
International Journal of Engineering Trends and Technology Volume 73 Issue 5, 359-368, May 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I5P129 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Greedy Constraints-based Fog Computing Model to

Optimize Task Scheduling

Monika1, Harkesh Sehrawat2, Vikas Siwach3

1,2,3University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India.

2Corresponding Author : sehrawat_harkesh@mdurohtak.ac.in

Received: 09 August 2024 Revised: 08 March 2025 Accepted: 19 May 2025 Published: 31 May 2025

Abstract - Fog computing ensures effective request processing and service distribution in real-time IoT applications. Instant

request processing, reliable execution, and effective QoS are the key requirements of such applications. However, the increasing

requests and broad coverage of this network can increase the network load. An effective resource allocation and scheduling

method is required to utilize the available resources and to reduce execution failure. Higher delay and makespan are the key

challenges of scheduling algorithms and fog computing. In this paper, a multiple-constraint adaptive greedy task scheduler is

designed to optimize the functioning of task scheduling. The functioning of the proposed scheduling model is divided into two

stages. In the first stage, a multiple constraint-based resource allocation is done. In this stage, task criticality and resource

priority-based mapping methods are defined to optimize the resource scheduling. In the final stage, the deadline and delay

adaptive greedy method is defined to schedule the requests. The comparative evaluation is done against the FCFS, SJF, GTS,

and DPTS methods. The algorithm reduced the average delay and makespan in comparison with state-of-the-art methods.

Keywords - Fog computing, Task scheduling, Greedy, Resource allocation, IoT.

1. Introduction
IoT networks are location-aware, lightweight, real-time,

and application-driven networks that support large volumes of

data flow and request processing in a restricted timeframe.

Security, reliability, efficient data transmission and low power

request processing are the key requirements of these networks.

Cloud computing is a distributed network that ensures high

processing power and storage with centralized control.

However, it did not confirm efficient data transmission with

lower response time. The limited bottleneck of cloud

computing slows down the request processing and increases

the error rate in IoT networks. Fog computing is one such

lightweight technology that provides processing devices and

data centers at the edge of networks [1]. This distributed

network is capable of handling real-time situations such as

heterogeneous devices, heavy network density, bottleneck

situations, etc. This network ensures flexible communication

and computing by establishing an interconnection over the

resources and devices present at the network edge. Fog

computing performs local resource pooling to perform

effective data transfer and communication over the network.

Fog computing is an extension of cloud computing that can

provide interaction with the cloud as well as confirm the

request processing at the edge. The service and application-

driven network is very adaptive for smart homes, smart grids,

V2V networks, smart hospitals and other IoT-based

applications [2, 3].

Fig. 1 Layered architecture of fog computing

Cloud

{Storage, Network and

Computation }

Fog

{Storage,
Network,

Compute}

Fog

{Storage,

Network,

Compute}

Fog

{Storage,

Network,

Compute}

Users

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

360

The decentralized architecture and distributed behaviour

of fog computing are provided in Figure 1. It is a layered

architecture in which the lowest layer is connected to real-time

and application-specific users. These users can generate

requests through various IoT devices to perform their requests.

These devices capture real-time and environmental

information and submit the requests to the fog layer. This layer

contains a variety of controller and processing devices,

including workstations, gateways, routers, switches, etc. This

also contains immediate processing devices and storage units.

The top cloud layer collects and controls all these activities

over the lower layer and provides centralized processing and

storage services [4, 5]. Figure 2 shows the task scheduling

model for fog computing. In an application-based distributed

environment, a large number of requests are generated by

users and the environment through IoT and smart appliances.

The intermediate fog layer processes these requests and the

request processor to allocate the required processes and to line

up for task execution. The objective of the task scheduling

algorithm is to maize the execution delay, execution time and

cost of execution. The task scheduling algorithm faces various

real-time challenges, including heavy load and bottleneck

situations, low power resources, power consumption, etc. [6-

8].

Fig. 2 Standard task scheduling architecture for fog computing

A smart grid is one such critical application of IoT that is

responsible for the distribution of power and energy-related

services. In this network, the data is collected in the form of

power requests and the appliance's power usage. Several

utilities related to IoT techniques are included in the smart grid

environment. Various elements and behaviours of the smart

grid are handled by integrating the IoT cloud, data

governance, and sensor fusion. Business analytics may be

applied to the obtained data to make decisions about

monitoring and allocating energy sources. In the case of smart

grids, IoT is a larger network that communicates at various

levels to enhance energy distribution. The communication

traffic in the network also suffers from numerous challenges,

which may be addressed by conducting traffic maintenance

and restoration in the IoT network. The Internet of Things

(IoT) configures networks and devices and gathers data from

distribution networks. The smart grid system collects various

sorts of data at different periods. The acquired systematic data

may be handled and processed in this smart grid to maximize

the use of available energy and avoid severe load situations. A

vast amount of data may be acquired since IoT devices capture

data at regular intervals. The frequency of data collection is

also an issue when working with a smart grid. It can cause

complications with storage and consumption. Effective

infrastructure and storage systems are necessary to handle and

process this data. If the data is greater, it may have an impact

on peak-hour performance or the ability to give meaningful

advantages to customers. The obtained data may be examined

to determine peak load and price scenarios. The network is

fitted with smart meters for frequent monitoring and

identifying consumer behaviour [9, 10].

1.1. Research Contribution

This paper provides a greedy constraint adaptive fog

computing model for optimizing the functioning of task

scheduling. The main contributions of the proposed model are

listed below:

• A criticality and deadline adaptive resource allocation

method is integrated with the prior stage to reduce the

failure probability.

