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Abstract - This work presents an advanced hybrid deep learning model optimized to obtain a superior Text-to-Speech (TTS) 

conversion. The model employs Convolutional Neural Networks (CNNs) to extract features from the text effectively. Recurrent 

neural networks, also known as RNNs, are used to identify sequential linkages and to enhance context awareness. The developed 

hybrid design aims to improve both the quality of synthesis and computational performance. In this regard, the optimization 

enables the adjustment of the parameters and training of the dataset refill, elucidating a potential and consistent performance 

across linguistic circumstances. The suggested model employs transfer learning methods that take advantage of pre-trained 

embedding to accelerate the convergence process. This research delves into the influence of different hyper-parameter 

configurations on the model's efficiency, offering valuable insights into key factors that impact the optimisation process. Via a 

specific evaluation of benchmark datasets, the obtained results demonstrate that the present model has higher simplicity, 

proficiency, and average TTS quality if compared to other conventional techniques. Thus, it can be concluded that the developed 

hybrid model can demonstrate exceptional performance in real-time text-to-speech (TTS) applications, meaningfully aiding the 

development of artificial intelligence-driven voice synthesis. 

Keywords - Text-to-Speech (TTS), Deep learning hybrid model, Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Transfer learning, Hyperparameter tuning, Real-time systems, Artificial intelligence.

1. Introduction  
One of the most important tools for closing the gap 

between textual and audio comprehension is text-to-speech 

(TTS). It finds use in several domains, such as availability, 

human-machine communication, and artificial intelligence 

(AI). With the growing need for creative and natural-sounding 

synthesized speech, sophisticated techniques that can offer 

outstanding synthesis quality and processing economy are 

greatly needed. Recent breakthroughs in deep learning have 

significantly impacted speech synthesis, with artificial neural 

network-based techniques demonstrating incredible 

outcomes.  The ground-breaking research of Wang et al. [1] 

and Oord et al. [2], who laid the groundwork for understanding 

the intricacies of neural network architectures in voice 

synthesis, serves as the basis for the current investigation. 

They left behind a legacy of profound learning for TTS 

pioneers. The model's capacity to capture subtle linguistic 

subtleties is further enhanced by using transfer learning 

techniques, which were motivated by the effectiveness of pre-

trained embedding in natural language processing [3]. An 

extensive examination of several hyper-parameters, such as 

the effect of parameter tweaking and training dataset 

augmentation, was conducted in the current research to 

optimize the proposed hybrid model [4-6].   

The next parts explore the most related research, the 

utilised methodology, experimental design, and most 

important findings. This research would undoubtedly provide 

an understanding of the effectiveness of the hybrid deep 

learning model developed in this investigation. 

2. Literature Review 
A TTS synthesis system generally contains many phases, 

such as the text analysis frontend, an audio synthesis module, 

and an acoustic model. Construction of these modules 

frequently demands substantial subject expertise and may 

include fragile design decisions. Wang et al. [1] offered 

Tacotron, an end-to-end generational TTS model that 

generates voice openly from typescripts. The model can be 

fully trained from scratch with specified pairings and utilising 

random initialisation. The researchers provided some 

fundamental strategies for making the sequence-to-sequence 

framework effective for this difficult mission. Tacotron 

obtains a 3.82 subjective 5-scale mean opinion score on US 

English, exceeding a construction parametric system 

regarding naturalness. Furthermore, because Tacotron creates 

speech at the frame level, it is significantly quicker compared 

to sample-level autoregressive algorithms. Oord et al. [2] 

introduced the development of WaveNet to produce raw audio 
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waveforms. The model was a completely auto-regressive 

system, with the prediction distribution for each audio sample 

being conditioned on all previous samples. Despite this, the 

research showed that the model can be trained efficiently on 

datasets containing tens of thousands of audio samples per 

second. In TSS applications, WaveNet outperforms 

parametric and concatenative algorithms in terms of 

naturalness for both Mandarin and English. Notably, a single 

WaveNet may correctly preserve the features of several 

speakers, allowing for smooth switching between them using 

speaker identification conditioning. The research emphasized 

WaveNet's capacity to represent music, creating innovative 

and realistic musical pieces in addition to TTS. 

Tacotron2, a neural network construction for voice 

synthesis from text, is described by Shen et al. [3]. The system 

comprises an adapted WaveNet model that functions as a 

vocoder to create time-domain waveforms from mel-scale 

spectrograms and a recurrent sequence-to-sequence feature 

prediction network that maps character embedding to those 

spectrograms. The model's mean opinion score (MOS) was 

4.53, similar to the 4.58 MOS for speech that has been 

skilfully documented. The researchers described ablation tests 

of important system components. They assessed the effect of 

feeding WaveNet with mel spectrograms rather than language, 

duration, and F0 attributes as the conditioning input to confirm 

the design decisions. The researchers also demonstrated that a 

considerable decrease in size can be achieved by employing 

this compact acoustic intermediate representation. 

