
International Journal of Engineering Trends and Technology Volume 73 Issue 7, 1-11, July 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I7P101 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Job Scheduling and Optimization of Job-Worker

Assignments in Distributed Computing Environments

Regis Donald HONTINFINDE1*, Ariel AMOYEDJI2, Mahugnon Geraud AZEHOUN-PAZOU1,
Marcos Thyrbus VITOULEY1, Christian Djidjoho AKOWANOU1

1Laboratory of Science, Engineering and Mathematics (LSIMA), National University of Science, Technology, Engineering and

Mathematics (UNSTIM), Abomey, Republic of Benin.
2Woven by Toyota, Toyota Group, Tokyo, Japan.

*Corresponding Author : donald.hontinfinde@yahoo.com

Received: 03 October 2024 Revised: 21 June 2025 Accepted: 30 June 2025 Published: 30 July 2025

Abstract - A genetic algorithm is a metaheuristic inspired by the process of natural selection , which belongs to the large class

of evolutionary algorithms. This makes it a good candidate for the development of new algorithms to solve optimization proble ms.

In this study, we investigated the User-PC computing (UPC) system by proposing a genetic algorithm to assign jobs to workers

to minimize the response time. To evaluate the effectiveness of the proposed genetic algorithm, we conducted experiments

involving the execution of 72 jobs on the UPC system, using six worker PCs with varying numbers of threads and processor

cores. We evaluated the algorithm in two distinct scenarios: static and dynamic job scheduling. In the static scheduling scen ario,

the algorithm assigns all available jobs to workers in a manner that minimizes the overall response time. The dynamic assignment

scenario assigns newly arrived jobs to workers as they become available. The results demonstrate that the proposed genetic

algorithm achieved a 26.4% reduction in response time compared to the random multiplestart local search (DRMSLS) algorithm.

The results of this research have the potential to improve the performance of Next-Generation Networks (NGNs) in the

telecommunications sector.

Keywords - Genetic Algorithm, Grid computing, Telecommunications networks, Thread job scheduling, UPC distributed

computing.

1. Introduction
The applications of grid computing are vast and varied. In

the telecommunications sector, with the advent of Next-

Generation Networks (NGN), grid computing appears as a

promising technology in this context, potentially enabling

telecom operators to manage their resources dynamically and

optimally via a single platform. In response to the growing

demand for cost-effective, high-performance computing

solutions, this paper presents a distributed computing platform

based on the master-worker model, referred to as the User-PC

computing (UPC) system [1-7]. The UPC system is founded

on a straightforward yet powerful concept: the master node

collects and queues job requests from users, then strategically

allocates these jobs to UPC workers, leveraging the idle

computational resources available on the personal PCs of UPC

members. The workers execute their assigned jobs, and the

results are transmitted back to the master node, which

coordinates the aggregation of the final output for the user [2-

14]. A key performance metric for the UPC system is the

makespan, or the total time required to complete all submitted

jobs. Although the literature offers various task scheduling

algorithms in distributed environments including greedy

heuristics, round-robin, and custom heuristics, etc., the

application of evolutionary approaches such as genetic

algorithms remains largely unexplored in the specific context

of User PC systems with quite heterogeneous workers in both

static and dynamic cases. For instance, Kamoyedji et al. [2]

suggested a static job-worker assignment algorithm designed

for User-PC Computing (UPC) systems. Other studies,

including [1, 3, 7], investigate different rule-based or cost-

effective scheduling strategies, although they frequently use

the assumption that worker capabilities are uniform or

function in static batch settings. Although metaheuristic

techniques, such as swarm optimization and genetic

algorithms, have shown encouraging results in classical grid

contexts [10, 12], their use is still uncommon in UPC

environments, particularly those with dynamic work inflow

and heterogeneous multi-core PCs. Unlike these previous

methods, this paper introduces a novel job-worker assignment

algorithm specifically designed for the UPC system. The

algorithm builds upon prior research and is enhanced by a

Genetic Algorithm framework, tailored to address the

complexities of dynamic job scheduling. It accounts for

crucial factors such as the number of threads each job utilizes

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:donald.hontinfinde@yahoo.com

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

2

during execution and the available CPU cores on each worker

PC. This study examines two distinct scenarios: static job-

worker assignment and dynamic job-worker assignment. In

the static scenario, all jobs are known in advance and assigned

to worker PCs with the primary goal of minimizing the overall

makespan. In contrast, the dynamic scenario assumes real-

time job arrivals; jobs are queued and dispatched to worker

PCs as they become available after completing prior

assignments. A series of experiments was conducted to assess

the effectiveness of the proposed genetic algorithm -based

scheduling approach. The experimental setup replicates that of

Kamoyedji et al. [2], using 72 jobs and six worker PCs with

varying thread and CPU core configurations. This replication

ensures consistency and fairness when comparing both

approaches. The rest of the paper is arranged as follows.

Section II revisits the notion of a User-PC Computing (UPC)

system, laying the groundwork for the suggested scheduling

paradigm. Section III provides a mathematical description of

the employment scheduling problem. Section IV presents the

study's central concept: the genetic algorithm-based

jobworker assignment technique. Section V presents and

analyzes the experimental outcomes in both static and

dynamic environments. Section VI closes the report by

outlining potential future research directions.

Fig. 1 Overview of the UPC system [17]

2. Review of User-PC System
The User-PC computing system (UPC) is a distributed

computing platform that leverages the idle resources of

Personal Computers (PCs) owned by a group of users to run

computational jobs. Figure 1 provides an overview of the UPC

system, which follows a master-worker architecture [17]. The

system operates on a master-worker model, where the master

PC manages various processes, including job scheduling, job

transmission, job execution, result transmission, and result

collection [1-3].

• Job Scheduling Job scheduling in the UPC system is a

crucial process handled by the master PC. It involves

receiving job processing requests from users and

determining the most suitable worker PCs to run the jobs.

