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Abstract - A genetic algorithm is a metaheuristic inspired by the process of natural selection , which belongs to the large class 

of evolutionary algorithms. This makes it a good candidate for the development of new algorithms to solve optimization proble ms. 

In this study, we investigated the User-PC computing (UPC) system by proposing a genetic algorithm to assign jobs to workers 

to minimize the response time. To evaluate the effectiveness of the proposed genetic algorithm, we conducted experiments 

involving the execution of 72 jobs on the UPC system, using six worker PCs with varying numbers of threads and processor 

cores. We evaluated the algorithm in two distinct scenarios: static and dynamic job scheduling. In the static scheduling scen ario, 

the algorithm assigns all available jobs to workers in a manner that minimizes the overall response time. The dynamic assignment 

scenario assigns newly arrived jobs to workers as they become available. The results demonstrate that the proposed genetic 

algorithm achieved a 26.4%  reduction in response time compared to the random multiplestart local search (DRMSLS) algorithm. 

The results of this research have the potential to improve the performance of Next-Generation Networks (NGNs) in the 

telecommunications sector. 

Keywords - Genetic Algorithm, Grid computing, Telecommunications networks, Thread job scheduling, UPC distributed 

computing. 

1. Introduction 
The applications of grid computing are vast and varied. In 

the telecommunications sector, with the advent of Next-

Generation Networks (NGN), grid computing appears as a 

promising technology in this context, potentially enabling 

telecom operators to manage their resources dynamically and 

optimally via a single platform. In response to the growing 

demand for cost-effective, high-performance computing 

solutions, this paper presents a distributed computing platform 

based on the master-worker model, referred to as the User-PC 

computing (UPC) system [1-7]. The UPC system is founded 

on a straightforward yet powerful concept: the master node 

collects and queues job requests from users, then strategically 

allocates these jobs to UPC workers, leveraging the idle 

computational resources available on the personal PCs of UPC 

members. The workers execute their assigned jobs, and the 

results are transmitted back to the master node, which 

coordinates the aggregation of the final output for the user [2-

14]. A key performance metric for the UPC system is the 

makespan, or the total time required to complete all submitted 

jobs. Although the literature offers various task scheduling 

algorithms in distributed environments including greedy 

heuristics, round-robin, and custom heuristics, etc., the 

application of evolutionary approaches such as genetic 

algorithms remains largely unexplored in the specific context 

of User PC systems with quite heterogeneous workers in both 

static and dynamic cases. For instance, Kamoyedji et al. [2] 

suggested a static job-worker assignment algorithm designed 

for User-PC Computing (UPC) systems. Other studies, 

including [1, 3, 7], investigate different rule-based or cost-

effective scheduling strategies, although they frequently use 

the assumption that worker capabilities are uniform or 

function in static batch settings. Although metaheuristic 

techniques, such as swarm optimization and genetic 

algorithms, have shown encouraging results in classical grid  

contexts [10, 12], their use is still uncommon in UPC 

environments, particularly those with dynamic work inflow 

and heterogeneous multi-core PCs. Unlike these previous 

methods, this paper introduces a novel job-worker assignment 

algorithm specifically designed for the UPC system. The 

algorithm builds upon prior research and is enhanced by a 

Genetic Algorithm framework, tailored to address the 

complexities of dynamic job scheduling. It accounts for 

crucial factors such as the number of threads each job utilizes 
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during execution and the available CPU cores on each worker 

PC. This study examines two distinct scenarios: static job-

worker assignment and dynamic job-worker assignment. In 

the static scenario, all jobs are known in advance and assigned 

to worker PCs with the primary goal of minimizing the overall 

makespan. In contrast, the dynamic scenario assumes real-

time job arrivals; jobs are queued and dispatched to worker 

PCs as they become available after completing prior 

assignments. A series of experiments was conducted to assess 

the effectiveness of the proposed genetic algorithm -based 

scheduling approach. The experimental setup replicates that of 

Kamoyedji et al. [2], using 72 jobs and six worker PCs with  

varying thread and CPU core configurations. This replication 

ensures consistency and fairness when comparing both 

approaches. The rest of the paper is arranged as follows. 

Section II revisits the notion of a User-PC Computing (UPC) 

system, laying the groundwork for the suggested scheduling 

paradigm. Section III provides a mathematical description of 

the employment scheduling problem. Section IV presents the 

study's central concept: the genetic algorithm-based 

jobworker assignment technique. Section V presents and 

analyzes the experimental outcomes in both static and 

dynamic environments. Section VI closes the report by 

outlining potential future research directions. 

 
Fig. 1 Overview of the UPC system [17] 

2. Review of User-PC System 
The User-PC computing system (UPC) is a distributed 

computing platform that leverages the idle resources of 

Personal Computers (PCs) owned by a group of users to run 

computational jobs. Figure 1 provides an overview of the UPC 

system, which follows a master-worker architecture [17]. The 

system operates on a master-worker model, where the master 

PC manages various processes, including job scheduling, job 

transmission, job execution, result transmission, and result  

collection [1-3]. 

• Job Scheduling Job scheduling in the UPC system is a 

crucial process handled by the master PC. It involves 

receiving job processing requests from users and 

determining the most suitable worker PCs to run the jobs. 