Sudhan et al. [4] investigated the adaptability and 

controllability benefits of statistical parametric speech 

synthesis (SPSS) over unit-selection speech synthesis, 

focusing on the current incorporation of DNNs as SPSS 

acoustic models. The study examines speaker adaption at 

various levels in DNN-based voice synthesis. The 

methodologies explored include adding linguistic 

characteristics to a low-dimensional speaker-specific vector, 

scaling hidden activation weights via model adaptation, and 

changing produced acoustic features via feature space 

transformation at the output layer. The experimental findings 

in SPSS indicate that DNN adaptability and hearing tests show 

considerably enhanced adaption performance compared to the 

Hidden Markov Model (HMM) baseline, notably in terms of 

naturalness and speaker resemblance. 

The constraints of neural network-based end-to-end TTS 

models are addressed by Ren et al. [5], emphasising sluggish 

inference speed, occasional word skipping or repetition, and 

restricted controllability. Fast Speech, a unique feed-forward 

network based on the Transformer design, is offered as a 

solution. Unlike traditional models such as Tacotron2, Fast 

Speech creates mel-spectrograms in parallel, increasing 

inference speed. It predicts phoneme lengths using courtesy 

arrangements from an encoder-decoder teacher model, which 

aids a length regulator in matching source and target mel-

spectrogram lengths. Fast Speech preserves speech quality 

equivalent to autoregressive models, solving concerns such as 

word skipping and repetition in difficult instances, according 

to experimental results on the LJ Speech dataset. In contrast to 

autoregressive Transformer TTS, FastSpeech speeds mel-

spectrogram creation by 270x and end-to-end voice synthesis 

by 38x. 

Zheng et al. [6] discussed several issues with 

Transformer-based neural end-to-end TTS models, 

emphasizing their limited capacity to describe consecutive and 

local structures and their dependency on position embedding. 

The suggested system incorporates a local recurrent neural 

network (Local-RNN) into the Transformer architecture, 

intending to leverage the benefits of both RNN and 

Transformer while limiting their respective downsides. The 

Local-RNN successfully represents sequential and local 

structures, whereas the Transformer captures long-term 

relationships without needing position embedding. Subjective 

assessment findings demonstrate that the suggested model 

outperforms the baseline Transformer, improving by 0.12 in 

Mean Opinion Score (MOS) and approaching human quality 

(4.34 vs. 4.45 in MOS) on a generic test. Furthermore, case-

level fluency tests display a significant 6.5% absolute 

improvement. 

Although many languages have attained state-of-the-art 

quality in TSS synthesis using non-autoregressive 

Transformers, the Estonian TTS synthesis technique has not 

been updated for neural methods. Rätsep et al. [7] used several 

language-specific data processing procedures to assess the 

quality of Estonian TSS utilizing Transformer-based models. 

To demonstrate how effectively these models can pick up on 

the patterns of Estonian pronunciation given differing 

quantities of training data and phonetic information, they also 

do a human evaluation. Their mistake research demonstrates 

that while certain information can be beneficial to a lesser 

degree, utilizing a basic multi-speaker technique can greatly 

reduce the amount of pronunciation errors. 

The neural network architecture Tacotron2, which 

enables voice synthesis straight from text, was utilised by 

Shen et al. [3]. An adapted WaveNet model functions as a 

vocoder to make time-domain waveforms from mel-scale 

spectrograms, and the system is comprised of a recurring 

sequence-to-sequence characteristics prediction network that 

maps character embedding to those spectrograms. The 

developed approach ascertained an MOS of 4.53, similar to a 

4.58 MOS for speech, which has been skillfully verified. They 

analysed the effect of feeding WaveNet with mel 

spectrograms as the preparing input rather than language, 

duration, and F0 characteristics, and they showed ablation 

tests of important system components to confirm their design 

decisions. Additionally, the researchers demonstrated that the 

employment of this condensed acoustic intermediate 

representation permits a notable decrease in the size of the 
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WaveNet architecture. Arık et al. [18] presented Deep Voice, 

a TSS system of production quality that is only composed of 

DNNs. For new phoneme boundary identification, the 

segmentation model used connectionist temporal 

classification (CTC) loss. A quicker and less parameterized 

version of WaveNet was used for audio synthesis. Compared 

to conventional TTS systems that need intensive feature 

engineering, the system was more flexible and easier since 

neural networks are used for every component. This research 

presented improved WaveNet inference kernels and showed 

that the system's inference speed surpasses real-time. 

Tombini [8] represented a unique deep-learning approach 

to modeling fundamental frequency (F0). The fundamental 

concept is parametrizing the interpolated F0 dynamically over 

time, with a sign value representing the change direction and 

a quantized magnitude representing the amount of change. 

