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Abstract - Software fault prediction is significant research intended to ascertain the faults in the software modules by analysing 

their various parameters. It aims to ensure maximum quality with minimum time, effort, cost, and usage of testing resources for 

the underlying software. Like any application, the quality of the data prominently stimulates the prediction result of the software 

fault. Intrinsically, several challenges, such as class imbalance, irrelevant and redundant attributes, and instance noise, exist in 

the software defect datasets. This irrelevant input slows the underlying prediction model's performance and produces erroneous 

prediction results. A data preprocessing methodology has been presented to address this problem by properly choosing the 

vertical and horizontal dimensions to ensure the quality of the input data. To handle data imbalance in the horizontal dimensions, 

hybrid sampling that uses SMOTE for oversampling and random under-sampling is applied to the data. It also uses the edited k 

nearest neighbour rule to remove noises. On the other hand, significant attributes from the vertical dimensions of the dataset are 

identified by applying the quadratic discriminant analysis. Several datasets have been used in the experimental study to assess 

the suggested preprocessing model's performance. The findings show that the suggested model performs better as it maintains 

the quality of the pre-processed dataset. The comparative analysis ensures that the suggested model overcomes the difficulties 

and performs well enough to forecast software module defects with improved quality up to 2.6% to 5.2% of AuC values. 

Keywords - Class imbalance, Edited k-nearest neighbour rule, Quadratic discriminant analysis, Random sampling, Software 

defects, Software fault prediction. 

1. Introduction  
In today's world, software has evolved as the strongest 

medium for automated systems and is truly ruling the entire 

world. Owing to technological growth and e-business, 

software has become the most significant entity for 

individuals and businesses [1]. In software development, 

identifying faults in the software at an early stage is one of the 

most difficult tasks. Classifying software errors is a branch of 

study in software quality assurance that focuses on testing, 

code inspection, and identifying faulty modules.  

As the size of software continues to increase rapidly, the 

probability of faults associated with it is also growing 

substantially. Syntactic, semantic, service, communication, 

and exception failures within software modules are software 

defects that can lead to code complexity, reduced human 

understanding, and other issues [2]. These faults result in 

system failure and reduced quality and compromise software 

reliability, affecting organizational goodwill and causing 

financial loss. Because software development progresses 

through various lifecycle phases, errors in one phase can 

propagate to others. Detecting such errors in later stages 

requires reworking the entire process, increasing costs and 

manpower [3]. Consequently, increasing interest has been in 

predicting software flaws early in the development cycle [4].  

Once faulty modules are identified early, it becomes 

relatively easier to build dependable and high-quality 

software. To improve software quality, several statistical 

models, machine learning algorithms, and software computing 

approaches are commonly used to forecast software defects 

using data from previously reported software defects [5]. 

Classification models are widely used to separate faulty 

modules from non-faulty modules. However, these models 

often face limitations in effectively predicting fault-prone 

software modules because of several persistent challenges in 

software fault prediction [4, 6]. One major concern in 

predicting software faults is the class imbalance problem 

because of the unequal distribution of faulty and non-faulty 

instances. This often leads to biased classification results [7, 

8]. Another significant issue is selecting appropriate software 

metrics for inclusion in the fault-detection model.  

https://www.internationaljournalssrg.org/
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A software metric is defined as a measurable 

characteristic or indicator of the software that helps evaluate 

its quality. These metrics are widely used to analyze software 

quality, assess execution time, detect defects during 

development, evaluate effectiveness, and control execution 

[9]. They can be broadly categorized into Halstead metrics, 

object-oriented metrics, code complexity metrics, size-based 

metrics using LOC, quality-based metrics, and others. The 

effectiveness of fault-prediction models is highly dependent 

on the relevance and selection of these metrics [10]. 

Although various studies have independently addressed 

the class imbalance issue or software metric selection 

challenge, few approaches have addressed both problems in a 

unified framework. The lack of an integrated data 

preprocessing methodology highlights a significant research 

gap in software fault prediction. Moreover, existing models 

often fail to account for the combined effect of noise in the 

data and irrelevant attributes, which further affects the 

performance and accuracy of classification models. 

Addressing the horizontal and vertical aspects of data 

preprocessing in a cohesive manner remains an underexplored 

area. 

Despite the importance of class imbalance handling and 

software metric selection, limited work in the literature 

addresses these two challenges [11, 12]. This gap motivates 

the present study, which proposes a data preprocessing model 

to enhance the dataset by optimizing horizontal and vertical 

dimensions. Horizontal data preprocessing handles class 

imbalance using hybrid sampling methods-SMOTE 

oversampling and random undersampling -along with the 

edited k-nearest neighbour (ENN) for noise removal. Vertical 

data preprocessing focuses on selecting significant attributes 

from the full feature set using Quadratic Discriminant 

Analysis (QDA). Various datasets and classifiers were used in 

the experimental analysis to evaluate the effectiveness of the 

proposed preprocessing model. The study also compared the 

results with several existing models to validate the 

improvements. 

The remainder of this article is structured as follows. A 

comprehensive review of the proposed study from the 

literature is presented in Section 2. The proposed model, 

which has a suitable architecture framework and horizontal 

and vertical data preprocessing in the following subsections, 

is discussed in Section 3. Section 4 deals with the 

experimental setup, dataset used, and performance metrics 

used in the evaluation. In Section 5, the results of the 

experiments are meticulously analyzed and compared with 

those of other currently used models. The paper concludes 

with the suggested future directions in Section 6. 

2. Related Work  
Software defect detection is the most significant research 

field for predicting fault-prone software modules. Several 

studies have focused on applying machine learning classifiers 

to discriminate software modules as defective and non-

defective [13, 14], in addition to applying other techniques 

such as clustering [5, 15] and deep learning [16] for effective 

results. Usually, classifiers are trained using the training set 

for fault prediction [17].  

However, the fault class will be a minority class with a 

minimum sample size, resulting in an imbalanced dataset. The 

prediction ability of the underlying model is always 

jeopardized when dealing with datasets with an imbalance in 

class. Thus, the superiority of the dataset is imperative to 

obtain better prediction results. The existence of irrelevant 

features and noisy instances exacerbates the problem of data 

imbalance by lowering the precision and generalizability of 

fault-prediction models. Consequently, both feature selection 

and instance quality need to be improved. Few researchers 

have contributed their research on instance reduction and 

feature selection, specifically suitable for fault predictions. 

A two-phase data preprocessing method was proposed to 

minimize the number of samples of the defect datasets and 

select the important features. It utilizes symmetrical 

uncertainty and threshold-based clustering for selecting 

features that ensure high relevancy and low redundancy, and 

it applies random sampling to balance the class [11, 18]. The 

results are limited to the kNN, c4.5 decision tree, and Naive 

Bayes classifiers. A three-phase model comprising inter-

quartile-range based noise removal, SMOTETomek for class 

balancing and voting-based ensemble feature selection was 

proposed to have high-grade preprocessing results [19].  

Similarly, information gain-based feature selection, 

SMOTE-based resampling, and iterative noise filtration 

utilizing classifier fusion for noise elimination were proposed. 

However, the work lacks proof of its efficiency compared to 

other models [20]. Although these studies showed that 

combining several preprocessing methods can improve model 

performance, they frequently have limitations regarding 

validation, algorithm support, or benchmarking against other 

models.  

A linear kernel support vector machine (SVM) with 

recursive feature elimination (RFE) termed SVM-RFE was 

proposed and evaluated using an SVM classifier to anticipate 

defects in software datasets. However, the selected features 

are more numerous, which makes the classification process 

difficult [21]. A method for selecting defect forecasting 

models using decision tree logic and fault characteristics has 

been suggested [22]. An improved regularized linear 

discriminant analysis was employed to select significant 

features and was tested using a few DNA microarray gene 

expression datasets [23].  