Effective job scheduling algorithms consider factors such 

as job dependencies, CPU core utilization, and load 

balancing to allocate jobs efficiently. This ensures 

optimal resource utilization and minimizes the makespan, 

resulting in improved system performance. 

• Job Transmission Once the job scheduling process is 

completed, the master PC transmits the necessary job 

information to the job's assigned worker PC. Job 

Transmission encompasses delivering all relevant 

information and instructions required for job execution. 

Efficient job transmission mechanisms ensure reliable 

and timely delivery of job data, enabling worker PCs to 

begin job execution promptly. 

• Job Execution Worker PCs receive the job data from the 

master PC and execute their assigned jobs based on the 

provided instructions. Each worker PC utilizes its 

available computational resources, such as CPU cores and 

memory, to execute the jobs efficiently. Job execution 

may involve parallel processing, where multiple jobs are 

executed simultaneously to enhance overall performance. 

• Result transmission Upon completion of the assigned 

jobs, worker PCs transmit the results back to the master 

PC. Result transmission entails sending the output data 

and any relevant information generated during job 

execution. Reliable and efficient result transmission 

ensures accurate and timely delivery of results to the 

master PC. 

• Result Collection The master PC collects the results from 

the worker PCs and performs any necessary post-

processing or aggregation jobs. Efficient result collection  

mechanisms enable accurate retrieval of job results and 

facilitate further analysis or presentation to the users who 

initiated the job processing requests. 

This section provides an overview of related work in the 

literature. To the best of the authors' knowledge, no prior 

studies using genetic algorithms have explicitly considered the 

number of CPU cores and/or the number of job threads in the 

context of job scheduling.  

 

Xu et al. [1] introduced the Deadline Preference Dispatch 

Scheduling (DPDS) algorithm, a dynamic scheduling method 

that prioritizes deadline constraints. They further developed 

the Improved Dispatch Constraint Scheduling (IDCS) 

algorithm, which integrates a risk prediction model aimed at 

minimizing resource wastage and maximizing job completion 

rates.  

 

Kamoyedji et al. [2] proposed an O(n^3 ) algorithm for 

the dynamic allocation of jobs to worker PCs upon arrival, 

with the objective of minimizing the makespan in the UPC 

system. This algorithm is derived from a previously developed 

static job scheduling method based on the randomized multi-

start local search technique. Although the algorithm considers 
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CPU core utilization, its efficacy diminishes as the number of 

jobs increases substantially.  

 

Amalarathinam et al. [14] presented the Dual Objective 

Dynamic Scheduling Algorithm (DoDySA), which schedules 

jobs based on the Earliest Starting Time (EST) and Earliest  

Finishing Time (EFT) criteria. The algorithm aims to 

maximize CPU utilization while minimizing the makespan. 

Empirical results indicate that DoDySA outperforms existing 

alternatives in achieving these dual objectives.  

 

Bhatia [4] provided a comprehensive review of job 

scheduling algorithms in the context of grid computing, 

categorizing them into heuristic and nature-inspired 

approaches. These algorithms primarily seek to minimize the 

execution time of individual jobs or to enhance the processing 

capacity of available computational resources. Recent 

research has enhanced evolutionary algorithms for difficult 

scheduling challenges.  

 

For example, a  2021 study on college course scheduling 

developed a domain-specific local search operator and 

upgraded genetic operators (selection, crossover, mutation) to 

increase convergence speed and diversity [16]. Another 2024 

work suggested a unique greedy-based seeding technique for 

the initial GA population, considerably enhancing solution 

quality and convergence time for the Travelling Salesman 

Problem [15].  

 

While these techniques illustrate the adaptability and 

strength of genetic algorithms in a variety of situations, none 

of them solves the specific issues of work scheduling in User -

PC computing systems with dynamically accessible, 

heterogeneous resources. This study attempted to overcome 

this gap by offering a GA-based scheduling mechanism that 

explicitly takes into account both thread-level task 

configuration and worker CPU core availability in both static 

and dynamic job arrival circumstances. 

 

3. Job-Worker Assignment Problem 

Formulation 
This section defines the mathematical symbols, 

constraints, and formal formulation of the job scheduling 

problem in the UPC system. 

Let us consider the following: 

• Set of jobs: 𝐼 = 1,2, … , 𝑛, where 𝑛 is the total number of 

available jobs. 

• Set of workers: 𝑈 = 1,2, … , 𝑚 , where 𝑚 is the total 

number of available workers. 

The objective function 𝒞, representing the overall 

performance metric of the job scheduling process, will be 

minimized. 

3.1. Conditions 

• Total number of assigned jobs: The total number of jobs 

assigned must always be less than or equal to the total 

number of available jobs, ensuring that all jobs are 

assigned and none are left unallocated. 

• Total number of workers assigned: The total number of 

workers assigned must always be less than Equal to or 

greater than the total number of available workers, 

ensuring that the workload is distributed among the 

available resources. 

• Job assignment uniqueness: Each job can only be 

assigned once, guaranteeing that jobs are not duplicated 

or assigned to multiple workers simultaneously. 