• A multi-objective greedy algorithm is applied within the

second stage to obtain the sequence for each resource and

to reduce the execution delay.

• The model was applied under deadline consideration so

that starvation situations are avoided.

• The proposed model is validated against conventional and

state-of-the-art methods under delay, execution time and

execution ratio measures.

In this paper, a greedy and constraint adaptive model is

presented to optimize the performance of the task scheduling

Cloud

{Resources and

Storage}

Task

Scheduler

IoT

Devices

Fog Devices

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

361

algorithm for fog computing. In this section, a brief

introduction to fog computing architecture and the

requirements of task scheduling is provided. Various

challenges of task scheduling and fog computing are

discussion discussed in this section. In section 2, the research

contributions of various researchers to optimize the behaviour

of task scheduling and fog computing are provided. Various

optimization methods and models investigated by the

researchers are discussed. In section 3, the proposed multiple-

constraints adaptive task scheduling model is provided and

discussed. The algorithm and functional process of the

proposed model are discussed. In section 4, the experimental

analysis and results are provided. The significance of the

proposed model is validated in this section. In section 5, the

conclusion and future scope are provided.

2. Related Work
This section provides a study on various optimization

models and techniques proposed by the researchers to

optimize the effectiveness and reliability of task scheduling.

Saif et al. [11] proposed a multi-objective grey wolf

optimization method to reduce energy consumption and delay

in cloud computing. This model incorporated a non-Pareto

dominance solution within the conventional hunting method

of GWO to optimize its behaviour within task scheduling. The

dynamic positioning of prey and wolves was considered under

parametric constraints. The fitness function is defined with

delay and energy consumption parameters. This work did not

consider heterogeneity in requests and resources. The load

imbalance and resource utilization were not analyzed in this

work. Yeh et al. [12] proposed a local search analysis-based

Bi-objective simplified swarm optimization system to

enhance the effectiveness of task scheduling. This algorithm

is integrated with a fast elite selecting mechanism to set up a

non-dominating sorting of tasks with lesser time complexity.

This hybrid algorithm generated a time-effective solution to

the task scheduling problem and reduced the execution time

and delay. The author did not investigate the work against a

heavy load situation. The task priority and heterogeneity of

resources were not considered in this work. Khan et al. [13]

proposed a delay-sensitive and modified particle swarm

optimization (MPSO) based method to optimize the task

scheduling functioning in load balancing constraints. This

algorithm enhanced the performance of task processing under

energy consumption, cost, network bandwidth and delay

parameters. The resource utilization was improved by up to

80% in this algorithm. The request and resource level

heterogeneity was not considered in this research. Dai et al.

[14] addressed the complex modeling challenges of fog

computing and provided a multi-objective solution for this

problem. The uncertainty problem of fog computing was

resolved by using a dynamic priority mechanism. The multi-

objective optimization model is integrated using weight

adjustment to reduce the delay and energy consumption. This

multi-objective model reduced the task execution cost and

improved resource utilization in a heterogeneous

environment. Jakwa et al. [15] investigated a deterministic

spanning tree and modified the particle swarm optimization

algorithm to optimize the task scheduling. This scheduler

performed the resource allocation and managed the resources.

This algorithm provided a load-balanced method to handle the

heavy load situation of the IoT network. The algorithm was

effectively defined for a heterogeneous environment and

improved the service execution. The proposed algorithm

reduced the energy consumption and response time. Liu et al.

[16] provided a meta-heuristic hybrid scheduling algorithm to

reduce the delay and energy consumption in fog computing.

This hybrid algorithm is the combination of an artificial bee

colony algorithm and a particle swarm optimization

algorithm. Particle swarm optimization was used for

optimizing the resource allocation under load balancing. This

algorithm reduced the energy and computation time while

processing a single fog cluster. In the second stage, an

artificial bee colony algorithm was used to optimize fog

computing. This resource scheduling method reduced the

energy consumption and execution delay effectively against

state-of-the-art methods.

Some researchers analyze the task processing history as

the key factor in making decisions on resource allocation and

task scheduling. They used machine learning and deep

learning models and methods to identify the patterns and

optimize the task scheduling. Iftikhar et al. [17] provided an

effective task-scheduling model called Hunterplus for fog

computing. This model integrated a recurrent bidirectional

unit within a Gated Graph Convolutional Network (GGCN) to

optimize the resource allocation and task scheduling methods.

The experimental results confirm the reduction in energy

consumption and task completion time by 17% and 10.4%.

This work did not provide experiments under scalability and

reliability considerations. Sharma et al. [18] investigated a

two-stage model to optimize the task scheduling for a smart

home-based fog computing architecture. In the first stage of

this model, the usage history analysis and power requirement

prediction were done using the Naive Bayes model. In the

second stage, the Ant colony Optimization and Particle swarm

optimization-based hybrid model is applied to optimize the

behaviour of task scheduling. The analysis results identified a

significant improvement achieved in terms of reduced latency,

low power consumption and effective utilization of network

resources. This work did not handle heavy loads and

bottleneck situations. Imbrahim et al. [19] provided an

effective solution by utilizing the limited capacity of

computing resources. The author used a multi-objective deep

reinforcement learning method to handle the load, task priority

and node distance parameters. The author worked on task

allocation scheduling behaviour by using agents of deep

reinforcement learning. The method was analyzed against

challenging scenarios and achieved significant results in terms

of effective task completion time, transmission delay,

propagation delay, processing delay, makespan and storage

utilization.

