
International Journal of Engineering Trends and Technology                                     Volume 73 Issue 6, 336-349, June 2025 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I6P128                                          © 2025 Seventh Sense Research Group®   
       

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Scheduling Optimization and Risk Analysis Using Monte 

Carlo Simulation for a Construction Project in Morocco 

Hicham Hassi1, Mouna El Mkhalet2, Nouzha Lamdouar3 

1,2,3Civil Engineering and Construction Structure GCC laboratory, Mohammadia School of Engineers,  

Mohammed V University, Rabat, Morocco. 

1Corresponding Author : hhassi2020@gmail.com 

Received: 15 March 2025    Revised:  12 May 2025               Accepted: 05 June 2025            Published:  28 June 2025

Abstract - This study focuses on integrating Monte Carlo simulation into construction project management to optimize scheduling 

and analyze risks under uncertainty. By comparing three probability distributions-Triangular, Betapert, and Uniform, the 

research evaluates their impact on critical and near-critical paths, project completion timelines, and decision-making reliability. 

The simulations reveal how varying levels of uncertainty influence task durations and criticality, providing insights into resource 

allocation, risk mitigation, and timeline optimization. The findings emphasize the importance of selecting an appropriate 

distribution type to balance predictability and flexibility in construction projects. 
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1. Introduction 
Construction project management in Morocco faces 

unique challenges due to the country's rapidly evolving 

infrastructure development, regulatory environment, and 

economic conditions. The optimization of scheduling and 

comprehensive risk analysis is particularly critical in this 

context, as construction projects in Morocco often encounter 

significant uncertainties related to resource availability, 

regulatory compliance, and environmental factors specific to 

North African conditions.  

Despite the growing construction sector in Morocco, a 

significant research gap exists in applying advanced 

simulation techniques to local construction projects. While 

Monte Carlo simulation has been extensively utilized in 

construction management globally, its application to 

Moroccan construction projects remains limited, particularly 

in addressing the specific uncertainties and constraints 

characteristic of the local industry. This research addresses 

this gap by implementing Monte Carlo simulation for 

scheduling optimization and risk analysis in a real 

construction project in Morocco, providing valuable insights 

for practitioners and researchers in the regional context.  

The novelty of this research lies in its integration of three 

distinct probability distributions-Triangular, Betapert, and 

Uniform-to evaluate their comparative impact on critical path 

analysis, project completion timelines, and decision-making 

reliability within the specific context of Moroccan 

construction projects. This approach differs from existing 

methodologies by incorporating local industry parameters and 

constraints, resulting in more contextually relevant risk 

assessments and scheduling optimizations. 

The primary objectives of this study are to: 

• Evaluate the effectiveness of Monte Carlo simulation in 

optimizing scheduling for construction projects in 

Morocco 

• Compare the impact of different probability distributions 

on risk analysis outcomes 

• Identify critical and near-critical paths under varying 

levels of uncertainty 

• Develop practical recommendations for resource 

allocation and risk mitigation strategies tailored to the 

Moroccan construction industry. 

This research contributes to the body of knowledge by 

demonstrating how varying levels of uncertainty influence 

task durations and criticality in the specific context of 

Moroccan construction projects, providing valuable insights 

for resource allocation, risk mitigation, and timeline 

optimization in similar environments. 

2. Literature review 
2.1. Scheduling Optimization in Construction Projects 

Construction project scheduling optimization has evolved 

significantly in recent years, with researchers exploring 

various methodologies to enhance efficiency and resource 

utilization. Lazari et al. (2024) demonstrated the effectiveness 
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of multi-objective resource-constrained scheduling using 

Genetic Algorithms, which balances resource allocation and 

cost considerations, particularly for large and repetitive 

construction projects [1]. Similarly, Toğan and Eirgash (2018) 

explored the Time-Cost Trade-off Problem (TCTP), utilizing 

Teaching Learning Based Optimization (TLBO) to balance 

time and cost factors in construction project planning [2]. 

Expanding on this, Salama and Moselhi (2019) incorporated 

multi-objective optimization frameworks that integrate time, 

cost, and quality considerations, offering a more 

comprehensive decision-making approach [3]. 

Work package-based information modeling has emerged 

as an effective approach for addressing resource constraints in 

construction scheduling. Wang et al. (2020) highlighted how 

this methodology enhances resource visualization and 

management, which is crucial for optimizing complex 

schedules in construction projects [4]. Complementing this 

approach, Dabirian et al. (2019) focused on the dynamic 

modeling of human resource allocation, enabling adaptive 

planning strategies that respond to evolving project needs and 

ensure optimal resource utilization [5]. Further advancements 

in this area include the integration of predictive analytics and 

machine learning to enhance resource allocation and 

scheduling decisions in dynamic environments (Del Gallo et 

al., 2023) [6]. 

Technological advancements have further transformed 

scheduling optimization. Abd Elaziz et al. (2021) investigated 

how the Internet of Things (IoT) and cloud-fog computing 

environments can improve task scheduling by integrating 

transportation and service selection considerations [7]. This 

integration has facilitated real-time monitoring and decision-

making, enabling more efficient and adaptive scheduling 

processes.  