A hybrid feature selection model using chi-square, 

information gain, and correlation has been suggested [24]. 
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However, the model lacks an experimental analysis. Many of 

these models exhibit potential in dimensionality reduction or 

feature selection accuracy; however, their scalability, lack of 

cross-domain testing, and insufficient evaluation limit their 

applicability to real-world software fault datasets. A 

partitioning filter with an iterative procedure was proposed to 

remove instances identified as noise [25].  

However, the results were still less significant for many 

datasets. An analysis was conducted for sampling techniques 

in which random undersampling yielded better results [8]. An 

efficient dimensionality reduction model that utilizes Fisher 

linear discriminant analysis (FLDA) was proposed, which 

produces good results after resampling [26]. A survey of 

various sampling techniques and their categories was 

explicitly conducted for big data [27]. Despite these 

developments, a few methods offer a unified approach 

combining feature selection, class balance, and noise filtering 

into a single preprocessing pipeline for software failure 

prediction. 

In addition to fault predictions, this study employed 

several data preprocessing approaches suggested for different 

classification models. A self-weighted supervised 

discriminative feature selection (SSD-FS) approach that 

utilizes sparsity-inducing regularization was proposed, which 

yields better results than many other sparse-based feature 

selections. However, the experiments were limited to kNN and 

SVM classifiers [28]. Recently, this work was extended by 

introducing a redundancy matrix-based framework to 

minimize redundancy [29].  

A mean-weighted pattern score using attribute rank-based 

selection of features was proposed [30] with the idea of using 

weights for different patterns [31]; however, the model failed 

to apply the resampling process to balance the classes. A 

SMOTE-ENN algorithm for balancing the class ratio and 

CBoost, a cost-sensitive learning framework, was suggested, 

but it was experimented explicitly with bankruptcy detection 

[32]. Although hybrid- and ensemble-based models are 

becoming increasingly popular, their direct application to 

software failure datasets is frequently unproven or 

insufficiently evaluated, as these contributions demonstrate.  

Generalizability across various classifiers and dataset 

properties has also not received enough attention. From the 

literature review, it is clear that only a few methods focus on 

imbalanced classes and software metric selection. This shows 

an immediate need for a novel yet effective data preprocessing 

model better suited for predicting faults from software fault 

datasets. Thus, this paper proposes a data preprocessing model 

suitable for effective software fault prediction. 

3. Proposed Preprocessing Model  
The proposed optimized horizontal and vertical 

dimension selection model is intended to improve the data 

quality through a series of data preprocessing steps, such as 

hybrid Sampling and QDA, specifically for predicting 

software faults. Software fault datasets contain a set of 

software faults and normal instances, which is a binary 

imbalanced dataset, and applying any model to predict the 

faults in such datasets will result in inaccurate results.  

Thus, the model uses sampling strategies to balance the 

instances in the binary class, including random undersampling 

and SMOTE oversampling. It also applies the edited k-nearest 

neighbour approach to remove noise or outliers in dataset 

instances. This phase completely deals with the instances, 

which are the horizontal dimension of the dataset, in 

contradiction to the vertical dimension, that represents the set 

of attributes in the dataset.  

As all the features may not contribute to the classification 

or prediction accuracy, the significant features that have more 

discriminant information with respect to the target class are 

selected using the quadratic discriminant function using the 

wrapper-based forward subset selection approach. The overall 

framework of the proposed data preprocessing model with 

horizontal and vertical dimension optimization approaches is 

shown in Figure 1. The phases of the proposed model are 

described in the following subsections. 

3.1. Optimizing Horizontal Dimensions  

The first step in the proposed data preprocessing model is 

to optimize the horizontal dimension. It includes hybrid 

sampling and noise removal by processing the instances in the 

underlying dataset.  

In the proposed model, hybrid sampling was applied to 

adjust the instances of the underlying imbalanced dataset to 

create a balanced dataset. The model applies SMOTE 

oversampling and random undersampling techniques to take 

advantage of both models, thereby neutralizing its limitations. 

Although balanced, the dataset may have outliers, leading 

to ineffective results. Thus, the proposed model utilizes the 

edited kNN rules to detect outliers and enhance data quality 

effectively. The process for maximizing the number of 

instances for the majority and minority class instances of the 

defect dataset is shown in Figure 2. 

3.1.1. Class Balancing using Hybrid Sampling  

Hybrid sampling is prevalent because an imbalanced 

dataset always provides a biased prediction of majority class 

instances.  

Thus, for effective results, the proposed model utilizes the 

synthetic minority oversampling technique (SMOTE) 

algorithm for oversampling [33] and random undersampling 

to balance the binary class's instance count. A simple 

illustration of hybrid sampling is shown in Figure 3. 
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Fig. 1 Detailed structure of the proposed data preprocessing approach 

 
 

Fig. 2 Workflow for optimizing instances of the defect dataset 
 

Fig. 3 Illustration of hybrid sampling 
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The oversampling and undersampling rates must be 

computed for hybrid sampling based on the training set. Half 

of the percentage difference between the instances of the 

dominant and fewer classes was used to calculate the sampling 

rate. Consider a dataset containing n instances, out of which 

𝑛1 samples belong to the majority class and 𝑛2 is the sample 

count of the minority class instances. Consequently, Equation 

1 was used to compute the sample rate. 

𝑆𝑟𝑎𝑡𝑒 =
𝑛1−𝑛2

2𝑛
∗ 100 (1) 

Thus, in the proposed model, SMOTE increases the 

instances, and random undersampling reduces the instances by 

𝑆𝑟𝑎𝑡𝑒. However, the number of instances (nm) to be added and 

reduced can be given as (𝑛1 − 𝑛2)/2 instances. 

SMOTE Oversampling 
The SMOTE algorithm uses the similarity between 

minority class instances to create new, nonidentical samples 

for the minority class. These added instances create a class-

balanced dataset, thus avoiding class imbalance and 

overfitting issues. The k-nearest neighbors for each instance 

in the minority class were determined. Then, the distance 

between the feature vector of the instance and that of its N 

neighbours is computed. The new instance, a synthetic 

instance, is subsequently included in the feature vector after 

the distance is multiplied by an arbitrary number ranging from 

0 to 1. This is shown in (2). 

𝑥𝑛𝑒𝑤 = 𝑥1 + [𝑑(𝑥1, 𝑥𝑛) ∗ 𝑟𝑛] (2) 

Here, 𝑥𝑛𝑒𝑤  represents the newly generated instance, 𝑥1 is 

the feature vector of the instance in the minority group, 

𝑑(𝑥1, 𝑥𝑛) is the Euclidean distance between instance 𝑥1 and it 

is a neighbour 𝑥𝑛, 𝑟𝑛 is a random number between 0 and 1. As 

per the suggested model, N is calculated as the ratio of the 

sample count to be added to the sample count in the minority 

class 𝑛𝑚/𝑛2 and k is the smallest number divisible by 5 

greater than 𝑛𝑚/𝑛2. 

Random Under-sampling  
Random undersampling was utilized to decrease the 

sample count in the majority group. To balance the dataset, 

samples from the dominant class were randomly chosen. This 

iterative procedure is performed until the specified 

distribution is reached. Random sampling always offers better 

results than other undersampling techniques [9]. Instead of 

randomly deleting the nm instances, the proposed model splits 

the entire set of samples into subsamples and then deletes the 

instances.  Thus, for each k sample, N samples are deleted 

randomly, where k is a random number, and N can be 

computed as (𝑘 ∗ 𝑛𝑚)/𝑛1. For example, if the sample count 

to be deleted is 4000 with a total sample size of 8000, and if 

10 is selected as the k value, then N is 5. This implies that for 

every k (=10) instance, N (=5) instances were deleted 

randomly. The idea is to select instances for deletion in a 

distributed manner based on subsamples with k instances.  