Effective job scheduling algorithms consider factors such

as job dependencies, CPU core utilization, and load

balancing to allocate jobs efficiently. This ensures

optimal resource utilization and minimizes the makespan,

resulting in improved system performance.

• Job Transmission Once the job scheduling process is

completed, the master PC transmits the necessary job

information to the job's assigned worker PC. Job

Transmission encompasses delivering all relevant

information and instructions required for job execution.

Efficient job transmission mechanisms ensure reliable

and timely delivery of job data, enabling worker PCs to

begin job execution promptly.

• Job Execution Worker PCs receive the job data from the

master PC and execute their assigned jobs based on the

provided instructions. Each worker PC utilizes its

available computational resources, such as CPU cores and

memory, to execute the jobs efficiently. Job execution

may involve parallel processing, where multiple jobs are

executed simultaneously to enhance overall performance.

• Result transmission Upon completion of the assigned

jobs, worker PCs transmit the results back to the master

PC. Result transmission entails sending the output data

and any relevant information generated during job

execution. Reliable and efficient result transmission

ensures accurate and timely delivery of results to the

master PC.

• Result Collection The master PC collects the results from

the worker PCs and performs any necessary post-

processing or aggregation jobs. Efficient result collection

mechanisms enable accurate retrieval of job results and

facilitate further analysis or presentation to the users who

initiated the job processing requests.

This section provides an overview of related work in the

literature. To the best of the authors' knowledge, no prior

studies using genetic algorithms have explicitly considered the

number of CPU cores and/or the number of job threads in the

context of job scheduling.

Xu et al. [1] introduced the Deadline Preference Dispatch

Scheduling (DPDS) algorithm, a dynamic scheduling method

that prioritizes deadline constraints. They further developed

the Improved Dispatch Constraint Scheduling (IDCS)

algorithm, which integrates a risk prediction model aimed at

minimizing resource wastage and maximizing job completion

rates.

Kamoyedji et al. [2] proposed an O(n^3) algorithm for

the dynamic allocation of jobs to worker PCs upon arrival,

with the objective of minimizing the makespan in the UPC

system. This algorithm is derived from a previously developed

static job scheduling method based on the randomized multi-

start local search technique. Although the algorithm considers

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

3

CPU core utilization, its efficacy diminishes as the number of

jobs increases substantially.

Amalarathinam et al. [14] presented the Dual Objective

Dynamic Scheduling Algorithm (DoDySA), which schedules

jobs based on the Earliest Starting Time (EST) and Earliest

Finishing Time (EFT) criteria. The algorithm aims to

maximize CPU utilization while minimizing the makespan.

Empirical results indicate that DoDySA outperforms existing

alternatives in achieving these dual objectives.

Bhatia [4] provided a comprehensive review of job

scheduling algorithms in the context of grid computing,

categorizing them into heuristic and nature-inspired

approaches. These algorithms primarily seek to minimize the

execution time of individual jobs or to enhance the processing

capacity of available computational resources. Recent

research has enhanced evolutionary algorithms for difficult

scheduling challenges.

For example, a 2021 study on college course scheduling

developed a domain-specific local search operator and

upgraded genetic operators (selection, crossover, mutation) to

increase convergence speed and diversity [16]. Another 2024

work suggested a unique greedy-based seeding technique for

the initial GA population, considerably enhancing solution

quality and convergence time for the Travelling Salesman

Problem [15].

While these techniques illustrate the adaptability and

strength of genetic algorithms in a variety of situations, none

of them solves the specific issues of work scheduling in User -

PC computing systems with dynamically accessible,

heterogeneous resources. This study attempted to overcome

this gap by offering a GA-based scheduling mechanism that

explicitly takes into account both thread-level task

configuration and worker CPU core availability in both static

and dynamic job arrival circumstances.

3. Job-Worker Assignment Problem

Formulation
This section defines the mathematical symbols,

constraints, and formal formulation of the job scheduling

problem in the UPC system.

Let us consider the following:

• Set of jobs: 𝐼 = 1,2, … , 𝑛, where 𝑛 is the total number of

available jobs.

• Set of workers: 𝑈 = 1,2, … , 𝑚 , where 𝑚 is the total

number of available workers.

The objective function 𝒞, representing the overall

performance metric of the job scheduling process, will be

minimized.

3.1. Conditions

• Total number of assigned jobs: The total number of jobs

assigned must always be less than or equal to the total

number of available jobs, ensuring that all jobs are

assigned and none are left unallocated.

• Total number of workers assigned: The total number of

workers assigned must always be less than Equal to or

greater than the total number of available workers,

ensuring that the workload is distributed among the

available resources.

• Job assignment uniqueness: Each job can only be

assigned once, guaranteeing that jobs are not duplicated

or assigned to multiple workers simultaneously.

• Resource requirements: The resource requirements of

each job on any given worker PC must not exceed the

usage limit specified by the user. This ensures that the

assigned jobs can be executed within the available

resources of the worker PCs.

3.2. Assumptions on Job-Worker Assignments

• Any worker can process one job at a time to avoid job

swapping.

• Workers can have various numbers of CPU cores, and

they may differ from each other in this regard.

• Any job can be assigned to any worker capable of

processing it.

• All queuing jobs can be assigned to workers

simultaneously.

• The arrival of future jobs is unpredictable and cannot be

forecasted in advance.

3.3. Mathematical Formulation of the Assignment Problem

Let 𝒯(𝑖, 𝑢) be a binary decision variable that equals 1 if

task 𝑖 is assigned to compute unit 𝑢, and 0 otherwise. This

variable governs the assignment process in the distributed

computing environment. The goal is to minimize the overall

computational cost 𝐶 , which reflects the total processing load

distributed across all available units.

