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Abstract - This paper presents the adaptation of the RivaGAN framework for robust image watermarking, specifically targeting 

image transformations such as JPEG compression, Gaussian noise, scaling, and cropping. Attention mechanisms are employed 

to improve watermark embedding and extraction robustness and accuracy. The proposed method incorporates a 32-bit 

watermark into 512 x 512 images from the CIFAR-10 dataset, including pre-and post-processing phases, to further improve 

performance. The effectiveness of the technique is judged using indicators such as Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index Measure (SSIM) and Recovery Accuracy (RA). The results illustrate strong resilience to attacks, including JPEG 

compression and scaling, with negligible visual deterioration and excellent accuracy in watermark detection. However, the 

system demonstrates vulnerability to heavy Gaussian noise and cropping, where recovery accuracy significantly drops. 

Additionally, we evaluate the effect of pre-and post-processing on system performance under Gaussian noise conditions, 

highlighting their benefits in mitigating these vulnerabilities. 

Keywords - Watermarking, RivaGAN, Robustness, Adversarial Networks, Attention Mechanism.

1. Introduction  
With the rapid development of new communication 

technologies, the use, transmission, and restructuring of 

digital content are increasing, making the security of 

multimedia exchanges challenging due to unauthorized use, 

falsification, or copyright infringement. Digital watermarking 

has been widely studied to protect media data from illegal use 

in recent years. Developing advanced protection methods is 

essential to preserve digital data exchanges. Watermarking is 

a common solution that embeds hidden messages or 

information (called a watermark) into the original image 

(cover data). The watermarked image should resemble the 

original (imperceptibility), contain as much information as 

possible (capacity), and be robust against various attacks 

(transformations). Watermarking applications span various 

fields, including securing medical images in telemedicine [1, 

2], protecting digital media, tracking broadcast content [3], 

and authenticating IoT network data [4]. Despite these uses, 

many existing methods struggle to balance robustness, 

invisibility, and computational efficiency, particularly under 

complex transformations. The limitations of traditional 

watermarking methods against transformation attacks have 

directed research towards more robust systems. Generative 

Adversarial Networks (GANs) have emerged as a promising 

tool to improve the robustness of watermarking, providing the 

ability to learn complex data patterns and generate realistic 

results. RivaGAN has demonstrated success in video 

watermarking using convolutional networks, attention 

mechanisms, and adversarial training. Nevertheless, its 

application for image watermarking remains underexplored. 

Unlike video watermarking, which benefits from temporal 

redundancy, image watermarking relies solely on spatial 

characteristics, making it more sensitive to distortions. This 

paper addresses this gap by adapting RivaGAN for robust 

image watermarking. Using the CIFAR-10 dataset, a 32-bit 

watermark is embedded into 512x512 images, and the 

system’s performance is evaluated under transformations such 

as JPEG compression, Gaussian noise, scaling, and cropping. 

This work integrates attention mechanisms to enhance 

robustness and employs pre- and post-processing techniques 

to improve performance under noisy conditions. This work 

introduces several key contributions: 

• Adaptation of RivaGAN with the integration of attention 

mechanisms for image watermarking to demonstrate its 

potential to manage single-frame transformations. 

• A detailed analysis of the system's performance against 

various attacks, highlighting its strengths and limitations 

with the use of metrics such as Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index (SSIM), and 

Recovery Accuracy (RA). 

• Pre- and post-processing techniques to improve system 

performance under noisy conditions. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.hassani@uae.ac.ma
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The remainder of this paper is organized as follows. 

Section 2 reviews the state of the art in watermarking 

techniques, covering both traditional and deep learning-based 

methods. Section 3 outlines the methodology, including the 

pre-processing, watermark embedding, post-processing, and 

transformations applied to test the system’s robustness. 

Section 4 presents and discusses the results, focusing on the 

effects of various attacks on PSNR, SSIM, and recovery 

accuracy. Finally, Section 5 concludes the paper and suggests 

future directions for improving the system's robustness, 

particularly against more complex transformations. 

2. Related Work 
In recent years, image watermarking has evolved 

significantly, evolving from traditional methods based on 

simple algorithms to sophisticated strategies based on deep 

learning. In this section, we examine the main watermarking 

methods, with a particular emphasis on recent studies dealing 

with issues of robustness and imperceptibility. 