The application of artificial intelligence (AI) in project 

scheduling has gained significant traction, as noted by 

Bahroun et al. (2023), who demonstrated how AI offers 

innovative solutions to complex planning problems by 

analyzing large datasets to identify patterns that enhance 

planning decisions [8]. Reinforcement learning and neural 

networks have also been used to optimize schedules in 

dynamic and uncertain conditions, providing project managers 

with actionable insights and improved decision-making 

capabilities [9].  

Schedule compression strategies represent another 

important dimension of optimization. Tomczak and Jaśkowski 

(2020) examined resource relocation as an effective approach 

to meet demands for rapid project delivery [10]. Pan and 

Zhang (2021) emphasized the importance of integrated 

approaches that combine advanced optimization techniques, 

dynamic modeling, and AI applications for effective project 

scheduling in construction [11]. Additionally, Milat et al. 

(2021) highlighted the importance of dynamic scheduling, 

which emphasizes flexibility to adapt to changes in project 

scope, resource availability, and unforeseen conditions, thus 

ensuring project stability and performance [12]. 

2.2. Risk Analysis in Construction Management 
Risk analysis methodologies in construction have seen 

significant advancement, particularly in addressing 

uncertainties inherent in project planning. Koulinas et al. 

(2020) explored Monte Carlo simulation for risk management, 

highlighting how this technique uses statistical distributions to 

model risks and predict outcomes by running simulations with 

random values [13]. Their research emphasized the 

importance of expert judgment when data is limited and how 

distribution selection is influenced by managers' experience. 

Deng and Jian (2021) further demonstrated the superiority of 

Beta-PERT distributions in modeling project durations, as 

they incorporate expert judgment and provide a more realistic 

representation of uncertainty compared to Triangular or 

Uniform distributions [14]. 

Dynamic risk assessment models have gained 

prominence for their ability to continuously evaluate risks in 

real time. Ashtari et al. (2022) demonstrated how these models 

consider interdependencies between factors to enhance 

resilience and adaptability in construction project 

management while addressing dynamic and uncertain 

conditions [15]. Recent advancements include integrating AI-

driven predictive models to identify emerging risks and 

recommend mitigation strategies, enabling project managers 

to proactively address potential delays and cost overruns 

(Chen et al., 2023) [16]. 

The incorporation of risk contingencies is vital for 

enhancing project reliability. Tokdemir et al. (2019) explored 

how established contingencies for time and cost serve as 

essential buffers against uncertainties, thereby improving 

project reliability by addressing variability in labour-hour 

requirements and activity durations through probabilistic 

approaches, including Monte Carlo simulation [17]. 

Quantitative risk assessment has evolved with the 

development of probabilistic risk indicators. Acebes et al. 

(2020) introduced metrics like Schedule Risk Value (SRV) 

that offer quantitative measures for comparing risk levels 

across project schedules by quantifying total uncertainty 

throughout the project lifecycle, aiding in identifying 

activities with the highest risk contribution [18].  

Bayesian risk models represent another significant 

advancement in risk analysis. Namazian et al. (2019) 

demonstrated how Bayesian networks can dynamically assess 

risks by integrating probabilities, impacts, and interactions of 

factors, supporting informed decision-making and visualizing 

their cumulative effects on project outcomes [19]. 

Additionally, Monte Carlo Simulation has emerged as a 

valuable tool for improving risk assessment in construction 

projects. Larionov et al. (2021) emphasize its capability to 
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evaluate uncertainties by modeling diverse risk scenarios, 

enabling stakeholders to better understand potential 

environmental impacts and make informed decisions to 

mitigate risks effectively [20]. 

2.3. Monte Carlo Simulation in Construction Projects 
Monte Carlo methods have emerged as powerful tools for 

addressing uncertainties in various scientific and engineering 

fields. Zhang (2020) highlighted how modern Monte Carlo 

simulations, including multilevel and multi-fidelity 

approaches, improve the efficiency and accuracy of 

uncertainty quantification, allowing for better-informed 

decisions in complex systems [21]. These techniques have 

proven particularly valuable in contexts where traditional 

deterministic methods fail to adequately account for potential 

uncertainties and outcomes. 

The application of Monte Carlo simulation to 

construction projects has proven to be highly effective in 

managing risks and uncertainties. Sobieraj and Metelski 

(2022) utilized the Monte Carlo simulation alongside the 

Time-at-Risk (TaR) approach to analyse the Fort Bema 

housing estate project in Warsaw, Poland. Their research 

highlighted how this combined methodology can account for 

various factors influencing project timelines, including 

scheduling complexities and interdependencies between 

project phases [22]. The study revealed that using Monte Carlo 

simulation improved the accuracy of schedule predictions, 

allowing project managers to anticipate potential delays and 

enhance overall project reliability.  

Comparative studies of probability distributions in Monte 

Carlo simulation have revealed important differences in their 

applicability. Deng and Jian (2021) highlighted that the 

analysis of Triangular, beta-PERT, and Uniform distributions 

indicates that they offer a more realistic representation of 

uncertainty in project durations due to their flexibility and 

incorporation of expert judgment. While simple and valuable 

for quick assessments, Triangular distributions may introduce 

bias due to their linear probability assumption, making them 

less accurate in certain scenarios. In contrast, Uniform 

distributions provide an equal likelihood for outcomes but 

cannot model variability effectively, resulting in reduced 

reliability for risk assessment [14]. 

