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Abstract - Wireless Sensor Network (WSN) has drawn plenty of interest from the general public and experts lately. Utilization 

of it crosses traditional bounds in various scientific applications such as military observation, regulating temperatures, humidity 

tracking, and observing the weather. WSNs comprise several nodes, all of which serve as sensors and are primarily liable for 

data collection. Energy, electricity, performance, and deployment challenges are some of the limitations that these nodes must 

work within. The strategic placement of nodes significantly impacts the effectiveness of data transmission. Furthermore, due to 

the absence of location information, the information becomes worthless. Therefore, localization plays a crucial role in WSN 

applications. Several methods have been introduced for localization; however, localization error impacts the performance of 

these methods. To overcome the drawbacks of existing methods, this article introduces a novel hybrid approach where least 

square and DV hop localization schemes are used as base localization models. Further, combined chicken swarm optimization 

and the fuzzy logic-based model were also incorporated to improve the overall performance. The experimental analysis 

demonstrates that the proposed has reported the average localization error as 0.0644, 0.085 and 0.125 for varied transmission 

range, anchor node and the ratio of anchor nodes, respectively, showing a significant improvement in localization accuracy.  

Keywords - Chicken swarm optimization, DV-hop, Fuzzy logic, Localization, Wireless sensor networks. 

1. Introduction 
During the last two decades, the world has noticed 

tremendous growth in various technological domains, 

facilitating connectivity through networks using both wired 

and wireless networks. This connectivity allows us to share 

information and establish communication across the globe. 

However, the excessive use of these advanced communication 

technologies poses several challenges in adopting them for 

different applications. Currently, WSNs have fascinated 

scholars due to their versatile range of functionalities in 

various real-world applications [1]. Generally, the WSN is a 

collection of small, tiny, low-cost sensor nodes placed in a 

certain region and connected by a wireless connection medium 

to formulate the sensor field. A battery powers the sensor 

nodes to perform certain computations according to the given 

task. These networks are used in numerous real-world 

scenarios, such as environment tracking [2], battlefield 

surveillance [3], habitat monitoring, health monitoring and 

target tracking [5] etc. Despite their diverse applications, the 

sensor networks face several challenges due to the dynamic 

nature of deployment region, limited processing power, 

limited storage, etc. As discussed before, these networks are 

used in various applications; therefore, the collected 

information is transferred to the desired location with the help 

of other sensor nodes. The location data of these sensory 

devices plays a significant role in efficiently analyzing the 

information. On the other hand, these networks follow a 

geographical routing model, which also relies on the location 

information of the nodes for packet transmission [6]. The 

WSN's work depends on the occurrence of the event, and if 

the location of the event occurrence is not identified, then the 

complete network may lead to inaccurate analysis. Therefore, 

spatiotemporal context becomes an important aspect in WSN 

to detect and identify the geolocation and timestamp of the 

incident. The precise identification of event location can be 

identified if the position of the sensory device is known 

accurately. Moreover, the WSN model applications request 

precise location information to facilitate accurate information 

collection and processing. Thus, location identification 

becomes an important aspect. To achieve this, sensor node 

localization schemes have been introduced. Generally, the 

localization methods are carried out either manually or by 
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using GPS modules. Manual localization involves complex 

computations and human interaction, whereas GPS 

localization relies on satellite assistance. The drawback of 

GPS is its inability to function in densely forested areas, 

mountains, or other obstacles obstructing the line-of-sight to 

GPS satellites. Localization utilizes reference nodes, 

neighbour nodes, and anchor nodes (whose positions are 

known through GPS) for the localization process [7]. 

Typically, localization algorithms operate on a 2-dimensional 

plane, specifically the 𝑥 and 𝑦 plane, where the coordinates 

align with the actual surface position, and the altitude remains 

constant. A 2D localization system is less intricate, demanding 

lower energy and time resources. It delivers accurate results 

on flat terrains but struggles with accuracy in challenging 

terrains. The system excels in providing precise distances 

when more nodes are present, along with anchor nodes. In a 

3D plane, an additional plane (z plane) is introduced, 

enhancing accuracy by incorporating height. This 

configuration proves beneficial in rugged and hilly terrains 

[8]. While mapping estimated positions to the real world, 

errors may occur due to the involvement of all three planes. 