• Resource requirements: The resource requirements of 

each job on any given worker PC must not exceed the 

usage limit specified by the user. This ensures that the 

assigned jobs can be executed within the available 

resources of the worker PCs. 

3.2. Assumptions on Job-Worker Assignments 

• Any worker can process one job at a  time to avoid job 

swapping. 

• Workers can have various numbers of CPU cores, and 

they may differ from each other in this regard. 

• Any job can be assigned to any worker capable of 

processing it. 

• All queuing jobs can be assigned to workers 

simultaneously. 

• The arrival of future jobs is unpredictable and cannot be 

forecasted in advance. 

3.3. Mathematical Formulation of the Assignment Problem 

Let 𝒯(𝑖, 𝑢) be a binary decision variable that equals 1 if 

task 𝑖 is assigned to compute unit 𝑢, and 0 otherwise. This 

variable governs the assignment process in the distributed 

computing environment. The goal is to minimize the overall 

computational cost 𝐶 , which reflects the total processing load 

distributed across all available units. 

𝒞 = ∑  𝑢∈𝒱
∑  𝑖∈ℐ 𝒯(𝑖, 𝑢) ⋅ 𝑑𝑖,𝑢   

Where 𝑑𝑖,𝑢  denotes the estimated execution time of task 𝑖 

on unit 𝑢. 

Subject to the following constraints: 

1. Total number of assigned tasks: ∑  𝑖∈ℐ
∑  𝑢∈𝒱 𝒯(𝑖, 𝑢) = 𝑁  

Where 𝑁 is the total number of tasks. 

2. Uniqueness of assignment: ∑  𝑢 ∈𝒱 𝒯(𝑖, 𝑢) = 1∀𝑖 ∈ ℐ  

3. Resource constraint: For each task-unit pair, the resource 

demand must not exceed the unit's capacity. Let 𝑅(𝑖, 𝑢)  

be the resource demand of task 𝑖 on unit 𝑢, and 𝐿𝑢  the 

resource limit of unit 𝑢: 𝑅(𝑖, 𝑢) ≤ 𝐿𝑢∀𝑖 ∈ ℐ, ∀𝑢 ∈ 𝒱  

4. Positive execution time: 𝑑𝑖 ,𝑢 > 0 ∀𝑖 ∈ ℐ, ∀𝑢 ∈ 𝒱  
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4. Proposed Job-Worker Assignment Algorithm 
This section introduces the proposed job-worker 

assignment algorithm designed for the UPC system. The 

algorithm seeks to optimize job-to-worker assignments to 

minimize the makespan and enhance overall system 

performance.  

It consists of two main components: a  greedy algorithm 

and a genetic algorithm. Before presenting the detailed 

implementation, an overview of the genetic algorithm is 

provided. 

4.1. Genetic Algorithm Overview 

A genetic algorithm is a metaheuristic optimization 

technique inspired by the process of natural selection and 

evolution. It operates by iteratively evolving a population of 

candidate solutions to a problem, mimicking the principles of 

survival of the fittest, crossover, and mutation. The genetic 

algorithm is based on the following steps: 

• Initialization: The first step of the Genetic Algorithm is 

the population seeding phase [15]. The initialization of a 

population of candidate solutions. Each solution 

represents a potential queuing job assignment 

configuration. In this case, a  greedy algorithm is used to 

generate six solutions for the initial population. 

• Evaluation: Evaluate the fitness of each solution in the 

population based on the objective function, which 

measures the quality of the job assignments (the 

makespan). The fitness score reflects how well a  solution 

performs in terms of the objective function. 

• Selection: Select a subset of the fittest individuals from 

the population to serve as parents for the next generation. 

The selection process favors solutions with higher fitness 

scores, increasing their likelihood of being chosen as 

parents. Because the goal is to minimize the global 

makespan, only solutions with lower fitness scores are 

selected. 

• Crossover: Apply crossover operators to the selected 

parents to generate offspring solutions. Crossover 

involves combining the genetic material (job 

assignments) from two or more parents to create new 

solutions. This process allows for the exploration of 

different combinations of job assignments. 

• Mutation: Introduce random changes in the offspring 

solutions by applying mutation operators. Mutation alters 

certain elements (job assignments) within the solutions to 

introduce diversity and prevent premature convergence to 

suboptimal solutions. 

• Evaluation: Evaluate the fitness of the new offspring 

solutions resulting from crossover and mutation. 

• Replacement: Replace less fit individuals in the 

population with the improved offspring solutions, 

ensuring that the population continues to evolve towards 

better solutions. However, [16] shows that when the 

initial population is too large, the efficiency of the 

algorithm is reduced, and the computation time of the 

large algorithm execution increases greatly. 

On the other hand, if the initial population is too small, 

the diversity of the population is reduced, the sample 

capacity is reduced, and the overall performance of the 

algorithm becomes poor. 

• Termination: Repeat steps 3-7 for a predetermined 

number of iterations (generations) or until the 

convergence criteria (the same offspring in over 100 

generations) is reached. 

By iteratively applying selection, crossover, and mutation 

operators, the genetic algorithm explores the search space, 

gradually improving the quality of solutions, and converging 

towards optimal or near-optimal job assignments. 