𝒞 = ∑  𝑢∈𝒱
∑  𝑖∈ℐ 𝒯(𝑖, 𝑢) ⋅ 𝑑𝑖,𝑢

Where 𝑑𝑖,𝑢 denotes the estimated execution time of task 𝑖

on unit 𝑢.

Subject to the following constraints:

1. Total number of assigned tasks: ∑  𝑖∈ℐ
∑  𝑢∈𝒱 𝒯(𝑖, 𝑢) = 𝑁

Where 𝑁 is the total number of tasks.

2. Uniqueness of assignment: ∑  𝑢 ∈𝒱 𝒯(𝑖, 𝑢) = 1∀𝑖 ∈ ℐ

3. Resource constraint: For each task-unit pair, the resource

demand must not exceed the unit's capacity. Let 𝑅(𝑖, 𝑢)

be the resource demand of task 𝑖 on unit 𝑢, and 𝐿𝑢 the

resource limit of unit 𝑢: 𝑅(𝑖, 𝑢) ≤ 𝐿𝑢∀𝑖 ∈ ℐ, ∀𝑢 ∈ 𝒱

4. Positive execution time: 𝑑𝑖 ,𝑢 > 0 ∀𝑖 ∈ ℐ, ∀𝑢 ∈ 𝒱

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

4

4. Proposed Job-Worker Assignment Algorithm
This section introduces the proposed job-worker

assignment algorithm designed for the UPC system. The

algorithm seeks to optimize job-to-worker assignments to

minimize the makespan and enhance overall system

performance.

It consists of two main components: a greedy algorithm

and a genetic algorithm. Before presenting the detailed

implementation, an overview of the genetic algorithm is

provided.

4.1. Genetic Algorithm Overview

A genetic algorithm is a metaheuristic optimization

technique inspired by the process of natural selection and

evolution. It operates by iteratively evolving a population of

candidate solutions to a problem, mimicking the principles of

survival of the fittest, crossover, and mutation. The genetic

algorithm is based on the following steps:

• Initialization: The first step of the Genetic Algorithm is

the population seeding phase [15]. The initialization of a

population of candidate solutions. Each solution

represents a potential queuing job assignment

configuration. In this case, a greedy algorithm is used to

generate six solutions for the initial population.

• Evaluation: Evaluate the fitness of each solution in the

population based on the objective function, which

measures the quality of the job assignments (the

makespan). The fitness score reflects how well a solution

performs in terms of the objective function.

• Selection: Select a subset of the fittest individuals from

the population to serve as parents for the next generation.

The selection process favors solutions with higher fitness

scores, increasing their likelihood of being chosen as

parents. Because the goal is to minimize the global

makespan, only solutions with lower fitness scores are

selected.

• Crossover: Apply crossover operators to the selected

parents to generate offspring solutions. Crossover

involves combining the genetic material (job

assignments) from two or more parents to create new

solutions. This process allows for the exploration of

different combinations of job assignments.

• Mutation: Introduce random changes in the offspring

solutions by applying mutation operators. Mutation alters

certain elements (job assignments) within the solutions to

introduce diversity and prevent premature convergence to

suboptimal solutions.

• Evaluation: Evaluate the fitness of the new offspring

solutions resulting from crossover and mutation.

• Replacement: Replace less fit individuals in the

population with the improved offspring solutions,

ensuring that the population continues to evolve towards

better solutions. However, [16] shows that when the

initial population is too large, the efficiency of the

algorithm is reduced, and the computation time of the

large algorithm execution increases greatly.

On the other hand, if the initial population is too small,

the diversity of the population is reduced, the sample

capacity is reduced, and the overall performance of the

algorithm becomes poor.

• Termination: Repeat steps 3-7 for a predetermined

number of iterations (generations) or until the

convergence criteria (the same offspring in over 100

generations) is reached.

By iteratively applying selection, crossover, and mutation

operators, the genetic algorithm explores the search space,

gradually improving the quality of solutions, and converging

towards optimal or near-optimal job assignments.

4.2. Construction of the Initial Population Using a Greedy

Algorithm

The development of the genetic algorithm begins with the

construction of the initial population. A greedy algorithm is

employed to generate the initial population of queued task

assignments. This will generate a large set of usable solutions

based on the workers' resource utilization. Here is the process

flow:

1. Using predetermined thresholds, classify the queued

workers and jobs. The classification ranges for queued

workers and occupations are determined by these

thresholds. The following thresholds were used in the

implementation: 5, 8, 14, 17, 22, and 28. Employees and

occupations that fall within the same threshold range are

considered to belong to the same class.

2. For each worker class:

• The workers are ranked in ascending order based on CPU

core utilization.

• Iterate through the tasks of the relevant class one by one:

i. For each task, determine an appropriate value

(relevance), such as the CPU core utilization rate

among neighboring workers.

ii. Sort the tasks in ascending order based on their

relevance.

iii. Considering the worker's available resources (disk

space, RAM size), assign each task to the worker

with the lowest cost.

3. Generate a (child) solution by allocating tasks to workers

according to the results of the greedy algorithm. During

task assignment, the greedy algorithm considers worker

PC resource availability and CPU core utilization. It

ensures that people and tasks with similar attributes are

considered together by ranking them according to

relevance, promoting a more efficient and balanced

distribution of tasks.

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

5

4.3. Time Complexity

Time complexity is a measure of how the execution time

of an algorithm grows as the size of the input increases. It

helps us understand the efficiency of an algorithm in

processing larger data sets.

Time complexity of the Greedy Algorithm Part: The time

complexity of the greedy algorithm can be analyzed as

follows:

• Dividing workers and jobs into classes based on the

threshold: 𝑂(𝑛 + 𝑚) , where 𝑛 is the number of workers,

and 𝑚 is the number of jobs.

• Sorting the workers for each job class based on CPU

information: 𝑂(𝑚 log 𝑚).

• Calculating and assigning a heuristic value to each job:

𝑂(𝑚) .

