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Abstract - Wireless Sensor Networks (WSNs) contain many spatially spread sensor nodes linked over the wireless standard to 

observe and trace the physical data from the location. Generally, the WSN nodes are battery-driven; therefore, they will lose 

whole energy after a definite time. This kind of energy restriction leads to the lifetime of the system. The objective is to diminish 

the complete energy utilization and boost the networking lifespan. Routing and clustering techniques are commonly employed in 

WSNs to improve the lifespan. The aim is to mitigate the energy utilization of the sensor nodes throughout data transmission. 

This upsurges the total packet spread to BS by lowering the sensor nodes' energy utilization. This study generally employs swarm 

intelligence due to its searching capability, self-adaptability, and robustness. This article proposes the Chaotic Wind Driven with 

Equilibrium Optimization Algorithm for Efficient Cluster-based Routing (CWDEO-ECBR) technique in WSN. The CWDEO-

ECBR technique utilizes the concept of clustering with a route selection process to enhance the network efficiency. The CWDEO-

ECBR technique comprises two significant phases of operations. Initially, the CWDEO-ECBR technique uses a chaotic wind-

driven optimization (CWDO) technique for selecting the cluster heads (CHs) and organizing clusters. In the second stage, the 

CWDEO-ECBR technique employs an equilibrium optimizer (EO) method for the routing process. A comprehensive simulation 

analysis is conducted to evaluate the performance of the CWDEO-ECBR approach. The CWDEO-ECBR model achieved a 

superior accuracy of 99.54% in NOAN, highlighting its efficiency in improving WSN network performance compared to existing 

methods. 

Keywords - Wireless Sensor Network, Equilibrium Optimizer, Clustering, Routing, Cluster Head, Chaotic Wind-Driven 

Optimization.

1. Introduction 
A WSN is described as a small-scale reunion for sensor 

hubs, particularly for monitoring, capturing, sensing, and 

processing the data about an application. So, these hubs fully 

trust storage, data size, bandwidth, battery backup, and 

computation [1]. Presently, WSN has become essential in 

everyday life; therefore, numerous studies concentrate on the 

exact properties of its application. Real applications have 

invited more attention from analysts and technocrats because 

of the current innovations in the field of sensors [2]. To 

overcome the problems in the sensor field, technologists and 

scientists have found a solution in real-time WSN 

applications. Generally, the sensors can identify, send, and 

record feedback instantly to the end client for future 

processing of all the collected data [3]. Notably, a real-time 

application presents simple uses that want restricted delay 

latency [4]. The deficient power sources of the sensor node 

have been measured as a primary concern in WSNs [5]. So, 

because of node failure, the fault occurs in the network. So, 

the main dissimilarity between WSNs and other standard 

wireless systems is that WSNs are generally vulnerable and 

hypersensitive to energy [6]. The sensor nodes use their 

energy rapidly because of straight data spread from every 

sensor to BS. Furthermore, the optimal energy used in WSNs 

is needed to attain the highest lifespan and improve the WSN 

performance [7]. Thus, grouping sensors into groups has been 

applied to reduce network energy utilization and upsurge the 

system's scalability. Every group of a system has one header 

named CH, which links with other CHs in the network [8]. A 

more significant amount of energy is essential to hand over the 

detected data to the BS directly; a routing protocol is 

employed in the grouped WSN to recognize the finest 

direction among the BS and CHs to decrease energy utilization 

[9]. The routing protocol features contain scalability, fault 

tolerance, data accumulation, and reliability. The requirement 

for efficient data transmission and energy conservation in 
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WSNs drives the use of advanced optimization techniques like 

chaotic wind-driven and equilibrium optimization algorithms 

[10]. This article proposes the Chaotic Wind Driven with 

Equilibrium Optimization Algorithm for Efficient Cluster-

based Routing (CWDEO-ECBR) technique in WSN. The 

CWDEO-ECBR technique utilizes the concept of clustering 

with a route selection process to enhance the network 

efficiency. The CWDEO-ECBR technique comprises two 

significant phases of operations. Initially, the CWDEO-ECBR 

technique uses a chaotic wind-driven optimization (CWDO) 

technique for selecting the cluster heads (CHs) and organizing 

clusters. In the second stage, the CWDEO-ECBR technique 

employs an equilibrium optimizer (EO) method for the routing 

process. A comprehensive simulation analysis is conducted to 

evaluate the performance of the CWDEO-ECBR approach. 

• The CWDEO-ECBR technique efficiently chooses and 

organizes CHs using CWDO. This methodology 

enhances the network's performance by optimizing 

energy consumption (EC) and improving data 

communication. Furthermore, CWDO ensures effective 

resource distribution, maximizing the overall network 

efficiency. 

• The CWDEO-ECBR method integrates an EO model to 

select optimal routes for data transmission. This improves 

the network's efficiency by minimizing congestion and 

enhancing communication. EO optimizes routing paths 

and enhances network performance by ensuring smoother 

data flow. 

