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Abstract - Since traditional diagnosis methods rely on behavioural testing rather than biological signs, detecting dyslexia is 

complicated. Information Extraction about the brain actions participated in various jobs, and delving into their biological 

underpinnings is challenging. As a result, using biomarkers can aid in both the diagnosis and a deeper comprehension of 

particular learning problems, including dyslexia. Differences between controls and dyslexic subjects can be found using 

Electroencephalography (EEG) signals with the proper signal processing and artificial intelligence approaches. In this work, 

we have combined the benefits of the Dirichlet Mixture Model (DMM) and wavelet scattered transform (WST) to convert the 

EEG data into high-level representations that enable the detection of dyslexic discriminative descriptors. Furthermore, we have 

developed a predictive Stoer-Wagner algorithm-based Naïve Bayes (SW-NB) classifier that performs exceptionally well with an 

exploratory examination of the EEG signals to detect dyslexia accurately. The suggested SW-NB classification model, in 

conjunction with WS-DMM, may significantly increase the accuracy of disease identification. A dataset of confused students' 

brainwaves is used to test the suggested classification model, and the findings are more promising.  

Keywords - EEE signal, Dyslexia detection, Wavelet scattered dirichlet mixture model, Signal denoising, Naïve bayes classifier.              

1. Introduction 
One of the well-known non-invasive methods used to 

learn about brain activity is Electroencephalography (EEG) 

[1]. It has been used extensively for a variety of purposes, 

including the investigation of brain processes included in 

neurological diseases like Parkinsonian syndromes [2, 3], 

Alzheimer's disease [4, 5], epileptic disorders [6-8], and other 

psychiatric disorders like schizophrenia [9]. Furthermore, 

experimental neuropsychology has extensively used EEG to 

learn more about the parts of the cortex involved in processing 

various stimuli. This is the situation with learning disabilities, 

whose neurological causes are still unidentified. Additionally, 

clarifying the brain mechanisms behind language processing 

provides a direction to diagnose these diseases on time. One 

of the most common specific developmental learning 

disorders, dyslexia, is defined as a specific reading acquisition 

deficit that low IQ, inadequate educational opportunities, or 

evident sensory or neurological impairment cannot explain. It 

is estimated that 5–15% of students have dyslexia [7]. It is 

recognized as a neurological condition affecting word 

recognition in children and students, leading to writing and 

text comprehension challenges. Social isolation, frustration, 

and self-esteem issues are further consequences of dyslexia. 

For both individuals and society at large, dyslexia is a severe 

problem. It is among the most prevalent learning disabilities, 

impacting a considerable segment of the populace 

[8]. Numerous academic disciplines, including linguistics, 

psychology, pedagogy, medicine, and the social sciences, 

assess dyslexia [9]. The molecular and neurological 

foundations, language processes, cognitive and behavioral 

components, educational consequences, and social and 

cultural variables are some of the features of dyslexia that are 

examined in each field. These multidisciplinary methods offer 

a thorough comprehension of dyslexia and guide the creation 

of efficient support systems and therapies [10]. Various 

predispositions, some inherited from family lines and others 

https://www.internationaljournalssrg.org/
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impacted by early life events, significantly contribute to 

dyslexia. When used in the early stages, prevention programs 

and customized intervention tasks may help to minimize 

behavioural problems in dyslexic youngsters. Early detection 

and intervention of dyslexia depend on understanding its risk 

factors, which comprise low birth weight, early birth, and 

family antiquity of the disorder [11]. It is critical to 

acknowledge that dyslexia is a chronic disorder that can be 

managed, and its effects on a person's life can be lessened, 

even if it persists into adulthood. However, since most 

behavioural tests created for this purpose involve reading or 

writing assignments, early diagnosis is now a complex process 

[12]. 

Most of the time, behavioural tests that gauge reading and 

writing proficiency are used to diagnose dyslexia. Consistent 

reading and language tests, interpretations, and teacher reports 

are commonly used with other measures to identify children 

who have dyslexia [13]. These tests measure a child's 

understanding, fluency, and accuracy in reading. Exogenous 

variations, such as children's motivation or mood, frequently 

impact the tests, leading to basic mistakes in the diagnosis 

[14]. Concerns regarding dyslexia may arise if a youngster 

continuously performs worse in reading than their peers 

despite receiving proper training [15]. A definitive diagnosis, 

however, may require further neuropsychological or medical 

testing, and the precise standards and timeline for 

identification may differ [16, 17]. 