2.4. Research Gap 
Despite extensive research on schedule delays in 

construction projects worldwide, the Moroccan construction 

sector remains underexplored in terms of tailored risk analysis 

and scheduling optimization techniques. Bajjou and Chafi 

(2018) highlighted that nearly 60% of Moroccan construction 

projects experience delays due to late progress payments, 

unrealistic contract durations, and workforce training gaps. 

These challenges are compounded by reliance on traditional 

deterministic methods, which fail to account for uncertainties 

inherent in local industry practices adequately. Furthermore, 

while Monte Carlo simulation has been widely applied in 

global construction projects, there is a lack of empirical 

evidence demonstrating its effectiveness in Morocco's 

construction sector. 

This research addresses these gaps by:  

• Applying Monte Carlo simulation to a real construction 

project in Morocco, considering local industry parameters 

and constraints. 

• Comparing the performance of three probability 

distributions (Triangular, Betapert, and Uniform) in this 

specific context. 

• Developing tailored recommendations for scheduling 

optimization and risk management in Moroccan 

construction projects. 

• Providing empirical evidence on the effectiveness of 

Monte Carlo simulation in enhancing project planning 

reliability in the regional context. 

By addressing these gaps, this study contributes to the 

theoretical understanding of risk analysis and offers practical 

tools for Moroccan stakeholders-contractors, clients, and 

regulators-to improve project outcomes. Additionally, the 

findings can be adapted to similar contexts in other developing 

economies within the MENA region, enhancing their 

relevance and impact. 

3. Methodology 
3.1. Monte Carlo Simulation Implementation 

The Monte Carlo simulation was implemented using 

Microsoft Excel to enhance computational efficiency and 

accuracy. The simulation involved 1,000 iterations for each 

probability distribution type to ensure statistical significance 

and provide robust results. The choice of 1,000 iterations was 

based on prior studies, demonstrating that this number 

minimizes outcome variability while maintaining 

computational feasibility. 

3.2. Probability Distributions 
Three probability distributions were applied to model 

uncertainty in activity durations, selected based on historical 

data, expert judgment, and the nature of each activity: 

• Triangular Distribution: Defined by minimum, most 

likely, and maximum values. This distribution was 

selected for activities where expert judgment provided 

clear boundaries, but limited historical data was available. 

• Betapert Distribution: A variation of the Beta distribution 

defined by minimum, most likely, and maximum values, 

but with greater weight given to the most likely value. 

This distribution was chosen for activities with more 

reliable historical data and where extreme values were 

considered less probable. 

• Uniform Distribution: Defined by minimum and 

maximum values with equal probability across the range. 
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This distribution was applied to highly uncertain 

activities and a limited basis for determining the most 

likely value. 

3.3. Simulation Parameters and Assumptions 
To ensure the simulation accurately reflected Moroccan 

construction conditions, the following parameters and 

assumptions were established: following parameters and 

assumptions were established for the Monte Carlo simulation: 

• Activity Duration Ranges: High certainty (±10% of the 

baseline duration), Medium certainty (±20% of the 

baseline duration) and Low certainty (±30% of the 

baseline duration). These ranges were validated using 

historical data from five completed Moroccan 

construction projects. 

• Correlation Factors: 0.3 applied between similar activities 

sharing common risks (e.g., similar labour requirements). 

0.4 applied to activities dependent on shared resources 

(e.g., equipment availability) and 0.5 to weather-

dependent activities, reflecting Morocco's seasonal 

weather variability. 

• Calendar Considerations: The simulation incorporated 

the Moroccan working calendar and typical working 

hours in the local construction industry (8:00 AM–5:00 

PM) 

• National holidays and Ramadan were excluded to reflect 

realistic working conditions. 

3.4. Model Validation and Calibration 
The simulation model was validated and calibrated 

through a rigorous process to enhance its reliability and 

applicability:  

• Historical Data Validation: The model parameters were 

compared with historical data from five similar 

completed projects in Morocco, adjusting distribution 

parameters to align with observed variations in actual 

project execution. 

• Expert Review: A panel of five construction management 

experts with extensive experience in Moroccan projects 

reviewed the model assumptions and parameters, 

providing feedback incorporated into the final model. 

• Sensitivity Analysis: Key parameters were varied by 

±10% to assess their impact on simulation outcomes, 

identifying the most influential factors for focused 

attention. 

• Calibration Process: The model was calibrated by 

comparing initial simulation results with actual progress 

data from the project's first three months, adjusting 

distribution parameters to improve alignment between 

predicted and actual performance. 

This validation and calibration process ensured that the 

simulation model accurately reflected the specific conditions 

and uncertainties of construction projects in the Moroccan 

context, enhancing the reliability and applicability of the 

results. 

4. Case-study 
4.1. Model Validation and Calibration 

This study examines a mixed-use development project in 

Casablanca, Morocco, representing the region's medium to 

large-scale urban construction. The building features a single 

level with a total area of 15,000 square meters. It is designed 

to encompass all work types-structural, secondary, technical, 

architectural, and finishing-within one comprehensive 

operation. The project was chosen for its complexity, 

alignment with local and international standards, and the 

availability of historical data for comparative analysis. The 

construction schedule consists of 21 main tasks, grouped into 

seven major phases: site preparation, foundation work, 

structural framework, exterior envelope, interior systems, 

finishing works, and site completion. The workflow is 

designed with a systematic and sequential approach, where 

each task is dependent on the completion of the previous one, 

ensuring logical progression, structural integrity, and efficient 

resource allocation. 