• A detailed simulation study is conducted to assess the 

performance of the CWDEO-ECBR approach over recent 

techniques. The results show its superior efficiency in 

various network conditions. The analysis highlights the 

capability of the CWDEO-ECBR approach to attain 

better network performance and optimize resource 

utilization. 

• The CWDEO-ECBR technique introduces a novel dual 

optimization strategy by integrating CWDEO for 

clustering and EO for routing. This unique approach 

effectively improves WSN's performance. Integrating 

these two techniques ensures improved efficiency in 

network organization and data transmission. 

The article is structured as follows: Section 2 presents the 

literature review, Section 3 outlines the proposed method, 

Section 4 details the results evaluation, and Section 5 

concludes the study. 

2. Literature Works 
In [11], a Red Kite Optimization Algorithm (OA) was 

introduced with an Average Ensemble Module for the ID 

(RKOA-AEID) method. By applying min-max normalization, 

this technique performs pre-processing. Furthermore, the 

algorithm performs the RKOA-based FS technique. An AEI 

approach is utilized. Lastly, the Lévy-fight chaotic whale OA 

(LCWOA) is performed to select hyperparameters optimally. 

In [12], an Evolutionary Gravitational Neocognitron Neural 

Networking-assisted Blockchain Technology for Secure 

Dynamic Optimum Routing in WSN (BT-SDOR-WSN-

EGNNN) was proposed. The EGNNN is considered for 

selecting relevant nodes. Next, Trust-assisted Secure 

Intelligent Opportunistic Routing Protocol (TBSIOP) is 

applied. Nayak and Kumar [13] present an energy 

management system (EMS) model using a hybrid mechanism 

based on an IoT network. The presented technique is a shared 

implementation of multi-fidelity meta-optimization 

(M2FWO) and turbulent flow of water-driven optimizing 

(TFWO) models. The proposed architecture gathers DR from 

devices and transfers the information to the central server. The 

M2FWO technique can empower data transmission. In [14], 

an energy-effectual dispersed node clustering mobility pattern 

routing protocol (DNC-MPRP) is developed. The rectangle 

mobility pattern is employed. Then, the CH formation is used 

to initialize the cluster region in the standard and large area. 

Finally, the transmitting data is adopted. 

Thangaraj et al. [15] provide the HMML, a hybrid 

approach combining ML and hybrid metaheuristics. This 

HMML approach utilizes an automatic tuning metaheuristic 

(evolutionary approach) to finetune the heuristic method for 

specific configurations. This is done for different 

combinations. A network simulation is performed, 

implementing the altered heuristic technique to reach an 

outcome. Aqeel et al. [16] present a new, energy-aware AI-

assisted load-balance algorithm that exploits the big data 

analytics (BDA) and Chaotic Horse Ride OA (CHROA) for a 

cloud-assisted IoT. This improves the ability of HROA to 

optimize using the chaotic principle. The CHROA technique 

is used for load balancing, which enhances energy resources 

using the AI technique. Sagu et al. [17] propose a deep fusion 

attack recognition method. The input dataset is subject to 

normalization and pre-processing. The higher order and 

statistical factors are extracted from the pre-processed dataset. 

Lastly, the feature extracted is subject to a hybrid DL approach 

to identify the presence of an attack. The presented models 

integrate DBN and CNN methods. Sureshkumar, Joseph, and 

Priya [18] present a modified snake swarm OA (MSSOA) for 

routing and an adaptive binary bird swarm OA (ABBSOA) for 

CH formation and selection. 

Selvi et al. [19] introduce a WSN cluster-based routing 

model with optimal CH Selection (CHS) and routing using a 

Remora Customized Shark Optimization (RCSO) approach. 

The method considers risk, delay, energy, and distance for 

CHS and optimizes routing based on link quality, trust, and 

distance. Sangeetha et al. [20] propose an energy-efficient 

routing, incorporating Voronoi-based node deployment, game 

theory for CH selection, and Improved Pelican Optimization 

(ImPe) for segment routing. Vissapragada, Abarna, and Sree 

[21] present an Energy-based Multiobjective Hybrid OA (E-

MHOA) methodology. By incorporating the Cuckoo Search 
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Algorithm (CSA) with the Whale OA (WOA), E-MHOA 

selects CHs based on residual energy. Melkamu et al. [22] 

propose a modified cluster-based routing protocol (MCBRP) 

technique for MANETs to improve stability and network 

longevity. It optimizes CH selection using nodes with high 

residual energy or degree centrality, mitigating re-clustering 

and ensuring continuous cluster maintenance. Yang, Liu, and 

Cao [23] introduce a discrete particle swarm optimization 

(PSO)-based routing protocol with energy-aware fitness 

functions and a greedy discrete PSO (GMDPSO) to optimize 

routing. GMDPSO redefines particle dynamics and uses a 

greedy strategy for faster optimization. Alsuwat et al. [24] 

propose an Improved Q-learning-based Artificial Bee Colony 

Algorithm (IQ-ABC) technique for optimal CH selection in 

WSNs, improving energy efficiency, latency, and trust using 

a multiobjective fitness function and Fuzzy Logic. Rekha and 

Garg [25] present the K-LionER scheme integrating K-means 

clustering and Ant Lion Optimization (ALO) for energy-

effectual routing in WSNs. 