In order to get over these obstacles, Machine Learning 

(ML) techniques have been utilized to spontaneously analyse 

EEG information and spot patterns that may point to dyslexia. 

It may be possible to identify dyslexia at an earlier age by 

combining EEG and machine learning approaches, providing 

people with the tools they need to succeed [18, 19]. In this 

research, we have combined the benefits of the Dirichlet 

Mixture Model (DMM) and Wavelet Scattering Transform 

(WST) to develop helpful signal illustrations from EEG data 

that enable the detection of dyslexic discriminatory 

characteristics. A subset of the data is governed by a collection 

of wavelets in our model, which we call the Wavelet Scattered 

Dirichlet Mixture Model (WS-DMM). A predictive Stoer-

Wagner algorithm-based Naïve Bayes (SW-NB) classifier that 

performs exceptionally well with an exploratory examination 

of the EEG signals was developed because we recognize the 

significance of accurate dyslexia identification. 

This paper's reminder is arranged as follows: Section 2 

outlines a few recent research introduced in the application of 

early diagnosis of dyslexia, and Section 3 explains the 

suggested model's step-by-step algorithmic architecture. 

Along with a performance comparison with a few previous 

efforts, Section 4 gives the experimental endorsement and 

findings of the anticipated study. Section 5 provides a 

summary and rationale for the proposed work's conclusion. 

Existing approaches typically apply shallow classifiers such 

as SVMs or basic neural networks on linear features. 

However, these often fail to represent the complex non-linear 

EEG characteristics associated with dyslexia. This research 

introduces a novel hybrid model combining WS-DMM for 

enhanced feature extraction and a graph-theory-based Stoer-

Wagner Naïve Bayes classifier, significantly improving 

classification performance over prior work. 

2. Literature Survey 
Pyrolysis Some recent works implemented to detect 

dyslexia in an early stage are highlighted in this section as 

follows:- 

The complex brain processes linked to dyslexia were 

investigated using cross-frequency coupling on EEG signals 

from 48 Spanish readers aged seven who were part of the 

LEEDUCA study. In order to capture the collaboration among 

several frequency bands through low-level auditory 

processing inputs, the study relies on Cross-Frequency phase 

Synchronization (CFS) maps. Gaussian Mixture Models are 

then used to quantify and categorize CFS activations, 

providing a condensed depiction of EEG activation maps. 

While Parmar et al. [20] used WST for primitive-stage 

detection, our approach further enhances it using a Dirichlet 

mixture-based representation to capture non-linear feature 

distributions: spectral data attributes, connectivity attributes 

with autoencoders, and mixture attributes. The two datasets 

were selected for many motives, comprising the statistic that 

they came from separate nations and were gathered during 

distinct tasks. Another important consideration was that the 

participants' ages ranged from 7 to 12 years old when their 

educational journeys began.  

GuhanSeshadri et al. [21] suggested a deep and shallow 

neural network (DNN) based framework for the early 

identification and categorization of Learning Disabilities (LD) 

in children without LD based on rest EEG signals. Twenty 

youngsters (ages 8–16) with LD and twenty without LD 

participated in the study. The raw EEG signal is pre-processed 

using the Digital Wavelet Transform (DWT), and different 

features are fetched from alpha, delta, beta, and theta bands. 

The most pertinent features were chosen using a filter-based 

feature selection method, which lessens the computational 

load on models. In order to examine the performance, these 

sorted cumulative characteristics were then assessed 

independently by neural network and ML classifiers (deep and 

shallow) models.  