The expected shape was tuning down in frequency to match 

the speaker's range. The method also improved intonation 

modelling by using word embedding to incorporate 

semantically richer information. The adopted approach was 

fully explained and rationalized, and it is included in a DNN 

model in the Statistical Parametric Speech Synthesis (SPSS) 

framework. Testing the suggested technique against the most 

advanced parametric TTS system, Merlin, revealed that it 

performs on par with or perhaps somewhat better, with a trend 

indicating native listeners may prefer the proposed model.  

Unsupervised learning's hallmark challenge can 

specifically model the distribution of natural pictures. This 

endeavour necessitates a sensitive image model, controllable 

and accessible all at the same time. Van Den Oord et al. [9] 

introduced a DNN that sequentially forecasts images' pixels 

over two spatial dimensions. The developed technique 

encapsulated the whole collection of dependencies in the 

image by modeling the distinct likelihood of the raw pixel 

values. Fast 2D recurring layers and actual utilization of 

residual connections in deep recurrent networks were two 

architectural innovations. On natural photos, the researchers 

attained log-likelihood ratings far higher than the prior state-

of-the-art. The primary findings of this research also serve as 

standards for the varied ImageNet dataset. The model's 

samples seem clean, diverse, and globally coherent. 

Luong et al. [10] investigated two successful kinds of 

attentional mechanisms for improving neural machine 

translation (NMT): a global method that joins all source words 

and a local method that emphasises subsets of source words. 

The study indicated that both techniques are efficient on WMT 

translation tasks between German and English in both 

translation instructions. The local attention method 

outperformed non-attentional systems by 5.0 BLEU points, 

even when established strategies like dropout are used. In the 

WMT'15 German-to-English translation problem, an 

ensemble model leveraging several attention architectures 

achieved a new state-of-the-art finding of 25.9 BLEU points—

an enhancement of 1.0 BLEU points over the current best 

system, backed by NMT and an n-gram reranker. Al-Radhi et 

al. [11] statistically expanded the parametric voice synthesis, 

concentrating on a vocoder that uses continuous F0 with 

Maximum Voiced Frequency (MVF) with a feed-forward 

DNN. While the continuous vocoder simplifies parameter 

modeling compared to classic vocoders with discontinuous 

F0, the lack of sequence modeling in DNNs may impact voice 

synthesis quality. To overcome this, the research of Al-Radhi 

et al. [11] suggested using sequence-to-sequence modeling 

using RNNs. Four RNN architectures (LSTM, BLSTM, GRU, 

and conventional RNN) were researched and applied to 

simulate F0, MVF, and Mel-Generalized Cepstrum (MGC) for 

more natural-sounding voice synthesis. The experimental 

findings, both subjective and objective assessments, indicated 

that the proposed framework converges quicker, reaches state-

of-the-art voice synthesis behavior, and outperforms the 

standard feed-forward DNN. 

Chorowski et al. [12] used recurrent sequence generators 

with an attention mechanism to voice recognition challenges. 

While a machine translation model modification provides 

competitive performance on the TIMIT phoneme detection 

challenge, it has drawbacks when applied to lengthier 

utterances. A unique way to add location awareness to the 

attention method was suggested, which solved the issue of 

resilience to lengthier inputs. The improved model obtains a 

PER of 18% in single utterances and 20% in 10-times longer 

utterances. Furthermore, changing the attention machine 

avoids excessive concentration on single frames, lowering the 

PER to 17.6%.  

Mehri et al. [13] provided a unique approach that 

generates one audio sample simultaneously for unconditional 

audio production. Using three distinct datasets, the researchers 

demonstrated how their model-which benefits from the 

combination of stately RNNs and memory-less modules-

autoregressive multilayer perceptions-in a hierarchical 

structure can effectively capture the underlying causes of 

variations in temporal sequences over extended periods of 

time. According to human evaluation of the generated 

samples, the developed model is favoured above other models. 

The researchers also demonstrated the contributions made by 

each model component to the performance that is 

demonstrated. 

Manzelli et al. [14] presented a method to combine two 

kinds of music generation models: raw audio models that train 

directly on audio waveforms to provide expressive richness 

and symbolic models that work at the note level to capture 

long-term relationships. Using composition notes as a 

supplementary input to train a raw audio model (based on the 

WaveNet architecture), the researchers suggested a work-in-

progress model combining both approaches' advantages. An 

LSTM network output was fed into the raw audio model 

during the creation of new compositions, resulting in an end-
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to-end model that generates structured music along with raw 

audio outputs. The preliminary findings were explained, 

showing great potential for the combined strategy. Parcollet et 

al. [15] proposed a Quaternion Long Short-Term Memory 

(QL-STM) recurrent neural network as a unique method for 

automated speech recognition (ASR). Internal dependencies 

within multidimensional features are frequently overlooked in 

traditional real-valued representations in ASR, particularly 

when employing Long Short-Term Memory (LSTM) 

networks. Through quaternion algebra, QL-STM considered 

both internal latent structural dependencies and exterior 

linkages between features. QLSTMs perform better than 

LSTMs in a realistic voice recognition application using the 

Wall Street Journal (WSJ) dataset and a memory copy job. 