2.1. Traditional Watermarking Methods 

Traditional image watermarking methods can basically be 

divided into two groups: those that rely on the spatial domain 

and those that rely on the frequency domain. These methods 

have been used for decades and form the basis of recent 

advances in watermarking. 

2.1.1. Spatial Domain Methods 

Least Significant Bit (LSB) replacement is one of the 

oldest and most basic techniques for inserting watermarks into 

images [5]. This method embeds the watermark in the least 

significant bits of the pixel values. While LSB is 

computationally efficient and produces minimal visual 

distortion, it is highly vulnerable to basic image 

transformations such as compression, cropping, and noise 

addition [6]. Content-based approaches increase their 

robustness by inserting watermarks in key regions of the 

image, such as edges, textures or feature points. These 

techniques use image characteristics, such as corners 

identified by the Harris detector for example, to embed 

watermarks in areas less likely to be affected by image 

changes, thereby ensuring a high recovery accuracy and 

minimal visual distortion. 

2.1.2. Frequency Domain Methods 

Stronger than spatial domain-based methods, frequency 

domain techniques incorporate the watermark into the 

transformed coefficients of the image. The use of 

watermarking based on Discrete Cosine Transform (DCT) [7] 

is widespread due to its robustness against compression, 

especially for JPEG images. Techniques based on Discrete 

Wavelet Transform (DWT) [8] are frequently used thanks to 

their ability to represent multi-resolution features, which 

makes them more robust to a greater diversity of 

transformations. DWT combined with Singular Value 

Decomposition (SVD) has gained popularity for providing 

robustness while maintaining good image quality [9]. Further 

refinements, such as the use of Discrete Fourier Transform 

(DFT) [10], offer additional resilience to geometric distortions 

like rotation, but these methods still suffer from limited 

robustness against scaling and cropping. Despite these 

improvements, traditional methods often face a trade-off 

between robustness and invisibility. The watermark’s 

resistance to removal usually comes at the cost of noticeable 

visual degradation, especially when more aggressive 

embedding is required to withstand geometric attacks [11]. 

2.2. Deep Learning-Based Watermarking 

The advent of deep learning has introduced new 

possibilities for image watermarking, offering more adaptive 

and sophisticated models that can balance robustness and 

invisibility more effectively than traditional methods. 

2.2.1. CNN-Based Watermarking 

One of the first uses of deep learning in the field of image 

watermarking was based on Convolutional Neural Networks 

(CNN), which were used for both embedding and extraction 

operations. The HiDDeN framework [12] was one of the first 

to show how deep neural networks can be employed to hide 

information in high-quality images. However, this model 

faced robustness challenges to common image 

transformations like resizing and rotation, which continue to 

pose difficulties for CNNs trained on pixel-level data [13]. 

Recent studies have extended the use of CNNs in image 

watermarking by combining them with traditional methods 

like DWT or DCT to improve robustness [14]. These hybrid 

approaches use CNNs to learn features more resistant to noise 

and compression, while the frequency domain techniques 

handle geometric distortions. 

2.2.2. Autoencoders and Unsupervised Learning 

Autoencoders, another type of deep neural network, have 

been employed in image watermarking to automatically learn 

compact representations of both the image and watermark 

data. Autoencoder-based models have shown promise in 

reducing computational complexity while maintaining 

robustness [15]. Furthermore, they have been applied in 

conjunction with CNNs to improve watermark recovery in 

scenarios where the image has been compressed or attacked 

[16]. 

2.2.3. GAN-Based Watermarking 

Implementing adversarial learning has transformed the 

watermarking field through Generative Adversarial Networks 

(GANs). GANs consist of two competing networks: a 

generator that inserts the watermark and a discriminator 

dedicated to its detection. This conflicting configuration 

forces the generator to create more undetectable and resilient 

watermarks. Zhang et al. [17] employed GANs for video 

watermarking, demonstrating notable improvements in 

robustness to compression and noise. GANs have also been 

used to improve image watermarking. In [18], the authors 
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combined GANs with an encoder-decoder architecture, 

achieving superior robustness against various image 

manipulations while maintaining imperceptibility. Despite 

these successes, GAN-based approaches often require 

extensive training and are computationally expensive, limiting 

their practical application [19]. 

More current research has delved deeper into GAN-based 

watermarking techniques. Guangyong Gao et al., (2024) [20] 

proposed an enhanced GAN model designed for improving 

resilience against adversarial attacks, while Debolina 

Mahapatra et al., (2023) [21] presented a hybrid GAN-

autoencoder approach that strengthens the watermark 

embedding process, ensuring robustness against noise and 

compression attacks. These studies highlight the continuous 

development of GAN-based watermarking techniques, 

improving their practical use in real-world scenarios. 