 
Fig. 1 Superstructure elevation 

 
Fig. 2 Superstructure slab ground floor 
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Fig. 3 Partitions activities 

 
Fig. 4 Suspended ceiling 

 
Fig. 5 HVAC - networks 

 
Fig. 6 High current/low current – networks 

4.2. Optimizing Construction Workflow: A Sequential 

Approach to Building Efficiency and Quality (Soft Logic) 
The sequencing of construction activities is carefully 

designed to ensure efficiency, structural integrity, and logical 

progress through various project phases. Each task is 

interrelated with its predecessors and successors, carefully 

considering dependencies to minimize delays and optimize 

resource allocation. 

The process begins with the General Contractor 

Notification, which marks the project's initiation and enables 

the simultaneous mobilization of resources through the New 

General Contractor Mobilization phase. This overlap 

ensures that preparatory activities commence promptly, 

saving valuable time. 

Following mobilization, Groundwork starts, which sets 

the stage for subsequent construction by preparing the site. 

The completion of Groundwork allows for the initiation of 

Infrastructure, laying the foundations for structural stability. 

The Superstructure follows, requiring a fully completed 

infrastructure to support the weight and design of the vertical 

elements. 

Once the Superstructure is complete, interior works like 

Partitions and Technical Rooms commence. The partitions 

outline the internal spaces, while technical rooms are set up 

concurrently to expedite the installation of utilities. High 

Current/Low Current Networks, Plumbing, and HVAC 

Networks are installed at this stage, depending on the defined 

room layout for precise positioning of wiring, piping, and 

ducts. With the basic networks in place, the Suspended 

Ceiling is installed, ensuring access to overhead utilities 

without interference. This is followed by the application of 

Coatings, which provide a finished look to the walls and 

ceilings, readying them for aesthetic enhancements. 
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The installation of Wood and Aluminum Carpentry 

follows, seamlessly integrating fixed furniture and aluminium 

features with finished walls and ceilings. Primer and a Second 

Coat are applied next, protecting surfaces and preparing them 

for final touches while maintaining prior installations. Facades 

are finalised as the project nears completion, defining the 

building’s external appearance. High/Low Current Terminals, 

Plumbing, and HVAC Terminals are installed as the last 

technical elements, integrated into the completed carpentry 

and Infrastructure. Finally, the Topcoat is applied to perfect 

the surfaces after all installations, preserving the finished 

aesthetic. The project concludes with the Milestone Finish, 

marking the completion of structural and aesthetic work. This 

logical workflow ensures that each phase builds on the 

previous, enabling a seamless construction process. 

 

 

 

 

 

 

 

 

 

 

Fig.7 Network diagram for the project of 21 activities 

Table 1. Three-point estimate and sequencing for each activity 

ID Activity Name Predecessors O ML P 

1 

General 

Contractor 

Notification 

 0 0 0 

2 

New General 

Contractor 

Mobilization 

1: SS 25 31 36 

4 Groundwork 2: FS 22 28 32 

5 Infrastructure 4: FS 25 31 36 

6 Superstructure 5: FS 60 75 86 

14 Partitions 6: FS, 2: FS 36 45 52 

7 Technical rooms 14: SS, 6: FS 25 31 36 

8 

High 

Current/Low 

Current - 

Networks 

7: FS, 14: FS 56 70 81 

9 
Plumbing - 

Networks 
7: FS, 14: FS 36 45 52 

10 
HVAC - 

Networks 
7: FS, 14: FS 60 75 86 

15 
Suspended 

Ceiling 

10: FS, 8: FS, 

9: FS 
48 60 69 

16 Coatings 15: FS 48 60 69 

17 Wood Carpentry 16: FS 28 35 40 

18 
Aluminum 

Carpentry 
16: FS 32 40 46 

19 
Primer and 

second coat 
16: FS 60 75 86 

20 Facades 18: FS 24 30 35 

11 

High 

Current/Low 

Current- 

Terminals 

17: FS, 18: FS 36 45 52 

12 
Plumbing - 

Terminals 
17: FS, 18: FS 32 40 46 

13 
HVAC - 

Terminals 
17: FS, 18: FS 24 30 35 

21 Topcoat 
13: FS, 11: FS, 

12: FS, 19: FS 
21 26 30 

3 
Milestone Finish 

project 
20: FF, 21: FF 0 0 0 

4.3. Critical and Near-Critical Paths in Project Management 

Simulations 

Project management often requires tracking the Critical 

Path, which represents the sequence of tasks that must be 

completed on time for the project to meet its deadline. 

However, it is also vital to monitor Near-Critical Paths-tasks 

that are close to being critical. Delays in these near-critical 

tasks can push them into the critical zone, impacting the 

project schedule. 

Monte Carlo simulations are useful for modeling 

uncertainty in project timelines and supporting identifying 

critical and near-critical paths by adjusting task durations, 

revealing how small delays can shift non-critical tasks into 

critical ones. 