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

362

Raju et al. [20] used the reinforcement learning model

with mixed integer and non-linear programming to optimize

fog computing for vehicular networks. The algorithm

considered the vehicle mobility, resource limit and task

deadline challenges in this work. The adaptive and intelligent

modeling-based method reduced the delay by 12% and energy

consumption by 14% against state-of-the-art methods.

Choppara et al. [21] used the reinforcement learning model by

effective placement of nodes. The model was defined for

optimizing the delivery of healthcare services. The positional

behaviour of architecture was improved under a limited

resource specification. The model also computed the resource

demand. The model was tested on different scenarios, and a

dynamic learning method was applied to optimize the task

execution. Sui et al. [22] proposed Mayfly based fusion

algorithm under multiple parameter-based analysis. The

proposed algorithm improved the diversity and efficiency by

including global learning and coefficient-driven mapping. The

algorithm reduced the operating cost and time. The energy

consumption and communication delay were also reduced.

Some of the recent methods proposed by research for

optimizing task scheduling methods are provided in Table 1.

Table 1. Recent task scheduling meta-heuristic and optimization methods

Author Task Scheduler Significance Limitation

Kumar et al.

[23]
Improved Dingo Optimization

Optimized makespan time,

reduced VM failure rate,

reduced degree of

imbalance.

Heterogeneity was not

considered in tasks and

resources.

Tran-Dang et al.

[24]

Dynamic Collaborative Task Offloading

with parallel computation to optimize task

execution.

Reduced Average Delay,

Effective for

Heterogeneous

environment, Improved

Utilization ratio

Scalability was not

considered in the

experimental evaluation.

Mohammadzadeh

et al. [25]

Hybrid discrete Symbiotic Organisms

Search-Grasshopper Optimization

Algorithm (HDSOS-GOA) was proposed.

SOS improved search capability, and GOA

improved workflow scheduling.

Reduced the energy

consumption and number of

VMs required, Improved

Energy Utilization

Work was not validated

in a heterogeneous

environment.

Khan et al. [26]

Ripple Induced Whale Optimization

Algorithm for utilizing the ripple effect to

schedule independent tasks

Minimize makespan and

energy consumption,

maximize throughput

A solution for the Load

imbalance problem was

not provided

Tian et al. [27]

Hybrid Ant Lion Optimization was defined

with a generation hopping stage to handle a

diversity of environments.

Improved convergence

speed, improved accuracy,

reduced latency and energy

consumption.

Varied and heavy load

situations were not

experimented with.

Kumar et al. [28]

Combined Electric Fish Optimization

(EFO) and Earthworm Optimization

Algorithm (EOA) to handle heterogeneous

workload and QoS

Improved efficiency,

Reduced Energy

Consumption, and Reduced

Total Cost

No predictive method

was included, and

workflow analysis was

not considered

Saad et al. [29]

Particle swarm optimization and Genetic

algorithm-based hybrid methods were

provided to provide a compelling solution

to task scheduling.

Reduced Execution time,

Improved response time,

Improved performance of

task completion

Heavy load situations

and priority in tasks and

resources were not

adopted.

3. Proposed Multiple-Constraint Adaptive

Greedy Task Scheduler
In this paper, a multiple-constraint adaptive greedy

method is proposed to optimize the efficiency and reliability

of fog computing. The functional capability of this model is

divided into two main aspects. The first aspect is the

constraints that include performing effective resource

allocation that will avoid switching between the fog devices

and considering the deadline so that the task will be executed

before any cut-off time. The second aspect associated with this

work is the greedy approach that is applied to the key

parameters or objectives of the task scheduling method. The

greedy approach is applied to the average delay and execution

time parameters. The functional stages of this proposed model

are provided in Figure 3.

This model is implemented between the end-user layer

and the fog layer. The input to this model is in the form of user

requests that are generated either by the users or captured by

the IoT devices from the environment. Each of the generated

requests or tasks is defined with multiple parameters,

including task_time, task_criticality and task_length.

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

363

Fig. 3 Multiple-constraint adaptive greedy task scheduling model for

fog computing

These requests are processed, and the task priority is

computed in the first stage of the proposed algorithm. The

prioritization method used in this work is provided in equation

(1).

Task.Priority = task_criticality * (1 - task_deadline

/max_deadline) (1)

The task_criticality is a key factor used to decide the

priority of the task. The tasks associated with some real-time

phenomenon or under a hard deadline constraint are

considered high-priority tasks. These tasks are required to be

allocated and executed on fog devices. The fog devices are

defined within the fog layer with specifications of certain

memory, processing speed and capacity. Another dynamic

measure computed for each fog device is the task completion

ratio. It is a history analysis-based measure that identifies the

number of tasks successfully executed and before the

deadline. Based on these capacity and dynamic measures, the

priority of the fog devices is computed. The priority

computation of fog devices is provided in equation (2).

Set FNodes.Priority = w1* Memory + w2 * Task

Completion Ratio + w3 * FNodes.Procss (2)

The Fog device with higher priority, processing speed and

higher task completion ratio is considered a highly reliable and

effective fog device. A fog device with higher priority can

guarantee the successful execution of user tasks. Here, w1, w2

and w3 are the weights used to decide the priority of tasks. To

identify the best values of w1,w2, and w3, multiple

experiments are conducted, and the task completion ratio for

each experiment is computed. The experimentation results for

identifying the weights with the maximum task execution ratio

are provided in Table 2. The results show that the maximum

execution ratio achieved for this work is 96.43% for weights

w1=0.4, w2=0.3, w3=0.3.