2.3. Attention Mechanisms in Watermarking 

In computer vision, attention mechanism techniques are 

increasingly common due to their ability to focus attention on 

specific areas of an image. In the watermarking domain, 

attention mechanisms can improve robustness and invisibility 

by precisely embedding the watermark in areas less likely to 

experience distortion. The first works introducing attention 

mechanisms into video watermarking were those of Zhang et 

al. [22]. They demonstrated that attention-based embedding 

can increase resistance to common video transformations like 

compression and resizing. Attention-based watermarking for 

images is still new, but initial research indicates that it could 

strengthen the strength of the watermark by emphasizing 

textured areas of the image where the watermark is less likely 

to be affected by manipulations like resizing and cropping 

[23]. More recent work by Yimeng Zhao et al. (2022) [24] and 

Jiren Zhu et al. (2017) [14] has explored attention mechanisms 

in high-resolution watermarking, showing that attention maps 

can significantly improve robustness by embedding 

watermarks into areas of an image that are less likely to be 

affected by transformations. These studies are highly relevant 

for integrating attention mechanisms in image watermarking 

systems, such as the adaptation of RivaGAN in this paper. 

2.4. Adversarial Training for Robust Watermarking 

Adversarial training has established itself as an effective 

lever in the deep learning sector, particularly to strengthen the 

resilience of models against attacks. In the context of 

watermarking, adversarial training consists of simulating 

authentic attacks such as noise, compression or cropping 

during the training phase, thus pushing the model to develop 

more robust integration strategies. In recent work by Vukotić 

et al. [25], adversarial networks were employed to simulate 

attacks aimed at removing the watermark. The generator 

network learns to embed the watermark in a way that resists 

these attacks while the adversary tries to modify the 

watermarked image without leaving visible traces. This setup 

has been shown to improve the robustness of the watermark 

without sacrificing image quality. Recent research by Javni 

Thakkar et al. (2022) [26] and Jianbo Chen et al. (2023) [27] 

looked at better adversarial training methods for 

watermarking, focusing on improving resistance to cropping, 

noise, and digital tampering. This progress highlights the 

importance of adversarial networks in reinforcing the 

sustainability of marked content in different attack contexts. 

2.5. Limitations of Existing Approaches 

Despite these advancements, several challenges remain 

unsolved in the field of image watermarking. 

2.5.1. Fragility to Geometric Transformations 

While frequency domain techniques are robust against 

compression, their resistance to geometric attacks such as 

scaling and rotation is still limited. Deep learning models, 

though more adaptable, are often vulnerable to these 

transformations unless specifically trained to handle them 

[28]. 

2.5.2. Computational Complexity 

While highly effective in creating imperceptible and 

robust watermarks, GAN-based approaches often require 

significant computational resources. The training process can 

be slow and expensive, making these models impractical for 

real-time applications [29]. 

2.5.3. Under-Explored Attention Mechanisms 

While attention mechanisms have shown great promise in 

other computer vision tasks, their application in image 

watermarking remains underexplored. More research is 

needed to fully leverage their ability to dynamically focus on 

robust regions of the image, particularly for resisting advanced 

adversarial attacks [30]. 

3. Methodology 
In this paper, we adapt the RivaGAN framework, 

originally designed for robust video watermarking, to an 

image watermarking task using the CIFAR-10 dataset. 

RivaGAN leverages adversarial networks and attention 

mechanisms to embed data securely, ensuring the watermark 

is robust against various image transformations. We focus on 

embedding a 32-bit watermark into images resized to 512x512 

pixels and evaluate the system’s resilience against common 

image distortions and attacks. 

3.1. RivaGAN Architecture Overview 

RivaGAN’s architecture for image watermarking consists 

of the following components: 

3.1.1. Encoder 

Responsible for embedding the watermark into the image. 

The encoder generates a residual mask applied to the image, 

embedding the watermark while keeping it visually 

imperceptible. 
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3.1.2. Decoder 

Extracts the watermark from the watermarked image, 

using a convolutional network and attention mechanism to 

identify and decode the watermark from the image. 

3.1.3. Attention Mechanism 

Focuses on specific regions of the image for the 

integration and decoding process, thereby strengthening 

resistance by directing watermark integration towards less 

vulnerable areas. This helps minimize the effect of changes 

like cropping and scaling. 