The utilization of a 3D localization system effectively 

eliminates this issue. 

Several localization methods have been introduced, 

classified as centralized, distributed [9, 10], anchor-based, 

anchorless, range-based and range-free localization 

algorithms [11,12]. As per the concept of centralized 

localization, the network comprises a central base station to 

perform certain required computations for location purposes. 

As discussed before, the sensory devices are fortified with 

limited resources; therefore, the central servers help mitigate 

the issues of computational limitations. However, the nodes 

communicate to BS, which consumes excessive energy and 

impacts the network lifetime. Moreover, it leads to an increase 

in the communication overhead. In contrast, the distributed 

localization methods use nodes to communicate with each 

other and guess the position of sensors in the network.  

The distributed algorithm can decrease the error but uses 

mobile nodes and acoustic energy for distance approximation. 

Similarly, anchor-based methods have also been adopted for 

localization, such as anchor-based and anchor-less location 

methods. The anchor-based methods are adopted as an initial 

reference for any localization method. According to the 

anchor-based methods, the average localization error exhibits 

an inverse association with the density of anchor nodes. An 

increased count of anchor nodes results in more precise 

reference points. However, augmenting these nodes comes at 

the expense of increased system costs and additional 

resources. To date, distance measurement techniques have not 

achieved optimal accuracy. In many applications, global 

coordinates take precedence over local coordinates, 

underscoring the recent emphasis on anchor-based 

localization. On the other hand, the anchor-less localization 

methods assess the distance between the sensory devices and 

produce a local map of sensor nodes. This local map of the 

sensor node can be employed for any coordinate system by 

using rotation, translation or flipping methods. Similarly, the 

range-based localization approaches use distance estimation 

by using sensors. Moreover, these methods can adopt several 

different techniques, such as triangulation, to identify the 

absolute position of non-anchor nodes. The accuracy of these 

methods is higher, but they require additional hardware, thus 

increasing the implementation cost. The literature review 

section describes the most recent techniques of localization 

based on these approaches. Despite several advanced 

localization methods, these methods face several challenges, 

such as limited resources and the reliability of existing 

methods on several factors such as range measurement, 

number of anchor nodes, network uncertainty, scalability, 

energy consumption, and limited energy resources. Therefore, 

this work focuses on developing a novel localisation approach 

for WSNs. Major contributions of this work are: 

• To adopt DV Hop localization and least square-based 

localization  

• To present a combined Least Square and DV-Hop 

localization for improved accuracy  

• To incorporate Fuzzy logic with chicken swarm meta 

heuristic optimization approach for improved decision 

making.   

The remaining manuscript is organized into the following 

sections: “Section II presents the detailed literature review 

about existing methods and reports their drawbacks, section 

III presents the implementation details and methodology of 

proposed localization approach, section IV presents the 

detailed result of suggested model and its comparative 

analysis with existing localisation methods, and finally, 

section V presents the conclusion and future scope of the 

research work”.  

2. Literature Review  
This part of the article presents a short review about 

existing methods for sensor node localization. Various 

localization algorithms have been discussed for sensor node 

localization, and some recent methods are discussed here. 

Kumar et al. [13] reported that the Distance Vector Hop 

approach has been adopted widely for range-free localization 

systems, but its performance is affected by the inappropriate 

measurement of hop count and hop size. Consequently, rather 

than relying on hop parameters, authors have presented an 

optimized localization approach for large heterogeneous 

networks and exploited the property of irregular 

communication range. This approach divides the nodes into 

two different sets where one set is known as the antecedent 

set, and the second set is known as the descendent set. Further, 

the centre of AS discloses the position that is additionally 

optimized to reduce the localization error. Mani et al. [14] 

focused on refining the estimated position in sensor node 

localization and introduced an iterative bounding box 
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algorithm, which is enhanced by employing the Kalman filter 

to improve the localization performance. This method 

replaces the GPS-equipped anchors with single mobile 

anchors to reduce the implementation cost. The complete 

model is based on the range-free method of localization. 

Moreover, this model reported promising performance for 

varied parameters such as communication range, the position 

of mobile anchor nodes and varied network deployment 

topology.  