3.1.2. Noise Removal using Edited K Nearest Neighbour 

The number of occurrences in the majority and minority 

groups in the dataset was balanced using hybrid sampling. 

However, the dataset may contain noise; thus, the noise can be 

identified and removed using the Edited K Nearest neighbour 

(ENN) approach for effective prediction results. A simple 

illustration of the noise removal using the ENN algorithm is 

shown in Figure 4.  

The working principle of the ENN approach is that if the 

sample contains more neighbours from different classes, it can 

be considered an outlier and removed. Thus, for each instance 

x, it identifies the k nearest neighbours, says k=10, then x can 

be considered an outlier and removed if the neighbour count 

from other groups is greater than the same group. Thus, the 

output of the first phase after applying hybrid sampling and 

noise removal using ENN is a balanced, clean dataset without 

more variation in the sample count between binary groups. 

Algorithm 1 provides the pseudocode for the proposed 

horizontal dimension optimization. 

 
Fig. 4 Illustration of noise removal using ENN algorithm 

Algorithm 1: Horizontal Dimension Optimization 

Input: Imbalanced dataset D with n instances, n1 minority 

instances, n2 majority instances 

Output: Balanced dataset 

Begin hybrid_sampling() 

    //Compute the sampling rate 

    nm = (n1-n2)/2 //Number of instances to be added or 

deleted 

    State = ( nm/n)*100;  //Converting to sampling rate 

    //SMOTE Oversampling 

    N = nm/n2//SMOTE percentage 

    Identify the suitable k value  

    For each instance, x in the majority class do 

             N = nm/n2 

             Find the k nearest neighbours from minority 

classes     

             While N ≠ 0 do 

                    Select a neighbour xn  

Balanced Dataset 
Balanced Clean Dataset 
after Outlier Removal 

ENN Algorithm for 
identifying and 

removing outlier noise 
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                    Compute d(x, xn) = |x- xn| and select rnє(0,1) 

                    xnew = x1 + [d(x1,xn )*rn] 

                    Append the instance xnew in D 

                    Decrement N by 1 

             End While 

    End For 

    //Random under-sampling 

    Select a value for the variable k 

    Compute N = (k*nm)/n1 

      For each iteration, select k instances from the majority 

class without replacement. Do 

             For i from 1 to N, do 

                    Remove one instance x randomly and update 

in D 

             End For 

    End For 

    //ENN for noise removal 

    For each instance x in D, do 

             Select k nearest neighbours  

             Compute nsc and nds as neighbours from the same 

class and different class 

             If nsc < ndc, then 

                    Remove instance x from D 

             End If 

    End For 

End Procedure 

 

3.2. Optimizing Vertical Dimensions  

In the proposed model, the vertical dimensions represent 

the features of software fault datasets. Choosing the optimal 

elements influencing classification accuracy is crucial to 

detecting the fault-prone software module. The proposed 

model uses QDA to select important features from the 

underlying datasets. It uses a wrapper approach in the feature-

selection process, in which the best subset with the minimum 

error is considered the significant feature set. To compute the 

error rate of the proposed model, the leave-one-out cross-

validation error rate was used [34]. 

3.2.1. Quadratic Discriminant Analysis 
QDA is a reproductively supervised feature-reduction 

model. Here, features that increase the space between classes 

are selected [35]. The QDA can be evaluated from simple 

probabilistic models using the class conditional probability of 

the data with respect to each value of the target variable. Thus, 

for each training sample x, class prediction k can be made 

using the Naive Bayes algorithm that maximizes the posterior 

probability, as given in Equation 3. 

𝑝(𝑦 = 𝑘|𝑥) =
𝑝(𝑥|𝑦 = 𝑘)𝑝(𝑦=𝑘)

𝑝(𝑥)
  (3) 

However, QDA is modelled as a bivariate Gaussian 

distribution 𝑝(𝑥|𝑦 = 𝑘) With binary class k =2 and density d 

representing the number of features. The density ratio can then 

be computed, as shown in Equation 4. 

𝑑′(𝑥) =
|∑1|−1/2

|∑2|−1/2 𝑒𝑥𝑝 [−
1

2
(𝑥 − 𝜇1)𝑡∑1

−1(𝑥 − 𝜇1) +

1

2
(𝑥 − 𝜇2)𝑡∑2

−1(𝑥 − 𝜇2)] (4) 

Here, 𝜇1 and 𝜇2 are the mean vectors of specific classes 

class1 and class 2, respectively, which can be computed by 

averaging the input variable of each specific class. The 

variables ∑1 and ∑2 specify the covariance matrix of specific 

classes, which is computed as the covariance of the variables 

of each specific class [36]. The expression (𝑥 − 𝜇1)𝑡∑1
−1(𝑥 −

𝜇1) signifies the Mahalanobis distance between instance x and 

the mean of class [37]. Taking the natural logarithm on both 

sides of Equation 2 results in a quadratic function, as in 

Equation 5. 

log(𝑑′(𝑥)) =
1

2
log (

∑1

∑2
) −

1

2
[(𝑥 − 𝜇1)𝑡∑1

−1(𝑥 − 𝜇1) −

(𝑥 − 𝜇2)𝑡∑2
−1(𝑥 − 𝜇2)] (5) 

Applying the natural logarithm for the posterior 

probability given in Equation 1, substituting the values in 

Equation 5, and solving the equation results in Equation 6, in 

which cl1and cl2 represents classes 1 and 2. 

𝑞𝑑𝑎(𝑥) = {
x ∈ cl1 if log(𝑑′(𝑥)) > 𝑙𝑜𝑔 [

𝑝2𝑐(1|2)

𝑝1𝑐(2|1)
]

x ∈ cl2 if log(𝑑′(𝑥)) ≤ 𝑙𝑜𝑔 [
𝑝2𝑐(1|2)

𝑝1𝑐(2|1)
]
 (6) 

3.2.2. Feature Selection using QDA 
Three major categories can be used to classify feature 

selection techniques: filter, wrapper, and embedding. In the 

proposed model, significant features are identified using the 

wrapper approach. Both forward selection and backward 

elimination can be used in the wrapper strategy. A feature is 

added to the subset with the least error at each iteration of the 

forward selection process, which begins with a null set and 

ends when the error remains constant. In contrast, backward 

elimination begins with a complete set of features, and at each 

iteration, the feature with the highest error is identified and 

eliminated. The iterations ended when the error rate did not 

change significantly. The proposed model uses the forward 

elimination approach to identify the features with the highest 

biased information with respect to the class using QDA. At 

each iteration, the discrimination function using QDA is 

computed for the features returned from the forward selection 

search. Here, each feature subset is evaluated using QDA, and 

the subset with the minimum error rate is considered the best 

subset to be selected. The proposed model utilizes the leave-

one-out cross-validated error rate offered by [34] because it 

produces better results than other error rates. The model leaves 

each instance from the given dataset and applies a QDA 

discrimination function to the remaining instances. After 

evaluating the remaining instances, the class value was 

predicted for the instance on the left. This was performed for 
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all instances in each group. Equation 7 can then be used to 

obtain the error rate. 

𝑙𝑜𝑜_𝑐𝑣_𝑒𝑟𝑟𝑜𝑟 =
𝑛1𝑚+𝑛2𝑚

𝑛1+𝑛2
  (7) 

Here, 𝑛1𝑚and 𝑛2𝑚 represents the number of misclassified 

instances in classes 1 and 2, respectively, and 𝑛1 and 𝑛2 
specify the sample count in classes 1 and 2, respectively. The 

pseudocode for selecting the significant features from the 

given dataset with the wrapper approach-based forward 

selection search method using the QDA classifier and leave-

one-out-cross validation error rate estimation is given in 

Algorithm 2. 