Despite the advancements in energy-efficient routing 

protocols, many existing methods suffer from high re-

clustering frequency, inefficient energy management, and 

insufficient trust and latency optimization. Several algorithms 

overlook dynamic environmental changes, leading to 

suboptimal performance in real-world scenarios. Moreover, 

most existing models lack comprehensive strategies for 

balancing energy efficiency, security, and reliability in large-

scale networks. Therefore, there is a requirement for more 

robust, adaptive, and hybrid optimization techniques that can 

effectively address these challenges and improve overall 

network longevity and stability. 

3. The Proposed Method 
This article presents the CWDEO-ECBR model in WSN. 

The CWDEO-ECBR technique exploits the concept of 

clustering with a route selection process to enhance network 

efficiency. It involves two major phases of operations. Figure 

1 depicts the entire flow of the CWDEO-ECBR model. 

 
Fig. 1 Structure of the CWDEO-ECBR model 

Fitness Function  
Neighbor node distance,  

Sink Distance and Energy 

Clustering Process  

Chaotic Wind Driven 

Optimization Algorithm 

Routing Process  
Equilibrium Optimizer 

Algorithm 

Fitness Function  

Residual energy, Distance, 

Node degree 

Base Station 
Cluster Heads 

Sensor Nodes 

Cluster Based Routing in Wireless Sensor Networks 

 
No. of Alive Nodes 

Improved Network Lifetime 

No. of Dead Nodes 

Average Residual Energy Remaining 

Average Throughput 

Decreased Communication Overhead 

Performance Measures: 



T. Suresh et al. / IJETT, 73(4), 279-291, 2025 

 

282 

3.1. Algorithmic Design of CWDO Model 

The air in the atmosphere is clarified into particles to 

contract with, known as air particles [26]. This model is 

chosen because it can balance exploration and exploitation, 

averting premature convergence in complex optimization 

tasks. Its robust performance and flexibility make it ideal for 

enhancing energy efficiency and network stability in large-

scale systems, outperforming conventional optimization 

methods. The WDO approach is attained, and the model is 

simplified based on the perfect gas equation of state and 

Newton's second law in the non-inertial coordinate method. 

𝜌𝜔 = ∑ 𝐹𝑖
 
 , (1) 

In Equation (1), 𝜔 is acceleration;  𝜌 represents air 

density; 𝐹𝑖 is the force used on the air particle. The four 

significant forces exerted on air according to aerodynamics 

are: 

𝐹𝐺 = 𝜌𝛿𝑉𝑔, (2) 

𝐹𝑃𝐺 = −𝛻𝑝𝛿𝑉, (3) 

𝐹𝐶 = −2𝛺 × 𝑢, (4) 

𝐹𝐹 = −𝜌𝑎𝑢, (5) 

𝐹𝐺 is gravity; 𝑔 denotes the acceleration vector;  𝐹𝑃𝐺  

indicates the pressure gradient force; 𝛺 indicates the earth 

rotation angle vector; 𝐹𝐶  indicates the Coriolis force; 𝛻𝑝 

shows the pressure gradient. 𝐹𝐹 shows the friction force; 𝛿𝑉 

represents the air particle’s volume; 𝑎 shows the friction 

coefficient. 𝑢 represents the wind velocity vector. By 

replacing Eqs. (2)-(5) and 𝜔 =
𝛥𝑢

𝛥𝑡
 into Equation (1), thus: 

𝑝
𝛥𝑢

𝛥𝑡
= 𝜌𝛿𝑉𝑔 − 𝛻𝑝𝛿𝑉 − 2𝛺 × 𝑢 − 𝜌𝑎𝑢. (6) 

Consider = 1, 𝛿𝑉 = 1, then Equation (6) is written as: 

𝜌𝛥𝑢 = 𝜌𝛿𝑉𝑔 − 𝛻𝑝 − 2𝛺 × 𝑢 − 𝜌𝑎𝑢. (7) 

The pressure formula for a perfect gas is given below: 

𝑃 =
𝑅𝑇

𝑃
, (8) 

In Equation (8), 𝑅 indicates the ideal gas coefficient;𝑃 is 

pressure, and 𝑇 is the temperature. Substitute Equation (8) into 

Equation (7) produces: 

𝛥𝑢 = 𝑔 −
𝛻𝑝
𝑅𝑇

𝑃𝑐𝑢𝑟

−
2𝛺×𝑢𝑅𝑇

𝑃𝑐𝑢𝑟
− 𝑎𝑢. (9) 

The velocity and position of air particles will be changed 

to explore new space.  

