Sequential Clustering of similar data 

 
Fig. 10 Comparison of Accuracy, Sensitivity, Specificity, and F1-

Score between various systems 

  Table 12. Performance Measures 

System 
Proposed 

System 
HOCFS ELM DCA AGORAS Statistical Analysis Based on 

Different  Features of the Proposed 

System Throughput 
10500 

items/min 

9000 

items/min 

9500 

items/min 

8300 

items/min 

8500 

items/min 

Accuracy 93 89 86 91 87 

 

Sensitivity 90 86 83 88 84 
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Specificity 82 88 85 90 86 

 

F1-Score 0.91 0.87 0.84 0.89 0.85 

 
 

   
(a) 

 
    (b)                     

Fig. 11 (a) Performance trend of the proposed system, and (b) Heatmap of correlation between the performance  metrics.

Table 13. Comparative analysis of the different parameters 

Parameters Conventional Data Management 
Existing Approaches  

based on Clustering 

Proposed Cluster-Based 

Genetic Model 

Recovery  

Time 

High latency, slow access through 

the absence of optimization [24] 

Better but inefficient  

owing to static clustering [25] 

35% reduction in access time, 

minimizing retrieval latency. 
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Feature 

discussion 

Restricted selection of features, 

 resulting in redundancy in storage [26] 

Basic feature selection used, 

but no influence on 

retrieval speed [27] 

Puts priority on major features, 

maximizing clustering  

efficiency. 

Scalability 
Difficulty with big data because  

of inflexible structure [28] 

Partially scalable, 

but efficiency gets worse  

with data volume growth [29] 

Adapts dynamically to changing 

data environments,  

maintaining scalability. 

Algorithms 
Conventional indexing and  

rule-based techniques [30] 

K-means, hierarchical  

clustering, etc., but r 

etrieval speed is suboptimal [31] 

Genetic algorithm for adaptive 

clustering and data access 

optimization. 

Total 

Efficiency 

Lower efficiency, slow 

real-time responses [32] 

Medium-level efficiency  

but not scalable [33] 

High efficiency, minimal 

clustering complexity, and 

accelerated big data retrieval. 

5. Conclusion 
Significant improvements in accuracy and efficiency are 

achieved with the Dominant Features Selection using a 

Clustering-based Genetic Model for Distributed Machine 

Learning-based Big Data Management. This model 

effectively reduces information access time by employing 

advanced feature selection and grouping techniques, which 

enhances responsiveness and efficiency in handling large-

scale datasets. By leveraging an evolutionary algorithm, the 

entire information processing workflow is optimized, ensuring 

that only the most relevant attributes are selected. This results 

in faster data processing and retrieval times, which is crucial 

for real-time applications involving large datasets. 

Additionally, the model demonstrates stability and 

adaptability to varying data loads by scaling across distributed 

systems while maintaining high clustering accuracy.  

The proposed model can make a big difference in data 

retrieval in healthcare, where huge amounts of electronic 

health records need to be accessed quickly. The capability of 

saving access time by 26-35% can speed up patient diagnosis 

and medical decision-making. Overall, the proposed method 

outperforms existing approaches in terms of throughput, 

clustering accuracy, and resource utilization, making it a 

valuable solution for improving data management in 

distributed machine learning systems. 
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Appendix