• Finding the most suitable worker for each job and

assigning the job to the selected worker: 𝑂(𝑚 log 𝑛),

where 𝑛 is the number of workers. Overall, the time

complexity of the greedy algorithm is 𝑂(𝑛 + 𝑚 +
𝑚 log 𝑚 + 𝑚 log 𝑛) = 𝑂(𝑚 log 𝑚 + 𝑚 log 𝑛).

Time complexity of the Genetic Algorithm Part: The time

complexity of the genetic algorithm can be analyzed as

follows:

• Sorting the scores in ascending order: 𝑂(𝑛 log 𝑛), where

𝑛 is the population size.

• Making selection: 𝑂(𝑛).

• Performing crossover and mutation: 𝑂(𝑛) .

Overall, the time complexity of the genetic algorithm is

𝑂(𝑛 log 𝑛). As the greedy and genetic algorithms are executed

sequentially, the overall time complexity is determined by the

component with the higher computational cost, especially the

greedy algorithm, which has a complexity of 𝑂(𝑚log 𝑚 +

𝑚 log 𝑛). Therefore, the global time complexity of the entire

job scheduling process, combining both the greedy algorithm

and the genetic algorithm, is 𝑂(𝑚 log 𝑚 + 𝑚 log 𝑛) =

𝑂(𝑚 log 𝑚 𝑛).

4.4. Dynamic Job Scheduling Algorithm Overview

The dynamic job-worker scheduling genetic algorithm

repeatedly calls the previously proposed static genetic

algorithm whenever jobs are still queuing and idle worker PCs

are in the system. The procedure for managing dynamic job

arrivals in the UPC system is the same as the one described in

[2]. The pseudo-code of the dynamic job scheduling algorithm

is described in Algorithm 1.

4.5. Comparison of Static vs Dynamic Algorithm

Table 1 summarizes the main differences between the

static and dynamic scenarios addressed by the proposed Job

Scheduling Genetic Algorithm.

5. Evaluation
5.1. Symbol

First, here are the variables used for the experimental

evaluation.

𝑀/𝑀/𝑐 is a multi-server queuing model;

Algorithm 1: Dynamic Job Scheduling Algorithm

 function GETIDLINGWORKERSET(workerSet)

 idlingWorkerSet ← ∅

 for each workerPC w in workerSet do

 if current worker 𝑤 is idling then

 Add the current worker to idlingWorkerSet.

 end if

 end for

 return idlingWorkerSet

 end function

 𝑈, 𝐼, timer.initialize(), startTime ← 0,

 resultingJobWorkerMapping ← ∅, makespan = 0

 startTime ← timer.getCurrentTime()

 while true do

 idlingWorkerSet ← GetIdlingWorkerSet(𝑈)

 if idlingWorkerSet ≠ ∅ then

 resultingJobWorkerMapping ← Static Job

 Scheduling Method(𝑈, 𝐼)

 Assign jobs to idling worker PCs based on

 resultingJobWorkerMapping.

 Update the queue of waiting jobs 𝐼.

 end if

 if there are no new job arrivals then

 makespan = timer.getCurrentTime()-startTime

 return makespan

 end if

 Sleep for a short while

 end while

• 𝑈 is a set of available worker PCs, and 𝐼 is a set of queuing

jobs to be scheduled.

• 𝑤 is a worker PC characterized by an available CPU

performance index, an available memory size, an

available disk space and a CPU usage limit lim 𝑤 set by

the user for the UPC system;

• 𝑗 is a job characterized by some requirements in terms of

CPU time, memory size and disk space;

• 𝜏𝑗,𝑤 is the processing time associated with the processing

of job 𝑗 on worker PC 𝑤;

• 𝜆 is the average job arrival rate, and 𝜇 is the average job

processing rate;

• 𝜎 = 𝜆/(|𝑈|𝜇) is the average utilization of each worker

PC (|𝑈| is the size of the worker PCs)

5.2. Experimental Methodology

The genetic algorithm was implemented in Java and

evaluated on a computer system composed of one master PC

and six worker PCs, as shown in Table 1. Each chromosome

encodes a task-to-worker assignment, where each gene

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

6

represents a worker ID associated with a specific task. A

population size of six solutions was used, with a one-point

crossover probability of 0.6 and a mutation rate of 0.5 applied

to the initial population.

Table 1. Overview of the differences between static and dynamic

scheduling as implemented in a User-PC computing system

Aspect Static Scenario Dynamic Scenario

Number of

jobs

Known

beforehand

Arrive

progressively

Job arrival

behavior

All submitted at

once

Follow a Poisson-

like distribution

System

behavior

Scheduler runs

once, then stops

Scheduler stays

active, waiting for

new jobs

Assignment

strategy

Global

assignment using

Greedy +

Genetic

Algorithm

File queuing +

repeated use of the

same static

assignment logic

Scheduling

frequency

Single-shot

decision

Triggered by job

arrival or job

completion

Adaptability
No reallocation

during execution

Jobs are

dynamically

matched to

available workers

Main

scheduling

challenge

Achieving

optimal balance

in one pass

Minimizing

makespan under

uncertainty and

fluctuating loads

To evaluate the genetic algorithm with an increasing

number of jobs, each of the 24 jobs was executed once (= 24

jobs in total), twice (= 48 jobs in total), and three times (=
72 jobs in total). In this evaluation, jobs join the system in the

same order as in Table 2.

As a performance index for evaluation, the makespan is

calculated as the difference between the first job arrival time

and the last job completion time. It is important to note that

the experiments were repeated 50 times for 24 jobs, 100 times

for 48 jobs, and 150 times for 72 jobs.