𝛥𝑢 = 𝑢𝑛𝑒𝑤 − 𝑢𝑐𝑢𝑟 . (10) 

𝑔 = |𝑔|(0 − 𝑥𝑐𝑢𝑟), (11) 

−𝛻𝑝 = |𝑝𝑜𝑝𝑡 − 𝑝𝑐𝑢𝑟|(𝑥𝑜𝑝𝑡 − 𝑥𝑐𝑢𝑟), (12) 

Now 𝑝𝑜𝑝𝑡  denotes the optimum pressure value; 𝑝𝑐𝑢𝑟  

indicates the existing pressure value of the particle point; 𝑥𝑜𝑝𝑡 

shows the optimum location; 𝑥𝑐𝑢𝑟  represents the existing 

location: 

𝑢𝑛𝑒𝑤 = (1 − 𝑎)𝑢𝑐𝑢𝑟 − 𝑔𝑥𝑐𝑢𝑟 + (
𝑅𝑇

𝑝𝑐𝑢𝑟
|𝑝𝑜𝑝𝑡 −

𝑝𝑐𝑢𝑟|(𝑥𝑜𝑝𝑡 − 𝑥𝑐𝑢𝑟)) + (
−2𝛺×𝑢𝑅𝑇

𝑝𝑐𝑢𝑟
) (13) 

𝑢𝑐𝑢𝑟
𝑜𝑡ℎ𝑒𝑟dim denotes the air particle velocity, set the constant 

to 𝑐 = −2|𝛺|𝑅. Rather than 𝑝𝑜𝑝𝑡  and 𝑝𝑐𝑢𝑟 , 𝑖 denotes the 

decreasing order of air particles. The pressure value is 

minimal, and 𝑝𝑜𝑝𝑡  is 1 when 𝑥𝑜𝑝𝑡 is in position. Then the 

formula for updating velocity and position is given below: 

𝑢𝑛𝑒𝑤 = (1 − 𝑎)𝑢𝑐𝑢𝑟 − 𝑔𝑥𝑐𝑢𝑟 + (𝑅𝑇 |1 −
1

𝑖
| (𝑥𝑜𝑝𝑡 −

𝑥𝑐𝑢𝑟)) + (
𝑐𝑢𝑐𝑢𝑟

𝑜𝑡ℎ𝑒𝑟dim 

𝑖
) (14) 

𝑥𝑛𝑒𝑤 = 𝑥𝑐𝑢𝑟 + (𝑢𝑛𝑒𝑤 × 𝛥𝑡). (15) 

For the air quality point in every dimension, the time 

interval is one and, based on the specific problem, the position 

of the search range is set, and the update speed has a particular 

scope, concluding velocity value size: 

𝑢𝑛𝑒𝑤
∗ = {

𝑢max 𝑖𝑓 𝑢𝑛𝑒𝑤 > 𝑢max

−𝑢max 𝑖𝑓 𝑢𝑛𝑒𝑤 < −𝑢max
 (16) 

In Equation (16), 𝑢 max denotes the speed boundary value. 

Chaotic mapping produces a chaotic sequence that could 

change a deterministic system into a random sequence. In this 

OA, the chaotic map replaces the pseudorandom number 

generator for making a batch of chaotic numbers within [0,1].  

Studies have shown that initializing populations with 

chaotic sequences can improve optimization performance 

compared to pseudorandom numbers. This study uses chaotic 

maps, specifically tent mapping, to enhance wind particle 

initialization. Tent mapping is chosen for its iterative, ergodic, 

and uniform speed advantages. This is mathematically 

formulated as follows: 

𝑥𝑡+1
𝑖 = {

2𝑥𝑡
𝑖 0 ≤ 𝑥𝑡

𝑖 ≤ 0.5

2 (1 − 𝑥𝑡
𝑖) 0.5 < 𝑥𝑡

𝑖 ≤ 1
 (17) 
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Where 𝑡 = 1,2 … 𝑀 indicates space dimension; 𝑖 =
1,2 … 𝑁 denotes the number of populations. Based on 

Equation (17), 𝑁 initial value is chosen, 𝑛 chaotic series 𝑥𝑡
𝑖, 

and later substituted in Equation (18) reverse to the search 

range, an even initialization of random air proton is attained. 

𝑦𝑡
𝑖 = 𝑙𝑏𝑖{(𝑢𝑏𝑖 − 𝑙𝑏𝑖)𝑥𝑡

𝑖 , (18) 

Where 𝑙𝑏𝑖 and 𝑢𝑏𝑖 show the lower and upper limitations 

of the search range of 𝑥𝑡
𝑖. 

3.2. Design of Clustering Technique using CWDO Model 

During the cluster formation phase, this selection 

procedure of CH favours irregular clustering development. 

Minimize 𝑓1 (neighbor distance), 𝑓2 (sink distance), and 𝑓3 

(energy reduction from CHs to RE) for optimal CH selection. 

Regularize the objective within [0, 1] to minimize the 

combined functions efficiently. 