3.1.4. Adversarial Training 

In the original RivaGAN model, adversarial training is 

employed to improve robustness. A discriminator tries to 

detect watermarked images, forcing the encoder to hide the 

watermark more resiliently. In this adaptation, adversarial 

training is deferred to future work. 

3.2. Image Watermarking Process 

The RivaGAN framework was adapted to embed a 32-bit 

watermark into images from the CIFAR-10 dataset (Figure 1). 

The images are resized to 512x512, ensuring uniformity 

across the test cases. The following stages summarize the 

process: 

3.2.1. Pre-Processing 

Before embedding the watermark, the images are pre-

processed: 

Image Resizing: All CIFAR-10 images are scaled to 512 

x 512 pixels to accommodate the integration of the watermark. 

Gaussian Filtering: A Gaussian smoothing filter is 

applied to the resized image to reduce high-frequency noise 

and prepare the image for watermark embedding. This pre-

processing step improves the system’s resilience against noisy 

conditions. 

 
Fig. 1. General scheme of the watermarking system using the adapted RivaGAN Framework  

 

This figure illustrates the watermark embedding and 

decoding processes with attention mechanisms and pre- and 

post-processing steps, demonstrating the system’s robustness 

against various attacks such as compression, noise, scaling, 

and cropping. The figure also highlights the evaluation 

metrics, PSNR, SSIM, and Recovery Accuracy, used to assess 

the system's performance after the watermark extraction. 
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3.2.2. Watermark Embedding 

Watermark embedding uses the RivaGAN encoder, a 

convolutional network enhanced with an attention 

mechanism. The watermark is embedded through a residual 

mask, ensuring minimal distortion of the original image: 

𝐼𝑤 =  𝐼 +  𝛼 ⋅ 𝑡𝑎𝑛ℎ(𝑓(𝐼, 𝑊)) (1) 

Where: 

• 𝐼𝑤 is the watermarked image, and 𝐼 is the original image. 

• 𝑊 is the 32-bit watermark. 

• 𝑓(𝐼, 𝑊) is a function applied by the encoder's 

convolutional layers. 

• 𝛼 is a small scaling factor to keep distortions minimal. 

3.2.3. Watermark Decoding 

The watermark extraction process uses the decoder, 

which recovers the watermark even after transformations: 

𝑊′ =  𝐷(𝐼𝑤) =  𝑃𝑜𝑜𝑙(𝑓(𝐼𝑤) ⋅ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐼𝑤)) (2) 

Where: 

• 𝑊′ is the extracted watermark, and 𝐷 is the decoder 

network. 

• Pooling aggregates spatial features to recover the 

watermark, with the attention mechanism guiding the 

decoding. 

3.3. Robustness Testing with Image Transformations 

We subjected the watermarked images to various 

transformations simulating real-world distortions to evaluate 

the system's robustness. The following transformations were 

applied: 

• JPEG compression of quality 90, 70 and 50. 

• Gaussian noise was added with variations of 10, 25 and 

50. 

• Scaling using factors 0.9, 0.8 and 0.7. 

• Crop with proportions of 10%, 20% and 30%. 

These transformations are commonly used to simulate 

potential attacks on watermarked images. By evaluating the 

system's performance under these scenarios, we aimed to 

determine its robustness. 

3.4. Metrics for Evaluation 

We based ourselves on the following criteria to judge the 

effectiveness of our watermark system: 

3.4.1. Peak Signal-to-Noise Ratio (PSNR) 

PSNR evaluates the quality of the marked image in 

comparison with the original. Equation 3 illustrates how to 

calculate it. 

𝑃𝑆𝑁𝑅 =  10 ⋅ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (3) 

Where: 𝑀𝐴𝑋𝐼 is the maximum possible pixel value. 

• 𝑀𝑆𝐸 is the mean squared error between the original and 

watermarked image. 

3.4.2. Structural Similarity Index Measure (SSIM) 

SSIM compares the structural similarity between the 

original and watermarked images, accounting for luminance 

and contrast changes. SSIM is given by: 

𝑆𝑆𝐼𝑀(𝐼, 𝐼𝑤) =
(2𝜇𝐼𝜇𝐼𝑤+ 𝑐1)(2𝜎𝐼 𝐼𝑤+ 𝑐2)

(𝜇𝐼
2+ 𝜇𝐼𝑤

2 + 𝑐1)(𝜎𝐼
2+ 𝜎𝐼𝑤

2 + 𝑐2)
 (4) 

Where: 𝜇𝐼 and 𝜇𝐼𝑤
 are the means of the original and 

watermarked images. 