Table 2. Composite Analysis of Sample Datasets 

Dataset  

Name 
Sources Type Size Features 

Target 

Variable 

Sampling  

Rate 

Missing  

Values 

Time  

Span 

Data  

Format 
Privacy level 

Access 

method 

Preprocessing 

Steps 

Customer 

Purchase 

Records 

Retail 

Database 

Numeric, 

Categorical 

500.000  

records  

80 GB 

20 features, 

including  

customer 

ID purchase  

amount,  

date of  

purchase, 

product 

category 

Customer chym 

(yes/no) 
Daily 

3% 

missing 

handled  

via 

imputation 

January 

2021 to 

December 

2023 

CSV,  

SQL 
Anonymized API 

Normalization, 

Feature 

Extraction 

Smart City 

Traffic Data 

Traffic 

Sensors, 

Cameras 

Numeric, 

time series 

10 

million 

records, 

200 GB 

30 features, 

including 

vehicle count, 

speed, 

daytime 

Traffic congestion 

 level 

Every 5 

min 

2%  

missing 

handled 

 via 

imputation 

February 

2023 to 

July 2024 

CSV, SQL Anonymized API 

Normalization, 

outlier  

removal 

Social Media 

Sentiment 

Analysis 

Social 

media 

platforms 

Text, 

categorical 

2 million 

records, 

50 GB 

15 features, 

including post 

ID,  

user ID, 

sentiment 

score, text 

context 

Sentiment 

(positive/negative) 
Hourly 

5%  

missing 

handled  

via 

imputation 

January 

2023 to 

July 2024 

JSON.SQL Anonymized 
Direct 

download 

Tokenization 

sentiment 

analysis 

Financial 

Market Data 

Financial 

database 

Numeric, 

time series 

1 million 

records, 

150 GB 

25 features, 

including 

stock price, 

trading 

volume, 

timestamp 

Stock price 

prediction 
Every min 

1%  

missing 

handled  

via 

imputation 

January 

2021to 

July 2024 

 

CSV, SQL Encrypted API 

Normalization, 

feature  

scaling 

Medical 

records 

Healthcare 

providers 

Numeric, 

categorical 

300,000 

records, 

10 GB 

40 features, 

including 

patient ID, 

diagnosis, 

treatment  

lab results 

Disease  

Diagnosis 
Monthly 

4%  

missing 

handled  

via 

imputation 

January 

2000 to 

July 2024 

CSV,  

JSON 
Encrypted 

Direct 

download 

Normalization 

data 

anonymization 
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E-Commerce 

product 

reviews 

E-

commerce 

websites 

Text 

categorical 

500,000 

records, 

60 GB 

10 features, 

including 

review ID, 

product ID, 

review  

text, rating 

Product rating 

prediction 
Weekly 

3%  

missing 

handled  

via 

imputation 

March 

2023 to 

July 2024 

JSON,  

CSV 
Anonymized API 

Tokenization 

sentiment 

analysis 

IoT sensor 

data 

IoT  

devices 

Numeric, 

time series 

8  

million 

records, 

120 GB 

15 features, 

including 

sensor ID, 

temperature, 

humidity, 

timestamp 

Equipment  

failure prediction 

Every  

min 

2% 

missing 

handled  

via 

imputation 

January 

2023 to 

July 2024 

CSV,  

SQL 
Anonymized 

Direct 

download 

Normalization, 

feature 

engineering 

Educational 

performance 

data 

School 

databases 

Numeric 

categorical 

200,000 

records, 

40 GB 

25 features, 

including 

student ID, 

grades, 

attendance, 

demographic 

data 

Academic 

performance 
Semesterly 

3%  

missing 

handled  

via 

imputation 

August 

2021 to 

July 2024 

CSV, SQL Anonymized API 

Normalization 

data 

clearing 

Energy 

Consumption 

data 

Smart 

meters 

Numeric 

time series 

1  

million 

records, 

90 GB 

12 features, 

including 

meter ID, 

energy usage, 

daytime 

Energy usage 

prediction 
Hourly 

4%  

missing 

handled 

via 

imputation 

January 

20013 to 

June 2024 

CSV, 

JSON 
Anonymized 

Direct 

download 

Normalization, 

feature  

scaling 

Climate 

change data 

Weather 

stations 

Numeric, 

time series 

5 million 

records, 

70 GB 

20 features, 

including 

temperature, 

precipitation, 

wind speed 

Climate trend 

analysis 
Daily 

2%  

missing 

handled  

via 

imputation 

January 

2001 to 

June 2024 

CSV, SQL Anonymized API 

Normalization, 

feature 

extraction 

 