With as low as 2.8 times the number of learning parameters, 

QLSTM produced better outcomes and a more expressive 

information representation. 

Arık et al. [16] presented the basis for actual end-to-end 

neural voice synthesis by introducing Deep Voice, a TTS 

system that is fully composed of DNNs. It was suggested that 

DNNs with CTC loss be used uniquely for phoneme border 

identification. A faster training, less parameter-required 

version of WaveNet was implemented by the audio synthesis 

model. Compared to conventional TTS systems, using a 

neural network for each component simplified and increased 

versatility, lowering the requirement for intensive feature 

engineering. With improved WaveNet inference kernels 

achieving 400x quicker rates than existing CPU and GPU 

implementations, the system reached inferred rates better than 

in real-time. 

Referring to the above-discussed studies, TTS synthesis 

has harvested remarkable attention in both academic and 

industrial research as a result of its implications in different 

technologies, virtual assistants, and automated customer 

service systems. The progressive demand for natural, 

expressive, and context-aware speech generation has pushed 

clear improvements in this area, making it a superior tool for 

enhancing human-computer interaction. The most recent 

investigations signpost a clear interest in enhancing more 

effective and realistic TTS systems, especially with the 

initiation of deep learning procedures that overtake traditional 

approaches regarding naturalness and intelligibility.  

TTS systems characteristically include a number of key 

components like acoustic modeling, text analysis, and audio 

synthesis. In this aspect, neural network models such as 

Tacotron and WaveNet were professionally used to produce 

speech directly from text. These models were constructed with 

improved algorithms, which include sequence-to-sequence 

architectures and attention mechanisms, to improve the 

quality and efficacy of speech synthesis. More importantly, 

integrating hybrid models, which integrate the strengths of 

different approaches, signifies a talented direction for future 

research, targeting further improvement in the fidelity and 

responsiveness of TTS systems. On top of this, it should be 

noted that conventional TTS systems frequently struggle with 

naturalness and fluency, which constrain their applicability in 

different real-world scenarios. The current research intends to 

create an improved hybrid deep learning model, which can 

offer a novel approach to solving the challenges associated 

with TTS. Combining the strengths of CNNs, or 

Convolutional Ne for extracting features, RNNs for sequence 

contextual simulation, and attention-gathering techniques for 

improved context awareness, the proposed model aims to 

achieve a trade-off between the abovementioned approaches.  

Compared to existing models that mainly concentrate on 

one-dimensional methods, the proposed framework delivers a 

detailed solution by leveraging the fortes of multiple 

approaches, thus enabling a more robust synthesis process. A 

specific review of existing literature discloses that while 

several TTS systems have made advances in performance, 

they frequently fall short in terms of flexibility across various 

linguistic contexts.  

The novel model of the current study is assessed using 

benchmark datasets, and its results are compared against those 

of the most advanced TTS models in terms of naturalness, 

fluency, and overall quality. The contribution of this research 

is, therefore, to advance artificial intelligence-driven speech 

synthesis by offering a reliable solution for real-time TTS 

systems. In other words, this research pursues to discover 

these improvements and their applications for future 

developments in TTS technology. 

3. Methodology 
Natural language processing systems depend heavily on 

TTS conversion, which powers a number of applications, 

including AI-driven voice synthesis, accessibility aids, and 

virtual assistants. The current research introduces a state-of-

the-art hybrid deep learning model in this field that combines 

CNNs, RNNs, and attention processes to provide effective and 

high-quality TTS conversion. The model seeks to synthesise 

quality and computing efficiency by incorporating Bark, a 

text-to-audio model based on transformers. 

3.1. Model Architecture 

The hybrid deep learning model uses CNNs to effectively 

extract the text characteristics. RNNs are utilized for capturing 

sequence associations. Attention-gathering methods are 

employed to enhance contextual perception. Transfer learning 

methods that influence embedded systems that have been 

trained help to allow rapid convergence. The model's verbal 

abilities are consistent with Bark's bilingualism, displaying 

flexibility. 

3.2. Optimization Techniques 

Careful alignment is necessary to get a consistent output 

in a range of language settings. The current research makes 

use of techniques for adjusting parameters and augmenting 
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training datasets. By leveraging already-prepared embedding 

in transfer learning, the convergence can be enhanced. With 

float16 for half-precision and Gpu transfer for inactive 

examples, the Bark model can significantly reduce the 

induction time and memory use. 