Nicolás J. Gallego-Molina et al. [22] suggested a novel 

method that combines the creation of a deep learning 

paradigm with two stages for identifying developmental 

dyslexia with the conversion of EEG signals into image 

frames while taking into account the dynamics of CFS, which 

are participated in low-level auditory dispensation. With a 

balanced accuracy of up to 83%, the deep learning technique 
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uses temporal and spatial statistics with the image frames to 

identify discriminatory outlines of phase synchronization 

across time. Zbigniew Gomolka et al. [23] suggested using a 

student's cell phone to capture the spatiotemporal attentional 

trajectory, which a DNN Long Short-Term Memory (LSTM) 

would subsequently analyse. There were 145 participants in 

the study, 69 boys and 66 girls; all were 9 years old. Sessions 

of observation that were recorded were packets encapsulating 

the child's spatiotemporal attention trajectories created during 

task execution, which made up the neural network's input 

signal. Few models address the complexity and variability of 

EEG signals in dyslexic individuals. Our proposed WS-DMM 

captures translation-invariant features while Stoer-Wagner’s 

optimization enhances the classification of graph-like 

dependencies within EEG channels, closing this gap. 

3. Results and Discussion 
 The linear relationship between a response variable and 

covariates facilitates parameter estimation and result 

interpretation in regression and classification models. 

However, the suitability of these assumptions determines how 

well such a model performs [24]. Therefore, we include the 

Dirichlet mixture model of simple distributions to model the 

EEG data in our proposed WS-DMM model, which is more 

adaptable in capturing nonlinear correlations. The translation 

invariant, stable, and more informative signal representations 

needed for efficient classification are then fetched from the 

simulated distribution by applying WST. The input EEG 

signal must also be pre-processed before modelling to get 

meaningful performance. The components of the suggested 

dyslexia detection model are exhibited in Figure 1. 

Type equation here.

SW-NB
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Fig. 1 Building blocks of the anticipated dyslexia detection model

3.1. Mathematical Modelling of Input Data  

The original input EEG signal dataset is represented as: 

𝐼𝐸𝐸𝐺 = {𝐼1, 𝐼2, … … 𝐼𝑛} = ∑ 𝐼𝑖
𝑛
𝑖=1   (1) 

 Where, 𝐼𝑖-  input EEG signal of the ith subject involved in 

the experiment and 𝑛 the number of subjects involved in the 

investigation. 

3.2. Wavelet Denoising 

Artifact noises, such as eye scrolling noise, eye flashing 

noise, Electromyogram (EMG) noise, muscle movement noise 

and interference from electrical equipment indications, can 

taint the original EEG signal 𝐼𝐸𝐸𝐺while it is being recorded.  

Thus, DWT has been suggested as a signal-denoising 

technique. Because DWT assumes that the objects will have 

substantial amplitudes in the appropriate frequency crowds 

(bands), it breaks down the EEG signal into many bands. 

Typically, the three primary phases build the DWT 

denoising process: (i) signal decomposition, (ii) Thresholding, 

and (iii) signal reconstruction. Figure 2 shows the DWT 

structure with decomposition level𝑑 = 2. 
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Fig. 2 Wavelet denoising procedure with decomposition level d=2

The raw input EEG signals with 𝑛 samples 𝐼𝐸𝐸𝐺(𝑡) =
{𝐼1, 𝐼2, … … 𝐼𝑛} is  splitted into two tiers, and each tier will be 

decomposed into two components, namely, rough coefficients 

𝐶𝑟𝑜𝑢𝑔ℎand 𝐶𝑝𝑡𝑒𝑐𝑖𝑠𝑒precise coefficients𝐶𝑝𝑟𝑒𝑐𝑖𝑠𝑒 . 𝐶𝑝𝑡𝑒𝑐𝑖𝑠𝑒  

isexecuted using a high-pass filter, though 𝐶𝑟𝑜𝑢𝑔ℎwill further 

decomposed for the next tier.The approximation and detail 

coefficients can be estimated as: 

𝐶𝑖
𝑟𝑜𝑢𝑔ℎ(𝑡) = ∑ 𝐶𝑖−1

𝑟𝑜𝑢𝑔ℎ
(𝑢)Փ𝑖(𝑡 − 𝑢)∞

𝑢=−∞  (2) 

𝐶𝑖
𝑝𝑟𝑒𝑐𝑖𝑠𝑒(𝑡) = ∑ 𝐶𝑖−1

𝑝𝑟𝑒𝑐𝑖𝑠𝑒
(𝑢)ᴪ𝑖(𝑡 − 𝑢)∞

𝑢=−∞  (3) 