Algorithm 2: Vertical Dimension Optimization 

Input: Dataset D with n features 

Output: Significant Feature Subset 

Begin QDA_feature_selection() 

       Fs={ } 

       While (variation exists in loo_cv_error), do 

            For each feature i, i∉Fs do 

                  Fs = Fs∪i 

                  Apply the QDA model with the features in the 

set Fs  

            Estimate the error loo_cv_error as in Equation (7) 

             End For 

             Select the feature subset Fs with 

min(loo_cv_error) 

        End While 

        Return the dataset with the best feature subset Fs 

End Procedure      

4. Experimental Analysis 
The experimental evaluation and various result analyses 

conducted by simulating the experiments using the suggested 

model to demonstrate its efficacy are presented in this section. 

The experiment was performed on an Intel Core i3 processor 

with a speed of 1.70GHz and 4GB RAM running a 64-bit 

Windows Operating System. Software tools such as Weka and 

Orange Tools were used to analyse several models' 

correctness statistically, and Python was used to build the 

suggested preprocessing model. 

4.1. Dataset Used 
To assess the performance level of the proposed model, a 

few experiments and analyses of the obtained results were 

conducted using various real-time datasets collected from 

software projects, including NASA datasets [38] and the Bug 

dataset from the Eclipse project [39]. For our analysis, 11 

datasets (CM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, 

PC3, PC4, and PC5) from NASA projects [40] and three 

datasets (Eclipse 2.0, Eclipse 2.1, and Eclipse 3.0) from 

eclipse projects were used. In software defence datasets, the 

features represent some software metrics that help classify the 

error-prone module.  

The software metrics utilized in the NASA datasets 

include the LOC, Complexity, and Halstead metrics. The 

complexity measure was proposed in [41], in which an 

increase in the complexity of a path increases the possibility 

of fault. It comprises several metrics, including LOCs and 

cyclomatic, essential, and design metrics. Halstead (1977) 

[42] takes the readability of the code as a metric in which it is 

difficult to read the code, indicating a higher possibility of 

faults that can be divided into the base, derived, and LOC 

metrics. Attributes with continuous values were discretized 

for easy processing and data management. The Eclipse dataset 

contains a set of metrics that include code complexity metrics, 

syntax tree-based metrics, and abstract syntax tree-based 

measures. However, the model preprocesses the datasets by 

removing non-numeric features, thereby utilizing the numeric 

features and transforming the datasets into binary classes by 

updating various defect classes as defects. In addition, in any 

dataset, the attributes with a single value will not provide any 

information; therefore, they are also removed [11]. The details 

of the datasets used in this study are given in Table 1. The 

table presents the dataset's feature count, instance count, and 

percentage of defect instances. 

Table 1. Description of the dataset used 

Dataset #Features #Instances % Defects 

CM1 37 327 15.0 

KC1 21 1162 28.1 

KC3 39 194 18.6 

MC1 38 1988 2.3 

MC2 39 161 32.3 

MW1 37 253 10.7 

PC1 37 679 9.0 

PC2 36 745 2.1 

PC3 37 1077 12.4 

PC4 37 1287 13.8 

PC5 38 1711 27.5 

Eclipse 2.0 155 6729 14.5 

Eclipse 2.1 155 7888 10.8 

Eclipse 3.0 155 10593 14.8 

4.2. Evaluation Metrics 
The only method to assess the effectiveness of a model is 

to use evaluation metrics to quantify its performance. This 

result specifies the quality of the underlying model. Several 

evaluation metrics are available in the literature for various 

applications [43]. The most frequently used evaluation metrics 

in many applications pertaining to different research fields are 

accuracy, precision, and error rate. This study uses some of the 

most widely used measures in the defect detection sector. 

4.2.1. Classification Accuracy 

This is the main assessment statistic that calculates the 

proportion of correctly classified examples out of all the 

occurrences. It is most effective for balanced datasets 

containing equal sample counts in all classes. Higher accuracy 

values indicate better performance. 
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4.2.2. Area under the Receiver Operating Characteristic 

(AUC) 

This curve eventually applies the trapezoid rule to 

estimate the performance by plotting the true positive and 

false positive rates. It evaluates the distance between target 

variables. The value of AuC always lies between 0 and 1, 

representing the worst and best performances of the model, 

respectively.  

4.2.3. Precision 

This represents the rate of truly positive predictions that 

are positive. This can be measured as the ratio of true-positive 

instances to positive instances. The increase in the values 

indicates an increase in performance. 

4.2.4. Recall  

It is often used along with precision, which indicates the 

positive prediction rate that is successfully predicted. It can be 

measured as the number of true positives that are correctly 

identified. The increases in the values indicate an increase in 

performance. 

4.2.5. F-Measure 

This is a measure of the test accuracy that can be 

calculated as the harmonic mean of the precision and recall 

values. 

4.2.6. Root Mean Square Error (RMSE) 

This quantifiable metric computes the standard deviation 

of prediction errors. It was computed as the square root of the 

mean of the square of all errors. 

4.2.7. Mean Absolute Error (MAE) 

This evaluates the closeness between the predictions and 

actual outcomes-generally, the lower the errors, the higher the 

prediction model's performance. Thus, low values of RMSE 

and MAE indicate better performance. 

5. Results 
To evaluate the model's effectiveness, the proposed 

horizontal data preprocessing (HDP) and vertical data 

preprocessing (VDP) are individually experimented with 

various trials using 11 different classifiers for the software 

fault datasets presented in Table 1.  

The classifiers used for the proposed study were Naive 

Bayes (NB), Multinomial Logistic Regression (MLR), 

multilayer perceptron (MLP), Support Vector Machine 

(SVM), AdaBoost (ADB), bagging (BAG), Additive Logistic 

Regression (ALR), stacking (STK), Logistic Model Tree 

(LMT) and Random Forest (RF). The classification accuracies 

of the classifiers after HDP, VDP, and without data 

preprocessing (WDP) for the classifiers using 14 datasets are 

presented in Table 2. 

Table 2. Classification accuracy of different classifiers using the proposed model 

Datasets Method 
Different Classifiers 

Avg. 
NB MLR MLP SVM ADB BAG ALR STK LMT RF 

CM1 

WDP 79.20 84.10 78.29 87.16 86.54 87.16 84.10 87.16 85.93 85.63 84.53 

HDP 83.57 87.54 81.59 89.78 88.41 89.63 86.74 90.37 87.23 87.24 87.21 

VDP 84.23 86.96 83.17 91.71 89.67 90.12 85.78 89.71 88.11 89.47 87.89 

KC1 

WDP 72.70 75.32 75.82 74.05 73.80 76.33 74.47 73.46 75.32 76.92 74.82 

HDP 78.93 77.38 77.92 79.14 78.31 80.12 77.82 76.19 79.33 79.18 78.43 

VDP 77.11 79.23 76.72 78.91 77.59 79.97 78.93 77.59 78.45 80.28 78.48 

KC3 

WDP 78.87 77.84 76.80 81.96 82.47 78.87 81.96 81.44 79.38 81.44 80.10 

HDP 80.19 81.47 80.56 83.92 83.17 80.96 83.19 84.25 83.47 83.11 82.43 

VDP 81.28 83.72 82.96 85.17 84.23 82.77 84.52 85.16 84.44 83.69 83.79 

MC1 

WDP 91.41 95.82 97.14 97.49 97.02 97.14 97.26 97.49 97.49 97.37 96.56 

HDP 93.56 96.78 98.23 97.93 98.59 98.17 98.23 98.17 98.82 98.87 97.74 

VDP 95.22 97.49 98.71 98.18 97.99 98.29 98.59 98.39 98.98 98.57 98.04 

MC2 

WDP 72.00 61.60 70.40 68.80 69.60 69.60 66.40 64.80 64.80 70.40 67.84 

HDP 75.29 68.89 74.88 74.23 74.34 75.18 71.08 69.82 69.58 74.21 72.75 

VDP 76.82 70.29 76.18 76.23 73.87 76.31 72.53 70.18 70.24 75.35 73.80 

MW1 

WDP 81.42 86.96 86.56 89.33 87.75 89.33 90.12 89.33 90.51 88.54 87.98 

HDP 83.29 90.54 88.74 91.69 90.47 91.11 92.48 92.44 93.53 91.15 90.54 

VDP 84.29 91.47 89.52 90.11 91.28 92.47 94.55 92.69 94.78 92.66 91.38 

PC1 

WDP 88.09 91.49 91.91 91.21 90.92 91.49 91.49 91.35 90.78 92.06 91.08 

HDP 90.12 92.59 93.85 93.48 92.79 92.85 94.59 93.36 92.22 94.18 93.00 

VDP 91.15 92.69 94.43 94.32 92.93 93.18 95.57 93.66 93.78 94.28 93.60 

PC2 

WDP 90.74 96.64 97.58 97.85 97.85 97.85 97.45 97.85 97.85 97.85 96.95 

HDP 92.55 97.56 97.82 98.96 98.02 98.87 98.36 99.12 98.67 98.82 97.88 

VDP 94.28 97.29 98.11 98.55 98.49 98.82 98.63 98.85 98.29 98.11 97.94 
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PC3 