3.3. Evaluation and Comparative Analysis 

During the comparison against earlier models, the hybrid 

model exhibits significant improvements in authenticity, 

proficiency, and overall TTS efficiency. It is evaluated using 

benchmark datasets. In the current research, the model's 

effectiveness for real-time TTS applications-particularly AI-

powered voice synthesis-is highlighted. The following 

sections comprise the utilised methodology:  

3.3.1. Data Collection and Preprocessing 

• Dataset Selection: Create different datasets to represent 

various linguistic contexts and styles. 

• Text Processing: The process of processing textual data 

enables the handling of linguistic nuances and variations. 

3.3.2. Model Components 

• Hybrid Model Design: Develop a hybrid deep learning 

model integrating CNNs, RNNs, and attention 

mechanisms. 

• Use CNNs for efficient extraction of features from text 

data.  

• Sequence Contextual Simulation: Use RNNs to identify 

sequence relationships in input.  

• Contextual Awareness: Use attention techniques to 

improve understanding of context throughout 

synthesizing.  

3.3.3. Mathematical Model of Classifier 

The classifier model can be identified in the following 

steps: 

Feature Extraction (CNN) 

F= CNN(X) 

X represents the input text encoded as a sequence of 

embeddings, while F signifies the extracted characteristics 

map. 

Sequential Processing (RNN) 

The hidden state at time t (Ht) can be elucidated by the 

following equation 

Ht= RNN(Ft, Ht−1) 

Ft denotes the feature vector at time t. 

Attention Mechanism 

The attention weights (A) can be used to make a focus on 

related parts of the input as defined below 

A= softmax (Wa⋅Ht) 

A is the weight matrix of the attention mechanism. 

Output Generation 

The obtained TTS output (Y) is estimated using; 

Y= softmax (Wy⋅HT+by) 

Wy is the weight matrix of the output layer, and by is the 

associated bias. 

3.3.4.Transfer Learning 

Previously trained Embedding: Use transfer learning 

methods to incorporate already-trained embedding modeled 

after effective machine learning for natural language 

applications. 

3.3.5. Optimization Techniques 

• Hyperparameter Analysis: Systematically analyze the 

effect of numerous hyperparameters on model 

performance. In this aspect, it should be noted that 

hyperparameter tuning is vital for the hybrid deep 

learning model in TTS conversion as it meaningfully 

impacts performance and effectiveness. Indeed, superior 

tuning can enhance the accuracy, fluency, and naturalness 

of the model besides accelerating convergence 

throughout training for real-time implications. Also, it 

enhances robustness against noise and input variations, 

aiding the generalisation of the model through various 

languages and accents. Furthermore, efficient tuning can 

avoid overfitting, guaranteeing high-quality output on 

unobserved data while optimizing resource usage for 

employment in restricted environments. Thus, 

hyperparameter tuning is important for enhancing AI-

driven speech synthesis. 

• Training Dataset Augmentation: Explore the benefits of 

training dataset augmentation to enhance model 

robustness following the concepts of [4]. 

• Parameter Tuning: Optimize model parameters to 

improve synthesis quality following [5]. 

3.3.6. Evaluation 

• Benchmark Datasets: Evaluate the model on benchmark 

datasets commonly used in TTS research. 

• Performance Metrics: Assess the model's naturalness, 

fluency, and overall quality by comparing it against state-

of-the-art TTS models [6]. 

3.3.7. Experimental Setup 

• To train and evaluate models, split datasets into training, 

validation, and testing sets (a. Data splitting). 

• Model Training: Train the hybrid model using 

appropriate loss functions and optimization algorithms. 

Implement early stopping to prevent overfitting and 

ensure optimal model generalization. 
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• Performance Evaluation: Utilize standard metrics (e.g., 

Mean Opinion Score) for subjective evaluation. Employ 

objective metrics to quantify naturalness and fluency. 

4. Results 
This section intends to compare the proposed hybrid 

model against existing TTS models on benchmark datasets. 

Furthermore, an analysis of the impact of hyper-parameter 

variations and optimization techniques on model performance 

is conducted.  

4.1. Inference Process and Difficulties 

The research uses the Bark framework to investigate the 

inference process in TTS systems, highlighting the 

significance of feeding the model one sentence at a time to 

achieve the best possible output quality (to optimize output 

quality). In order to prevent misunderstandings and confusion 

caused by multiple sentences being fed at once, the 

documentation suggests against doing so. In other words, 

feeding several sentences simultaneously can lead to 

misunderstandings and confusion, unpleasantly impacting the 

clearness and coherence of the generated speech. Although the 

processing overall time is slower, the utilised method has 

reduced the noise besides minimizing the request for extensive 

post-processing. Utilizing this approach, the hybrid model 

effectually improves the accuracy of speech synthesis, 

representing a clear trade-off between speed and quality, 

which is active in real-time implications. 