Note: The 𝑓1, 𝑓2, and 𝑓3 are employed to originate the 

fitness function (FF) for the HHO-based model. Minimize 𝑓1, 
𝑓2 and 𝑓3 functions of objective and linear integration. Thus, 

the Linear Programming (LP) for the optimal CHS issues is 

set below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 (19) 

Subjected to, 

𝑑𝑖𝑠(𝑠𝑖 , 𝐶𝐻𝑗) ≤ 𝑑max, ∀𝑠𝑖 ∈ 𝑆, 𝐶𝐻𝑗 ∈ 𝐶 (20) 

𝐸𝐶𝐻𝐽
> 𝑇𝐻 , 1 ≤ 𝑗 ≤ 𝑚 (21) 

𝛼1 + 𝛼2 + 𝛼3 = 1, (𝛼1, 𝛼2, & 𝛼3) 𝜀 (0, 1) (22) 

𝛼2 ≥ (𝛼1 + 𝛼3) (23) 

The limitation (20) certifies that the sensor 𝑠𝑖 is in the 

range of 𝐶𝐻𝑗. The limitation (21) warrants that the energy of 

𝐶𝐻𝑗  nodes must be greater than 𝑇𝐻. The restriction (22), 𝛼1, 

𝛼2, and 𝛼3 are the weights of the 𝑓1, 𝑓2 and 𝑓3 functions, 

respectively, and it also safeguards that these values must not 

be 0% weight or 100.  

Constraint (23) confirms that 𝛼2 must be equivalent to or 

larger than the number of remaining weights, which aids in 

picking more CHs closer to the sink. The derivation of FF 

trusts on the subsequent parameters: 

a) Neighbor node distance: It is the least distance from the 

neighbour, viz., 𝑑𝑖𝑠(𝐶𝐻𝑗 ,𝑠𝑖). Throughout the 

communication procedure, every sensor uses a small 

amount of energy to transport data to the related CH. 

Reduce the distance from its neighbours to mitigate EC.  

Objective 1: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 = ∑ 𝑑𝑖𝑠(𝐶𝐻𝑗 , 𝑠𝑖)
𝑚
𝑗=1  (24) 

b) Sink distance: It signifies distance among 𝐶𝐻𝑗 and 𝐵𝑆, 

i.e., 𝑑𝑖𝑠(𝐶𝐻𝑗 , 𝐵𝑆). Sink distance is central to the CHS, 

which is nearer to 𝐵𝑆. This process aids in the cluster 

creation of smaller sizes closer to the sink. 

Objective 2: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 = ∑ 𝑑𝑖𝑠(𝐶𝐻𝑗 , 𝐵𝑆)𝑚
𝑗=1  (25) 

c) Energy ratio states the ratio of used-up energy through the 

𝐶𝐻𝑗  to the RE of 𝐶𝐻𝑗 . If 𝐶𝐻𝑗 consumes less computation, 

detection, and transmission energy, the RE will be 

enlarged and have a lower energy ratio. 

Objective 3: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓3 = ∑
𝐸𝑐(𝐶𝐻𝑗)

𝐸𝑅(𝐶𝐻𝑗)

𝑚
𝑗=1  (26) 

A weighted aggregation model reduces each objective, as 

they are not strongly incompatible with each other. So, the FF 

is utilized: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 (27) 

The purpose is to reduce fitness; smaller values result in 

better particle positions and more CHs. 

3.3. Overview of the EO Approach 

EO is a new OA that stimulates laws of physics to attain 

optimal solutions [27]. This technique is chosen due to its 

robust capacity to balance exploration and exploitation, which 

is crucial for finding optimal routing paths in dynamic WSNs.  

Unlike conventional algorithms, EO adapts efficiently to 

network changes and optimizes multiple energy efficiency and 

latency objectives. Its fast convergence and capability to 

handle complex, nonlinear routing problems make it a 

superior choice for ensuring robust and efficient data 

transmission in WSNs. Figure 2 exemplifies the steps 

implemented in EO. It is used to deal with problems with 

various complexity levels. The search unit of EO is named 

particles that receive an initial concentration value as follows: 

𝐶𝑗 = 𝐿𝐵 + 𝑟 × (𝑈𝐵 − 𝐿𝐵), (28) 

In Equation (28),  𝑟 shows the random integer within 

[0 𝑎𝑛𝑑 1]. 𝑈𝐵 and 𝐿𝐵 are the upper and lower restrictions of 

the search range. Like other optimizer algorithms, the particle 

quality is portrayed by the fitness value. Then, they are 

arranged to hire four of them, each differentiated by the 

maximum fitness value. Also, the fifth particle denotes the 

fourth particle' mean. The exponential term (F) is represented 

as follows:  
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𝐹 = 𝐶𝑃1 ∙ 𝑠𝑖𝑔𝑛(𝑟 − 𝑂. 5)(𝑒−𝛽𝑡 − 1), (29) 

𝑡 = (1 − 𝑅𝑖𝑡𝑒𝑟)(𝐶𝑃2×𝑅𝑖𝑡𝑒𝑟), (30) 

𝑅𝑖𝑡𝑒𝑟 =
𝑖𝑡𝑒𝑟

𝑇
, (31) 

Where 𝛽 denotes the turnover rate, 𝐶𝑃1 and 𝐶𝑃2 are 

controlling parameters for the exploration and exploitation 

stages. 𝐺𝐶𝑃 and 𝐺𝑃 are the generation probability 

mathematically expressed as follows:  

𝑅𝐺 = 𝐺0 ∙ 𝐺𝐶𝑃 ∙ (𝐶𝑒𝑞 − 𝛽𝐶) ∙ 𝐹, (32) 

𝐺𝐶𝑃 = {
0.5𝑟1 𝑖𝑓 𝑟2 ≥ 𝐺𝑃
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (33) 

In Equation (33), 𝐶𝑒𝑞  represents the equilibrium pool and 

𝑟1 and 𝑟2 are random integers within [0,1].  