Activity ID Activity Name Original Duration Gantt chart 

Construction Schedule LEVEL 2 516  

6 Superstructure 75  

  MEP (Technical Works) 275  

7 Technical rooms 31  

  AW (architectural works) 351  

14 Partitions 45  

Fig. 8 Critical path shifting 

For example, in a construction project, the building of 

Partitions as a critical task (TF=0) might be the first step, 

setting the stage for the installation of Technical Rooms. 

These tasks are concurrent and will start in parallel with the 

SS (Start to Start) connection. In the planning phase, 

Technical Rooms has a total float of 14 days, offering some 

scheduling flexibility but requiring close monitoring to avoid 

delays. However, in the Monte Carlo simulation, the 

optimistic duration for Partitions is 36 days, while the 

pessimistic duration for Technical Rooms is 36 days. This 

variability suggests that the criticality between these two tasks 

could pivot during the simulation. A delay in partitions could 
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shift its criticality, potentially impacting the start of technical 

rooms or vice versa, depending on the fluctuations in task 

durations. This dynamic highlights the importance of 

simulations in identifying potential risks and managing 

dependencies effectively while providing insights into areas 

where additional resources might be needed to mitigate 

delays.Similarly, tasks like electrical installations for High 

Current/Low Current Networks and HVAC Networks often 

run in parallel, and a delay in one can affect the other. These 

tasks share resources and space, so disruptions in one area 

might have a ripple effect, leading to inefficiencies and 

compounding delays. For instance, if the High Current 

Network installation is delayed, it could prevent HVAC 

installations from accessing shared spaces, creating further 

bottlenecks. Moreover, tasks like Wood Carpentry and 

Aluminum Carpentry are often scheduled concurrently to 

optimize progress. However, if the woodwork is delayed, it 

might push back the aluminium work, especially if both tasks 

rely on the same resources, such as skilled labour or 

workspace. Similarly, delays in plumbing terminals could 

delay HVAC terminal installations, creating a domino effect 

that impacts the project’s overall timeline and increases the 

risk of missing key milestones. These interdependencies 

underline the need for careful coordination, proactive 

planning, and efficient resource allocation to ensure smooth 

execution and minimize delays. 

 

 

 

Fig. 9 Critical path shifting zone between partitions and technical rooms 

Table 2. Activity table (duration and critical tasks)  

Activity ID Activity Name Original Duration Start Finish CP 

Construction Schedule Level 2 516 1/1/25 5/31/26  

Mobilisation & Milestones 516 1/1/25 5/31/26  

1 General Contractor Notification 0 1/1/25  🗸 

2 New General Contractor Mobilization 31 1/1/25 1/31/25 🗸 

3 Milestone Finish project 0  5/31/26 🗸 

SW (structural work) 459 2/1/25 6/14/25  

4 Groundwork 28 2/1/25 2/28/25 🗸 

5 Infrastructure 31 3/1/25 3/31/25 🗸 

6 Superstructure 75 4/1/25 6/14/25 🗸 

MEP (Technical Works) 275 7/30/25 5/5/26  

7 Technical rooms 31 6/15/25 7/15/25  

10 HVAC - Networks 75 7/30/25 10/12/25 🗸 

11 High Current/Low Current - Terminals 45 3/22/26 5/5/26 🗸 

8 High Current/Low Current - Networks 70 7/30/25 10/7/25  

12 Plumbing - Terminals 40 3/22/26 4/30/26  

9 Plumbing - Networks 45 7/30/25 9/12/25  

13 HVAC  - Terminals 30 3/22/26 4/20/26  

AW (architectural works) 351 6/15/25 5/31/26  

14 Partitions 45 6/15/25 7/29/25 🗸 

15 Suspended Ceiling 60 10/13/25 12/11/25 🗸 

16 Coatings 60 12/12/25 2/9/26 🗸 

17 Wood Carpentry 35 2/10/26 3/16/26  

18 Aluminum Carpentry 40 2/10/26 3/21/26 🗸 

19 Primer and second coat 75 2/10/26 4/25/26  

20 Facades 30 3/22/26 4/20/26  

21 Topcoat 26 5/6/26 5/31/26 🗸 

Partitions 

Technical Rooms 
25 

31 

36 

36 45 

52 

Shift 

zone 
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Considering that both the partitions and technical rooms 

tasks are started on day 1, by day 36, Partitions may have 

reached their optimistic duration. This would reduce the total 

float for the Technical Rooms task by 9 days. As a result, the 

remaining Total Float (TF) for Technical Rooms would be 

only 5 days, as shown in the purple line. Moreover, if the 

pessimistic duration for the Technical Rooms task were also 

set to 36 days in the simulation, this scenario could lead to a 

shift in the Critical Path. This would occur because all the 

available, total float for Technical Rooms would be used up, 

causing this task to potentially move into the critical zone and 

directly impacting the overall project timeline. 

In Monte Carlo simulations, Critical Paths are identified 

as the tasks whose delays would directly extend the project 

timeline. However, Near-Critical Paths require close 

attention, too, as even a minor delay can turn these into critical 

tasks. For instance, if Wood Carpentry is delayed, it might 

seem like a minor issue. However, if Plumbing Terminals 

depend on its completion, this delay could push the plumbing 

task into the Critical Path, resulting in project delays. 