Table 2. Experimental results for effective weight evaluation

w1 w2 w3 Task Execution Ratio

0.1 0.1 0.8 45.76

0.1 0.2 0.7 49.67

0.1 0.3 0.6 51.45

0.2 0.1 0.7 53.56

0.2 0.2 0.6 56.77

0.2 0.3 0.5 59.32

0.3 0.1 0.6 65.31

0.3 0.2 0.5 73.47

0.3 0.3 0.4 78.49

0.4 0.1 0.5 83.54

0.4 0.2 0.4 87.64

0.4 0.3 0.3 96.43

0.5 0.1 0.4 88.43

0.5 0.2 0.3 82.21

0.5 0.3 0.2 74.35

0.6 0.1 0.3 70.04

0.6 0.2 0.2 64.67

0.6 0.3 0.1 51.34

0.7 0.1 0.2 48.97

0.7 0.2 0.1 46.33

0.8 0.1 0.1 42.84

Now, to perform the resource allocation, the request for

resource mapping is under the multiple constraint-based

method. According to these constraints, the requests are

categorized based on the priority. While allocating the tasks to

resources, a ratio of highly critical, medium critical, and low

critical tasks is considered. The tasks with more number of

critical and high-priority tasks are allocated to the high-

priority resources. Similarly, the tasks with low priority and

criticality are allocated to the low-priority resources. Once

allocation is done, the greedy-based scheduling method is

applied to each fog device to set up the order of task execution.

For this greedy rule, each task is described in the ratio of

deadline and delay parameters. This task ratio feature is

provided in equation (3).

Task.Ratio = task.Delay / Task.DeadLineDiff (3)

The objective of this greedy method is to minimize the

delay and the failure ratio. According to the proposed

algorithm, the allocated tasks are executed in order of the

Ratio parameter. The algorithmic detail and behaviour of this

greedy approach are provided in Algorithm 1. The statistical

measures and environmental setup are considered under some

observations and assumptions. The assumptions considered in

this work are provided below.

• The tasks executed by the users are independent, and their

execution will not be affected by other tasks.

Resource Capability
analysis and

Prioritization

Task Generation &

Prioritization

Task-Resource Mapping

and Allocation

[Constraint Adaptive]

Greedy-adaptive Task

Scheduling

[Multiple Objectives]

Task Execution and

Analysis

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

364

• A user can generate multiple requests, so several requests

and users can be different.

• The deadline is considered a critical factor. The tasks

executed after the deadline will be considered as failed

execution.

• The re-execution of tasks is not considered in this work.

In case of failure, the task will be re-generated by the user.

• The application of the task is not defined.

The tasks with a lower ratio are executed first. The

proposed algorithm is simulated on iFogSim environment

with multiple tasks and fog nodes. Multiple experiments are

conducted with different configurations and tasks. The

analysis results are provided in the next section.

Algorithm 1: Multiple-constraint Adaptive Greedy

Scheduler (Tasks, FNodes)

1. Acquire Memory, Task Completion Ratio, and

Processing Speed for FNodes

 [Obtain the resource features]

2. Set FNodes.Priority = w1* Memory + w2 * Task

Completion Ratio + w3 * FNodes.Process

 [Compute the priority factor for each task]

3. Acquire Deadline, Criticality, and Expected Task

 Duration for Tasks

 [Obtain Task Features]

4. Categorize the tasks under deadline and criticality

parameters.

5. Apply constraints for allocating tasks to available fog

devices with a specific ratio of different criticality

levels of tasks.

6. For i=1 to FNodes.Length

 {

7. Set the Greedy Rule Minimize

∑ 𝐹𝑁𝑜𝑑𝑒(𝐹𝑛𝑜𝑑𝑒(𝑖).𝑇𝑎𝑠𝑘𝑠.𝑙𝑒𝑛𝑡ℎ
𝑗=1 𝑖). 𝑇𝑎𝑠𝑘𝑠(𝑗).

 Delay/FNode(i).Tasks(j).DeadLineDiff

9. Arrange FNodes(i).Tasks in order of increasing

 Greedy Factor

10. Execute FNodes(i).Tasks and Record the

 Performance Measures

}

Algorithm-1 defines the multi-constraint-based greedy

scheduler for optimizing the performance of task execution in

fog computing. This algorithm accepts the resources as

FogNodes and tasks as user requests. The algorithm uses the

statistical measures on both the resource and user ends to

perform effective allocation and scheduling. The resource

features, such as capacity, processing speed and history

record, were acquired for resources. Based on this, the priority

of fog nodes is computed. Another analysis is performed on

tasks by obtaining the criticality level, task duration and

deadline. The tasks are categorized based on deadline and

criticality measures. Now the ratio-specific analysis is applied

for allocating the tasks to specific fog devices. The greedy rule

is defined to minimize the delay and increase the execution

ratio on the same fog device. The greedy factor is computed,

and tasks are executed in this greedy order. The experimental

analysis and evaluation to analyze the performance of the

proposed model is provided in the next section.

4. Results and Discussion
This paper proposes a multiple-constraints adaptive

greedy method to optimize the task scheduling for fog

computing. The algorithm was simulated using the iFogSim

simulator. When operating in this environment, the input is

obtained via Internet of Things devices or nodes that are

connected to the application environment. In addition to being

non-preemptive, the requests that are approved are diverse.

The simulation is carried out on a system with an Intel-I5

processor operating at 3.1 GHz. This device comes equipped

with 8 gigabytes of random access memory (RAM), 4

megabytes of cache, and an integrated iFogSim Toolkit. The

makespan, failure rate, and average delay metrics are used in

the comparative evaluation that is carried out. The initial

metric examined in this study is Average Delay. Delay is

defined as the disparity between the time of arrival and the

time of execution of a job. Equations (4) and (5) denote the

calculation of Delay and Average Delay.