The solution is updated by Equation (34) based on the 

above calculation: 

𝐶𝑗 = 𝐶𝑒𝑞 + (𝐶𝑗 − 𝐶𝑒𝑞) × 𝐹 + (1 − 𝐹)
𝑅𝐺

𝛽𝑉
 (34) 

Where 𝑦 refers to the considered unit. 

 
Fig. 2 Steps utilized in EO 

3.4. Process Involved in EO-based Routing  

The EO-based routing model aims to reduce EC and 

extend the NLT of each SN. The objective functionℎ1 

maximizes the selection of Next-hop CHs with high RE to 

extend NLT. ℎ2 minimizes the shortest distance between CHs, 

Next-hop CHs, and the BS to reduce energy usage. ℎ3 

minimizes the selection of Next-hop CHs with high ND to 

extend NLT. 𝑏𝑖𝑗  is the Boolean variable given as follows. 

𝑏𝑖𝑗 = {
1 𝑖𝑓 𝑛𝑒𝑥𝑡 − ℎ𝑜𝑝(𝐶𝐻𝑖) = 𝐶𝐻𝑗 ,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀(𝑖, 𝑗)1 ≤ 𝑖, 𝑗 ≤

𝑚 (35) 

Step 1 Start 

Step 2 Initialize Population within Upper and Lower Limit 

Step 3 Generate the Initial Solution 

Step 4 Assign Fitness to Each Solution 

Step 5 Compare Fitness of Each Particle with Equilibrium Candidate Fitness 

Step 6 Construct and Store an Equilibrium Pool 

Step 7 Select a Candidate from Random Pool 

Step 8 Update Concentration 

Step 9 Return the Global’s Best Optimal Solution 

Step 10 Stop 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 =
1

ℎ1
× 𝛽1 + ℎ2 × 𝛽2 + ℎ2 × 𝛽3 (36) 

Subjected to, 

𝑑𝑖𝑠(𝐶𝐻𝑖 , 𝐶𝐻𝑗) ×≤ 𝑑 max 𝐶𝐻𝑗𝜖{𝐶 + 𝐵𝑆} (37) 

∑ 𝑏𝑖𝑗
𝑚
𝑗=1 = 1 𝑎𝑛𝑑 1 ≠ 𝑗 (38) 

0 < 𝛽1, 𝛽2, 𝛽3 < 1 (39) 

Constraint (37) ensures the Next-hop node of 𝐶𝐻𝑖  is 

within range and is 𝐶𝐻𝑗. Limitation (38) specifies the Next-

hop node of 𝐶𝐻𝑖  is uniquely 𝐶𝐻𝑗 , and (39) ensures weights are 

neither 100% nor 0%. 

The derivation of FF depends on the following 

parameters. 

a) RE of Next‐Hop nodes: The 𝐵𝑆 maps to the Next-hop 

node based on RE, selecting a node with higher RE from 

the middle of the Next-hop nodes. 

Objective 1: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ℎ1 = ∑ 𝐸𝐶𝐻𝑗

𝑚
𝑗=1  (40) 

b) Next‐Hop node and 𝐵𝑆 distance: The 𝑐 mapping to the 

Next-hop node depends on the distance to the Next-hop 

node and the 𝐵𝑆. A 𝐶𝐻 selects the Next-hop node with 

the shortest distance to the 𝐵𝑆. 

Objective 2: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ℎ2 = ∑ 𝑑𝑚
𝑗=1 𝑖𝑠(𝐶𝐻𝑗 , 𝑁𝐻(𝐶𝐻𝑗)) +

𝑑𝑖𝑠(𝑁𝐻(𝐶𝐻𝑗) + 𝐵𝑆) (41) 

c) Node degree ND of Next‐Hop node: The CH mapping to 

the Next-hop node depends on the ND of the Next-hop 

node, which is allotted with 𝐶𝐻 and assessed with 

minimal ND. 