Where 𝐶𝑟𝑜𝑢𝑔ℎ
𝑖(𝑡) and 𝐶𝑝𝑟𝑒𝑐𝑖𝑠𝑒

𝑖(𝑡) represents the rough 

and precise coefficients of level𝑖and Փ, 𝜓  are the scaling and 

shifting parameters, respectively. The thresholding value is 

ideally set for each level as per the standard deviation (𝜎) of 

noise amplitude, which can be mathematically written as: 

𝐼𝐸𝐸𝐺
𝑛𝑜𝑖𝑠𝑦(𝑛) = 𝐼(𝑛) + 𝜎𝑁(𝑛) (4) 

Where 𝐼(𝑛)represents the raw EEG signal, 𝑁represents the 

noise, 𝜎represents the amplitude of the noise and 𝑛 represents the 

sample numbers. 

The denoised EEG indication is then recreated by 

performing iDWT using the below Equation. (5). 

𝐼𝐸𝐸𝐺
𝑐𝑙𝑒𝑎𝑛 = ∑ 𝐶𝑑

𝑟𝑜𝑢𝑔ℎ
(𝑢)Փ𝑖(𝑡 − 𝑢)∞

𝑢=−∞ +

∑ ∑ 𝐶𝑖+1
𝑝𝑟𝑒𝑐𝑖𝑠𝑒

(𝑢)ᴪ𝑖(𝑡 − 𝑢)∞
𝑢=−∞

𝑑
𝑖=1  b (5) 

3.3. Wavelet Scattered Dirichlet Mixture Model (WS-DMM) 

The denoised EEG signal 𝐼𝑐𝑙𝑒𝑎𝑛
𝐸𝐸𝐺is modelled using 

DMM as a boundary of finite mixing model. The distribution 

𝐼𝑐𝑙𝑒𝑎𝑛
𝐸𝐸𝐺can be modelled as a mixture of simple distributions, 

with probability or density function as follows: 

Noisy EEG signal
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Threshold 3 Threshold 2 Threshold 1

Signal 
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𝑃(𝐼𝐸𝐸𝐺)=∑ 𝑝𝑦𝐹(𝐼𝐸𝐸𝐺 , 𝜑𝑦
𝑌
𝑦=1 ) (6) 

Where 𝑝𝑦is the mixing proportion, and 𝐹(𝐼𝐸𝐸𝐺 , 𝜙𝑦) is the 

probability or density 𝐼𝐸𝐸𝐺 under a distribution𝐹(𝜙). Our 

initial assumption is that the number of mixing elements𝑌 is 

finite. In this condition, a typical prior for 𝑝𝑦is a symmetric 

Dirichlet distribution, with density function defined as: 

𝑃(𝑝1, 2,… 𝑝𝑦) =
Ʀ(𝛾)

Ʀ(𝛾/𝑌)𝑌
∏ 𝑝𝑦

(
𝑦

𝑌
−1)𝑌

𝑦=1  (7) 

Where 𝑝𝑦 ≥ 0and ∑ 𝑝𝑦 = 1.  

A WST that repeatedly uses nonlinear modulus, 

conventional wavelet transform, and mean operators [25]. For 

ease of handling, let 𝐼(𝑡) is the Dirichlet modelled signal, 

which is further used for the analysis. The LPF (low-pass 

filter)𝛤and wavelet function (𝜆) are designated to generate 

filters that encompass all the confined frequencies. Let 𝛤𝑗(𝑡) - 

LPF that provides locally conversion invariant details 𝐼 at a 

predetermined scale𝜏. The wavelet directories are represented 

as 𝛥𝑔having octave frequency resolution𝑄𝑔. The multiscale 

high-pass filter banks {𝜆𝑗𝑔
}𝑗𝑔∈𝛥𝑔

can be fabricated by 

stretching the wavelet𝜆. 