Table 2. PCs specifications

PC # cores CPU Type clock Rate Memory Size

Master 4 core i5 3.20 GHZ 8 GB

PC1 4 core i3 1.70 GHZ 2 GB

PC2 4 core i5 2.60 GHZ 2 GB

PC3 4 core i5 2.60 GHZ 2 GB

PC4 8 core i7 3.40 GHZ 4 GB

PC5 16 core i9 3.60 GHZ 8 GB

PC6 20 core i9 3.70 GHZ 8 GB

5.3. Results for Static Job-Worker Assignment

This section evaluates the results of the static job-worker

assignment produced by the proposed algorithm, through

comparisons with the reference algorithm (a method based on

the randomized multi-start local search proposed by

Kamoyedji et al. in [2]). The outcome of the evaluation

provides valuable insight into the effectiveness of the

proposed approach in optimizing static job assignments within

the User-PC computing system.

Table 3. Jobs specifications

Job # Job Name
Threads Disk

Usage

1 Network Simulator 1 0.392 GB

2 Optimization Algorithm 1 1.5 GB

3 DCGAN 17 1.9 GB

4 RNN 17 1.9 GB

5 CNN 17 1.9 GB

6 FFmpeg 18 2.8 GB

7 Converter 1 1.1 GB

8 Palabos 2 6.7 GB

9 Flow 4 0.438 GB

10 Blockchain Mining 1 920 MB

11 COVID Detection 23 2.95 GB

12 COVID Outbreak Prediction 4 1.84 GB

13 Multimedia Content Resizing 18 2.8 GB

14
Multimedia Content Format

Changing
18 2.8 GB

15 OpenFOAM 5W 1 1.4 GB

16 OpenFOAM 10 W 1 1.4 GB

17 OpenFOAM 15W 1 1.4 GB

18 OpenFOAM 20W 1 1.4 GB

19 OpenFOAM 25 W 1 1.4 GB

20 OpenFOAM 30 W 1 1.4 GB

21 OpenFOAM 35W 1 1.4 GB

22 OpenFOAM 40 W 1 1.4 GB

23 OpenFOAM 45 W 1 1.4 GB

24 OpenFOAM 50W 1 1.4 GB

Table 5 shows makespan results in

hours:minutes:seconds (H:M:S) format for static job-worker

assignments. It compares the outcomes of the genetic

algorithm-based approach and the reference algorithm

proposed by Kamoyedji et al. in [2], across three experimental

settings: 24 jobs, 48 jobs, and 72 jobs. Table 4 and Figure 2

clearly show that the proposed method outperforms the

reference algorithm in terms of makespan. The

"Improvement" row quantifies the efficiency gains achieved

by the proposed approach compared to the reference

algorithm, both in terms of time saved (H: M: S) and as a

percentage. This comparison underscores the potential for the

genetic algorithm to significantly reduce the makespan and

enhance computational efficiency across various job

instances.

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

7

5.4. Results for Dynamic Job-Worker Assignment

The following section presents an evaluation of the

dynamic job-worker assignment results produced by the

proposed algorithm, through comparison with a reference

method based on the randomized multi-start local search, as

introduced by Kamoyedji et al. [2].

Table 4. Job CPU times

Job

PC1

PC2 &

 PC3
PC4 PC5 PC6

1 02:14:46 01:06:44 00:54:21 00:39:40 00:36:09

2 00:41:43 00:26:38 00:20:27 00:13:53 00:13:10

3 01:37:14 01:09:28 00:22:44 00:12:45 00:11:15

4 00:17:43 00:12:01 00:07:03 00:05:37 00:04:49

5 00:26:04 00:22:22 00:07:07 00:05:24 00:04:47

6 00:46:37 00:31:49 00:13:23 00:07:59 00:06:54

7 00:17:09 00:11:34 00:05:41 00:04:53 00:04:15

8 00:12:51 00:08:38 00:05:24 00:04:29 00:03:19

9 00:25:20 00:14:45 00:11:08 00:08:32 00:07:55

10 00:36:28 00:09:09 00:07:53 00:05:59 00:04:14

11 00:39:35 00:24:53 00:10:42 00:04:08 00:03:16

12 00:13:12 00:06:35 00:05:09 00:03:55 00:03:01

13 00:34:50 00:19:47 00:12:33 00:07:48 00:07:10

14 00:36:33 00:24:56 00:10:55 00:05:45 00:04:19

15 00:12:23 00:07:19 00:06:51 00:05:04 00:04:28

16 00:29:58 00:19:18 00:16:58 00:13:08 00:11:27

17 00:45:57 00:30:44 00:25:59 00:20:31 00:17:54

18 00:55:44 00:36:54 00:32:25 00:25:17 00:22:13

19 01:20:36 00:52:29 00:46:40 00:36:55 00:32:20

20 01:37:25 01:05:44 00:56:27 00:45:18 00:39:42

21 01:44:18 01:12:44 01:06:06 00:51:19 00:44:56

22 01:52:04 01:26:35 01:14:53 01:00:08 00:52:44

23 02:14:32 01:30:28 01:19:17 01:03:01 00:55:19

24 02:22:38 01:32:22 01:23:02 01:07:02 00:58:40

Table 5. Makespan results for static job-worker assignment (H:M:S)

Method 24 Jobs 48 Jobs 72 Jobs

RMSLS [2] 02:06:58 04:08:41 06:10:31

Proposed Method 01:49:33 03:45:05 05:37:39

Improvement (H:M:S) 00:17:25 00:23:36 00:32:52

Improvement(%) 13.7% 9.49% 8.8%

To model the dynamic scenario, a non-preemptive M/M/c

queue model is employed, with a fixed number of worker PCs

denoted as 𝑐 = |𝑈| = 6 [9]. The average job arrival rate is

approximately Λ ≈ 1 job per 500 seconds, consistent with the

model described in [2]. Job arrivals are simulated using a

Poisson distribution to reflect continuous entry into the UPC

system until the final job arrives [9]. Upon arrival, each job is

immediately assigned to an available worker PC if one is idle;

otherwise, it waits in the queue.