Cao et al. [15] developed a DV hop based localization 

approach and focused on improving the localization accuracy 

in WSN localization tasks. To achieve this, the authors 

introduced optimum anchor node subsets based on the optimal 

approach for localizing the sensor nodes. According to this 

approach, in the first phase, the anchor node performs self-

localization with the help of another node, and later, a binary 

PSO approach is used to obtain the optimal subset of anchor 

devices. In the next stage, the proposed optimized approach, 

i.e. OANS, helps to compute the required “average hop size” 

and transmits the updated hop size to the adjacent node. 

Finally, a new fitness function is obtained using PSO to 

improve the localization accuracy.  

El Khediri et al. [16] adopted a K-means clustering 

approach for localization. This approach structures the 

network as a simple space partition because the wireless 

channels lack stability, and the node placement is coarse. In 

the next stage, this method evaluates the overall network 

energy consumption and performs the cluster head selection 

depending on the network magnitude. The objective function 

is formulated based on the space from “CH to node, and 

membership weight is considered to design the objective 

function”. Further, improved K Means clustering, i.e., the 

optimal K means clustering approach, is introduced where 

“single hop and multi-hop communication” modes are 

employed for inter-cluster and intra-cluster communication.  

Similarly, range-based localization methods have been 

adopted widely for localization where RSSI is considered a 

promising technique. Chuku et al. [17] developed an “RSSI-

based localization approach for sensor networks. It is a cost-

effective approach for estimating the distance”. However, RF-

based systems are widely adopted for the deployment of 

sensor networks where the communication performance of 

these models is affected due to the shadowing caused due to 

natural and man-made obstacles, which affect the 

performance of RSSI-based distance estimation due to signal 

attenuation and shadowing. In order to overcome this issue, 

authors have introduced an outlier detection-based method to 

discard the impact of erroneous distance estimation by using 

RSSI. Ou et al. [18] reported the importance of localization 

because, without the location information, its source may be 

worthless. Currently, optimization-based strategies are widely 

adopted to improve localization performance; therefore, 

authors have introduced an “improved cuckoo search algorithm 

with fuzzy logic combined with fuzzy logic and Gauss-

Cauchy strategy”. This approach is a combination of both 

meta-heuristic and traditional approaches.  

Tagne et al. [20] reported the importance of optimization 

methods in sensor node localization and suggested “a new 

approach based on particle swarm optimization and tabu 

search method”. The tabu search helps to determine the best 

neighbour, which improves convergence performance and 

leads to the best solution. Moreover, it also uses RSSI based 

method to estimate the inter-sensor distance. Similarly, 

Lakshmi et al. [21] introduced a combined range-free and 

hybrid DV-Hop optimization approach to improve 

localization accuracy. It also uses “2D and 3D measurements 

with Kalman filter linked with DV Hop”. Finally, a new 

ensemble PSO model is introduced to reduce the localization 

error.  

3. Proposed Model 
This section highlights the suggested strategy for “sensor 

node localization”. The complete work is based on the 

combination of DV hop, least square with meta-heuristic 

optimization method along with DV hop localization method. 

First, a network model is designed for the experiment, and 

later, a general overview is presented about these methods. 

Finally, the suggested combined model is introduced to 

enhance localization by improving localization accuracy.  

3.1. Network Model 

The assumed sensor network model comprises of 𝑛 no. of 

sensory nodes where 𝑚 number of the anchors, and total 𝑢 no. 

of unidentified nodes present in the sensing field. The anchors 

are equipped with the GPS; thus, the anchor nodes know their 

location. The (𝑥𝑖 , 𝑦𝑖) represents the location axis of 𝑖𝑡ℎ anchor 

device and the location of the unknown sensor node is denoted 

as (𝑥, 𝑦) . Each sensor node has 𝑅 as the communication 

radius. Figure 1 depicts deploying a sensor network where the 

total distribution area is 500m x 500m.  

 
Fig. 1 Random deployment of sensor nodes in the squared region 
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3.2. Localization by using Combined Least Square and DV-

Hop 

This section describes the process of DV Hop for 

localization tasks in sensor networks. The basic idea behind 

DV-Hop is to evaluate the distances between nodes based on 

the number of hops (transmissions) required to reach from one 

node to another. Various steps of this approach are as follows: 

Step 1: Distance Measurement: Initially, each node in the 

network broadcasts a signal. Neighbouring nodes receive the 

signal and measure the distance based on signal strength or 

time of flight. 