The convolution𝐶0𝐼(𝑡) = 𝐼 ∗ 𝛤𝑗(𝑡) produces an invariant 

property of local translation 𝐼but also causes high-frequency 

data loss. A wavelet modulus transform can be utilized to 

recover the lost high frequencies. 

|𝑊1|𝐼 = {𝐶0𝐼(𝑡), 𝐼 ∗ ᴦ𝑗1(𝑡)|}𝑗1𝜖∆𝑡
 (8) 

The wavelet modulus coefficients are averaged to 

determine the first-order scattering coefficients with𝛤𝑗: 

𝐶1𝐼(𝑡) = {|𝐼 ∗ 𝜆𝑗𝑖| ∗ ᴦ𝑗(𝑡)|}𝑗1𝜖∆𝑡
 (9) 

To retrieve the missing data lost due to averaging, noting 

that 𝐶1𝐼(𝑡) it is regarded as the low-frequency element of|𝐼 ∗
𝜆𝑗1

|complementary high-frequency coefficients can be 

fetched by: 

|𝑊2||𝐼 ∗ 𝜆𝑗𝑖| = {𝐶1𝐼(𝑡), ||𝐼 ∗ 𝜆𝑗𝑖| ∗ ᴦ𝑗2(𝑡)|}𝑗2𝜖∆2
 (10) 

The second-order scattering coefficients are further 

defined as: 

𝐶2𝐼(𝑡) = {|𝐼 ∗ 𝜆𝑗𝑖| ∗ 𝜆𝑗2 ∗ ᴦ𝑗(𝑡)|}𝑗1𝜖∆𝑡
     , 𝑖 = 1,2  (11) 

Repeating the above steps describes wavelet modulus 

convolution 

𝐻𝑚𝐼(𝑡) = {|||𝐼 ∗ 𝜆𝑗𝑖| ∗ … . |𝜆𝑗𝑚|}𝑗1𝜖∆𝑡
     , 𝑖 = 1,2, . 𝑚(12) 

Averaging 𝐻𝑚𝐼(𝑡) with 𝛤𝑗  gives the 𝑚𝑡ℎ  -order scattering 

coefficients 

𝐶𝑚𝐼(𝑡) = {|||𝐼 ∗ 𝜆𝑗𝑖| ∗ … . |𝜆𝑗𝑚| ∗ ᴦ𝑗(𝑡}𝑗1𝜖∆𝑡
, 𝑖 = 1,2, . 𝑚 (13) 

Now, the absolute scattering matrix is obtained as: 

𝐶𝐼(𝑡) = {𝐶𝑚𝐼(𝑡)}0≤𝑚≤𝑟  (14) 

Where 𝑟is the maximum order of decomposition. The 

scattering matrix obtained in Equation (14) describes the 

characteristics of the input signal by combining scattering 

coefficients of all orders. 

3.4. Dyslexia Detection by SW-NB 

This study uses the advantages of Naïve Bayes (NB) 

classifiers to identify dyslexia. These classifiers perform well 

with relatively small datasets, avoid dimensionality-related 

issues, and do not suffer from overfitting. NB classifiers 

divide data into distinct classes using a series of algorithms 

that all adhere to the same concept known as the Bayes 

Theorem. On the other hand, NB works effectively when the 

predictors are assumed to be independent and functionally 

independent. When NB performs between these two 

assumptions, its performance is inferior. An ensemble that 

combines multiple classifiers may be able to fix this issue. For 

that purpose, in this paper, we have integrated the advantages 

of the Stoer-Wagner algorithm with the NB classifier to 

produce a better predictive performance. Let the scattering 

coefficients {𝐶1, 𝐶2, . . , 𝐶𝑚}be used as the features for 

classification, which 𝐴 is the output label. The relationship 

between the given class variable 𝐴 and dependent feature 

vector 𝐶𝑚can be written as: 

𝑃(𝐴|𝐶1, … . 𝐶𝑚) =
𝑃(𝐴)𝑃(𝐶1, … . 𝐶𝑚|𝐴)

𝑃(𝐶1,….𝐶𝑚)
 (15) 

Since 𝑃(𝐶1, … . 𝐶𝑚)is perpetual given the input, the below 

classification rule may be applied: 

𝑃(𝐴|𝐶1, … . 𝐶𝑚) ∝
𝑃(𝐴) ∏ 𝑃(𝐶𝑖|𝐴)𝑚

𝑖=1

𝑃(𝐶1,….𝐶𝑚)
 (16) 

^
𝐴

= 𝑎𝑟𝑔
𝑚𝑎𝑥

𝐴
 𝑃(𝐴) ∏ 𝑃(𝐶𝑖|𝐴)𝑚

𝑖=1  (17) 