Delay = Time-of-Execution - Time-of-Arrival (4)

Average delay =
∑ 𝐷𝑒𝑙𝑎𝑦𝑖𝑁

𝑖=1

𝑁
 (5)

N represents the number of tasks.

Another performance metric utilized in this experiment is

the average turnaround time or average execution time. The

turnaround time is the difference between job completion time

and the time of arrival. The execution time and average

execution time are denoted in equations (6) and (7).

 Execution Time = Time of Completion – Arrival Time (6)

AverageExecutionTime =
∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖𝑁

𝑖=1

𝑁
 (7)

N represents the number of tasks or requests created

during a session.

A task is deemed unsuccessful if it is not completed

before the deadline. The Failure Rate (FR) metric quantifies

the ratio of failed tasks to the total tasks throughout the

session. In order to estimate the performance of scheduling

algorithms, the most frequent measure that is used is called

makespan. The real amount of time that the algorithm required

to complete the task is what is being referred to here. In this

work, the average makespan is taken into consideration. By

calculating the average number of tasks that are not completed

before the deadline, the failure rate may be determined. The

comparative evaluation is conducted against First Come First

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

365

Serve (FCFS), Shortest Job First (SJF), Greedy based Task

Scheduler (GTS) and Dynamic Programming based Task

Scheduler (DPTS).

Figure 4 provides the comparative evaluation of the

proposed multiple-constraint-based greedy method against the

average delay measure in varied task load-based scenarios.

For this evaluation, multiple experiments are conducted with

100 to 500 tasks and 30 fog devices. The line graph shows that

the average delay obtained for FSCS and SJF is are worst. The

average delay obtained for all these experiments is 284.12 ms

for FCFS, 272.68 ms for SJF, 234.57 ms for GTS and 216.58

ms for DPTS. The proposed algorithm minimized the average

delay of 185.15 ms and outperformed all the existing methods.

Fig. 4 Average delay analysis (Varied task load)

Fig. 5 Average delay analysis (Varied number of fog devices)

Another experiment is conducted in this work against a

varied number of fog devices and a fixed number of requests.

In this experiment, Multiple tests are carried out for this

evaluation, each with 10 to 50 fog devices and 300 requests.

Fig 5 illustrates that the average latency for FSCS and SJF is

the worst, with a higher average delay. The average delay

derived from all of these studies is 312.08 ms for FCFS,

280.12 ms for SJF, 230.91 ms for GTS, and 190.15 ms for

DPTS. The suggested strategy reduced the average latency to

168.65 ms and surpassed all existing solutions.

Another parameter considered to validate the reliability of

the proposed model is the Successful execution ratio. A task

execution is called a failure if the allocated fog device is

unable to execute it or the execution is not performed within

the specified deadline. An experiment is carried out in this

work to validate the reliability of the proposed algorithm

under a varied number of requests and a fixed number of fog

devices. This experiment involves many tests, each with 100

to 500 requests and 30 fog devices. Figure 6 shows that the

successful execution rate of FSCS and SJF is the worst. The

average successful execution rate calculated from these trials

is 72.31% for FCFS, 77.33% for SJF, 82.16% for GTS, and

86.85% for DPTS. The recommended technique improved the

successful execution rate up to 90.47% by outperforming all

other alternatives.

0

50

100

150

200

250

300

350

400

100 200 300 400 500

A
v
er

ag
e

D
el

ay
 (

M
il

is
ec

o
n

d
s)

Number of Tasks

FCFS SJF GTS DPTS Proposed

0

50

100

150

200

250

300

350

400

10 20 30 40 50

A
v
er

ag
e

D
el

ay
 (

M
il

is
ec

o
n

d
s)

Number of Fog Devices

FCFS SJF GTS DPTS Proposed

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

366

Fig. 6 Successful execution ratio analysis

Another measure examined to assess the suggested

model's efficiency and reliability is the makespan. This paper

includes an experiment to evaluate the proposed algorithm's

dependability under varying numbers of queries and a fixed

number of fog devices. This experiment includes many tests,

each with 100 to 500 requests and 30 fog devices.

Fig. 7 Average makespan analysis (Varied task load)

Fig. 8 Average makespan analysis (varied number of fog devices)

0

20

40

60

80

100

120

100 200 300 400 500

S
u

cc
es

sf
u

l
E

x
ec

u
ti

o
n

 R
at

io

Number of Tasks

FCFS SJF GTS DPTS Proposed

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 300 400 500

A
v
er

ag
e

M
ak

es
p

an

(S

ec
o
n

d
s)

Number of Tasks

FCFS SJF GTS DPTS Proposed

0

1

2

3

4

5

6

10 20 30 40 50

A
v
er

ag
e

M
ak

es
p

an
 (

S
ec

o
n

d
s)

Number of Fog Devices

FCFS SJF GTS DPTS Proposed

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

367

According to Fig 7, the FSCS and SJF have recorded the

lowest makespan. The average makespan based on these trials

is 3.93 sec for FCFS, 4.03 sec for SJF, 3.37 sec for GTS, and

3.31 sec for DPTS. The proposed strategy reduced the

makespan by up to 3.07 and improved the efficiency of the

proposed algorithm.

Another experiment is carried out in this work with a

variable number of fog devices and a set number of requests.

This experiment involves many tests, each with 10 to 50 fog

devices and 300 requests. Figure 8 shows that the average

makespan for FSCS and SJF is the worst, with the longest

average makespan. The average makespan calculated from

these trials is 3.91 sec for FCFS, 3.94 sec for SJF, 3.24 sec for

GTS, and 3.29 sec for DPTS. The recommended technique

lowered the average makespan to 2.94 sec, outperforming all

other alternatives.