WDP 80.97 86.58 85.03 86.97 86.84 86.58 86.19 86.97 85.68 87.35 85.92 

HDP 84.96 88.23 87.89 89.37 89.73 88.17 88.56 88.28 87.28 88.49 88.10 

VDP 83.75 88.19 86.87 88.96 89.27 89.85 89.17 88.59 88.11 89.08 88.18 

PC4 

WDP 85.91 90.23 90.48 89.00 89.12 89.74 90.85 87.89 89.86 90.73 89.38 

HDP 89.21 92.18 93.18 91.58 91.8 91.28 92.35 89.28 92.63 93.12 91.66 

VDP 88.48 92.52 93.13 92.65 92.82 92.64 92.75 89.08 91.11 91.22 91.64 

PC5 

WDP 73.72 76.03 73.21 74.49 73.08 75.51 74.49 72.69 74.87 76.54 74.46 

HDP 78.59 79.96 76.31 76.63 78.58 79.29 78.2 76.59 78.72 79.28 78.22 

VDP 79.18 79.28 77.29 77.24 77.67 78.63 77.98 76.12 78.12 79.09 78.06 

Ecl.2.0 

WDP 79.78 82.56 77.69 86.23 85.28 86.98 83.29 86.48 84.72 84.42 83.74 

HDP 80.29 86.36 80.87 88.09 87.49 88.07 85.59 89.87 88.19 86.98 86.18 

VDP 82.69 87.29 82.75 89.69 88.27 89.34 86.69 89.18 88.27 87.08 87.13 

Ecl.2.1 

WDP 82.18 83.29 79.18 87.28 90.28 87.18 85.19 88.19 85.34 86.59 85.47 

HDP 83.29 85.57 82.19 89.21 91.25 89.09 87.09 90.37 89.49 88.92 87.65 

VDP 84.25 86.25 83.58 89.09 92.25 90.17 87.54 91.52 89.73 89.64 88.40 

Ecl.3.0 

WDP 83.29 84.49 80.93 88.09 91.48 90.18 87.57 90.18 88.93 89.08 87.42 

HDP 86.94 86.97 83.21 91.48 93.09 92.05 88.49 92.63 91.37 92.82 89.91 

VDP 86.08 86.28 85.74 91.83 93.35 91.18 89.27 92.58 91.19 92.36 89.99 

By analyzing the obtained results, the proposed vertical 

data preprocessing and horizontal data preprocessing provided 

better results individually regarding classification accuracy 

than without data preprocessing. The overall accuracy of the 

classifiers with different datasets without applying any 

instance reduction or feature selection was 84.73%, whereas 

those with only HDP and VDP were 87.26% and 87.74%, 

respectively. Thus, the upsurges in the proposed HDP and 

VDP accuracy are approximately 3% and 4%, respectively. 

More specifically, the maximum increase in accuracy can be 

seen for dataset MC2, with an HDP of 7.24% and VDP of 

8.79%. In contrast, the minimum increase in accuracy with 

HDP and VDP can be seen through dataset PC2 as 0.95% and 

MC1 as 1.21%, respectively. This minimum variation was due 

to the higher range of imbalances in the datasets. More 

precisely, datasets PC2 and MC1 have a very minimal number 

of defect instances of 2.1% and 2.3%, respectively; thus, 

resampling the instances in the majority and minority classes 

may not create much difference. This is illustrated in Figure 5. 

 

 
Fig. 5 Increase in accuracy for different datasets 

The classification accuracy obtained for various 

classifiers and datasets is presented as a distribution in Figure 

6. Consequently, the average rankings of several classifiers 

over a range of datasets under the three approaches (Vertical, 

Horizontal, and Without Data Preprocessing) given in Table 2 

are displayed in Figure 7. These rankings are calculated by 

assigning each classifier in each dataset a rank determined by 

its performance and then averaging the rankings for each 

preprocessing method over all datasets. Here, lower ranks 

indicate a better performance. The robustness of RF, BAG, 

and SVM is evident from their consistent ranking among the 

top-performing techniques. This is followed by classifiers 

such as ADB, ALR, STK, and LMT, which demonstrate 

moderate performance. Although MLR, MLP, and NB had the 
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highest rankings, reflecting lower accuracy, the overall 

classifier performance was marginally improved through 

horizontal and vertical preprocessing, with vertical 

preprocessing offering greater consistency. This implies that 

data preparation enhances the effectiveness of classifiers, 

particularly in ensemble- and margin-based approaches. 

 
Fig. 6 Accuracy distribution with various models 

 
Fig. 7 Average ranking of different preprocessing methods 

Specifically, the proposed HDP and VDP performance 

was also analyzed individually using AUC as the performance 

metric by applying the 11 classifiers used in the study. The 

average obtained values for HDP, VDP, and WDP with AUC 

for the 14 software fault datasets are shown in Figure 8 for 

ease of interpretation. Vertical and horizontal preprocessing 

consistently yielded the highest AUC scores across almost all 

datasets. The performance was the lowest when preprocessing 

was omitted. This demonstrates that data preparation, 

particularly through horizontal and vertical methods, 

substantially improves the classification performance and 

model reliability, underscoring its importance in enhancing 

generalization and predictive accuracy.In addition, using the 

11 classifiers employed in this study, the performance of the 

suggested HDP and VDP was further examined separately 

using a number of other metrics, including precision, recall, f-

measure, AuC, RMSE, and MAE. The average values 

obtained for HDP, VDP, and without any data preprocessing 

(WDP) with the above metrics for 14 software fault datasets 

are presented in Table 3. From the obtained results, the 

proposed HDP had an average value of 80.7% precision, 

85.11% recall, 82.75% f-measure, 73.75% AuC, 26.61% 

RMSE, and 14.14% MAE, whereas the proposed VDP had an 

average of 80.8% precision, 85.81% recall, 8316% f-measure, 

75.44% AuC, 23.39% RMSE, and 13.34% MAE. 
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Fig. 8 Average AUC values across different datasets 