4.2. Construction of the Initial Population Using a Greedy 

Algorithm 

The development of the genetic algorithm begins with the 

construction of the initial population. A greedy algorithm is 

employed to generate the initial population of queued task 

assignments. This will generate a large set of usable solutions 

based on the workers' resource utilization. Here is the process 

flow: 

1. Using predetermined thresholds, classify the queued 

workers and jobs. The classification ranges for queued 

workers and occupations are determined by these 

thresholds. The following thresholds were used in the 

implementation: 5, 8, 14, 17, 22, and 28. Employees and 

occupations that fall within the same threshold range are 

considered to belong to the same class. 

2. For each worker class: 

• The workers are ranked in ascending order based on CPU 

core utilization. 

• Iterate through the tasks of the relevant class one by one:  

i. For each task, determine an appropriate value 

(relevance), such as the CPU core utilization rate 

among neighboring workers. 

ii. Sort the tasks in ascending order based on their 

relevance. 

iii. Considering the worker's available resources (disk  

space, RAM size), assign each task to the worker 

with the lowest cost. 

3. Generate a (child) solution by allocating tasks to workers 

according to the results of the greedy algorithm. During 

task assignment, the greedy algorithm considers worker 

PC resource availability and CPU core utilization. It 

ensures that people and tasks with similar attributes are 

considered together by ranking them according to 

relevance, promoting a more efficient and balanced 

distribution of tasks. 
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4.3. Time Complexity 

Time complexity is a measure of how the execution time 

of an algorithm grows as the size of the input increases. It 

helps us understand the efficiency of an algorithm in 

processing larger data sets. 

Time complexity of the Greedy Algorithm Part: The time 

complexity of the greedy algorithm can be analyzed as 

follows: 

• Dividing workers and jobs into classes based on the 

threshold: 𝑂(𝑛 + 𝑚) , where 𝑛 is the number of workers, 

and 𝑚 is the number of jobs. 

• Sorting the workers for each job class based on CPU 

information: 𝑂(𝑚 log 𝑚). 

• Calculating and assigning a heuristic value to each job: 

𝑂(𝑚) . 

• Finding the most suitable worker for each job and 

assigning the job to the selected worker: 𝑂(𝑚 log 𝑛), 

where 𝑛 is the number of workers. Overall, the time 

complexity of the greedy algorithm is 𝑂(𝑛 + 𝑚 +
𝑚 log 𝑚 + 𝑚 log 𝑛) = 𝑂(𝑚 log 𝑚 + 𝑚 log 𝑛). 

Time complexity of the Genetic Algorithm Part: The time 

complexity of the genetic algorithm can be analyzed as 

follows: 

• Sorting the scores in ascending order: 𝑂(𝑛 log 𝑛), where 

𝑛 is the population size. 

• Making selection: 𝑂(𝑛). 

• Performing crossover and mutation: 𝑂(𝑛) . 

Overall, the time complexity of the genetic algorithm is 

𝑂(𝑛 log 𝑛). As the greedy and genetic algorithms are executed 

sequentially, the overall time complexity is determined by the 

component with the higher computational cost, especially the 

greedy algorithm, which has a complexity of 𝑂(𝑚log 𝑚 + 

𝑚 log 𝑛 ). Therefore, the global time complexity of the entire 

job scheduling process, combining both the greedy algorithm 

and the genetic algorithm, is 𝑂(𝑚 log 𝑚 + 𝑚 log 𝑛) =  

𝑂(𝑚 log 𝑚 𝑛). 

4.4. Dynamic Job Scheduling Algorithm Overview 

The dynamic job-worker scheduling genetic algorithm 

repeatedly calls the previously proposed static genetic 

algorithm whenever jobs are still queuing and idle worker PCs 

are in the system. The procedure for managing dynamic job 

arrivals in the UPC system is the same as the one described in 

[2]. The pseudo-code of the dynamic job scheduling algorithm 

is described in Algorithm 1. 

4.5. Comparison of Static vs Dynamic Algorithm 

Table 1 summarizes the main differences between the 

static and dynamic scenarios addressed by the proposed Job 

Scheduling Genetic Algorithm. 

5. Evaluation 
5.1. Symbol 

First, here are the variables used for the experimental 

evaluation. 

𝑀/𝑀/𝑐  is a  multi-server queuing model; 

Algorithm 1: Dynamic Job Scheduling Algorithm 

    function GETIDLINGWORKERSET(workerSet) 

        idlingWorkerSet ← ∅ 

        for each workerPC w in workerSet do 

            if current worker 𝑤 is idling then 

                Add the current worker to idlingWorkerSet. 

            end if 

        end for 

        return idlingWorkerSet 

    end function 

    𝑈, 𝐼, timer.initialize(), startTime ← 0, 

    resultingJobWorkerMapping ← ∅, makespan = 0 

    startTime ← timer.getCurrentTime() 

    while true do 

        idlingWorkerSet ← GetIdlingWorkerSet(𝑈) 

        if idlingWorkerSet ≠ ∅ then 

            resultingJobWorkerMapping ← Static Job 

    Scheduling Method(𝑈, 𝐼) 

            Assign jobs to idling worker PCs based on 

    resultingJobWorkerMapping. 