Table 6 presents the makespan comparison for the two

algorithms under job loads of 24, 48 and 72. The results

indicate that the proposed algorithm consistently outperforms

the reference approach. Furthermore, the data presented in

Table 4 is used to estimate the average worker service rate

through a two-step process. First, the average service rate for

each worker PC is computed across all assigned jobs as

follows:

Fig. 2 Evolution of the makespan depending on the number of jobs

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

8

𝜇𝑎𝑣𝑔𝑤 =
1

|𝐼|
∑  𝑗 ∈𝐼   𝜏𝑗,𝑤∀𝑤 ∈ 𝑈 (1)

Given the use of six worker PCs, the previously computed

values are averaged across all worker PCs as follows:

𝜇𝑎𝑣𝑔 =
1

|𝑈|
∑  𝑤∈𝑈   𝜇𝑎𝑟𝑔𝑤 = 1𝑗𝑜𝑏/2023𝑠 (2)

The response time represents the total amount of time a

job spends both in the queue and in service and is given by [9]:

𝐶(|𝑈|,𝜆/𝜇)

|𝑈|𝜇−𝜆
+

1

𝜇
 (3)

Using the previous formula, the average response time of

the system can be estimated by [2]:

𝐴𝑣𝑔𝑅𝑡1
=

𝐶(|𝑈|,𝜆/𝜇)

|𝑈|𝜇−𝜆
+

1

𝜇
 (4)

Where the response time is the total time a job spends

both in the queue and in service, the probability that an

arriving job is forced to join the queue, that is, all worker PCs

are occupied, is given by:

𝐶(|𝑈|, 𝜆/𝜇) =
1

1+(1−𝜎)(|𝑈|!

(|𝑈|𝜎)|𝑈|
)∑  |𝑈|−1

𝑘=0  
(|𝑈|𝜎)𝑘

𝑘!

 (5)

Which is Erlang's C formula [9].

Using the Erlang C formula, and the approximate value of 𝜎,

𝜎 =
1/500𝑠

(6∗1/2023)
≈ 67% , as follows:

𝐶(|𝑈|, 𝜆/𝜇) ≈
1

1+(0.33∗|6|!

(4.02)6
) ∑ 𝑘=0

5
 
(4.02)𝑘

𝑘!

≈ 0.28 (6)

So, 𝐴𝑣𝑔𝑅𝑡1
=

0.28

6∗1 job /2023𝑠 −1 job /500𝑠
+

1

1 job /2023𝑠
=

0.28

6∗1 job /2023𝑠 −1 job /500𝑠
+ 2023𝑠 = 290𝑠 + 2023𝑠 =

2313𝑠 = 38𝑚𝑖𝑛33𝑠

Using experiment results, the average response time of

the system is estimated for 24 distinct jobs as 33 min 46𝑠

𝐴𝑣𝑔𝑅𝑡2
=

48626

24
= 2026𝑠 = 33 min46𝑠

The theoretical average response time of the system,

AvgRt1, is way greater than the average response time,

AvgRt2, calculated using experimental data.

This is mainly because 2/3 of the available jobs use the

most powerful machines during execution and are assigned to

either worker 6, worker 5, or worker 4 (half of the available

worker PCs). Table 6 and Figure 3 clearly show that the

proposed method outperforms the reference algorithm in

terms of makespan.

Table 6. Makespan results for dynamic job-worker assignment (H:M:S)

Method 24 jobs 48 jobs 72 jobs

RMSLS [2] 05:39:48 10:35:38 14:40:01

Proposal 04:09:53 09:01:55 12:15:22

Improvement (H:M:S) 01:29:55 01:33:43 02:24:42

Improvement (%) 26.46% 14.74% 16.4%

Fig. 3 Evolution of the makespan depending on the number of jobs

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

9

Table 7 reports the mean makespan and standard

deviation observed across these experiments.

Table 7. Statistical summary of makespan results over multiple
iterations for each job set

Number

of Jobs

Mean

Makespan (s)

Standard

Deviation (s)

Number

of Iterations

24 Jobs 4:34:40 0:27:31 50

48 Jobs 8:23:58 0:35:23 100

72 Jobs 11:48:33 0:41:27 150

5.5. Discussion of Performance Gains

The superior performance of the proposed genetic

algorithm, up to 26.4% reduction in makespan compared to

the reference algorithm, can be attributed to several core

design improvements. The approach takes into account both

job thread counts and available CPU cores, allowing for

efficient, contention-free allocation, which was often

overlooked in previous studies. A greedy initialization method

is employed instead of random seeding, improving the quality

of the initial solutions and accelerating convergence.

Crossover and mutation were designed to assure both variety

and convergence: crossover mixes successful patterns from

top candidates, whilst mutation avoids premature convergence

by exploring new options.

6. Conclusion
This study proposed a genetic job scheduling algorithm

that incorporates both the number of threads used by jobs

during execution and the number of CPU cores available on

each worker PC, with the objective of minimizing the overall

makespan. The algorithm was validated through a series of

experiments involving up to 72 jobs and six worker PCs. The

results indicate an improvement of up to 26.4% in makespan

compared to the reference algorithms. Aside from theoretical

contributions, this approach has practical implications for

telecommunications carriers. Specifically, the suggested

UPC-based scheduling technique can be used to dynamically

offload non-critical computing jobs (such as billing

procedures, log analytics, and traffic monitoring) to

underutilized machines across dispersed infrastructures.

However, the current study has significant shortcomings that

provide opportunities for further research.

First, it presupposes that job execution timings are known

in advance, which may not be practical in unpredictable

contexts. Second, the tuning of GA parameters (population

size, crossover, and mutation rates) was empirical and may be

improved using automa ted or adaptive procedures. In

particular, the present population size was moderate, which

may limit the investigation of the solution space and result in

a lack of globally optimum solutions. Finally, the proposed

technique is currently centralized; expanding it to

accommodate multi-master or decentralized coordination may

improve scalability and fault tolerance. Future studies will

address these issues by combining predictive modeling of job

durations and investigating reinforcement learning

methodologies for more adaptable scheduling.