• 𝜎𝐼 and 𝜎𝐼𝑤
are their variances. 

• 𝑐1and 𝑐2are constants to stabilize the equation, avoiding 

division by zero. 

3.4.3. Recovery Accuracy 

Recovery accuracy measures the percentage of correctly 

recovered watermark bits: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑡𝑠
) × 100 (5) 

Where : 

• The 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐵𝑖𝑡𝑠 refers to the number of 

watermark bits correctly recovered by the decoder. 

This evaluates how well the decoder can extract the 

original watermark after transformations. 

3.5. Pre-Processing and Post-Processing for Robustness 

Enhancement 

To make the watermark system more robust, we applied 

pre-processing before embedding and post-processing after 

watermark extraction: 

 Pre-processing (Gaussian smoothing): An original image 

is processed with a Gaussian filter to reduce high-frequency 

noise, which helps reduce the impact of noise and optimizes 

the watermark's embedding capacity. Smoothing is 

particularly useful for handling transformations such as 

Gaussian noise. 

Post-Processing (Median Filtering): After watermark 

extraction, a median filter is applied to reduce residual noise. 

The median filtering helps to restore image quality by 

removing outliers, such as noise introduced by Gaussian 

transformations, enhancing the watermark recovery process. 
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3.6. CIFAR-10 Dataset and Testing Setup 

The CIFAR-10 dataset was selected to evaluate the 

performance of the proposed watermarking system. CIFAR-

10 consists of 60,000 color images in 10 classes; in this work, 

all images were resized to 512x512 to fit the input 

requirements of the watermarking system.  

For testing, 1000 images were randomly selected from the 

CIFAR-10 test set and used for initial watermark embedding 

and decoding without any transformations. Following this, a 

separate set of 100 images was selected for robustness testing, 

where the aforementioned transformations (JPEG 

compression, Gaussian noise, scaling, and cropping) were 

applied to assess how well the system could extract 

watermarks under different attack conditions. 

4. Results and Discussion 
In this section, we evaluate the performance of our 

watermarking system based on the RivaGAN architecture for 

embedding a 32-bit watermark in images from the CIFAR-10 

dataset.  

The images used for the evaluation are sized at 512x512 

pixels, and we assess the system's robustness using three 

metrics: PSNR (dB), SSIM, and Recovery Accuracy (%). The 

testing was conducted in two main phases: first, without any 

attacks, and second, with a set of common image 

transformations that act as attacks. 

4.1. Performance Without Attacks 

In the first testing phase, we evaluated the system's 

performance on a dataset of 1000 images from CIFAR-10 

without applying any attacks. After embedding the watermark, 

we measured the PSNR, SSIM, and Recovery Accuracy upon 

decoding the watermark. 

Below are the average results of the system's performance 

without attacks. 

• PSNR: 40.72 dB 

• SSIM: 0.9734 

• Recovery Accuracy: 98.42% 

The PSNR value of 40.72 dB demonstrates that the 

watermarked images maintain excellent visual quality, while 

the SSIM of 0.9734 reveals very low structural distortion. A 

high recovery rate of 98.42% demonstrates the system's 

proficiency in accurately deciphering the embedded 

watermark.  

It should be clarified that the average recovery accuracy 

was determined considering only those cases where a total 

recovery of 100% was obtained. Additionally, the distribution 

of PSNR, SSIM, and Recovery Accuracy across the dataset is 

depicted in the distribution graphs below. 

 
Fig. 2 Distribution of PSNR values across 1000 images without any 

applied attacks 

 

This graph shows the retention of visual quality after 

embedding the watermark. 

 
Fig. 3 Distribution of SSIM values across 1000 images without any 

applied attacks 

 

This graph highlights the structural similarity maintained 

between the original and watermarked images. 

 
Fig. 4 Distribution of recovery accuracy percentages across 1000 images 

without attacks 

 

The graph indicates the system's ability to successfully 

extract the embedded watermark accurately. 
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4.2. Performance with Attacks 

In the second phase, we subjected the system to a series 

of common image transformations to test its robustness 

against attacks.  