Algorithm 1: SW-NB classifier 

Input: Scattering coefficients 𝐶𝑚 

Output: Labelled outputs Â  

Let Out=INF 

For (𝑖 = 0, 𝑖 < 𝑚 − 1, 𝑖 + +) 

Calculate 𝑚𝑖𝑛 𝐶 𝑢𝑡 value as 

𝑚𝑖𝑛 𝐶 𝑢𝑡 = 𝑚𝑖𝑛( 𝑚𝑖𝑛 𝐶 𝑢𝑡, 𝐶𝑖) 

If(𝑚𝑖𝑛 𝐶 𝑢𝑡 <Out) 

Out = 𝑚𝑖𝑛 𝐶 𝑢𝑡 
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Â=1 

Else 

Â=0 

End if 

Return Â 

The independent features in the proposed SW-NB 

classifier are directly classified to the output label using the 

above classification rules in Equation (14) and (15), if a 

connected component exists, the decision rule can be altered 

according to the Stoer-Wagner Algorithm. The algorithmic 

procedure of the proposed SW-NB classifier is precised in 

algorithm 1. 

4. Results & Performance Comparison 
Section 4 contains the investigational findings, the 

performance analysis of the suggested model, and a thorough 

description of the dataset used to validate it. Furthermore, to 

demonstrate the supremacy of the suggested model, its 

enactment is contrasted with a few known classifiers. 

4.1. Dataset Used  

In this paper, we have used an online available dataset 

called confused student EEG brainwave data, which is freely 

fetched using the link 

https://www.kaggle.com/datasets/wanghaohan/confused-eeg 

Ten college students' EEG signals were recorded as they 

watched MOOC video snippets, and the results are included 

in this dataset-twenty movies, ten in each category, covering 

subjects like stem cell research and quantum mechanics. Each 

video was roughly two minutes long. The pupils wore a single-

channel cordless mindset that assessed activity across the 

frontal lobe. The Mind Set detects the voltage between two 

electrodes, one ground and one reference, that are in contact 

with each ear and an electrode placed on the forehead. On a 

scale of 1 to 7, with 7 representing the most puzzling, the 

student assessed his or her level of confusion at the end of each 

session.  

4.2. Performance Analysis 

The mathematical modelling of the enactment factors 

such as Sensitivity, Accuracy and Specificity used for 

evaluation is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃𝑇𝑟𝑢𝑒|𝑁𝑇𝑟𝑢𝑒

𝑃𝑇𝑟𝑢𝑒|𝑁𝑇𝑟𝑢𝑒|𝑃𝐹𝑎𝑙𝑠𝑒|𝑁𝐹𝑎𝑙𝑠𝑒
 (18) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑃𝑇𝑟𝑢𝑒

𝑃𝑇𝑟𝑢𝑒|𝑁𝐹𝑎𝑙𝑠𝑒
 (19) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑇𝑟𝑢𝑒

𝑁𝑇𝑟𝑢𝑒|𝑃𝐹𝑎𝑙𝑠𝑒
 (20) 

Where, 𝑃𝑇𝑟𝑢𝑒 are the correctly classified positives, 𝑁𝑇𝑟𝑢𝑒 

are the correctly classified negatives, 𝑃𝐹𝑎𝑙𝑠𝑒  are the 

misclassified positives and 𝑁𝐹𝑎𝑙𝑠𝑒  are the misclassified 

negatives. 

4.3. Performance Comparison 

To validate the enactment of the anticipated dyslexia 

detection model, in this research, we have used the students' 

responses in the experiment in two circumstances, namely 

audio recognition and visual discrimination. This research 

mainly uses the SW-NB classifier for EEG signal 

classification. As shown in Table 1, many brain ROIs are 

developed to pinpoint distinct dyslexia patterns across various 

brain areas. This aids in locating brain regions with more 

noticeable EEG activation patterns. 

Figure 3 shows the performance values of the proposed 

SW-NB classifier model with the first experimental condition, 

in which words were recognized by sound.The performance 

values of the suggested SW-NB classifier model under the 

second experimental condition, in which participants were 

required to distinguish word groups with phonologically 

similar characteristics visually, are displayed in Figure 4. In 

order to prove the significance and the superiority of the 

anticipated classification model, the enactment of the 

anticipated classification model is compared against multiple 

classifiers proposed in [26-28] for the two above-mentioned 

experimental conditions (audio recognition and visual 

discrimination). Our proposed classification model, SW-NB, 

is an integrated version of the traditional NB classifier. We 

have also compared the enactment of the anticipated SW-NB 

classification model with the traditional NB classifier to show 

the necessity of the anticipated new classification model.  