Objective 3: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ℎ3 = ∑ 𝑁𝑑
𝑚
𝑗=1 (𝑁𝐻(𝐶𝐻𝑗)) (42) 

Here, a weighted aggregation method reduces the entire 

objective because they do not conflict. Thus, the following FF 

is used: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛽1 ×
1

ℎ1
+ 𝛽2 × ℎ2 + 𝛽3 × ℎ3

 (43) 

Where, 

0 < 𝛽1, 𝛽2, 𝛽3 < 1 (44) 

4. Result Analysis and Discussion 
This section investigates the distinct aspects of the 

performance of the CWDEO-ECBR technique. Table 1 and 

Figure 3 represent a comparative number of alive node 

(NOAN) outcomes of the CWDEO-ECBR methodology with 

existing approaches [28]. The outputs indicate that the HAS-

PSO and FFOCR methodology have reported ineffectual 

performance with the lowest values of NOAN.  

Additionally, the FFC-GWO methodology and HABC-

MBOA technique have slightly increased NOAN values. 

However, the CWDEO-ECBR methodology has obtained 

effectual performance with maximum values of NOAN. 

Table 1. NOAN assessment of the CWDEO-ECBR methodology with existing models under various rounds  

NOAN (in %) 

No. of Rounds HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

0 97.20 98.23 99.51 99.00 99.54 

100 96.69 96.95 99.00 99.76 99.55 

200 93.62 96.44 98.48 98.23 99.29 

300 89.53 94.39 96.18 97.46 98.78 

400 80.32 82.11 90.04 97.72 99.29 

500 59.08 64.71 79.30 97.20 98.01 

600 43.48 51.41 65.48 96.95 98.52 

700 31.97 45.78 53.46 83.90 97.49 

800 23.52 30.69 41.94 69.32 95.19 

900 12.01 23.01 34.78 67.53 83.18 

1000 9.96 16.87 20.71 45.52 72.43 

1200 0.75 5.10 15.08 30.94 58.61 

1400 0.24 0.24 6.64 22.24 47.88 

1600 0.00 0.00 0.24 13.80 29.95 

1800 0.00 0.00 0.00 0.50 11.54 

2000 0.00 0.00 0.00 0.00 8.73 
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Fig. 3 NOAN analysis of the CWDEO-ECBR approach under various rounds 

Table 2 and Figure 4 clearly illustrate the NODN results 

of the CWDEO-ECBR method with recent models. The 

obtained outcomes demonstrated the poor accomplishment of 

the FFOCR and HAS-PSO methodologies with increased 

NODN values. At the same time, the FFC-GWO and HABC-

MBOA methodologies resulted in moderated NODN model 

values. Nevertheless, the CWDEO-ECBR methodology 

depicted superior performance with minimal NODN values. 

Table 2. NODN assessment of CWDEO-ECBR approach with existing methods under various rounds 

NODN (in %) 

No. of Rounds HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

0 2.80 1.77 0.49 1.00 0.46 

100 3.31 3.05 1.00 0.24 0.45 

200 6.38 3.56 1.52 1.77 0.71 

300 10.47 5.61 3.82 2.54 1.22 

400 19.68 17.89 9.96 2.28 0.71 

500 40.92 35.29 20.70 2.80 1.99 

600 56.52 48.59 34.52 3.05 1.48 

700 68.03 54.22 46.54 16.10 2.51 

800 76.48 69.31 58.06 30.68 4.81 

900 87.99 76.99 65.22 32.47 16.82 

1000 90.04 83.13 79.29 54.48 27.57 

1200 99.25 94.90 84.92 69.06 41.39 

1400 99.76 99.76 93.36 77.76 52.12 

1600 100.00 100.00 99.76 86.20 70.05 

1800 100.00 100.00 100.00 99.50 88.46 

2000 100.00 100.00 100.00 100.00 91.27 
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Fig. 4 NODN assessment of the CWDEO-ECBR method under various rounds 

Table 3. ATHRO analysis of the CWDEO-ECBR approach with recent methods under various SNs  

ATHRO (Mbps) 

No. of Sensor Nodes HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

100 1.88 3.34 3.97 6.28 8.84 

200 3.55 5.02 7.12 9.01 11.94 

300 5.44 6.49 9.22 13.00 18.44 

400 7.54 8.17 10.48 16.56 22.29 

500 8.59 10.69 13.84 20.76 26.41 

600 9.64 13.63 16.98 26.22 30.07 

700 13.21 15.93 20.97 30.83 35.53 

800 15.51 16.77 24.96 34.61 42.87 

900 18.03 19.92 28.52 40.06 51.31 

1000 19.50 24.54 31.67 51.40 57.61 
 

 
Fig. 5 ATHRO assessment of the CWDEO-ECBR approach under various SNs  
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Table 4. ARER analysis of the CWDEO-ECBR approach with recent methods under various SNs 

ARER (in %) 

No. of Sensor Nodes HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

100 9.79 13.43 16.91 22.18 24.97 

200 8.50 11.81 15.05 19.50 22.87 

300 7.77 9.87 12.62 18.05 21.14 

400 7.04 7.61 10.52 16.27 20.22 

500 5.74 6.80 10.03 14.32 18.66 

600 4.77 5.58 8.33 12.22 16.83 

700 3.80 5.02 7.44 10.76 14.57 

800 2.75 3.96 6.88 9.79 14.66 

900 1.86 2.99 5.10 8.82 13.69 

1000 0.73 2.02 4.61 7.61 11.98 

 

 
Fig. 6 ARER analysis of the CWDEO-ECBR approach under various SN 

Table 3 and Figure 5 demonstrated a comparative average 

throughput (ATHRO) outcome of the CWDEO-ECBR 

approach with existing techniques. The outputs implied that 

the HAS-PSO approach and FFOCR methodology have 

reported ineffectual performance with minimal ATHRO 

values. Besides, the FFC-GWO performance and HABC-

MBOA methodology have reached somewhat increased 

ATHRO values.  