 

We applied the following four types of attacks to a set of 

100 images: 

• JPEG compression at three levels: 90, 70, and 50 

• Gaussian Noise with variances of 10, 25, and 50 

• Scaling factors of 0.9, 0.8, and 0.7 

• Cropping with percentages of 0.1, 0.2, and 0.3 

We measured the impact on the watermarked images for 

each transformation by calculating the PSNR, SSIM, and 

Recovery Accuracy after decoding the watermark.  

The following table 1 summarizes the average results for 

each transformation level. 

Table 1. Average PSNR, SSIM, and recovery accuracy for different 

transformations and levels 

Attack 

Type 
Level 

PSNR 

(dB) 
SSIM 

Recovery 

Accuracy 

(%) 

JPEG 

Compression 

90 41.31 0.98 95.05 

70 41.13 0.98 68.32 

50 40.66 0.98 4.95 

Gaussian 

Noise 

10 27.98 0.71 62.38 

25 20.45 0.39 0.00 

50 14.93 0.19 0.00 

Scaling 

0.9 40.92 0.98 98.02 

0.8 40.96 0.98 97.03 

0.7 41.01 0.98 98.02 

Cropping 

0.1 16.92 0.76 74.26 

0.2 13.69 0.62 0.00 

0.3 12.35 0.54 0.00 

 

This table summarizes the performance of the 

watermarking system under various transformation types 

(JPEG Compression, Gaussian Noise, Scaling, and Cropping) 

at different levels.  

It illustrates how each attack impacts image quality and the 

system's ability to recover the embedded watermark, with 

metrics presented as PSNR, SSIM, and Recovery Accuracy 

percentages. 

To better visualize the impact of the transformations on 

image quality and watermark recovery, the following graphs 

illustrate the distribution of PSNR, SSIM, and Recovery 

Accuracy across different transformations and transformation 

levels: 

 
Fig. 5 PSNR versus various transformations 

 

This graph visualizes the degradation in image quality 

(PSNR) under different transformations, including JPEG 

compression, Gaussian noise, scaling, and cropping. It 

highlights the significant drop in PSNR values for 

transformations involving high levels of Gaussian noise and 

cropping. 

 

 
Fig. 6 SSIM versus various transformations 

 

The graph presents the structural similarity index (SSIM) 

for various transformations, indicating how different levels of 

JPEG compression, Gaussian noise, scaling, and cropping 

affect the structural quality of the watermarked images. 

Gaussian noise and cropping, especially at higher levels, 

significantly reduce SSIM. 

 
Fig. 7 Recovery Percentage Distribution versus various transformations 
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This graph shows how the watermark recovery accuracy 

changes with different transformations. Scaling consistently 

maintains high recovery accuracy, while Gaussian noise and 

cropping cause steep declines, particularly at higher intensities 

of the attacks. 

4.3. Performance with Pre- and Post-Processing 

In addition to the general test with and without any attacks, 

we conducted a separate evaluation on six selected images 

(images below) with and without pre- and post-processing to 

analyze their effect on robustness against Gaussian Noise 

(variance 10). The performance was evaluated on normal and 

processed images using both PSNR, SSIM, and Recovery 

Accuracy metrics. 
 

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) (f) 

Fig. 8 The host images used in Pre- and Post-Processing Tests: (a) 

Airplane, (b) Baboon, (c) Barbara, (d) Lena, (e) Pepper, and (f) Sailboat 

 

4.3.1. Without Noise 

The PSNR and SSIM values for processed images are 

slightly lower than the normal images, but the Recovery 

Accuracy improves to 100% when pre- and post-processing is 

applied. 

4.3.2. With Noise 10 (Variance 10) 

The presence of noise leads to a more pronounced 

degradation of the PSNR and SSIM values of the processed 

images, highlighting the difficulty of maintaining excellent 

visual quality in a noisy context.  

 
Fig. 9 PSNR comparison for normal and processed images with and 

without gaussian noise 

This graph illustrates the Peak Signal-to-Noise Ratio 

(PSNR) across six selected images, comparing normal and 

processed images both with and without Gaussian Noise 

(variance 10). It highlights how visual quality changes with 

pre- and post-processing. 

 
Fig. 10 SSIM comparison for normal and processed images with and 

without gaussian noise 

 

This graph shows the Structural Similarity Index (SSIM) 

across the six images, visualizing the impact of Gaussian 

Noise (variance 10) and the effects of pre-and post-processing 

on image structure and quality. 