Table 1. Brain RoI segments and their corresponding channels 

Area Channels 

Brain (Entire) F3, AF3, FC5, P7, P7, AF4, O1, FC6, F4, T8, P8 and O2 

Hemisphere (Left) F3,AF3, FC5, P7, T7, O1 

Hemisphere (Right) F4, AF4, T8, FC6,  P8, O2 

Frontal (Left) F3, AF3 

Temporal (Left) FC5, T7 

Occipital (Left) P7,O1 

Frontal (Right) F4, AF4 

Temporal (Right) FC6, T8 

Occipital (Right) P8, O2 
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Fig. 3 Performance of the anticipated SW-NB classifier model with the first experimental condition 

 
Fig. 4 Performance of the anticipated SW-NB classifier model with the second experimental condition 

Table 2 displays the accuracy comparison of several 

classification models for both experimental conditions. 

Table 3 displays the performance analysis of several 

classification models regarding sensitivity for both 

experimental conditions. 

Table 4 compares the performance of several 

classification models for both experimental conditions in 

terms of specificity. 

From Tables 4 to 6, it is perceived that the anticipated 

SW-NB classification model overtakes all the other 

classification models in terms of sensitivity, accuracy and 

specificity in both experimental conditions.  

The proposed SW-NB classification model attains a 

maximum accuracy of 99.11% for right temporal RoI, 

maximum sensitivity of 99% for left hemisphere RoI and 

maximum specificity of  99.14% for entire brain RoI during 

the second experimental condition. 
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Table 2. Accuracy comparison of several classification models 