The power of Monte Carlo simulations lies in their ability 

to model different durations and task dependencies, giving 

project managers insights into how delays in one task can 

impact the overall schedule. For example, a delay in Wood 

Carpentry might seem manageable at first, but if it delays the 

Plumbing Terminals installation, it could extend the entire 

project timeline. Monte Carlo simulations can predict such 

shifts, helping managers take proactive measures, such as 

adjusting resources or rescheduling tasks. Overall, Monte 

Carlo simulations offer valuable insights into both Critical and 

Near-Critical Paths. By tracking how tasks interact and how 

delays might affect other tasks, project managers can make 

more informed decisions, manage risks, and keep projects on 

track. 

4.4. Monte Carlo Application for Three Types of 

Distributions: Triangular, Betapert, and Uniform 

4.4.1. Impact of Probability Distributions on Concurrent 

Tasks: Partitions and Technical Rooms 

In this section, the study will focus on examining and 

assessing the impact of the type of distribution on the critical 

path and the timely completion of the project by comparing 

three distributions, Triangular, Bêtapert and Uniform, to 

define how the type of distribution could shift the near-critical 

path to the critical path into or during the Monte Carlo 

distribution.  

The figures above depict an example of our project with 

two concurrent tasks: Partitions and technical rooms. After 

1000 simulations for comparing the parallel task duration for 

Partitions as a critical task and technical rooms as a non-

critical task with a total float equal to 14 days using the three 

distributions, the results are found below: 

Triangular Distribution for Two Concurrent Tasks 

 
Fig. 10 Triangular distribution duration simulation 

Table 3. Interval duration for partitions and technical rooms after 1000 

iterations using triangular distribution 
 Partitions Technical rooms 

Max duration 51,22055515 35,71749558 

Min duration 36,97085424 25,18937525 

Iterations Number 1000 

 

 

 

 

 
 

Fig. 11 Triangular distribution for partitions and technical rooms 

The simulation shows that all the simulation value 

durations for the task Partitions are greater than the value 

durations for technical rooms, which means that the task 

technical rooms could not be as a critical path in the Monte 

Carlo simulation and will not be considered as a near-critical 

path for triangular distribution. 

Betapert Distribution for Two Concurrent Tasks 

 
Fig. 12 Betapert distribution duration simulation  
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Table 4. Interval duration for partitions and technical rooms after 1000 

iterations using betapert distribution 
 Partitions Technical rooms 

Max duration 51,75778329 35,93227685 

Min duration 36,5015693 25,42402024 

Iterations Number 1000 
 

 

 

 

 

Fig. 13 Betapert distribution for partitions and technical rooms 

The simulation shows the same result as a triangular 

distribution, which means that the task technical rooms could 

not be as a critical path in Monte Carlo simulation and will not 

be considered as a near-critical path for triangular distribution 

because the maximum duration of technical rooms activity 

stills less than minimum duration of partitions activity and no 

Intervale intersection. 

Uniform Distribution for Two Concurrent Tasks 

 
Fig. 14 Uniform distribution duration simulation  

Table 5. Interval duration for partitions and technical rooms after 1000 

iterations using uniform distribution 
 Partitions Technical rooms 

Max duration 52 36 

Min duration 36 25 

Iterations Number 1000 
 

 

 

 

 

 

Fig. 15 Uniform distribution for partitions and technical rooms 

This distribution does not use the three-point estimate; it 

uses just the minimum and maximum duration values using a 

discrete uniform distribution. 

The simulation shows that the variance value durations 

for the task Partitions and Technical rooms could be null, 

which means that the task technical rooms could be a critical 

path in Monte Carlo simulation, exceptionally for Uniform 

distribution and will be considered as a near-critical path for 

uniform distribution with a criticality percentage of 1%. 

 

Fig. 16 Criticality percentage for technical rooms and partitions tasks, 

based on uniform distribution after 1000 iterations 

The Result of Comparing the Triangular, Betapert, and 

Uniform Distributions for the Two Concurrent Tasks 

Table 6. Interval durations for different distributions (1,000 iterations) 

Activity 
Max 

Duration 

Value 

Duration 

(1000 

iterations) 

Distribution 

Type 
Criticality 

Partitions 51 37 Triangular 100% 

Technical 

Rooms 
36 25 Triangular 0% 

Partitions 52 37 Betapert 100% 

Technical 

Rooms 
36 25 Betapert 0% 

Partitions 52 36 Uniform 99% 

Technical 

Rooms 
36 25 Uniform 1% 

In comparing distribution types-Triangular, BetaPert, and 

Uniform-, we see varying behaviors in how activity durations 

and criticality are modeled, particularly in the context of 

partitions and technical rooms. The Triangular distribution is 

characterized by a shape that reflects a most likely value 

between a minimum and maximum range, and this results in 

partitions being classified as critical in all cases, with a 100% 

criticality.  
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Technical rooms, however, remain non-critical. This 

suggests that the Triangular distribution places partition firmly 

on the critical path, while technical rooms do not significantly 

influence the project timeline despite their varying durations. 

The Betapert distribution, which is similar but designed to 

capture skewed data and real-world uncertainties better, 

follows a comparable pattern. Partitions continue to show a 

100% criticality, while technical rooms maintain a 0% 

criticality.  