References
[1] Ling Xu et al., “Dynamic Task Scheduling Algorithm with Deadline Constraint in Heterogeneous Volunteer Computing Platforms,”

Future Internet, vol. 11, no. 6, pp. 1-16, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Ariel Kamoyedji et al., “A Proposal of Job-Worker Assignment Algorithm Considering CPU Core Utilization for User-PC Computing

System,” International Journal of Future Computer and Communication, vol. 11, no. 2, pp. 40-46, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Manjot Kaur Bhatia, “Task Scheduling in Grid Computing: A Review,” Advances in Computational Sciences and Technology, vol. 10,

no. 6, pp. 1707-1714, 2017. [Google Scholar] [Publisher Link]

[4] Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour, “Economic Scheduling in Grid Computing,” 8th International Workshop on

Job Scheduling Strategies for Parallel Processing, Edinburgh, United Kingdom, pp. 128-152, 2002. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Tao Xie, Andrew Sung, and Xiao Qin, “Dynamic Task Scheduling with Security Awareness in Real-Time Systems,” 19th IEEE

International Parallel and Distributed Processing Symposium, Denver, CO, USA, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[6] Man Wang et al., “The Dynamic Priority-Based Scheduling Algorithm for Hard Real-Time Heterogeneous CMP Application,” Journal

of Algorithms and Computational Technology, vol. 2, no. 3, pp. 409-427, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[7] Zahra Pooranian et al., “GLOA: A New Job Scheduling Algorithm for Grid Computing,” International Journal of Artificial Intelligence

and Interactive Multimedia, vol. 2, no. 1, pp. 59-64, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[8] Ye-In Seol, and Young-Kuk Kim, “Applying Dynamic Priority Scheduling Scheme to Static Systems of Pinwheel Job Model in Power-

Aware Scheduling,” The Scientific World Journal, vol. 2014, no. 1, pp. 1-9, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Leonard Kleinrock, Queueing Systems, Volume I Theory, Wiley Interscience, 1975. [Google Scholar] [Publisher Link]

[10] Lale Özbakir, Adil Baykasoğlu, and Pınar Tapkan, “Bees Algorithm for Generalized Assignment Problem,” Applied Mathematics and

Computation, vol. 215, no. 11, pp. 3782-3795, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[11] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-

Wesley Professional, 1994. [Google Scholar] [Publisher Link]

https://doi.org/10.3390/fi11060121
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+job+scheduling+algorithm+with+deadline+constraint+in+heterogeneous+volunteer+Computing+Platforms&btnG=
https://www.mdpi.com/1999-5903/11/6/121
http://doi.org/10.18178/ijfcc.2022.11.2.586
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Proposal+of+Job-Worker+Assignment+Algorithm+Considering+CPU+Core+Utilization+for+User-PC+Computing+System&btnG=
https://www.ijfcc.org/index.php?m=content&c=index&a=show&catid=99&id=969
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B3%5D%09M.+K.+Bhatia%2C+%E2%80%9CJob+Scheduling+in+Grid+Computing%3A+A+Review&btnG=
https://www.ripublication.com/Volume/acstv10n6.htm
https://doi.org/10.1007/3-540-36180-4_8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Economic+scheduling+in+grid+computing&btnG=
https://link.springer.com/chapter/10.1007/3-540-36180-4_8
https://doi.org/10.1109/IPDPS.2005.185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+Job+Scheduling+with+Security+Awareness+in+Real-Time+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/1420230
https://doi.org/10.1260/174830108785302805
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Dynamic+Priority-Based+Scheduling+Algorithm+for+Hard+Real-Time+Heterogeneous+CMP+Application&btnG=
https://journals.sagepub.com/doi/abs/10.1260/174830108785302805
http://dx.doi.org/10.9781/ijimai.2013.218
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GLOA%3A+A+new+job+scheduling+algorithm+for+grid+computing&btnG=
https://www.ijimai.org/journal/bibcite/reference/2406
https://doi.org/10.1155/2014/587321
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+dynamic+priority+scheduling+scheme+to+static+systems+of+pinwheel+job+model+in+power-aware+scheduling&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2014/587321
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Queueing+Systems%2C+1Iol.+I%3A+Theory+L+Kleinrock+-+1975+-+Wiley-Interscience%2C+New+York&btnG=
https://www.wiley.com/en-ca/Queueing+Systems%2C+Volume+I-p-9780471491101
https://doi.org/10.1016/j.amc.2009.11.018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bees+algorithm+for+generalized+assignment+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300309010078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+L.+Graham%2C+D.+E.+Knuth%2C+and+O.+Patashnik%2C+Concrete+mathematics&btnG=
https://www.oreilly.com/library/view/concrete-mathematics-a/9780134389974/?_gl=1*uhgxen*_ga*MTk0MzE1MTU1OC4xNzUxNDUyNjUw*_ga_092EL089CH*czE3NTE0NTI2NTAkbzEkZzEkdDE3NTE0NTI3OTEkajQwJGwwJGgw

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

10

[12] Ritu Garg, and Awadhesh Kumar Singh, “Adaptive Workflow Scheduling in Grid Computing Based on Dynamic Resource Availability,”

Engineering Science and Technology, An International Journal, vol. 18, no. 2, pp. 256-269, 2015. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Michel Barbeau, and Evangelos Kranakis, Principles of Ad-Hoc Networking, 1st ed., John Wiley, 2007. [Google Scholar] [Publisher Link]

[14] D.I. George Amalarathinam, and A. Maria Josphin, “Dual Objective Dynamic Scheduling Algorithm (DoDySA) for Heterogeneous

Environments,” Advances in Computational Sciences and Technology, vol. 10, no. 2, pp. 171-183, 2017. [Google Scholar] [Publisher

Link]

[15] Esra’a Alkafaween et al., “An Efficiency Boost for Genetic Algorithms: Initializing the GA with the Iterative Approximate Method for

Optimizing the Traveling Salesman Problem-Experimental Insights,” Applied Sciences, vol. 14, no. 8, pp. 1-19, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Jing Xu, “Improved Genetic Algorithm to Solve the Scheduling Problem of College English Courses,” Complexity, vol. 2021, no. 1, pp.