4.2. Examining the Inference Output 

This section examines the inference output; each 

processed sentence is scrutinized for waveforms, audio 

quality, and textual accuracy. This allows for documenting 

noise patterns that can be eliminated in post-processing. 

Indeed, finding patterns of noise can help to improve output 

quality by revealing potential avenues for improvement.  

Sentence 1/8 processed as shown in Figure 1, Number of 

tokens in the sentence: 36. Length of sentence: 181. Number 

of sentences in text: 8. Shape of tensor for this sentence: 

torch.Size [1, 283200]. The elapsed time for this sentence to 

process is 57.67 s. Estimated time to complete: 6.73 min. “In 

Greek mythology, there are multiple stories associated with 

the constellation Cancer, but one prominent tale involves the 

second labor of Heracles (Hercules in Roman mythology)”. 

Sentence 2/8 is processed as shown in Figure 2. The 

number of tokens in the sentence is 38, and the sentence is 

146. Number of sentences in text: 8. of tensor for this 

sentence: torch.Size [1, 224000]. The elapsed time for this 

sentence is 41.52 s. Estimated time to complete: 4.96 min. 

“Hera, the wife of Zeus and the goddess of marriage held a 

grudge against Heracles because he was the illegitimate son of 

Zeus and another woman”. 

Sentence 3/8 processed as shown in Figure 3, Number of 

tokens in the sentence: 36. of the sentence: 137. Number of 

sentences in text: 8. Shape of tensor for this sentence: torch. 

Size [1, 216640]. The elapsed time for this sentence is 41.59 

s. Estimated time to complete: 3.91 min. “To harm Heracles, 

Hera sent a giant crab named Karkinos to distract him during 

his battle with the Hydra, a serpent with multiple heads”. 

Sentence 4/8 processed as shown in Figure 4, Number of 

tokens in the sentence: 26. Length of sentence: 92. Number of 

sentences in text: 8. Shape of tensor for this sentence: 

torch.Size [1, 154240]. The elapsed time for this sentence is 

29.78 s.  Estimated time to complete: 2.84 min. “As Heracles 

was fighting the Hydra, Karkinos latched onto his foot with its 

strong pincers”. 

Referring to the above results, the elapsed time for the 

second sentence takes 41.52 s, the third 41.59 s, and so forth. 

This would illustrate a trend where the difficulty and length of 

the sentences impacted the processing time. For example, 

Sentence 2 has 38 tokens and a length of 146 characters, with 

the tensor shape of a torch size [1, 224000], processed in 41.52 

s.  

 
Fig. 1 Time below, above, and rolling threshold for sentence 1 
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Fig. 2 Time below, above, and rolling threshold for sentence 2 

 
Fig. 3 Time below, above, and rolling threshold for sentence 3 

 
Fig. 4 Time below, above, and rolling threshold for sentence 4 

Sentence 5/8 processed as shown in Figure 5, Number of 

tokens in the sentence: 21. Length of sentence: 70. Number of 

sentences in text: 8. Shape of tensor for this sentence: torch. 

Size [1, 120960]. Elapsed time for this sentence is 24.32 s. 

Estimated time to complete: 1.95 min. “However, Heracles 

quickly crushed the crab with his foot, killing it”. Sentence 6/8 

processed as shown in Figure 6, Number of tokens in the 

sentence: 29. Length of sentence: 118. Number of sentences 

in text: 8. of tensor for this sentence: torch. Size [1, 194240].  

Time for this sentence: 37.27 s. Estimated time to 

complete: 1.29 min. “In recognition of Karkinos' loyalty and 

sacrifice, Hera placed the crab in the night sky as the 

constellation Cancer”. 
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Fig. 5 Time below, above, and rolling threshold for sentence 5 

 
Fig. 6 Time below, above, and rolling threshold for sentence 6 

 
Fig. 7 Time below, above, and rolling threshold for sentence 7 

Sentence 7/8 processed as shown in Figure 7, Number of 

tokens in the sentence: 23 of the sentence: 86. Number of 

sentences in text: 8. Shape of tensor for this sentence: 

torch.size [1, 153280]. Elapsed time for this sentence is 30.14 

s. Estimated time to complete: 0.62 min. “This was her way of 

honoring the creature that tried to thwart Heracles in his 

quest”. Sentence 8/8 processed as shown in Figure 8, Number 

of tokens in the sentence: 23. Length of the sentence: 94. of 

sentences in text: 8. of tensor for this sentence: torch.Size [1, 

285120]. Time for this sentence: 54.26 s. Estimated time to 
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complete: 0.0 min. “The Cancer constellation is often depicted 

as a crab in various interpretations of this myth”. 

Analysing the processing time of the eight sentences 

introduces the fact of variable results. The final sentence 

(Sentence 8/8) was processed in 54.26 s, which indicates a 

cumulative estimated completion time of roughly 6.73 

minutes for the entire text.  