The Betapert distribution might produce more 

concentrated or skewed results depending on how the most 

likely duration is set. However, compared to the Triangular 

distribution, it does not alter the underlying criticality 

relationship between partitions and technical rooms. Uniform 

distribution, however, introduces a different dynamic. This 

distribution assumes equal probability across its entire range, 

meaning that every value between the minimum and 

maximum has an equal chance of occurring. As a result, 

partitions still show a high likelihood of being critical, though 

the probability drops slightly to 99% compared to the 100% 

criticality observed in the Triangular and Betapert 

distributions.  

The shift here is more noticeable with technical rooms, 

where the criticality is now 1%, indicating that in some rare 

cases, technical rooms might become critical in this scenario. 

This small probability suggests that, under the Uniform 

distribution, the allocation of technical rooms could, in rare 

instances, influence the project’s critical path, which was not 

the case with the Triangular or Betapert distributions. The key 

takeaway is that while partitions remain almost always critical 

across all distributions, the criticality of technical rooms is 

sensitive to the type of distribution used, with the Uniform 

distribution allowing for a small but non-zero chance of 

technical rooms becoming critical. 

The choice of distribution significantly impacts the 

criticality modelling in Monte Carlo simulations. The 

Triangular and Betapert distributions provide more 

predictable, stable results, with partitions consistently critical 

and technical rooms that do not affect the overall outcome. 

Uniform distribution, however, introduces greater variability, 

especially in technical rooms, where the possibility of them 

becoming critical, although small, is acknowledged. This 

demonstrates the influence of distribution assumptions in 

simulations and highlights the need to carefully choose the 

distribution type based on the nature of the project and the 

desired level of variability or uncertainty in the model. 

4.4.2. Generation of Curves by Monte Carlo Simulation for 

Triangular, Betapert, and Uniform Distributions 

The Monte Carlo simulation will be applied to a project 

consisting of 21 activities, with the planned start date set for 

January 1, 2025, and the expected finish date on May 31, 

2026, giving the project a total duration of 23 months. In this 

analysis, the primary goal is to compare the impact of three 

different types of probability distributions on the project's 

completion date. Specifically, the focus will be understanding 

how each distribution affects the likelihood of meeting the 

project’s deadline.  

The input data for the simulation includes estimates of the 

duration of three points for each activity. For every task, the 

most likely duration (based on current knowledge), the 

optimistic duration (best-case scenario), and the pessimistic 

duration (worst-case scenario) will be provided. These 

estimates will allow for a probabilistic analysis of the potential 

variation in task durations throughout the project. Along with 

the duration estimates, the critical path will be identified, 

which represents the sequence of dependent activities that 

determines the overall project duration.  

The near-critical path will also be considered; these 

activities are close to the critical path and could become 

critical if their duration increases. The simulation will 

consider the maximum potential duration difference between 

concurrent activities on these paths, ensuring that the 

simulation reflects the fundamental dynamics of project 

scheduling and helps provide a more reliable result. 

The Monte Carlo simulation will be set to run 1,000 

iterations in order to generate statistically meaningful results. 

During these iterations, the simulation will assess the impact 

of three different probability distributions on the project 

timeline. These distributions include the triangular 

distribution and the beta distribution, which are helpful when 

only three estimates (optimistic, most likely, and pessimistic) 

are available and applied when more detailed data or historical 

information is available for more accurate task duration 

estimation and the uniform distribution, which assumes that 

all durations between the optimistic and pessimistic estimates 

are equally likely.  

By applying these different distributions, the simulation 

will explore how each one influences the predicted completion 

date of the project, allowing for a comprehensive 

understanding of how variations in task durations can impact 

the overall project schedule.  

$The outcome of the Monte Carlo simulation will be 

presented in the form of probability distribution histogram and 

cumulative distribution function (CDF) curve, which will 

show the likelihood of completing the project by different 

dates. Key milestones will be highlighted, such as the 50th 

percentile, which represents the date by which there is a 50% 

chance of completing the project, and the 80th percentile, 

which indicates the date by which there is an 80% chance of 

completion. These graphical representations will provide 

valuable insights into the potential risks of the project’s 

timeline and help stakeholders understand the probability of 

meeting the planned finish date. 
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Fig. 17 Distribution curves and histograms for a triangular distribution 

Fig. 18 Distribution curves and histograms for a beta part distribution 

 
Fig. 19 Distribution curves and histograms for a uniform distribution 

result of comparing the triangular, betapert, and uniform distributions 

for the current project (21 tasks) 

Table 7. Interval and variance probabilities for three distributions 

Distribution 
Distribution 

Interval (day) 

P 

(50%) 

P 

(80%) 

Variance 

P(80%) & 

P(50%) 

Triangular 59 509 517 8 

Bêtapert 67 518 528 10 

Uniform 100 505 519 14 

 
Fig. 20 Curves and histograms for three distributions

After generating the distribution curves and histograms 

for three distributions - Uniform, Triangular, and Betapert - 

and comparing them on a single diagram, we observed the 

following key insights: 

• Uniform Distribution: The earliest probable project 

completion, according to the Uniform Distribution, starts 

at 483 days (April 1, 2026). The distribution spans the 

widest interval, from the earliest completion at 483 days 

to the latest completion at 556 days (July 10, 2026), 

covering a range of 100 days. Additionally, the variance 

between P(50%) and P(80%) is 14 days, meaning an extra 

14 days are required to increase the probabilistic 

confidence from 50% to 80%. The originally planned 

critical path duration is 516 days (May 31, 2026). To 

increase the confidence level by 30%, the project would 

need an additional 2.7% of the total planned duration, 
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which corresponds to 14% of the interval represented by 

the Uniform distribution. 