Step 2: Minimal hop count collection: generally, the 𝐴𝑁 

broadcasts the data packets, including the location axis 

information and no. of hops. The hop count is set to 0 initially 

and incremented by 1 at every subsequent hop; if the obtained 

value is smaller from the previous one, the sensor updates and 

stores this min. hop value. Upon completion of the 

transmission cycle, all sensors obtain the min. hop count 

information. 

Step 3: Average hop distance computation:  during the 

initial stage, the minima hop, count, and anchor node 

coordinates are obtained from any two anchor devices as per 

step 1. The avg. hop distance can be expressed as 𝐻𝑖  can be 

obtained as: 

𝐻𝑖 = 
∑ √(𝑥𝑖−𝑥𝑗)

2
+(𝑦𝑖−𝑦𝑗)

2
𝑖≠

∑ ℎ𝑖𝑗𝑖≠𝑗
 (1) 

Where ℎ𝑖𝑗 denotes the minimal hop count value from the 

anchor node 𝑖 to. Based on this, the avg. hop, all the distance 

info gets broadcast to the overall n/w. 

Step 4: Coordinate computation of unknown nodes: as 

discussed before, the entire network is equipped with 

numerous unknown nodes; these nodes compute the distance 

𝑑𝑖𝑘 from 𝑖𝑡ℎ anchor to 𝑘𝑡ℎ unidentified node with the help of 

average hop distance computed in step. This distance between 

these nodes can be expressed as: 

𝑑𝑖𝑘 = 𝐻𝑖 × ℎ𝑖𝑘 (2) 

This process helps to obtain the distance data of three or 

more anchor nodes distance data and based on these data, the 

least square technique can be employed to attain the location 

axis of unknown nodes. In the context of localization, the least 

square technique is used to assess the location axis of an object 

or sensor by minimizing the sum of the squared differences 

between the observed and predicted measurements. According 

to the working of the least square method, it is assumed that 

there is a total 𝑁 number of reference points with known 

coordinated. (𝑥𝑖 , 𝑦𝑖) are present in the given field, and their 

distance measurement values are also known. The distance-

based relationship can be expressed as: 

(𝑥𝑖 − 𝑥)
2 + (𝑦𝑖 − 𝑦)

2 = 𝑑2 (3) 

Based on this equation, the distance for all 𝑚 anchor 

nodes can be expressed as: 

{
 
 
 

 
 
 

(𝑥1 − 𝑥)
2 + (𝑦1 − 𝑦)

2 = 𝑑1
2

(𝑥2 − 𝑥)
2 + (𝑦2 − 𝑦)

2 = 𝑑2
2

⋮
(𝑥𝑖 − 𝑥)

2 + (𝑦𝑖 − 𝑦)
2 = 𝑑𝑖

2

⋮
(𝑥𝑚−1 − 𝑥)

2 + (𝑦𝑚−1 − 𝑦)
2 = 𝑑𝑚−1

2

(𝑥𝑚 − 𝑥)
2 + (𝑦𝑚 − 𝑦)

2 = 𝑑𝑚
2

 (4) 

With the help of this, the last equation is subtracted from 

previous 𝑚 − 1 equations, and the following relations can be 

obtained: 

(𝑥𝑖 − 𝑥)
2 − (𝑥𝑚 − 𝑥) + (𝑦𝑖 − 𝑦)

2 − (𝑦𝑚 − 𝑦)
2 = 𝑑𝑖

2 − 𝑑𝑚
2   

2(𝑥𝑖 − 𝑥𝑚)𝑥 + 2(𝑦𝑖 − 𝑦𝑚)𝑦 = 𝑥𝑖
2 − 𝑥𝑚

2 + 𝑦𝑖
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑𝑖

2            (5)                                       

Let us consider that the final coordinates are obtained as 

𝑋 = [𝑥, 𝑦]𝑇, according to the least square method, the 

coordinate estimation relationship requires 𝐴𝑋 = 𝑏 where A 

and 𝑏 can be represented as  

𝐴 =

[
 
 
 
 
 
 
2(𝑥1 − 𝑥𝑚) 2(𝑦1 − 𝑦𝑚)