5. Conclusion
This paper investigates the key challenges of fog

computing and presents a delay and makespan adaptive task

scheduling algorithm. The paper provided a multiple-

constraint adaptive greedy algorithm to maximize resource

allocation and task scheduling in a heterogeneous fog

computing environment. The model's functional process is

divided into two components. During the initial step, requests

for resource mapping and allocation are conducted based on

task criticality and resource priority. In this stage, multiple

constraints are defined to perform the allocation. In the final

stage, the delay and deadline adaptive greedy algorithm is

defined for scheduling the tasks of all fog devices. The model

is compared to the FCFS, SJF, GTS, and DPTS algorithms.

The assignment is duplicated in six different situations to

represent differing load circumstances. The experiments are

conducted based on different load conditions. Two scenarios

were built to validate the performance in different load

conditions. In the first scenario, the number of resources is

fixed, i.e. 30, and the number of requests varies from 100 to

500. The mean delay recorded across all trials is 284.12 ms for

FCFS, 272.68 ms for SJF, 234.57 ms for GTS, and 216.58 ms

for DPTS. The suggested approach reduced the average

latency to 185.15 ms and surpassed all current methods. The

mean successful execution rates derived from these trials are

72.31% for FCFS, 77.33% for SJF, 82.16% for GTS, and

86.85% for DPTS. The proposed approach enhanced the

success rate to 90.47% by surpassing all previous options.

The second scenario is defined with a fixed number of

tasks and a varied number of resources. The number of

resources varied between 10 and 50. The number of requests

in this experiment is 300. The mean delay calculated from

these trials is 312.08 ms for FCFS, 280.12 ms for SJF, 230.91

ms for GTS, and 190.15 ms for DPTS. The proposed

technique decreased the average latency to 168.65 ms and

exceeded all current solutions. The mean successful execution

rates derived from these trials are 72.31% for FCFS, 77.33%

for SJF, 82.16% for GTS, and 86.85% for DPTS.

The proposed approach enhanced the success rate to

90.47% by surpassing all previous options. The mean

makespan from these trials is 3.93 seconds for FCFS, 4.03

seconds for SJF, 3.37 seconds for GTS, and 3.31 seconds for

DPTS. The proposed technique decreased the makespan by up

to 3.07 and enhanced the efficiency of the proposed algorithm.

The results show that the proposed model reduced the

makespan and average delay effectively and improved the

performance and reliability against existing methods. In the

future, the work can be extended by integrating a deep

learning model to analyze the history and to make predictive

decisions about resource allocation and scheduling.

References
[1] Mohammad Reza Alizadeh et al., “Task Scheduling Approaches in Fog Computing: A Systematic Review,” International Journal of

Communication Systems, vol. 33, no. 16, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Lokman Altin, Haluk Rahmi Topcuoglu, and Fikret Sadik Gürgen, “Network Congestion Aware Multi-Objective Task Scheduling in

Heterogeneous Fog Environments,” IEEE Transactions on Industrial Informatics, vol. 20, no. 2, pp. 3015-3024, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[3] Taybeh Salehnia et al., “An Optimal Task Scheduling Method in IoT-Fog-Cloud Network Using Multi-Objective Moth-Flame Algorithm,”

Multimedia Tools and Applications, vol. 83, no. 12, pp. 34351-34372, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Mehdi Hosseinzadeh et al., “Task Scheduling Mechanisms for Fog Computing: A Systematic Survey,” IEEE Access, vol. 11, pp. 50994-

51017, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Zulfiqar Ali Khan et al., “A Review on Task Scheduling Techniques in Cloud and Fog Computing: Taxonomy, Tools, Open Issues;

Challenges, and Future Directions,” IEEE Access, vol. 11, pp. 143417-143445, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Javid Misirli, and Emiliano Casalicchio, “An Analysis of Methods and Metrics for Task Scheduling in Fog Computing,” Future Internet,

vol. 16, no. 1, pp. 1-22, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Prashanth Choppara, and Sudheer Mangalampalli, “An Effective Analysis on Various Task Scheduling Algorithms in Fog Computing,”

EAI Endorsed Transactions on Internet of Things, vol. 10, pp. 1-7, 2024. [Google Scholar] [Publisher Link]

[8] Nikita Sehgal, Savina Bansal, and RK Bansal, “Task Scheduling in Fog Computing Environment: An Overview,” International Journal

of Engineering Technology and Management Sciences, vol. 7, no. 1, pp. 47-54, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1002/dac.4583
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+approaches+in+fog+computing%3A+A+systematic+review&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4583
https://doi.org/10.1109/TII.2023.3299624
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+congestion+aware+multiobjective+task+scheduling+in+heterogeneous+fog+environments&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+congestion+aware+multiobjective+task+scheduling+in+heterogeneous+fog+environments&btnG=
https://ieeexplore.ieee.org/abstract/document/10214336
https://doi.org/10.1007/s11042-023-16971-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+optimal+task+scheduling+method+in+IoT-Fog-Cloud+network+using+multi-objective+moth-flame+algorithm&btnG=
https://link.springer.com/article/10.1007/s11042-023-16971-w
https://doi.org/10.1109/ACCESS.2023.3277826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+mechanisms+for+fog+computing%3A+a+systematic+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/10129024
https://doi.org/10.1109/ACCESS.2023.3343877
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+task+scheduling+techniques+in+cloud+and+fog+computing%3A+Taxonomy%2C+tools%2C+open+issues%3B+challenges%2C+and+future+directions&btnG=
https://ieeexplore.ieee.org/abstract/document/10363169
https://doi.org/10.3390/fi16010016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Analysis+of+Methods+and+Metrics+for+Task+Scheduling+in+Fog+Computing&btnG=
https://www.mdpi.com/1999-5903/16/1/16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+analysis+on+various+task+scheduling+algorithms+in+Fog+computing&btnG=
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=24141399&AN=183567184&h=qsQ%2FzMom9tt4x2JzlWEqPV67thPKdMluhf9v8vCHc4lskT3wZeN1slvymmhtu0gp6GJ7VA9GFGY34FjpSTqNYA%3D%3D&crl=c
https://doi.org/10.46647/ijetms.2023.v07i01.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+in+fog+computing+environment%3A+An+overview&btnG=
https://ijetms.in/Vol-7-issue-1/Vol-7-Issue-1-9.html

Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025

368

[9] Nikita Sehgal, Savina Bansal, and RK Bansal, “Optimizing Fog Computing Efficiency: Exploring the Role of Heterogeneity in Resource

Allocation and Task Scheduling,” International Journal of Computing and Digital Systems, vol. 15, no. 1, pp. 1119-1133, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[10] Mayssa Trabelsi, and Samir Ben Ahmed, “Energy and Cost-Aware Real-Time Task Scheduling with Deadline-Constraints in Fog

Computing Environments,” Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering

ENASE, Angers, France, vol. 1, pp. 434-441, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Faten A. Saif et al., “Multi-Objective Grey Wolf Optimizer Algorithm for Task Scheduling in Cloud-Fog Computing,” IEEE Access, vol.

11, pp. 20635-20646, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Wei-Chang Yeh, Zhenyao Liu, and Kuan-Cheng Tseng, “Bi-Objective Simplified Swarm Optimization for Fog Computing Task

Scheduling,” International Journal of Industrial Engineering Computations, vol. 14, no. 4, pp. 723-748, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Salman Khan et al., “Optimal Resource Allocation and Task Scheduling in Fog Computing for Internet of Medical Things Applications,”

Human-Centric Computing and Information Sciences, vol. 13, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Zhiming Dai et al., “ME-AWA: A Novel Task Scheduling Approach Based on Weight Vector Adaptive Updating for Fog Computing,”

Processes, vol. 11, no. 4, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Ali Garba Jakwa et al., “Performance Evaluation of Hybrid Meta-Heuristics-Based Task Scheduling Algorithm for Energy Efficiency in

Fog Computing,” International Journal of Cloud Applications and Computing (IJCAC), vol. 13, no. 1, pp. 1-16, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Weimin Liu et al., “Fog Computing Resource-Scheduling Strategy in IoT Based on Artificial Bee Colony Algorithm,” Electronics, vol.

12, no. 7, pp. 1-24, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Sundas Iftikhar et al., “HunterPlus: AI Based Energy-Efficient Task Scheduling for Cloud–Fog Computing Environments,” Internet of

Things, vol. 21, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Oshin Sharma et al., “Two-Stage Optimal Task Scheduling for Smart Home Environment Using Fog Computing Infrastructures,” Applied

Sciences, vol. 13, no. 5, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[19] Media Ali Ibrahim, and Shavan Askar, “An Intelligent Scheduling Strategy in Fog Computing System Based on Multi-Objective Deep

Reinforcement Learning Algorithm,” IEEE Access, vol. 11, pp. 133607-133622, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Mekala Ratna Raju, Sai Krishna Mothku, and Manoj Kumar Somesula, “DRL-based Task Scheduling Scheme in Vehicular Fog

Computing: Cooperative and Mobility Aware Approach,” Ad Hoc Networks, vol. 173, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[21] Prashanth Choppara, and Bommareddy Lokesh, “Efficient Task Scheduling and Load Balancing in Fog Computing for Crucial Healthcare

through Deep Reinforcement Learning,” IEEE Access, vol. 13, pp. 26542-26563, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[22] Xiao-Fei Sui et al., “Multi-Strategy Fusion Mayfly Algorithm on Task Offloading and Scheduling for IoT-Based Fog Computing Multi-

Tasks Learning,” Artificial Intelligence Review, vol. 58, no. 5, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[23] Santhosh Kumar Medishetti, and Ganesh Reddy Karri, “An Improved Dingo Optimization for Resource Aware Scheduling in Cloud Fog

Computing Environment,” Majlesi Journal of Electrical Engineering, vol. 17, no. 3, pp. 31-41, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[24] Hoa Tran-Dang, and Dong-Seong Kim, “Dynamic Collaborative task Offloading for Delay Minimization in the Heterogeneous Fog

Computing Systems,” Journal of Communications and Networks, vol. 25, no. 2, pp. 244-252, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[25] Ali Mohammadzadeh et al., “Energy-Aware Workflow Scheduling in Fog Computing Using A Hybrid Chaotic Algorithm,” The Journal

of Supercomputing, vol. 79, no. 16, pp. 18569-18604, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Zulfiqar Ali Khan, and Izzatdin Abdul Aziz, “Ripple-Induced Whale Optimization Algorithm for Independent Tasks Scheduling on Fog

Computing,” IEEE Access, vol. 12, pp. 65736-65753, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[27] Fengqing Tian et al., “Fog Computing Task Scheduling of Smart Community Based on Hybrid Ant Lion Optimizer,” Symmetry, vol. 15,

no. 12, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[28] M. Santhosh Kumar, and Ganesh Reddy Karri, “EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog Framework,” Sensors,

vol. 23, no. 5, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] Muhammad Saad, Rabia Noor Enam, and Rehan Qureshi, “Optimizing Multi-Objective Task Scheduling in Fog Computing with GA-