Table 3. Performance analysis with different metrics 

Metrics Models 
Software Defect Datasets 

CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0 

Precision 

WDP 0.817 0.654 0.696 0.944 0.558 0.755 0.803 0.961 0.740 0.715 0.624 0.714 0.753 0.787 

HDP 0.867 0.786 0.785 0.955 0.702 0.783 0.816 0.977 0.797 0.762 0.725 0.743 0.784 0.814 

VDP 0.857 0.775 0.778 0.966 0.712 0.799 0.816 0.979 0.808 0.770 0.739 0.746 0.760 0.807 

Recall 

WDP 0.794 0.748 0.801 0.966 0.678 0.880 0.911 0.970 0.809 0.894 0.745 0.775 0.769 0.789 

HDP 0.814 0.789 0.836 0.978 0.731 0.897 0.923 0.982 0.848 0.914 0.795 0.795 0.789 0.824 

VDP 0.825 0.791 0.847 0.987 0.744 0.907 0.937 0.989 0.867 0.910 0.814 0.791 0.787 0.817 

F-Measure 

WDP 0.805 0.698 0.745 0.955 0.613 0.813 0.854 0.965 0.773 0.794 0.679 0.743 0.761 0.788 

HDP 0.840 0.787 0.810 0.966 0.716 0.836 0.866 0.980 0.822 0.831 0.758 0.768 0.786 0.819 

VDP 0.841 0.783 0.811 0.976 0.728 0.850 0.872 0.984 0.836 0.834 0.775 0.768 0.773 0.812 

AuC 

WDP 0.747 0.608 0.629 0.796 0.532 0.656 0.692 0.808 0.671 0.607 0.576 0.659 0.700 0.723 

HDP 0.801 0.742 0.723 0.821 0.687 0.697 0.719 0.837 0.729 0.670 0.681 0.699 0.740 0.754 

VDP 0.809 0.752 0.732 0.847 0.711 0.729 0.734 0.857 0.752 0.699 0.707 0.724 0.739 0.769 

RMSE 

WDP 0.340 0.444 0.404 0.191 0.499 0.319 0.279 0.199 0.379 0.291 0.439 0.535 0.478 0.407 

HDP 0.287 0.347 0.248 0.068 0.395 0.314 0.201 0.041 0.287 0.211 0.317 0.397 0.314 0.299 

VDP 0.271 0.317 0.232 0.048 0.371 0.080 0.193 0.032 0.241 0.209 0.342 0.342 0.331 0.265 

MAE 

WDP 0.231 0.331 0.247 0.065 0.369 0.162 0.131 0.089 0.239 0.145 0.315 0.241 0.251 0.217 

HDP 0.174 0.199 0.152 0.025 0.257 0.091 0.065 0.054 0.140 0.074 0.193 0.193 0.199 0.164 

VDP 0.163 0.197 0.141 0.021 0.244 0.081 0.051 0.027 0.121 0.078 0.174 0.197 0.201 0.171 

The increases in the precision, recall, f-measure, and AuC 

rate for the suggested HDP were 7.37%, 3.35%, 5.45%, and 

9.53%, respectively, compared to those without data 

preprocessing.  

Typically, the decreases in the values of error rates, such 

as RMSE and MAE for HDP, are highly remarkable at 28.40% 

and 34.72%, respectively. Correspondingly, the hike in 

precision, recall, f-measure, and AuC for the proposed VDP 

are appreciable with 7.52%, 4.19%, 5.98%, and 12.30%, 

respectively, compared with no data preprocessing.  

Additionally, the error rate decreases, such as RMSE and 

MAE for VDP, are notable, with decreases of approximately 

37.08% and 38.44%, respectively. Figure 9 shows the average 

of the data in Table 3 as a bar chart. 
 

Fig. 9 Analysis of the proposed model with performance metrics 
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Table 4 presents the classification accuracy of the 

classifiers across various software defect datasets using the 

horizontal and vertical data preprocessing techniques 

proposed in this chapter. The top-performing model varied 

according to the dataset. SVM achieved the highest accuracy 

for CM1 (95.59%), whereas RF performed best on KC1 

(83.46%). AB outperformed the others on KC3 (87.80%), 

Eclipse 2.1 (95.57%), and Eclipse 3.0 (97.31%). MLP led to 

MC1 (99.79%) and PC4 (96.51%), and STK showed superior 

performance with Eclipse 2.0 (94.28%) and PC2 (99.48%). 

Similarly, NB performed best with MC2 (81.80%), LMT 

excelled on MW1 (99.00%), ALR showed the highest 

accuracy on PC1 (98.56%), BAG led on PC3 (94.07%), and 

MLR outperformed the others on PC5 (84.12%). These results 

highlight the dataset-specific effectiveness of the classifiers 

and underscore the importance of selecting suitable models for 

different datasets. Different datasets exhibited varying levels 

of classification complexity, as reflected in the average 

accuracy values of the classifiers shown in Figure 10. The 

highest average accuracies were observed for MC1 (98.92%), 

PC2 (98.71%), and PC1 (96.59%), indicating that these 

datasets are easier to classify with clearly defined patterns that 

classifiers can learn from effectively. Similarly, MW1 

(95.76%) and PC4 (95.41%) demonstrated strong 

classification outcomes. In contrast, lower average accuracies 

in datasets such as KC1 (82.16%), PC5 (82.59%), and MC2 

(78.83%) suggest challenges such as noise, class imbalance, 

and less distinctive features. These results underscore the 

significant influence of dataset characteristics on the model 

performance.

Table 4. Accuracy analysis of the proposed model 

Dataset 
Classifiers 

NB MLR MLP SVM AB BAG ALR STK LMT RF 

CM1 88.11 91.42 87.05 95.59 93.55 94.00 90.62 94.25 91.99 93.35 

KC1 82.11 82.41 81.10 82.32 81.49 83.30 82.11 80.77 82.51 83.46 

KC3 84.19 83.16 82.13 87.28 87.80 84.19 87.28 86.77 84.71 86.77 

MC1 97.12 98.59 99.51 98.98 99.09 98.79 99.09 98.89 99.48 99.37 

MC2 81.80 75.27 81.16 81.21 79.32 81.29 77.51 75.16 75.22 80.33 

MW1 88.51 95.69 93.74 95.91 95.50 96.69 98.77 96.91 99.00 96.88 

PC1 94.14 95.68 97.42 97.31 95.92 96.17 98.56 96.65 96.77 97.27 

PC2 95.64 98.92 98.47 99.32 98.85 99.23 98.99 99.48 99.03 99.18 

PC3 89.18 92.45 92.11 93.59 93.95 94.07 93.39 92.81 92.33 93.30 

PC4 92.54 95.85 96.51 95.98 96.15 95.97 96.08 92.61 95.96 96.45 

PC5 83.34 84.12 81.45 81.40 82.74 83.45 82.36 80.75 82.88 83.44 

Ecl.2.0 87.10 91.70 87.16 94.10 92.68 93.75 91.10 94.28 92.68 91.49 

Ecl.2.1 89.57 90.57 87.90 92.53 95.57 93.49 90.86 94.84 93.05 92.96 

Ecl.3.0 90.90 90.93 89.70 95.79 97.31 96.01 93.23 96.59 95.33 96.78 

 
Fig. 10 Average ranking across different classifiers

The relative performance of the classifiers, as shown in 

Figure 11, is illustrated by their average accuracies across the 

datasets. The SVM (92.24%) and RF (92.22%) delivered the 

best overall performance, highlighting their strong 

generalizability across diverse software defect datasets. 

Similarly, BAG (92.17%) and AB (92.14%) demonstrated 
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high accuracy, further confirming the robustness of the 

ensemble methods. The ALR (91.42%), STK (91.48%), and 

LMT (91.49%) followed closely, indicating consistent 

reliability. In contrast, NB (88.87%) showed the lowest 

average accuracy, likely owing to its strong independence 

assumptions, while MLR (90.48%) and MLP (89.69%) 

offered moderate performance. These findings emphasize the 

effectiveness of kernel-based and ensemble techniques in 

addressing various software defect prediction challenges. 

 
Fig. 11 Average ranking across different datasets 

5.1. Comparison with Standard Models 

The tests demonstrate that the proposed approach 

produces superior outcomes than those without preprocessing. 

However, several models exist to preprocess the data 

specifically used in software fault datasets. Thus, the 

performance evaluation results were contrasted with the 

standard models suggested in the field of research. The 

suggested HDP approach is analyzed using seven software 

fault prediction datasets, namely, KC1, KC3, MC2, MW1, 

PC1, PC2, and PC4, using the Naive Bayes classifier model. 