 
Fig. 11 Recovery accuracy for normal and processed images with and 

without gaussian noise 

 

This graph depicts the Recovery Accuracy for watermark 

extraction in normal and processed images, both with and 

without Gaussian Noise (variance 10). It emphasizes the 

improvements in Recovery Accuracy after applying pre- and 

post-processing, especially for cases where the normal method 

did not achieve full recovery. 

Nevertheless, the recovery accuracy significantly 

improves processed images, reaching up to 100% in situations 

where normal images have not fully recovered the watermark. 

More specifically, images that did not achieve 100% retrieval 

accuracy under normal conditions (such as image e and image 
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f) managed to achieve 100% retrieval accuracy after applying 

pre-processing and post-processing. This highlights the value 

of processing methods to enhance noise resistance, although 

this may affect visual quality (PSNR and SSIM). The graphs 

below visually represent PSNR, SSIM, and Recovery 

Accuracy changes across the six images tested. 

4.4. Discussion of Results 

The results demonstrate that the watermarking scheme is 

highly effective in scenarios without attacks, achieving PSNR 

values above 40 dB and an average Recovery Accuracy of 

98.42%. This confirms the minimal visual degradation and 

high retrieval accuracy in normal conditions. However, when 

subjected to common image transformations, the system's 

performance shows varying degrees of robustness depending 

on the attack type and intensity. 

4.4.1. JPEG Compression 

The system handles light compressions (90 and 70) well, 

maintaining high PSNR and SSIM indices and managing to 

extract the watermark in most situations. However, when the 

compression ratio reaches 50, the recovery accuracy drops 

sharply to 4.95%. 

4.4.2. Gaussian Noise 

The system's tolerance to noise is limited, especially at 

high levels. With a noise variation of 25 to 50, the accuracy of 

the recovery drops to zero percent, meaning that the noise 

significantly impairs the inserted watermark. 

4.4.3. Scaling 

The watermark model demonstrates high resilience 

against downscaling, with extraction accuracy remaining high 

even when the image is downscaled to 70%. 

4.4.4. Cropping 

Cropping has a significant impact on recovery accuracy, 

especially at higher cropping rates. While the system achieves 

a recovery accuracy of 74.26% with 10% cropping, its 

performance drops to 0% with 20% and 30% cropping.These 

results suggest that although the watermarking system 

performs very well under standard conditions and 

demonstrates high robustness to some modifications (such as 

JPEG compression and scaling), it is more susceptible to 

severe noise and cropping. These data are essential to 

understand the strengths and limitations of the system in 

practical image protection cases. 

5. Conclusion and Perspectives 
In this paper, we illustrated the successful adaptation of 

the RivaGAN framework for image watermarking tasks using 

the CIFAR-10 dataset. The system demonstrates high 

robustness against JPEG compression and scaling 

transformations, recording high PSNR, SSIM and recovery 

accuracy scores. However, the system performance degrades 

when faced with more violent attacks, such as high levels of 

Gaussian noise and extensive cropping. Although the 

robustness-enhancing RivaGAN architecture incorporates 

adversarial training, there are still opportunities to improve 

handling these more complex transformations.  

Experiments indicate that before and after processing 

methods, including Gaussian blurring and median filtering, 

contribute minimal improvements in sound attack detection 

accuracy. However, additional actions are required to 

significantly optimize system performance in these 

circumstances. To further strengthen the solidity of the 

watermarking system, future research could focus on the 

following areas: 

5.1. Enhanced Attention Mechanisms 

The current attention mechanism in RivaGAN can be 

refined to selectively focus on texture-rich regions of the 

image that are less affected by transformations like noise and 

cropping. Advanced attention models could improve the 

accuracy of watermark embedding and extraction in these 

areas. 

5.2. Improved Pre-Processing and Post-Processing 

Techniques 

Despite the benefits of Gaussian smoothing and median 

filtering, further studies could explore more advanced pre- and 

post-processing methods to enhance robustness against 

intense noise and geometric deformations. 

5.3. Exploration of Hybrid Models 

Integrating frequency domain methods, such as Discrete 

Wavelet Transform (DWT), with RivaGAN's deep learning 

approach could improve resistance to common attacks, 

including high-frequency noise and compression artifacts. 

5.4. Diverse Image Testing 

Extending the evaluation to more diverse image datasets, 

including higher-resolution and complex real-world images, 

would better understand the system’s generalizability and 

performance in practical applications
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