PSO Algorithm for Big Data Application,” Frontiers in Big Data, vol. 7, 2024. [CrossRef] [Google Scholar] [Publisher Link]

%22https:/doi.org/10.12785/ijcds/150179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Fog+Computing+Efficiency%3A+Exploring+the+Role+of+Heterogeneity+in+Resource+Allocation+and+Task+Scheduling&btnG=
https://journal.uob.edu.bh/items/9f361bdf-70e8-4409-a616-41cf832282e6
https://doi.org/10.5220/0012637600003687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+and+Cost-Aware+Real-Time+Task+Scheduling+with+Deadline-Constraints+in+Fog+Computing+Environments&btnG=
https://www.scitepress.org/Link.aspx?doi=10.5220/0012637600003687
https://doi.org/10.1109/ACCESS.2023.3241240
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-objective+grey+wolf+optimizer+algorithm+for+task+scheduling+in+cloud-fog+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/10032546
https://doi.org/10.5267/j.ijiec.2023.7.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bi-Objective+simplified+swarm+optimization+for+fog+computing+task+scheduling&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bi-Objective+simplified+swarm+optimization+for+fog+computing+task+scheduling&btnG=
https://www.growingscience.com/ijiec/Vol14/IJIEC_2023_29.pdf
https://doi.org/10.22967/HCIS.2023.13.056
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Resource+Allocation+and+Task+Scheduling+in+Fog+Computing+for+Internet+of+Medical+Things+Applications&btnG=
https://hcisj.com/articles/issue_view.php?wr_id=472&page=3
https://doi.org/10.3390/pr11041053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ME-AWA%3A+a+novel+task+scheduling+approach+based+on+weight+vector+adaptive+updating+for+fog+computing&btnG=
https://www.mdpi.com/2227-9717/11/4/1053
https://doi.org/10.4018/IJCAC.324758
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+evaluation+of+hybrid+meta-heuristics-based+task+scheduling+algorithm+for+energy+efficiency+in+fog+computing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+evaluation+of+hybrid+meta-heuristics-based+task+scheduling+algorithm+for+energy+efficiency+in+fog+computing&btnG=
https://www.igi-global.com/article/performance-evaluation-of-hybrid-meta-heuristics-based-task-scheduling-algorithm-for-energy-efficiency-in-fog-computing/324758
https://doi.org/10.3390/electronics12071511
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fog+computing+resource-scheduling+strategy+in+IoT+based+on+artificial+bee+colony+algorithm&btnG=
https://www.mdpi.com/2079-9292/12/7/1511
https://doi.org/10.1016/j.iot.2022.100667
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HunterPlus%3A+AI+based+energy-efficient+task+scheduling+for+cloud%E2%80%93fog+computing+environments&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2542660522001482
https://doi.org/10.3390/app13052939
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two-stage+optimal+task+scheduling+for+smart+home+environment+using+fog+computing+infrastructures&btnG=
https://www.mdpi.com/2076-3417/13/5/2939
https://doi.org/10.1109/ACCESS.2023.3337034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+intelligent+scheduling+strategy+in+fog+computing+system+based+on+multi-objective+deep+reinforcement+learning+algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/10328858
https://doi.org/10.1016/j.adhoc.2025.103819
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DRL-based+Task+Scheduling+Scheme+in+Vehicular+Fog+Computing%3A+Cooperative+and+mobility+aware+approach&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1570870525000678
https://doi.org/10.1109/ACCESS.2025.3539336
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Task+Scheduling+and+Load+Balancing+in+Fog+Computing+for+crucial+Healthcare+through+Deep+Reinforcement+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10876121
https://doi.org/10.1007/s10462-025-11145-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-strategy+fusion+mayfly+algorithm+on+task+offloading+and+scheduling+for+IoT-based+fog+computing+multi-tasks+learning&btnG=
https://link.springer.com/article/10.1007/s10462-025-11145-6
https://doi.org/10.30486/mjee.2023.1989335.1165
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Improved+Dingo+Optimization+for+Resource+Aware+Scheduling+in+Cloud+Fog+Computing+Environment&btnG=
https://oiccpress.com/mjee/article/view/5013
https://doi.org/10.23919/JCN.2023.000008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+collaborative+task+offloading+for+delay+minimization+in+the+heterogeneous+fog+computing+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/10102782
https://doi.org/10.1007/s11227-023-05330-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-aware+workflow+scheduling+in+fog+computing+using+a+hybrid+chaotic+algorithm&btnG=
https://link.springer.com/article/10.1007/s11227-023-05330-z
https://doi.org/10.1109/ACCESS.2024.3398017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ripple-Induced+Whale+Optimization+Algorithm+for+Independent+Tasks+Scheduling+on+Fog+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/10522663
https://doi.org/10.3390/sym15122206
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fog+Computing+Task+Scheduling+of+Smart+Community+Based+on+Hybrid+Ant+Lion+Optimizer&btnG=
https://www.mdpi.com/2073-8994/15/12/2206
https://doi.org/10.3390/s23052445
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Eeoa%3A+cost+and+energy+efficient+task+scheduling+in+a+cloud-fog+framework&btnG=
https://www.mdpi.com/1424-8220/23/5/2445
https://doi.org/10.3389/fdata.2024.1358486
https://scholar.google.com/scholar?q=Optimizing+multi-objective+task+scheduling+in+fog+computing+with+GA-PSO+algorithm+for+big+data+application&hl=en&as_sdt=0,5
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1358486/full