            Update the queue of waiting jobs 𝐼. 

        end if 

        if there are no new job arrivals then 

            makespan = timer.getCurrentTime()-startTime 

            return makespan 

        end if 

        Sleep for a short while 

    end while 
 

• 𝑈 is a  set of available worker PCs, and 𝐼 is a  set of queuing 

jobs to be scheduled. 

• 𝑤 is a  worker PC characterized by an available CPU 

performance index, an available memory size, an 

available disk space and a CPU usage limit lim 𝑤 set by 

the user for the UPC system; 

• 𝑗 is a  job characterized by some requirements in terms of 

CPU time, memory size and disk space; 

• 𝜏𝑗,𝑤 is the processing time associated with the processing 

of job 𝑗 on worker PC 𝑤; 

• 𝜆 is the average job arrival rate, and 𝜇 is the average job 

processing rate; 

• 𝜎 = 𝜆/(|𝑈|𝜇) is the average utilization of each worker 

PC ( |𝑈| is the size of the worker PCs) 

5.2. Experimental Methodology 

The genetic algorithm was implemented in Java and 

evaluated on a computer system composed of one master PC 

and six worker PCs, as shown in Table 1. Each chromosome 

encodes a task-to-worker assignment, where each gene 
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represents a worker ID associated with a specific task. A 

population size of six solutions was used, with a one-point 

crossover probability of 0.6 and a mutation rate of 0.5 applied 

to the initial population. 

Table 1. Overview of the differences between static and dynamic 

scheduling as implemented in a User-PC computing system 

Aspect Static Scenario Dynamic Scenario 

Number of 

jobs 

Known 

beforehand 

Arrive 

progressively 

Job arrival 

behavior 

All submitted at 

once 

Follow a Poisson-

like distribution 

System 

behavior 

Scheduler runs 

once, then stops 

Scheduler stays 

active, waiting for 

new jobs 

Assignment 

strategy 

Global 

assignment using 

Greedy + 

Genetic 

Algorithm 

File queuing + 

repeated use of the 

same static 

assignment logic 

Scheduling 

frequency 

Single-shot 

decision 

Triggered by job 

arrival or job 

completion 

Adaptability 
No reallocation 

during execution 

Jobs are 

dynamically 

matched to 

available workers 

Main 

scheduling 

challenge 

Achieving 

optimal balance 

in one pass 

Minimizing 

makespan under 

uncertainty and 

fluctuating loads 

 

To evaluate the genetic algorithm with an increasing 

number of jobs, each of the 24 jobs was executed once ( = 24 

jobs in total), twice ( = 48 jobs in total), and three times ( =
72 jobs in total). In this evaluation, jobs join the system in the 

same order as in Table 2.  

As a performance index for evaluation, the makespan is 

calculated as the difference between the first job arrival time 

and the last job completion time. It is important to note that 

the experiments were repeated 50 times for 24 jobs, 100 times 

for 48 jobs, and 150 times for 72 jobs. 

Table 2. PCs specifications 

PC # cores CPU Type clock Rate Memory Size 

Master 4 core i5 3.20 GHZ 8 GB 

PC1 4 core i3 1.70 GHZ 2 GB 

PC2 4 core i5 2.60 GHZ 2 GB 

PC3 4 core i5 2.60 GHZ 2 GB 

PC4 8 core i7 3.40 GHZ 4 GB 

PC5 16 core i9 3.60 GHZ 8 GB 

PC6 20 core i9 3.70 GHZ 8 GB 

5.3. Results for Static Job-Worker Assignment 

This section evaluates the results of the static job-worker 

assignment produced by the proposed algorithm, through 

comparisons with the reference algorithm (a method based on 

the randomized multi-start local search proposed by 

Kamoyedji et al. in [2]). The outcome of the evaluation 

provides valuable insight into the effectiveness of the 

proposed approach in optimizing static job assignments within 

the User-PC computing system. 

Table 3. Jobs specifications 

Job # Job Name 
# Threads Disk 

Usage 

1 Network Simulator 1 0.392 GB 

2 Optimization Algorithm 1 1.5 GB 

3 DCGAN 17 1.9 GB 

4 RNN 17 1.9 GB 

5 CNN 17 1.9 GB 

6 FFmpeg 18 2.8 GB 

7 Converter 1 1.1 GB 

8 Palabos 2 6.7 GB 

9 Flow 4 0.438 GB 

10 Blockchain Mining 1 920 MB 

11 COVID Detection 23 2.95 GB 

12 COVID Outbreak Prediction 4 1.84 GB 

13 Multimedia Content Resizing 18 2.8 GB 

14 
Multimedia Content Format 

Changing 
18 2.8 GB 

15 OpenFOAM 5W 1 1.4 GB 

16 OpenFOAM 10 W 1 1.4 GB 

17 OpenFOAM 15W 1 1.4 GB 

18 OpenFOAM 20W 1 1.4 GB 

19 OpenFOAM 25 W 1 1.4 GB 

20 OpenFOAM 30 W 1 1.4 GB 

21 OpenFOAM 35W 1 1.4 GB 

22 OpenFOAM 40 W 1 1.4 GB 

23 OpenFOAM 45 W 1 1.4 GB 

24 OpenFOAM 50W 1 1.4 GB 

 