2(𝑥2 − 𝑥𝑚) 2(𝑦2 − 𝑦𝑚)
⋮ ⋮

2(𝑥𝑖 − 𝑥𝑚) 2(𝑦𝑖 − 𝑦𝑚)
⋮ ⋮

2(𝑥𝑚−2 − 𝑥𝑚) 2(𝑦𝑚−2 − 𝑦𝑚)

2(𝑥𝑚−1 − 𝑥𝑚) 2(𝑦𝑚−1 − 𝑦𝑚)]
 
 
 
 
 
 

                         (6) 

𝑏 =

[
 
 
 
 
 
 
 

𝑥1
2 − 𝑥𝑚

2 + 𝑦1
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑1

2

𝑥2
2 − 𝑥𝑚

2 + 𝑦2
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑2

2

⋮
𝑥𝑖
2 − 𝑥𝑚

2 + 𝑦𝑖
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑𝑖

2

⋮
𝑥𝑚−2
2 − 𝑥𝑚

2 + 𝑦𝑚−2
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑𝑚−2

2

𝑥𝑚−1
2 − 𝑥𝑚

2 + 𝑦𝑚−1
2 − 𝑦𝑚

2 + 𝑑𝑚
2 − 𝑑𝑚−1

2 ]
 
 
 
 
 
 
 

           

With the help of  these estimations, the least square 

technique helps to assess the coordinates of unidentified nodes 

as follows:  

𝑋̂ = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (7) 

The location axis of the unidentified node can be 

expressed as: 

{
𝑥 = 𝑋̂(1)

𝑥 = 𝑋̂(2)
 (8) 

The combined model has several advantages over 

traditional DV hop and least square methods, such as the DV-
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hop approach facilitating initial estimates, but its performance 

is affected due to several factors, such as varied 

communication range and obstacles. The combination of least 

squares helps to refine the initial estimate to ensure accuracy. 

Generally, the DV Hop alone is sensitive to measurement 

errors in hop distances, whereas the Least square method can 

be beneficial in this context. Moreover, systematic errors 

inherent in DV-Hop, such as anchor placement biases, can be 

mitigated by the iterative optimization process of LSL, 

reducing the impact of such errors on final position estimates. 

Algorithm 1: Least Square Approach. Algorithm 2: Combined Least square and DV Hop algorithm. 

Input: 𝑀 Number of anchor nodes with known positions, 𝑁 

Number of unidentified nodes to be localized, 𝑝𝑖  denotes the 

identified location axis of anchors, where 𝑖 = 1,2, …𝑀, 𝑑𝑖 is 

the measured distance between the anchor and the unknown 

node. 

Input: 𝑀 Number of anchor nodes with known positions, 𝑁 

Number of unidentified nodes to be localized, 𝑝𝑖  denotes the 

identified location axis of anchors, where 𝑖 = 1,2, …𝑀, 𝑑𝑖 is 

the measured distance between the anchor and the unknown 

node. 

Output: Approximated location axis of unidentified nodes 𝑥𝑗 

where 𝑗 = 1,2, … , 𝑛 

Output: Estimated location axis of unknown nodes 𝑥𝑗 where 

𝑗 = 1,2, … , 𝑛 

Step 1: Initialization:  

• Define a matrix 𝐴 of size 𝑀 × 2 to store the anchor node 

positions. 

• Define a vector 𝑏 of size 𝑀 to store the measured 

distances. 

Step 2: construct 𝐴 and 𝑏 

For each anchor node 𝑖 from 1 to 𝑀: 

• Store the coordinates of anchor node 𝑖 in row 𝑖 of matrix 

𝐴. 

• “Store the measured distance 𝒅𝑖  between anchor node 𝑖 
and unidentified nodes in the 𝑖𝑡ℎelement of vector 𝑏.” 

Step 3: Solve the least square problem  

• Compute the pseudo-inverse of the matrix  

𝐴 = 𝐴+ 

• Compute the approx... position of unidentified nodes as  

𝑥 = 𝐴+. 𝑏 

where 𝑥 is a vector containing the estimated 𝑥 and 𝑦 

coordinates of the unidentified nodes. 

Step 4: Output: return the approx. location axis 𝑥𝑗 of 

unidentified nodes 

Step 1: DV-Hop Distance Estimation: 

• “Use DV-Hop algorithm to estimate the distances 𝑑𝑖 
between anchor nodes and unknown nodes.” 