1-11, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] Xudong Zhou et al., “A Static Assignment Algorithm of Uniform Jobs to Workers in a User-PC Computing System using Simultaneous

Linear Equations,” Algorithms, vol. 15, no. 10, pp. 1-15, 2022. [CrossRef] [Google Scholar] [Publisher Link]

Appendix
1. Pseudo-Code of the Static Job Scheduling Algorithm

Algorithm 2 Job Assignment Algorithm: Greedy Part

 procedure BulldInITIALPOPULATION(workers, jobs)

 Initialize an empty population

 Define the predefined thresholds as an array

 for threshold in predefined thresholds do

 Create two classes of workers and jobs

 for 𝑤 in workers do

 if w.nbOfCores ≥ threshold then

 Add w to the 1st worker class

 else

 Add w to the 2nd worker class

 end if

 end for

 for j in jobs do

 if 𝑗 ≥ threshold then

 Add j to the 1st job class

 else

 Add j to the 2nd job class

 end if

 end for

 for 𝑘 in [0,1] do

 Sort workerClass[k] based on CPU information

 Get the current job class jobClass [𝑘]

 for each job in the current job class do

 Calculate and assign a value θ to the job

 end for

 Sort the jobs in the class based on their θ value

 for each job in the sorted job class do

 Find the most suitable worker for the job based

on cost and resource constraints

 if a suitable worker is found then

 Assign the job to that worker

 end if

 end for

 end for

 Initialize an empty solution

 for jobClass in jobClasses do

 for workerClass in workerClasses do

 Apply the greedy algorithm to the current

jobClass and workerClass

 Add the job-worker assignments to the solution

 end for

 end for

 if the solution contains all jobs then

 Add the solution to the population

 end if

 end for

 return the population

 end procedure

2. Pseudo-code of the Genetic Algorithm

Algorithm 3 Job Assignment Algorithm: Genetic Part

 procedure STARTGENETICALG(P (population),

 nbStopCriteria)

 conv ← 0

 solutionFinal ← 𝑛𝑢𝑙𝑙

 while conv < nbStopCriteria do

 Calculate scores

 Sort scores in ascending order

 MAKESELECTION

 DOCROSSOVER

 DOMUTATION

 score1 ← P.child1.getScore ()

 score2 ← P.child2.getScore()

 if (score1 < scores[0] or scores[1]) then

 Remove the last parent from P

 Add child1 to P

 end if

 if (score2 < scores[0] or scores[1]) then

 Remove the last parent from P

 Add child2 P

 end if

 if (child1 or child2 isAdded) then

 conv ← 0

 else

 𝑐𝑜𝑛𝑣 ← 𝑐𝑜𝑛𝑣 + 1

 end if

 solutionFinal ← p.solutions[0]

https://doi.org/10.1016/j.jestch.2015.01.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+workflow+scheduling+in+grid+computing+based+on+dynamic+resource+availability&btnG=
https://www.sciencedirect.com/science/article/pii/S2215098615000087
https://www.sciencedirect.com/science/article/pii/S2215098615000087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principles+of+Ad-Hoc+Networking&btnG=
https://www.wiley.com/en-in/Principles+of+Ad-hoc+Networking-p-9780470512487
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual+objective+dynamic+scheduling+algorithm+%28DoDySA%29+for+heterogeneous+environments&btnG=
https://www.ripublication.com/Volume/acstv10n2.htm
https://www.ripublication.com/Volume/acstv10n2.htm
https://doi.org/10.3390/app14083151
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficiency+Boost+for+Genetic+Algorithms%3A+Initializing+the+GA+with+the+Iterative+Approximate+Method+for+Optimizing+the+Traveling+Salesman+Problem-Experimental+Insights&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficiency+Boost+for+Genetic+Algorithms%3A+Initializing+the+GA+with+the+Iterative+Approximate+Method+for+Optimizing+the+Traveling+Salesman+Problem-Experimental+Insights&btnG=
https://www.mdpi.com/2076-3417/14/8/3151
https://doi.org/10.1155/2021/7252719
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Genetic+Algorithm+to+Solve+the+Scheduling+Problem+of+College+English+Courses&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/7252719
https://doi.org/10.3390/a15100369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Static+Assignment+Algorithm+of+Uniform+Jobs+to+Workers+in+a+User-PC+Computing+System+Using+Simultaneous+Linear+Equations.+&btnG=
https://www.mdpi.com/1999-4893/15/10/369

Regis Donald HONTINFINDE et al. / IJETT, 73(7), 1-11, 2025

11

 end while

 return solutionFinal

 end procedure

 procedure MAKESELECTION

 Choose the best two solutions as parents, let them be

child 1 and child 2

 end procedure

 procedure DOCROSSOVER

 c ← random(0, child1.content.length)

 s1 ← child1.content.clone()

 s2 ← child2.content.clone()

 for i←c up to the length of child1.content-1 do

 Swap s1[i] and s2[i]

 end for

 Set child1.content to s1

 Set child2.content to s2

 end procedure

 procedure DOMUTATION

 s1 ← child1.content.clone()

 s2 ← child2.content.clone()

 m ← random(0, child1.content.length)

 Swap s1[m] and s1[m+1]

 m ← random(0, child1.content.length)

 Swap s2[m] and s2[m+1]

 Set child1.content to s1

 Set child2.content to s2

 end procedure