Table 5 shows makespan results in 

hours:minutes:seconds (H:M:S) format for static job-worker 

assignments. It compares the outcomes of the genetic 

algorithm-based approach and the reference algorithm 

proposed by Kamoyedji et al. in [2], across three experimental 

settings: 24 jobs, 48 jobs, and 72 jobs. Table 4 and Figure 2 

clearly show that the proposed method outperforms the 

reference algorithm in terms of makespan. The 

"Improvement" row quantifies the efficiency gains achieved 

by the proposed approach compared to the reference 

algorithm, both in terms of time saved ( H: M: S ) and as a 

percentage. This comparison underscores the potential for the 

genetic algorithm to significantly reduce the makespan and 

enhance computational efficiency across various job 

instances. 
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5.4. Results for Dynamic Job-Worker Assignment 

The following section presents an evaluation of the 

dynamic job-worker assignment results produced by the 

proposed algorithm, through comparison with a reference 

method based on the randomized multi-start local search, as 

introduced by Kamoyedji et al. [2]. 

 
Table 4. Job CPU times 

Job  

# 
PC1 

PC2 & 

 PC3 
PC4 PC5 PC6 

1 02:14:46 01:06:44 00:54:21 00:39:40 00:36:09 

2 00:41:43 00:26:38 00:20:27 00:13:53 00:13:10 

3 01:37:14 01:09:28 00:22:44 00:12:45 00:11:15 

4 00:17:43 00:12:01 00:07:03 00:05:37 00:04:49 

5 00:26:04 00:22:22 00:07:07 00:05:24 00:04:47 

6 00:46:37 00:31:49 00:13:23 00:07:59 00:06:54 

7 00:17:09 00:11:34 00:05:41 00:04:53 00:04:15 

8 00:12:51 00:08:38 00:05:24 00:04:29 00:03:19 

9 00:25:20 00:14:45 00:11:08 00:08:32 00:07:55 

10 00:36:28 00:09:09 00:07:53 00:05:59 00:04:14 

11 00:39:35 00:24:53 00:10:42 00:04:08 00:03:16 

12 00:13:12 00:06:35 00:05:09 00:03:55 00:03:01 

13 00:34:50 00:19:47 00:12:33 00:07:48 00:07:10 

14 00:36:33 00:24:56 00:10:55 00:05:45 00:04:19 

15 00:12:23 00:07:19 00:06:51 00:05:04 00:04:28 

16 00:29:58 00:19:18 00:16:58 00:13:08 00:11:27 

17 00:45:57 00:30:44 00:25:59 00:20:31 00:17:54 

18 00:55:44 00:36:54 00:32:25 00:25:17 00:22:13 

19 01:20:36 00:52:29 00:46:40 00:36:55 00:32:20 

20 01:37:25 01:05:44 00:56:27 00:45:18 00:39:42 

21 01:44:18 01:12:44 01:06:06 00:51:19 00:44:56 

22 01:52:04 01:26:35 01:14:53 01:00:08 00:52:44 

23 02:14:32 01:30:28 01:19:17 01:03:01 00:55:19 

24 02:22:38 01:32:22 01:23:02 01:07:02 00:58:40 
 

Table 5. Makespan results for static job-worker assignment (H:M:S) 

Method 24 Jobs 48 Jobs 72 Jobs 

RMSLS [2] 02:06:58 04:08:41 06:10:31 

Proposed Method 01:49:33 03:45:05 05:37:39 

Improvement (H:M:S) 00:17:25 00:23:36 00:32:52 

Improvement(%) 13.7% 9.49% 8.8% 

 

To model the dynamic scenario, a  non-preemptive M/M/c 

queue model is employed, with a fixed number of worker PCs 

denoted as 𝑐 = |𝑈| = 6 [9]. The average job arrival rate is 

approximately Λ ≈ 1 job per 500 seconds, consistent with the 

model described in [2]. Job arrivals are simulated using a 

Poisson distribution to reflect continuous entry into the UPC 

system until the final job arrives [9]. Upon arrival, each job is 

immediately assigned to an available worker PC if one is idle; 

otherwise, it waits in the queue.  

Table 6 presents the makespan comparison for the two 

algorithms under job loads of 24, 48 and 72. The results 

indicate that the proposed algorithm consistently outperforms 

the reference approach. Furthermore, the data presented in 

Table 4 is used to estimate the average worker service rate 

through a two-step process. First, the average service rate for 

each worker PC is computed across all assigned jobs as 

follows: 

 

 
Fig. 2 Evolution of the makespan depending on the number of jobs 
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𝜇𝑎𝑣𝑔𝑤 =
1

|𝐼|
∑  𝑗 ∈𝐼   𝜏𝑗,𝑤∀𝑤 ∈ 𝑈 (1) 

Given the use of six worker PCs, the previously computed 

values are averaged across all worker PCs as follows: 

𝜇𝑎𝑣𝑔 =
1

|𝑈|
∑  𝑤∈𝑈   𝜇𝑎𝑟𝑔𝑤 = 1𝑗𝑜𝑏/2023𝑠  (2) 