However, the CWDEO-ECBR method has attained 

effective performance with superior ATHRO values. Table 4 

and Figure 6 depict the average residual energy remaining 

(ARER) assessment of the CWDEO-ECBR methodology with 

other models. The acquired outputs exposed the worse 

outcome of the FFOCR and HAS-PSO approaches with 

increased ARER values. Simultaneously, the FFC-GWO and 

HABC-MBOA approaches led to moderate ARER values. 

However, the CWDEO-ECBR approach depicted a higher 

solution with minimal ARER values. Table 5 and Figure 7 

define a relatively improved NLT (INLT) output of the 

CWDEO-ECBR method with recent models. The simulation 

outputs showed that the HAS-PSO and FFOCR models 

reported ineffectual solutions with lesser INLT values. 

Besides, the FFC-GWO and HABC-MBOA techniques have 

reached maximum INLT values. However, the CWDEO-

ECBR technique has attained effective performance with 

higher INLT values.  

Table 6 and Figure 8 depict the decreased communication 

overhead (DCOH) investigation of the CWDEO-ECBR 

method with existing approaches. The acquired outputs 

illustrated the lowest outcome of the FFOCR and HAS-PSO 

approaches with increased DCOH values. In addition, the 

FFC-GWO and HABC-MBOA approaches lead to moderate 

DCOH values. However, the CWDEO-ECBR methodology 

exposed maximal performance with lesser DCOH values. 
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Table 5. INLT analysis of the CWDEO-ECBR approach with existing methods under various SNs  

INLT (in %) 

No. of Sensor Nodes HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

100 21.47 26.63 29.68 37.89 39.60 

200 19.74 21.47 27.56 34.98 37.36 

300 17.36 19.74 26.10 31.80 34.85 

400 15.24 18.68 23.45 29.55 33.12 

500 12.85 16.30 21.86 29.41 32.42 

600 12.19 14.44 21.33 26.76 30.86 

700 9.81 12.59 20.14 24.91 28.76 

800 8.22 11.13 19.08 22.79 24.93 

900 6.36 10.07 16.70 21.60 25.01 

1000 5.70 9.68 14.97 20.54 23.91 

 

 
Fig. 7 INLT evaluation of CWDEO-ECBR method under various SNs 

Table 6. DCOH analysis of the CWDEO-ECBR approach with recent methods under various SNs 

DCOH (in %) 

No. of Sensor Nodes HAS-PSO FFOCR FFC-GWO HABC-MBOA CWDEO-ECBR 

100 15.82 19.87 25.23 33.86 37.48 

200 14.64 17.91 22.49 31.64 34.75 

300 12.42 17.52 21.83 29.68 33.35 

400 10.72 16.08 21.18 25.36 30.84 

500 9.94 15.82 19.87 23.79 27.71 

600 9.15 13.21 18.96 21.83 25.27 

700 6.54 9.94 13.34 19.22 22.61 

800 6.02 8.76 10.98 16.60 19.37 

900 3.27 6.93 10.33 14.90 18.48 

1000 2.49 5.88 9.15 13.07 16.08 
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Fig. 8 DCOH analysis of CWDEO-ECBR approach under various SNs 

Thus, the CWDEO-ECBR technique is applied to 

enhance network performance in the WSN. 

5. Conclusion 
This paper focuses on the designs and growth of the 

CWDEO-ECBR technique in WSN. The CWDEO-ECBR 

technique exploits the concept of clustering with a route 

selection process to enhance network efficiency. The 

CWDEO-ECBR technique comprises two significant phases 

of operations. Initially, the CWDEO-ECBR technique uses the 

CWDO method to select the CHs and organize clusters. Next, 

the CWDEO-ECBR technique utilizes the EO method for the 

routing process. A comprehensive simulation analysis is 

conducted to compute the performance of the CWDEO-ECBR 

approach. The CWDEO-ECBR model achieved a superior 

accuracy of 99.54% in NOAN, highlighting its efficiency in 

improving WSN network performance compared to existing 

methods.  

The limitations of the CWDEO-ECBR model comprise 

the assumption of ideal network conditions and limited 

consideration of factors beyond energy efficiency, such as 

security and scalability. The impact of node mobility on 

routing performance is also not addressed. Future work should 

concentrate on adapting the model for dynamic topologies, 

incorporating security features, and exploring scalability in 

more extensive networks. Additionally, integrating ML for 

real-time optimization could improve system performance.
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