The AuC values obtained are presented in Table 5. Some 

instance reduction models used for these analyses are 

SMOTE, resampling, and Fisher Linear Discriminant 

Analysis (FLDA) [26]. The models with higher AuC values 

for each dataset are highlighted in bold. 

Table 5. Performance comparison of HDP model using naïve bayes 

classifier 

Datasets SMOTE Resample FLDA 
Proposed 

HDP 

KC1 0.84 0.78 0.85 0.862 

KC3 0.82 0.85 0.87 0.881 

MC2 0.72 0.74 0.73 0.781 

MW1 0.78 0.78 0.89 0.878 

PC1 0.68 0.67 0.91 0.721 

PC2 0.79 0.86 0.91 0.882 

PC4 0.86 0.88 0.83 0.896 

From the analysis, the proposed model offers better 

results for four out of seven datasets (KC1, KC3, MC2, PC4) 

than other existing models in the field of research. However, 

the model offers better results for the MW1 dataset, but the 

average performance for dataset PC2 with the minority class 

has minimal instances. For ease of comprehension, Figure 12 

displays the results in Table 5 as a bar chart. 

 
Fig. 12 Performance comparison of proposed HDP with existing model 

As with the HFD, the proposed VFD model was also 

analyzed with five software fault datasets, namely CM1, KC3, 

MC1, MC2, and MW1, using the Random Forest classifier. 

The obtained AuC values for different datasets are compared 

with different feature selection algorithms, such as chi-square, 

information gain, Pearson correlation, and hybrid feature 

selection [24], and the values are listed in Table 6. Models 

with higher AuC values for each dataset are highlighted in 

bold. 

Table 6. Performance comparison of VDP model using random forest 

classifier 

Datasets CM1 KC3 MC1 MC2 MW1 PC1 

Chi-Squared 0.709 0.713 0.904 0.78 0.742 0.882 

Information Gain 0.711 0.679 0.904 0.78 0.704 0.882 

Pearson Correlation 0.719 0.695 0.98 0.738 0.704 0.882 

Hybrid Feature  

Selection 
0.726 0.725 0.907 0.779 0.73 0.88 

Proposed VDP 0.804 0.756 0.973 0.818 0.776 0.912 

From the analysis, the proposed model offers better 

results for five out of six datasets, including CM1, KC3, MC2, 

MW1, and PC1, than the other existing models under 

comparison. It acquired the first position in five trials. 

Although the model seems to have a second position with an 

AuC value of 0.973 for dataset MC1, the difference between 

the first and second positions was minimal. Thus, the model 

offers better AuC values for most of the datasets. The values 

presented in Table 6 are presented as a line graph in Figure 13 

for easy understanding. 
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Fig. 13 Performance comparison of proposed VDP with existing models 

5.2. Comparison with State-of-the-Art Models 
To evaluate the performance of the overall model, both 

HDP and VDP were applied for dimension selections, and the 

pre-processed dataset was then evaluated using the Naive 

Bayes and C4.5 classifiers. The model has been experimented 

with 12 datasets, and the outcomes are examined in relation to 

those of other existing models that apply feature selection and, 

for instance, selection with the aim of improving the input data 

quality in the software fault detection field.  

The existing algorithms used for the comparison are 

Rough-KNN Noise-Filter Easy Ensemble (RKEE) [12], 

Information Gain with Threshold-based Clustering (TC+IR) 

[18], noise filtering and imbalance distribution removal 

(NFIR) [19], information gain+ symmetric uncertainty+ 

random under-sampling (ISR) [11], Chi-Square+Symmetric 

uncertainty+ Random under-sampling (CSR) [11], learnable 

three-line hybrid feature fusion (LTHFFA) [44],  and SHapley 

Additive exPlanations (SHAP) and local interpretable model-

agnostic explanations (LIME) techniques [45].  

Table 7 displays the AuC metric values for the proposed 

and the existing models. The' None' model shows that no 

preprocessing was applied to the datasets. 

Table 7. Performance comparison of proposed model with existing models 

Various Models 
Different Datasets 

CM1 MC2 MW1 KC1 KC3 PC1 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0 

N
a

ïv
e 

B
a

y
es

 

None 0.748 0.71 0.741 0.718 0.808 0.756 0.772 0.84 0.869 0.796 0.746 0.762 

RKEE 0.776 0.688 0.809 0.809 0.784 0.809 0.803 0.839 0.954 0.823 0.766 0.780 

TC+IR 0.777 0.648 0.781 - 0.823 0.785 - 0.81 0.847 0.799 0.773 0.784 

NFIR - - - 0.635 0.669 0.552 0.668 - - - - - 

ISR 0.767 0.685 0.778 0.81 0.786 0.767 0.809 0.841 0.951 0.83 0.766 0.78 

CSR 0.730 0.662 0.771 0.787 0.805 0.712 0.803 0.839 0.932 0.825 0.761 0.781 

Proposed 0.793 0.726 0.821 0.871 0.843 0.812 0.791 0.887 0.943 0.843 0.779 0.774 

C
4

.5
 

None 0.506 0.562 0.493 0.536 0.605 0.650 0.589 0.752 0.472 0.664 0.586 0.637 

RKEE 0.674 0.589 0.652 0.715 0.765 0.8 0.741 0.889 0.936 0.786 0.745 0.755 

TC+IR 0.677 0.604 0.687 - 0.733 0.775 0.742 0.879 - 0.784 0.762 0.749 

Proposed 0.682 0.623 0.729 0.731 0.798 0.764 0.793 0.864 0.921 0.808 0.781 0.783 

R
F

 

NULL 0.583 0.579 0.518 0.546 0.583 0.606 0.633 0.692 0.672 0.604 0.604 0.693 

KPCA 0.597 0.585 0.645 0.620 0.565 0.647 0.664 0.641 0.618 0.628 0.592 0.538 

LLE 0.562 0.635 0.623 0.608 0.537 0.659 0.644 0.658 0.681 0.690 0.648 0.571 

BAVSSA 0.559 0.638 0.707 0.650 0.674 0.665 0.704 0.623 0.679 0.616 0.678 0.565 

SLLE 0.601 0.636 0.543 0.589 0.547 0.597 0.659 0.648 0.666 0.633 0.569 0.624 

Kt-SNE 0.536 0.513 0.579 0.551 0.549 0.545 0.538 0.582 0.616 0.586 0.567 0.555 

KS-LLE 0.531 0.623 0.592 0.641 0.507 0.511 0.518 0.630 0.658 0.593 0.531 0.545 

KSC 0.527 0.640 0.507 0.610 0.527 0.555 0.520 0.694 0.687 0.673 0.642 0.619 

LKB 0.654 0.683 0.708 0.710 0.602 0.670 0.667 0.687 0.712 0.672 0.678 0.644 

LTHFFA 0.674 0.705 0.665 0.717 0.685 0.680 0.694 0.724 0.744 0.673 0.601 0.615 

LIME &SHAP 0.680 0.706 0.721 0.560 0.710 0.670 0.680 0.692 0.672 0.604 0.604 0.693 

Proposed 0.676 0.723 0.719 0.689 0.728 0.696 0.709 0.712 0.719 0.692 0.688 0.715 
 

The other methods such as Kernel Principal Component 

Analysis (KPCA), Locally Linear Embedding (LLE), Binary 

Adaptive Variable Sparrow Search Algorithm (BAVSSA), 

Sparse Local Linear Embedding (SLLE), KPCA and t-

Random Neighborhood Embedding (Kt-SNE), Enhanced 

Stream Shape Learning Method (KS-LLE), KPCA+SLLE 

with Correlation Analysis (KSC), Learnable Weight +Kernel 

Features selected by BAVSSA (LKB) are obtained from Tang 

et al. (2024). The 'None' model indicates no pre-processing is 

applied to the datasets. The results revealed that all existing 

models performed well in classifying fault-prone software 

modules. The proposed model outperforms the Naive Bayes 
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classifier in nine of 12 datasets. In comparison, the C4.5 

classifier and RF classifier outperform it in nine and seven out 

of 12 datasets, with an increase in AuC values. 