The response time represents the total amount of time a 

job spends both in the queue and in service and is given by [9]:  

𝐶(|𝑈|,𝜆/𝜇)

|𝑈|𝜇−𝜆
+

1

𝜇
 (3) 

Using the previous formula, the average response time of 

the system can be estimated by [2]: 

𝐴𝑣𝑔𝑅𝑡1
=

𝐶(|𝑈|,𝜆/𝜇)

|𝑈|𝜇−𝜆
+

1

𝜇
 (4) 

Where the response time is the total time a job spends 

both in the queue and in service, the probability that an 

arriving job is forced to join the queue, that is, all worker PCs 

are occupied, is given by: 

𝐶(|𝑈|, 𝜆/𝜇) =
1

1+(1−𝜎)( |𝑈|!

(|𝑈|𝜎)|𝑈|
)∑  |𝑈|−1

𝑘=0  
(|𝑈|𝜎)𝑘

𝑘!

  (5) 

Which is Erlang's C formula [9].  

Using the Erlang C formula, and the approximate value of 𝜎, 

𝜎 =
1/500𝑠

(6∗1/2023)
≈ 67% , as follows: 

𝐶(|𝑈|, 𝜆/𝜇) ≈
1

1+(0.33∗|6|!

(4.02)6
) ∑  𝑘=0

5
 
(4.02)𝑘

𝑘!

≈ 0.28 (6) 

So, 𝐴𝑣𝑔𝑅𝑡1
=

0.28

6∗1 job /2023𝑠 −1 job /500𝑠
+

1

1 job /2023𝑠
= 

0.28

6∗1 job /2023𝑠 −1 job /500𝑠
+ 2023𝑠 = 290𝑠 + 2023𝑠 = 

2313𝑠 = 38𝑚𝑖𝑛33𝑠  

Using experiment results, the average response time of 

the system is estimated for 24 distinct jobs as 33 min 46𝑠  

𝐴𝑣𝑔𝑅𝑡2
=

48626

24
= 2026𝑠 = 33 min46𝑠  

The theoretical average response time of the system, 

AvgRt1, is way greater than the average response time, 

AvgRt2, calculated using experimental data.  

This is mainly because 2/3 of the available jobs use the 

most powerful machines during execution and are assigned to 

either worker 6, worker 5, or worker 4 (half of the available 

worker PCs). Table 6 and Figure 3 clearly show that the 

proposed method outperforms the reference algorithm in 

terms of makespan. 

Table 6. Makespan results for dynamic job-worker assignment (H:M:S) 

Method 24 jobs 48 jobs 72 jobs 

RMSLS [2] 05:39:48 10:35:38 14:40:01 

Proposal 04:09:53 09:01:55 12:15:22 

Improvement (H:M:S) 01:29:55 01:33:43 02:24:42 

Improvement (%) 26.46% 14.74% 16.4% 

 
Fig. 3 Evolution of the makespan depending on the number of jobs 
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Table 7 reports the mean makespan and standard 

deviation observed across these experiments. 

Table 7. Statistical summary of makespan results over multiple 
iterations for each job set 

Number  

of Jobs 

Mean 

Makespan (s) 

Standard  

Deviation (s) 

Number 

of Iterations 

24 Jobs 4:34:40 0:27:31 50 

48 Jobs 8:23:58 0:35:23 100 

72 Jobs 11:48:33 0:41:27 150 

 

5.5. Discussion of Performance Gains 

The superior performance of the proposed genetic 

algorithm, up to 26.4% reduction in makespan compared to 

the reference algorithm, can be attributed to several core 

design improvements. The approach takes into account both 

job thread counts and available CPU cores, allowing for 

efficient, contention-free allocation, which was often 

overlooked in previous studies. A greedy initialization method 

is employed instead of random seeding, improving the quality 

of the initial solutions and accelerating convergence. 

Crossover and mutation were designed to assure both variety 

and convergence: crossover mixes successful patterns from 

top candidates, whilst mutation avoids premature convergence 

by exploring new options. 

6. Conclusion 
This study proposed a genetic job scheduling algorithm 

that incorporates both the number of threads used by jobs 

during execution and the number of CPU cores available on 

each worker PC, with the objective of minimizing the overall 

makespan. The algorithm was validated through a series of 

experiments involving up to 72 jobs and six worker PCs. The 

results indicate an improvement of up to 26.4% in makespan 

compared to the reference algorithms. Aside from theoretical 

contributions, this approach has practical implications for 

telecommunications carriers. Specifically, the suggested  

UPC-based scheduling technique can be used to dynamically 

offload non-critical computing jobs (such as billing 

procedures, log analytics, and traffic monitoring) to 

underutilized machines across dispersed infrastructures. 

However, the current study has significant shortcomings that 

provide opportunities for further research.  