Area First Experimental Condition Second Experimental Condition 

SW-NB NB  SVM  RF  SW-NB NB  SVM  RF  

Entire brain 97.23 96.88 59.38 96.24 99.03 98.78 78.13 98.01 

Left hemisphere 96.55 96.54 65.63 93.032 98.45 98.02 71.88 95.37 

Right hemisphere 97.09 96.92 50 92 97.99 97.65 62.5 91 

Left frontal 93.98 92.65 56.25 86.98 95.08 95.64 68.75 86.02 

Left temporal 92.35 92.09 59.38 82.98 97.85 96.97 65.63 84.35 

Left occipital 94.75 94.27 62.5 81.07 97.05 97.01 56.25 88.19 

Right frontal 96.77 95.98 46.88 84.48 95.77 94.95 62.50 82.83 

Right temporal 97.12 96.54 59.38 83.22 99.11 98.88 68.75 85.02 

Right occipital 96.98 96 71.88 85.25 97.78 97 59.38 87.41 

Table 3. Sensitivity comparison of several classification models  

Area First Experimental Condition Second Experimental Condition 

SW-NB NB  SVM  RF SW-NB NB  SVM  RF  

Entire brain 97.65 97.64 64.71 96.43 98.64 97.99 88.24 98.73 

Left hemisphere 97.03 97 70.59 93.37 99.00 98.67 94.12 97.41 

Right hemisphere 96.10 96.02 64.71 90.40 98.11 98 76.14 90.75 

Left frontal 95.34 95 64.71 89.12 98.94 98.54 88.24 89.77 

Left temporal 90.92 89.66 64.71 81.36 96.92 96.45 82.35 85.27 

Left occipital 91.65 89.99 64.71 81.02 94.77 93.76 76.47 90.38 

Right frontal 92.65 90.56 52.94 84.85 96.32 95.98 82.24 82.12 

Right temporal 91.54 90.65 58.82 81.44 95.99 95.68 76.47 82.91 

Right occipital 90.32 90.08 76.47 82.89 95.98 95 76.47 86.88 

Table 4. Specificity comparison of several classification models  

Area First Experimental Condition Second Experimental Condition 

SW-NB NB  SVM  RF  SW-NB NB  SVM  RF  

Entire brain 97.54 97.34 53.33 96.1 99.14 98.76 66.67 97.39 

Left hemisphere 97.23 97 60 92.58 97.93 94.99 46.67 93.39 

Right hemisphere 96.43 96 33.33 94.74 99.03 96 46.67 91.23 

Left frontal 96.71 96 46.67 84.49 98.11 98 46.67 82.68 

Left temporal 94.53 93.28 53.33 85.19 98.66 98 53.33 86.07 

Left occipital 92.87 90.67 53.33 81.14 97.71 97.43 53.33 83.12 

Right frontal 93.98 91.76 60 83.87 95.87 95.01 26.67 82.91 

Right temporal 91.08 90.56 33.33 85.87 95.08 94.89 53.33 86.88 

Right occipital 90.99 90 40 88.84 97.43 94.32 60 89.34 
 

 
Fig. 5 Accuracy comparison 
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Fig. 6 Sensitivity comparison 

 
Fig. 7 Specificity comparison 

 
Fig. 8 Performance comparison of the proposed classification model with and without WS-DMM 
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The mean values of sensitivity, accuracy, and specificity 

of all compared classifiers are calculated for both 

experimental conditions, and the graphical comparisons for 

the calculated average values are offered in Figures 5, 6 and 

7, respectively. 

Figure 5 shows that the proposed SW-NB classification 

model attains the maximum accuracy of 97.56% during the 

second experimental condition and 95.77% during the 1st 

experimental state. NB classifier attains the 2nd maximum 

accuracy of 97.21% during the second experimental condition 

and 95.33% during the first experimental condition. The SVM 

classifier attains the lowest accuracy of 59.69% during the first 

experimental condition and 65.97% during the second 

experimental condition while RF stood intermediate with 

values of 91.85% during the second experimental condition 

and 89.58% during the first experimental condition. 

Figure 6 shows that the proposed SW-NB classification 

model attains the maximum sensitivity of 97.18% during the 

second experimental condition and 95.58% during the first 

experimental condition. NB classifier attains the second 

maximum sensitivity of 96.26% during the second 

experimental condition and 94.41% during the first 

experimental condition. The SVM classifier attains the least 

sensitivity of 82.3% during the second experimental condition 

and 64.71% during the first experimental condition while RF 

shows moderate performance 88.57% during the second 

experimental condition and 89.58% during the first 

experimental condition 

Figure 7 shows that the proposed SW-NB classification 

model attains the maximum specificity of 97.66% during the 

second experimental condition and 94.59% during the first 

experimental condition. NB classifier attains the second 

maximum specificity of 96.37% during the second 

experimental condition and 93.62% during the first 

experimental condition. The SVM classifier attains the least 

specificity of 56.9% during the second experimental condition 

and 53.7% during the first experimental condition whereas RF 

performed at 89.74% during the second experimental 

condition and 86.33% during the first experimental condition. 

The superior performance of the proposed model depends 

not only on the classifier but also on the WS-DMM model 

introduced for feature extraction. Figure 8 compares the 

proposed classification model (SW-NB) with and without 

WS-DMM. The experimental findings for the second 

condition demonstrated high accuracy in classifying subjects 

with and without dyslexia, as differences were observed in the 

activation of the occipital and parietal regions of both 

hemispheres when subjects responded to visual stimuli. 

5. Conclusion  
The goal of the research presented in this paper is to 

accurately identify dyslexia in kids by analysing their 

confusing brainwave data. In order to achieve this, we have 

developed a brand-new WS-DMM model that efficiently 

classifies people with dyslexia by extracting valuable signal 

representations. Furthermore, we have combined the benefits 

of the SW algorithm with the conventional NB classifier to 

manage the interconnected elements included in the extracted 

features efficiently. Experiments were conducted under two 

circumstances, such as audio recognition and visual 

discrimination, to demonstrate the significance of the 

suggested classification model. The findings demonstrate that 

the suggested classification model outperforms the other 

classifiers in both circumstances. Furthermore, it has been 

demonstrated that using WS-DMM ensures a notable 

enhancement in performance. This study contributes valuable 

insights into the distinct brainwave patterns of dyslexic 

students, serving as a foundation for future research. Over 

time, these findings could complement traditional dyslexia 

diagnosis methods by incorporating neurological aspects, 

leading to a more comprehensive understanding of the 

condition.
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