From the values presented in Table 7, when compared 

with datasets without preprocessing, all the existing models 

provide good results in classifying the fault-prone software 

modules. However, the proposed model won nine out of 12 

datasets with the Naive Bayes classifier. Its losses for three 

datasets: PC3, PC5, and Eclipse 3.0. Thus, the average rate of 

the results for the existing models, such as RKEE, TC+IR, 

NFIR, ISR, CSR, and the proposed model is 80.3%, 78.3%, 

63.1%, 79.8%, 78.4%, and 82.4%, respectively, with the 

Naive Bayes classifier. Similarly, with the C4.5 classifier, the 

proposed model wins for 9 datasets out of 12 datasets.  

The average rates of the results for the RKEE, TC+IR, 

and proposed models were 75.4%, 73.9%, and 77.3%, 

respectively, with a C4.5 classifier. Thus, the increase in AuC 

values with respect to the other classifiers ranged from 2.6% 

to 5.2%. With extensive experimental and result analysis, it 

can be seen that the proposed horizontal and vertical 

dimension selection model offers the best results in many of 

the experiments compared to most of the existing models. 

However, there are some limitations to the proposed model. 

The model provided average results with the lowest number 

of instances in the minority classes, specifically when the 

defect samples in the dataset were below 5%. In addition, the 

model requires more time to select the features using a leave-

one-out cross-validated error rate, particularly when there are 

significantly more features than instances in the datasets. 

6. Discussion 
The findings of this study show that the suggested VDP 

and HDP approaches provide notable performance gains over 

the existing approaches. The reason for this improvement is 

that the model was able to fill a significant research gap that 

has been mostly ignored in the literature. Most previous 

studies have addressed feature selection or class imbalance 

separately, but very few have offered a comprehensive 

framework that addresses both issues simultaneously. 

Many strategies have been developed in the field of 

software fault prediction to address class imbalances. Some of 

these strategies include resampling techniques (SMOTE, 

resampling), whereas others have concentrated on feature 

selection techniques such as chi-square tests or Information 

Gain. The intricate interactions between these two critical data 

quality issues are typically overlooked by these solutions, 

which frequently concentrate on just one aspect of the issue: 

either correcting imbalance or improving features. This 

research gap is caused by the absence of a single framework 

that deals with both issues simultaneously. The suggested 

HDP and VDP techniques simultaneously address feature 

redundancy and class imbalance, bridging this gap. Unlike 

earlier research, this study provides a more comprehensive 

solution to these data quality problems by integrating HDP 

and VDP, offering a novel approach that simultaneously 

addresses feature redundancy and class imbalance. This 

work's unique combination of HDP and VDP offers a cohesive 

solution that simultaneously enhances feature quality and 

class balance. In contrast, previous approaches have proven 

useful in resolving either class imbalance or feature selection 

separately. 

The existence of noise in the data and the irrelevant nature 

of some features, which significantly influence prediction 

accuracy, further complicate matters. These problems have 

been addressed independently or insufficiently in many 

current models, which can produce less consistent and 

dependable outcomes. Through a comprehensive approach to 

data preprocessing that addresses both vertical (feature-level) 

and horizontal (instance-level) dimensions in a coherent 

manner, the model balances the data and enhances the feature 

set, which in turn improves classification performance and 

stability. Earlier strategies, including conventional resampling 

and feature selection techniques, concentrated on discrete 

problems in the pipeline for data preprocessing. To improve 

prediction accuracy and stability across various datasets, this 

technique is innovative in simultaneously addressing feature 

redundancy and class imbalance. 

Through efficient instance reduction, the HDP technique 

improves the class balance by guaranteeing that the most 

pertinent instances are retained even in unbalanced datasets. 

This contrasts current techniques, such as SMOTE and 

resampling, which occasionally create synthetic instances or 

eliminate valuable minority class instances, impairing model 

performance and causing noise. Without adding unnecessary 

bias, this approach guarantees that the data distribution 

remains representative of real-world situations. 

Similarly, the VDP technique enhances feature selection 

by considering feature dependencies and their impact on the 

model performance. Instead of choosing features based on 

their worth, as with traditional feature selection approaches, 

this approach considers classifier input to select features that 

help the model perform better. This is where VDP shines, 

compared to more conventional approaches, such as Pearson 

Correlation or Information Gain, which are not particularly 

good at capturing these interactions. Using HDP and VDP 

together creates a stronger and more transferable model, 

particularly when working with complicated and noisy data. 

Better overall performance was achieved by methodically 

handling class imbalance and feature redundancy using this 

integrated strategy. This is supported by improved accuracy, 

recall, precision, and AUC metrics across many datasets. 

In addition to overcoming the limitations of the existing 

techniques, the combined HDP and VDP approach offers a 

flexible solution for managing feature redundancy and class 

imbalance in complex datasets. This method distinguishes 
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itself from previous state-of-the-art models by effectively 

handling moderate to severe class imbalances and noisy data. 

Moreover, the proposed model differentiates itself from 

current methods, such as RKEE, NFIR, and LTHFFA, by 

addressing class imbalance and feature selection 

simultaneously within a single data preprocessing framework. 

There is a notable gap in software failure prediction research 

owing to the absence of an integrated preprocessing 

methodology that handles both class imbalance and feature 

selection. Although current methodologies have provided 

valuable solutions to one part of the problem, these issues 

frequently coexist and influence one another in real-world 

applications. Closing this gap is essential to finding a 

workable solution. 

Because no prior work has offered an integrated approach 

addressing class imbalance and feature selection within a 

single framework, the comparison with established methods 

such as RKEE, NFIR, and LTHFFA emphasizes the 

originality of the suggested methodology. Therefore, the 

proposed model provides a more workable answer for 

software failure prediction in the real world. 

It was also shown that earlier models were inaccurate and 

that software fault prediction models can be made more 

accurate, stable, and robust by considering both the vertical 

and horizontal aspects of data preprocessing. The proposed 

model outperformed state-of-the-art methods in various 

performance parameters according to the testing. This is 

particularly true in datasets with noisy attributes and 

moderate-to-severe class imbalance. 

7. Conclusion  
This study presents a preprocessing model that optimizes 

horizontal and vertical dimension selection, specifically for 

software detection datasets employed in fault prediction. The 

proposed model has two main phases. The first phase is the 

HDP handling data imbalance by processing the instances 

using SMOTE for oversampling and random under-sampling, 

as well as the edited k-nearest neighbour rule for noise 

removal. In the second phase, VDP selects significant 

attributes using quadratic discriminant analysis. The 

performance of the proposed preprocessing approach was 

assessed experimentally using a variety of datasets and 

metrics. The obtained results demonstrate the effective 

performance of the anticipated model, with a mean accuracy 

of 87.26% and 87.74% for the HDP and VDP models, 

respectively. The average rates of error with RMSE and MAE 

for HDP were 26.61% and 14.14%, respectively, and those of 

VDP were 23.39% and 13.34%, respectively. The 

comparative study ensures that the model achieves robust 

performance in predicting faults in the software module with 

an increase in the rate of AuC values from 2.6% to 5.2%. 

Although the model offers better results for most experiments, 

the results are insufficient when the number of instances in the 

minority class is minimal. Thus, future work will focus on 

offering a better solution with 100% accuracy and 

implementing the model in a real-time environment for further 

analysis. In addition, future research could explore integrating 

HDP and VDP with other advanced methods, such as deep 

learning models, to further enhance the prediction accuracy. 

Further investigation into how data imbalance impacts the 

performance of HDP and VDP could provide valuable insights 

into the scalability of these techniques. 
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