Step 2: Least Squares Localization: 

• Apply the least squares localization algorithm using the 

estimated distances 𝒅𝑖  obtained from DV-Hop. 

• Obtain the estimated location axis 𝑥𝑗 of the unidentified 

nodes. 

Step 3: Output: 

• Return the estimated location axis 𝒙𝑗 of the unidentified 

nodes obtained from the least squares localization step. 

 

 

3.3. Optimizing the Localization Performance 

To make it more adaptive, this paper introduces an 

optimization-enabled localization model; therefore, a 

combined “fuzzy Chicken Swarm Optimization (CSO)” model 

is presented, which is the combination of CSO and Fuzzy 

Logic. This section presents a brief overview of these 

algorithms, and finally, a combined model is presented to 

obtain better convergence and accuracy.  

3.3.1. Chicken Swarm Optimization  

The CSO approach has three main entities such as 

roosters, hens and chicks, where each of them has diverse 

behavioural specifications. The basic assumptions of CSO are 

as follows: 

• The CSO algorithm organizes a chicken swarm into 

distinct groups, each consisting of a rooster, several hens, 

and a limited chick count.” 

• The assignment of roles (roosters, hens, and chicks) is 

based on individual fitness values, with the highest-

ranked individuals becoming roosters, the lowest-ranked 

becoming chicks, and the rest selected as hens. Every 

chick picks a hen at random to be its mother, and every 

hen chooses a rooster to be its mate and join his flock. 

• Throughout the populace, distinct roles, spousal 

connections, and parent-child relationships remain 

constant for G generations (G represents the reiterative 

cycle). Only after G generations do these roles and 

relationships undergo an update. 

• Within each cluster of the overall population, hens 

accompany their mate roosters in foraging for food, 

engaging in random competitions with other group 

members. The likelihood of obtaining food is influenced 

by the individuals' fitness values, favouring those with 

superior fitness. 

According to this model, “RN, HN, CN and MN represent 

the rooster, hens, chicks and mother hens respectively”. The 

position of 𝑖𝑡ℎ chicken in 𝑗𝑡ℎ dimensional space of 𝑖𝑡ℎ iteration 
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is expressed as 𝑥𝑖,𝑗
𝑡  where ∈ {1, … , 𝑁 } , 𝑗 ∈ {1, …𝐷} and 𝑡 =

{1, … , 𝑇}  signifies the overall count of chickens, dimensions 

and maximum iterations. The positions of these entities are 

updated regularly, which can be expressed as: 

Roosters follow the expression mentioned below to 

describe their recurrent position 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡+1 ∗ (1 + 𝑅𝑎𝑛𝑑𝑛(0, 𝜎2))  

𝜎2 = {
1, 𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘

exp (
𝑓𝑘−𝑓𝑖

|𝑓𝑖|+𝜖
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑘 ∈ [1, 𝑅𝑁], 𝑘 ≠ 𝑖

 (9) 

𝑅𝑎𝑛𝑑𝑛(0, 𝜎2) represents the random number following 

Gaussian distribution with a variance of 𝜎2, 𝑘 is a rooster 

selected randomly, 𝑓𝑖 and 𝑓𝑘 represents the fitness value of 𝑖𝑡ℎ 

and 𝑘𝑡ℎ rooster, respectively. Similarly, the position of the hen 

can be expressed as: 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐶1 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐶2 ∗ 𝑅𝑎𝑛𝑑 ∗

(𝑥𝑟2
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (10) 

𝐶1 = exp (
(𝑓𝑖−𝑓𝑟1)

(𝑎𝑏𝑠 (𝑓𝑖)+𝜖)
) and 𝐶2 = exp(𝑓𝑟2 − 𝑓𝑖) 

Where 𝐶1 and 𝐶2 are the learning factors, 𝑅𝑎𝑛𝑑 is the 

random number following the uniform distribution ”. Finally, 

the position of the chick can be expressed as: 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (11)  

Further, this model is combined with the fuzzy logic 

approach [19]. Fuzzy logic is a computing paradigm that deals 

with uncertainty and imprecision, allowing for a more flexible 

approach to decision-making and control systems. Fuzzy logic 

algorithms use linguistic variables and rules to emulate 

human-like decision processes.  

A fundamental aspect of implementing the fuzzy method 

involves its application in adjusting the parameters of CSO 

algo.  