This breakdown permits a detailed analysis of processing 

competence and signifies the association between sentence 

difficulty and inference time. Figures (1 – 8) illustrate the 

processing times and tensor shapes for each sentence that can 

offer visual provision for the analysis, establishing how the 

proposed model is achieved under various linguistic 

conditions.  

The results advise that the cautious management of input 

sentences and the consideration of processing details can 

deduce a noteworthy enhancement in TTS output quality, 

strengthening the model's potential for real-time implications 

in artificial intelligence-driven voice synthesis. The 

distribution of processing time of the eight sentences is 

elaborated in Figure 9.  

 
Fig. 8 Time below, above, and rolling threshold for sentence 8 

 
Fig. 9 Distribution of processing time for 8 sentences

Finally, it can be stated that the developed hybrid deep 

learning model in the current study can achieve remarkable 

TTS findings compared to state-of-the-art methods by 

integrating CNNs, RNNs, and attention mechanisms, which 

was able to leverage the strengths of each architecture for 

efficient feature extraction and sequential processing. Using 

transfer learning and data augmentation has extended the 

training dataset, improving multilingual adaptability. The 

advanced inference process concentrates on single-sentence 

feeding besides optimizing the output quality at diminished 

latency. Also, the concept of a slice array function has 

resolved the noise issues, which leads to clearer audio. In this 

regard, the detailed assessment against benchmark datasets 

has additionally elucidated its progressions in naturalness, 

fluency, and overall quality, setting it apart from existing 

models.



Hani Q.R. Al-Zoubi / IJETT, 73(4), 376-385, 2025 

 

385 

5. Conclusion 
The current research introduced a hybrid deep learning 

model designed for superior TTS conversion, seamlessly 

integrating CNNs, RNNs, and attention mechanisms. Teaming 

up with Bark, the model developed indicated significant 

improvements in naturalness, fluency, and overall TTS quality 

compared to existing models. The hybrid model's architecture 

prioritized efficient text feature extraction and sequential 

relationship capture. Transfer learning and optimization 

techniques, such as training dataset augmentation, contributed 

to rapid convergence and multilingual adaptability. Evaluation 

of benchmark datasets underscored its suitability for real-time 

TTS applications. The exploration of the inference process 

using Bark highlighted the importance of single-sentence 

feeding, optimizing output quality and minimizing post-

processing needs. The current research introduced a slice array 

function to address occasional noise, refining the audio output. 

However, the stubborn noise issues, despite modifications, 

slower processing due to single-sentence feeding, sensitivity 

to hyperparameter options, and the request for scalability 

across platforms, are still the most limited. Thus, it is 

recommended to continuing research into hyperparameter 

variations and optimization techniques while emphasizing the 

ongoing improvement of models like Bark for enhanced 

performance in the evolving landscape of AI-driven speech 

synthesis. 

References 
[1] Yuxuan Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,” arXiv Preprint, pp. 1-10, 2017. [CrossRef] [Google Scholar] 

[Publisher Link] 

[2] Aaron van den Oord et al., “Wavenet: A Generative Model for Raw Audio,” arXiv Preprint, pp. 1-15, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[3] Jonathan Shen et al., “Natural TTS Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions,” IEEE International 

Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, pp. 4779-4783, 2018. [CrossRef] [Google Scholar] 

[Publisher Link] 

[4] Surabhi Sudhan, Parvathy P. Nair, and Mg. Thushara, “Text-to-Speech and Speech-to-Text Models: A Systematic Examination of Diverse 

Approaches,” IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, pp. 1-8, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

[5] Yi Ren et al., “Fastspeech: Fast, Robust and Controllable Text to Speech,” Advances in Neural Information Processing Systems: 33rd 

Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, vol. 32, pp. 1-10, 2019. [Google Scholar] 

[Publisher Link] 

[6] Yibin Zheng et al., “Improving End-to-End Speech Synthesis with Local Recurrent Neural Network Enhanced Transformer,” IEEE 

International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 6734-6738, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[7] Liisa Rätsep, Rasmus Lellep, and Mark Fishel, “Estonian Text-to-Speech Synthesis with Non-autoregressive Transformers,” Baltic 

Journal of Modern Computing, vol. 10, no. 3, pp. 447-456, 2022. [CrossRef] [Google Scholar] [Publisher Link]  

[8] Francesco Tombini, “A Dynamic Deep Learning Approach  for Intonation Modeling,” Master’s Thesis, Saarland University, pp. 1-114, 

2018. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, “Pixel Recurrent Neural Networks,” Proceedings of the 33rd 

International Conference on Machine Learning, New York, NY, USA, vol. 48, pp. 1747-1756, 2016. [Google Scholar] [Publisher Link] 

[10] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning, “Effective Approaches to Attention-based Neural Machine Translation,” 

arXiv Preprint, pp. 1-11, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, and Géza Németh, “Deep Recurrent Neural Networks in Speech Synthesis Using a 

Continuous Vocoder,” International Conference on Speech and Computer, Hatfield, United Kingdom, pp. 282-291, 2017. [CrossRef] 

[Google Scholar] [Publisher Link] 

[12] Jan K. Chorowski et al., “Attention-based Models for Speech Recognition,” Advances in Neural Information Processing Systems, vol. 28, 

pp. 1-9, 2015. [Google Scholar] [Publisher Link] 

[13] Soroush Mehri et al., “SampleRNN: An Unconditional End-to-End Neural Audio Generation Model,” arXiv Preprint, pp. 1-11, 2016. 