• Betapert Distribution: The Betapert distribution suggests 

that the latest probable completion starts at 456 days 

(April 28, 2026) but does not indicate the earliest 

probable completion date. This distribution spans an 

intermediate range between the Uniform and Triangular 

distributions, from 483 days to 550 days (July 4, 2026), 

covering 67 days. To match the Uniform distribution's 

finish date, an additional 6 days would be required. The 

variance between P(50%) and P(80%) in this distribution 

is 10 days, meaning an extra 10 days are needed to 

achieve a 30% increase in the confidence level. Initially 

planned at 516 days, the critical path would require an 

additional 1.9% of the total planned project duration to 

increase the confidence level by 30%. This corresponds 

to approximately 15% of the Betapert distribution 

interval. 

• Triangular Distribution: The Triangular distribution 

shows the second earliest completion date is 477 days 

(April 22, 2026). This distribution covers the smallest 

range between the three, from 477 days to 536 days (July 

20, 2026), spanning only 59 days - much narrower than 

the 100-day ranges of the Uniform and Betapert 

distributions. To match the Uniform distribution’s 

completion date, an additional 20 days would be required. 

The variance between P(50%) and P(80%) is 10 days, 

meaning 8 extra days are needed to increase the 

confidence level by 30%. The critical path duration of 516 

days (May 31, 2026) would need an additional 1.6% of 

the total project duration to meet the 30% increase in 

confidence, corresponding to 14% of the Triangular 

distribution interval. 

When comparing the three distributions for this project 

with identical input data, we observed the following:  

• Uniform Distribution has the largest interval, providing 

the minimum value in the histogram, but with the 

broadest range (100 days). 

• Betapert Distribution offers a moderate range, with an 

intermediate distribution between the Uniform and 

Triangular, requiring a 6-day adjustment to match the 

Uniform’s finish date. 

• Triangular Distribution shows the highest probability 

density, with the smallest interval (59 days), representing 

the lowest level of uncertainty. It also has the peak 

probability value, indicating a more concentrated project 

completion estimate. 

Table 8. Interval distributions 

Distribution 
Minimum 

duration 

Maximum 

duration 

Distribution 

Interval 

(day) 

Triangular 477 536 59 

Betapert 483 550 67 

Uniform 456 556 100 

In summary, each distribution provides valuable insights 

depending on the level of uncertainty and the desired 

confidence in project completion. 

5. Conclusion 
This study highlights the critical impact of variation in 

probability distributions on the outcomes of Monte Carlo 

simulations in project management, particularly for risk 

analysis and scheduling optimization. By comparing the 

Triangular, Betapert, and Uniform distributions, the findings 

demonstrate how the choice of distribution directly influences 

the criticality of tasks, project timelines, and overall risk 

assessment. The results reveal that Triangular and Betapert 

distributions offer more predictable and concentrated 

estimates of project completion, with narrower intervals and 

higher confidence levels. These distributions are particularly 

effective for projects with well-defined task durations, 

minimizing uncertainty and providing stable critical path 

predictions. Conversely, the Uniform distribution introduces 

greater variability with a broader range of possible outcomes.  

This distribution occasionally shifts near-critical tasks 

into the critical path, showcasing its sensitivity to uncertainty 

and ability to model less predictable scenarios. The impact of 

these variations is profound in the context of Monte Carlo 

simulations for risk analysis and scheduling optimization. The 

choice of distribution affects the identification of critical and 

near-critical paths, influencing resource allocation, risk 

mitigation strategies, and decision-making reliability. For 

instance, while the Triangular and Betapert distributions 

consistently classify partitions as critical tasks, the Uniform 

distribution introduces a small probability of technical rooms 

becoming critical, demonstrating how distribution 

assumptions can alter risk profiles. 

From a risk analysis perspective, Monte Carlo 

simulations allow project managers to quantify uncertainties 

and assess their potential impacts on project timelines. By 

integrating probabilistic insights, managers can proactively 

address risks, allocate resources effectively, and enhance 

decision-making under uncertainty. The study underscores the 

importance of selecting an appropriate distribution type to 

balance predictability and flexibility, ensuring project 

schedules remain resilient to variability while optimizing 

efficiency and outcomes.  

In conclusion, this research emphasizes that selecting 

probability distributions in Monte Carlo simulations is not 

merely a technical choice but a strategic decision that 

significantly influences the reliability of risk analysis and the 

effectiveness of scheduling optimization. By carefully 

considering the nature of the project and its inherent 

uncertainties, managers can leverage these simulations to 

improve project resilience, optimize timelines, and achieve 

better overall performance in construction project 

management. 
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Abbreviation 
AI : Artificial Intelligence 

FF : Finish to finish 

FS : Finish to start 

IoT : Internet of Things 

MENA : Middle East and North Africa 

ML : Most likely 

O : Optimistic 

P : Pessimistic 

SS : Start to start 

TCTP : Time-Cost Trade-off Problem 

TLBO : Teaching Learning Based Optimization 

 