The primary goal is to intuitively incorporate human 

knowledge into the parameter manipulation process, thereby 

enhancing the convergence and precision of the algorithm. 

In essence, the procedure starts by fuzzifying the 

parameter values so that a knowledge-based evaluation of how 

to change them may be conducted. The knowledge library, 

which contains the parameter scales, is then used to identify 

the values that need to be adjusted.  

The method then moves on when the fuzzy values for the 

parameters are de-fuzzified. In order to dynamically adjust the 

CSO parameters in response to changing population 

circumstances, the suggested FCSO algorithm incorporates a 

fuzzy framework.  

These parameters include the total number of chickens in 

the population (N) and random variables. In order to overcome 

the limitations of CSO, this dynamic mechanism uses the 

fuzzy technique for adaptive parameter modification in an 

iterative process. Figure 2  demonstrates the combined fuzzy 

logic and LS-CSO approach.  

 
Fig. 2 Combined Fuzzy-LSCSO for localization 

Below, algorithm 4 presents the combined model of these approaches for localization.  
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Algorithm 3: Chicken Swarm Optimization  Algorithm 4: Combined CSO and Fuzzy Logic 

Input: 𝑁  Number of chicken agents 𝐷: Dimensionality of the search space 

(usually 2D for x-y coordinates in localization), 𝐿: Max. count of loops, LB 

and UB: Lower and upper bounds of the search space for each dimension 

Output: optimized solution for the given localization problem  

Input: network, parameters, CSO parameters, 

fuzzy logic configuration  

Output: optimized solution  

Step 1: Initialization: 

• Initialize 𝑁 chicken agents randomly within the search space 

defined by LB and UB. 

• “Assess the fitness of each chicken agent based on the objective 

function.” 

Step 2: Optimization process  

 Iterate: 

• For 𝑖 = 1: 

• For each chicken agent 𝑖 from 1 to 𝑁: 

• Determine the movement direction based on the following: 

• Global Search: Move towards the best position found by 

any chicken. 

• Local Search: Move towards the best position found by 

nearby chickens within a certain radius. 

• Randomization: Introduce randomness to explore new 

areas. 

• Update the position of the chicken agent 𝑖 using the 

following: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + ∆𝑥𝑖 
where∆ represents the direction of movement  

• Ensure the updated position 𝑥𝑖(𝑡 + 1)) remains within the 

search space bounds LB and UB. 

• Evaluate the fitness of the new position 𝑥𝑖(𝑡 + 1) 
• Update the best position found by the chicken if the new 

position has better fitness. 

• End For 

• End For 

Termination: 

Step 3: Stop: 

• When the maximum number of iterations 𝐿 is reached. 

• Or if a satisfactory solution is found. 

• Or based on other stopping criteria (e.g., convergence). 

Step 4: Output: 

Return: 

• The best solution found corresponds to the positions of 

the chicken agents that optimize the objective function 

for WSN node localization. 
 

Step 1: Initialize the chicken positions randomly  

Step 2: “Compute the fitness of each chicken, 

identify the global best position for the 

corresponding population and the local best 

position for every chicken 

Step 3: Estimate the %𝐺, and if %𝐺 = 0, then 

sort all chickens in descending order of their 

fitness  

Step 4: The best fits are selected as roosters, the 

worst fitness individuals are selected as chicks, 

and others are hens.  

Step 5: Randomly divide the population into 

different groups, which include roosters, hens 

and chicks.” 

Step 6:   Update the positions of these entities 

based on (9), (10), and (11) and reevaluate their 

fitness values. //This function uses the fuzzy 

logic model to compute the fitness 

Step 7: “Update the global best for the entire 

population and local best solution for each 

individual  

Step 8: Iterate until the stopping criteria are 

met”. 

 

4. Results and Discussion  
This part of the paper presents the resultant output of the 

suggested model and contrasts the attained results with state-

of-the-art methods. This model is implemented using the 

MATLAB simulation tool running on the Windows platform. 

The system has 8GB of RAM capacity and 4 GB of NVIDIA 

graphics card. The obtained results are assessed in terms of 

localization error with respect to varied numbers of nodes, 

transmission range and anchor nodes. The localization error 

for varied node counts measures the performance in terms of 

error when the node count is increased. “Similarly, localization 

error for varied transmission range represents the performance 

when varying the transmission range of the nodes and finding 

the localization error.” Generally, increasing the transmission 

range reduces the localization error. Similarly, the localization 

error for the varied number of nodes shows the impact of an 

increased number of anchor nodes. Table 1 displays the 

various simulation parameters of experimental work. 