[CrossRef] [Google Scholar] [Publisher Link] 

[14] Rachel Manzelli et al., “An End to End Model for Automatic Music Generation: Combining Deep Raw and Symbolic Audio Networks,” 

Proceedings of the Musical Metacreation Workshop at 9th International Conference on Computational Creativity, Salamanca, Spain, pp. 

1-6, 2018. [Google Scholar] [Publisher Link] 

[15] Titouan Parcollet et al., “Bidirectional Quaternion Long Short-Term Memory Recurrent Neural Networks for Speech Recognition,” IEEE 

International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, pp. 8519-8523, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[16] Sercan Ö. Arık et al., “Deep Voice: Real-time Neural Text-to-Speech,” Proceedings of the 34th International Conference on Machine 
Learning, Sydney, Australia, vol. 70, pp. 195-204, 2017. [CrossRef] [Google Scholar] [Publisher Link]

 

https://doi.org/10.48550/arXiv.1703.10135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tacotron%3A+Towards+end-to-end+speech+synthesis&btnG=
https://arxiv.org/abs/1703.10135
https://doi.org/10.48550/arXiv.1609.03499
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wavenet%3A+A+generative+model+for+raw+audio&btnG=
https://arxiv.org/abs/1609.03499
https://doi.org/10.1109/ICASSP.2018.8461368
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Natural+tts+synthesis+by+conditioning+wavenet+on+mel+spectrogram+predictions&btnG=
https://ieeexplore.ieee.org/document/8461368
https://doi.org/10.1109/I2CT61223.2024.10544015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text-to-speech+and+speech-to-text+models%3A+A+systematic+examination+of+diverse+approaches&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text-to-speech+and+speech-to-text+models%3A+A+systematic+examination+of+diverse+approaches&btnG=
https://ieeexplore.ieee.org/document/10544015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fastspeech%3A+Fast%2C+robust+and+controllable+text+to+speech&btnG=
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f63f65b503e22cb970527f23c9ad7db1-Abstract.html
https://doi.org/10.1109/ICASSP40776.2020.9054148
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+end-to-end+speech+synthesis+with+local+recurrent+neural+network+enhanced+transformer&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+end-to-end+speech+synthesis+with+local+recurrent+neural+network+enhanced+transformer&btnG=
https://ieeexplore.ieee.org/document/9054148
https://doi.org/10.22364/bjmc.2022.10.3.17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estonian+Text-to-Speech+Synthesis+with+Non-autoregressive+Transformers&btnG=
https://www.bjmc.lu.lv/contents/vol-102022-no-3/
http://dx.doi.org/10.22028/D291-27237
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dynamic+deep+learning+approach+for+intonation+modeling&btnG=
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27120
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pixel+Recurrent+Neural+Networks&btnG=
https://proceedings.mlr.press/v48/oord16.html
https://doi.org/10.48550/arXiv.1508.04025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+approaches+to+attention-based+neural+machine+translation&btnG=
https://arxiv.org/abs/1508.04025
https://doi.org/10.1007/978-3-319-66429-3_27
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Recurrent+Neural+Networks+in+speech+synthesis+using+a+continuous+vocoder%27&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-66429-3_27
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Attention-based+models+for+speech+recognition&btnG=
https://proceedings.neurips.cc/paper/2015/hash/1068c6e4c8051cfd4e9ea8072e3189e2-Abstract.html
https://doi.org/10.48550/arXiv.1612.07837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SampleRNN%3A+An+unconditional+end-to-end+neural+audio+generation+model&btnG=
https://arxiv.org/abs/1612.07837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+End+to+End+Model+for+Automatic+Music+Generation%3A+Combining+Deep+Raw+and+Symbolic+Audio+Networks&btnG=
https://computationalcreativity.net/iccc2018/scientific-programme
https://doi.org/10.1109/ICASSP.2019.8683583
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bidirectional+quaternion+long+short-term+memory+recurrent+neural+networks+for+speech+recognition&btnG=
https://ieeexplore.ieee.org/document/8683583
https://doi.org/10.1007/978-3-319-58835-3_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+voice%3A+Real-time+neural+text-to-speech&btnG=
https://proceedings.mlr.press/v70/arik17a.html?ref=https://githubhelp.com