First, it presupposes that job execution timings are known 

in advance, which may not be practical in unpredictable 

contexts. Second, the tuning of GA parameters (population 

size, crossover, and mutation rates) was empirical and may be 

improved using automa ted or adaptive procedures. In 

particular, the present population size was moderate, which  

may limit the investigation of the solution space and result in 

a lack of globally optimum solutions. Finally, the proposed 

technique is currently centralized; expanding it to 

accommodate multi-master or decentralized coordination may 

improve scalability and fault tolerance. Future studies will 

address these issues by combining predictive modeling of job 

durations and investigating reinforcement learning 

methodologies for more adaptable scheduling. 
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Appendix 
1. Pseudo-Code of the Static Job Scheduling Algorithm 

Algorithm 2 Job Assignment Algorithm: Greedy Part 

    procedure BulldInITIALPOPULATION(workers, jobs) 

        Initialize an empty population 

        Define the predefined thresholds as an array 

        for threshold in predefined thresholds do 

            Create two classes of workers and jobs 

            for 𝑤 in workers do 

                if w.nbOfCores ≥ threshold then 

                    Add w to the 1st worker class 

                else 

                    Add w to the 2nd worker class 

                end if 

            end for 

            for j in jobs do 

                if 𝑗 ≥  threshold then 

                    Add j to the 1st job class 

                else 

                    Add j to the 2nd job class 

                end if 

            end for 

            for 𝑘 in [0,1] do 

                Sort workerClass[k] based on CPU information 

                Get the current job class jobClass [𝑘] 

                for each job in the current job class do 

                    Calculate and assign a value θ to the job 

                end for 

                Sort the jobs in the class based on their θ value 

                for each job in the sorted job class do 

                    Find the most suitable worker for the job based 

on cost and resource constraints 

                    if a  suitable worker is found then 

                        Assign the job to that worker 

                    end if 

                end for 

            end for 

            Initialize an empty solution 

            for jobClass in jobClasses do 

                for workerClass in workerClasses do 

                    Apply the greedy algorithm to the current 

jobClass and workerClass 

                    Add the job-worker assignments to the solution 

                end for 

            end for 

            if the solution contains all jobs then 

                Add the solution to the population 

            end if 

        end for 

        return the population 

    end procedure 

2. Pseudo-code of the Genetic Algorithm 

Algorithm 3 Job Assignment Algorithm: Genetic Part 

    procedure STARTGENETICALG(P (population), 

    nbStopCriteria) 

        conv ← 0 

        solutionFinal ← 𝑛𝑢𝑙𝑙 

        while conv < nbStopCriteria do 

            Calculate scores 

            Sort scores in ascending order 

            MAKESELECTION 

            DOCROSSOVER 

            DOMUTATION 

            score1 ← P.child1.getScore () 

            score2 ← P.child2.getScore() 

            if (score1 < scores[0] or scores[1]) then 

                Remove the last parent from $P$ 

                Add child1 to $P$ 

            end if 

            if (score2 < scores[0] or scores[1]) then 

                Remove the last parent from $P$ 

                Add child2 P 

            end if 

            if (child1 or child2 isAdded) then 

                conv ← 0 

            else 

                𝑐𝑜𝑛𝑣  ← 𝑐𝑜𝑛𝑣 + 1 

            end if 

            solutionFinal ← p.solutions[0] 
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https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+workflow+scheduling+in+grid+computing+based+on+dynamic+resource+availability&btnG=
https://www.sciencedirect.com/science/article/pii/S2215098615000087
https://www.sciencedirect.com/science/article/pii/S2215098615000087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principles+of+Ad-Hoc+Networking&btnG=
https://www.wiley.com/en-in/Principles+of+Ad-hoc+Networking-p-9780470512487
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual+objective+dynamic+scheduling+algorithm+%28DoDySA%29+for+heterogeneous+environments&btnG=
https://www.ripublication.com/Volume/acstv10n2.htm
https://www.ripublication.com/Volume/acstv10n2.htm
https://doi.org/10.3390/app14083151
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficiency+Boost+for+Genetic+Algorithms%3A+Initializing+the+GA+with+the+Iterative+Approximate+Method+for+Optimizing+the+Traveling+Salesman+Problem-Experimental+Insights&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficiency+Boost+for+Genetic+Algorithms%3A+Initializing+the+GA+with+the+Iterative+Approximate+Method+for+Optimizing+the+Traveling+Salesman+Problem-Experimental+Insights&btnG=
https://www.mdpi.com/2076-3417/14/8/3151
https://doi.org/10.1155/2021/7252719
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        end while 

        return solutionFinal 

    end procedure 

    procedure MAKESELECTION 

        Choose the best two solutions as parents, let them be 

child 1 and child 2 

    end procedure 

    procedure DOCROSSOVER 

        c ← random(0, child1.content.length) 

        s1 ← child1.content.clone() 

        s2 ← child2.content.clone() 

        for i←c up to the length of child1.content-1 do 

            Swap s1[i] and s2[i] 

        end for 

        Set child1.content to s1 

        Set child2.content to s2 

    end procedure 

    procedure DOMUTATION 

        s1 ← child1.content.clone() 

        s2 ← child2.content.clone() 

        m ← random(0, child1.content.length) 

        Swap s1[m] and s1[m+1] 

        m ← random(0, child1.content.length) 

        Swap s2[m] and s2[m+1] 

        Set child1.content to s1 

        Set child2.content to s2 

    end procedure 