According to these simulation parameters, a 2D network is 

considered to have an area of 100 x 100 m2 where a sensor 

network is deployed randomly. Initially, the transmission 

range is fixed to 25 m, which can be extended to 40m to 



Kavitha Narayan B M et al. / IJETT, 73(4), 120-129, 2025 

 

127 

evaluate its impact on localization performance. First, the 

localization error performance is measured for varied 

transmission ranges and compared its performance with state-

of-art optimization methods.  

The figure below depicts the performance obtained for 

this experiment. The obtained performance is compared with 

traditional CSO, PeSOA, PSO, and BPSO. The comparative 

analysis is depicted in Figure 3. According to this experiment, 

the average localization error is found as 0.06440 m, 0.0805 

m, 0.1170, 0.35m and 0.570 by using the proposed Fuzzy 

LSCSO, PeSOA, PSO and BPSO methods, respectively.  

Table 1. “Simulation parameter” 

“Simulation Parameter Considered Parameter 
Network Deployment Region 100 x 100 m2 

Anchor Node Count 10-40 
Iteration Count 150 

Range of Transmission 25-40 
Initial energy 0.5J 

Radio elec energy 50 nJ/bit 
Radio propagation Free space 

𝝐𝒇𝒔 10 pJ/bit/m” 

𝝐𝒎𝒑 0.0015 pJ/bit/m4 

 
Fig. 3 Localization error performance for varied transmission range 

 
Fig. 4 “Number of anchor nodes vs localization error performance” 
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Fig. 5 Localization Error for varied Anchor Node Ratio 

Table 2. Iteration counts to carry out the complete localization process 

Algorithm 
Time taken  

(150 Iterations) 
“PSO” 875 

“BPSO” 645 
“PeSOA” 408 

“CSO” 256 
Proposed Approach 155 

In the next experiment, the loc. error is measured for the 

varied number of anchors. Initially, it assumes 10 anchor 

nodes and measures the localization error performance. Figure 

5 depicts the comparative analysis where the average 

localization error is obtained as 0.085, 0.115, 0.3515 and 

0.549 using the proposed approach, CSO, PeSOA, PSO, and 

BPSO algorithms, respectively. This experimental analysis is 

extended further and measures the localization error 

performance for varied ratios of anchor nodes.  

This experiment considers the communication range as 

30 m, and the total number of nodes is considered as 200. The 

anchor node ratio varies from 0.1 to 0.5. The figure 

demonstrates the obtained performance. According to this 

experiment, the average localization error is obtained as 0.125, 

0.355, 0.275, 0.150 and 0.1450 by using the proposed 

approach, DV-Hop, enhanced PSO, weighted DV Hop and 

DANS D-hop algorithms, respectively.” The literature review 

analysis has reported that the traditional optimization and 

meta-heuristic approaches face computational complexity 

related, which can impact the network's overall lifetime 

performance. In the next experiment, the performance is 

evaluated in terms of the total time taken to perform the 

localization, and the performance is compared with existing 

models. Table 2 shows the obtained performance for this 

experiment. According to this experimentation, the suggested 

technique has reported the average time taken is 155 iterations, 

whereas existing models have reported the average iterations 

count as 875, 645, 408, and 256 by using PSO, BPSO, PeSOA, 

and CSO, respectively.  

5. Conclusion and Future Work 
This research work is mainly focused on the development 

of a robust approach for sensor node localization. Several 

methods have been introduced to achieve improved 

localization; however, it has become a challenging issue for 

several reasons. Therefore, in this work, a hybrid approach is 

introduced, which is established on the least square and DV 

hop-based localization. Further, the final decision-making 

process is improved by incorporating fuzzy logic.  

Finally, chicken swarm optimization is implemented with 

a Fuzzy CSO approach to enhance the localization 

performance. The experimental analysis demonstrates that the 

proposed approach has overall localization errors of 00.0644, 

0.085 and 0.125 for varied transmission ranges, anchor nodes 

and ratio of anchor nodes, respectively. 
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