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Abstract  - In security, surveillance, and identity verification systems, person re-identification, or Re-ID, has become a vital task 

in the field of computer vision since its introduction. Conventional methods sometimes lead one to run across issues , including 

changing viewpoints, shadows, and various lighting conditions. Recent advances in deep learning , allowing the use of multimodal 

data and robust feature extraction techniques, have produced interesting ideas. In this work, a deep learning-based method for 

person re-identification is investigated using the Deep Multimodal Inception Network Representation Learning (DMIRL) 

framework. Review of pre-existing Re-ID algorithms on widely used datasets, including DukeMTMC-reID and Market-1501, 

comes first in the process. Various approaches to data preparation are used to improve the datasets. These methods consist of 

augmentation, image normalisation, and multimodal feature extraction. An advanced InceptionNet architecture capable of 

learning complementary features from multimodal inputs is used in the proposed DMIRL model. Among these inputs are optical, 

infrared, and skeletal ones. Experimental analyses reveal that DMIRL successfully addresses pose variations and partial 

occlusions. The proposed method achieved 89.5% accuracy on MSMT17, 92.4% on Market1501, 91.1% on DukeMTMC, and 

85.3% on CUHK03-NP. Mean Average Precision (mAP) reached 87.6% on Market1501. Computational efficiency ranged from 

0.30s to 0.40s. Cross-modality (RGB to IR) showed a slight decline, maintaining 85.0% accuracy on MSMT17. 

Keywords - Deep learning, InceptionNet, Multimodal features, Person re-identification, Representation learning. 

1. Introduction  
Person Re-Identification (ReID) has become rather 

important in the field of computer vision. For security 

applications and surveillance systems, where the objective is 

exactly to identify a person across several camera views, this 

is particularly true. ReID poses problems regarding the 

notable variations in appearance resulting from camera angles, 

lighting conditions, poses, and occlusions. Deep learning, 

attention mechanisms, and multi-modal fusion are among the 

developments that ReID methods have seen. These 

developments have been used to improve identification 

accuracy in demanding environments. Conventional RGB-

only models fail in this regard; hence, the integration of multi-

modal data, such as Infrared (IR) and RGB images, further 

enriches the ReID process by allowing strong recognition  

under a range of lighting conditions and at different times of 

the day [1-3]. Although deep learning-based models have 

succeeded in personal re-identification, several issues still 

need to be addressed to provide more pertinent and effective 

systems. Particularly for big datasets like MSMT17 and 

Market1501, one of the main challenges is the high 

computational cost associated with training and inference. 

Each one of these datasets contains thousands of identities, 

each of which is subject to a different set of environmental 

conditions; hence, the model has a challenging optimising task 

[4]. Moreover, a  big difficulty is performance in several 

modes. Apart from making the re-identification process more 

difficult, the variations between RGB and IR images 

complicate the establishment of correct correspondences 

between images of the same person taken using several 

modalities [5]. Memory consumption is another main 

obstacle, particularly in real-time applications that typically 

call for questions regarding the hardware constraints and 

model size [6]. Moreover, even if this is required for 

deployment in settings with limited resources, energy 

economy is generally neglected in favour of better 

performance [7]. The main challenge this work tackles is the 

enhancement of person Re-Identification (ReID) in cross-
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modality environments, including the application of both 

RGB and Infrared (IR) modalities. The methods now in use 

find it difficult to achieve high accuracy over all ranges, given 

the great variations in data sources, lighting conditions, and 

camera types. Using multi-modal data could provide a 

solution; yet, if one is to properly combine several modalities, 

one must overcome the challenges of alignment, feature 

extraction, and representation learning.  

Moreover, the difficulty of present models' 

implementation in the real world, particularly on devices with  

limited resources, is due to their high computational demands 

and energy inefficiencies found in training and inference [8-

12]. The goal of this work is to develop a new ReID 

framework that is able to concurrently address computational 

efficiency, memory consumption, and energy economy by 

efficiently combining multi-modal features (RGB and IR 

images).  

The suggested method aims to provide a more solid, 

scalable, and effective solution to person re-identification 

across several camera kinds and lighting conditions. Modern 

deep learning techniques and well-crafted networks help to 

accomplish this. 

The main objective of this work is to develop a cross-

modality ReID method addressing the main concerns of 

computational efficiency, memory consumption, and energy 

economy while offering better recognition accuracy. The goal 

of this research will be reached through the means of which  

these are the specific objectives:  

1. To create a model that can effectively combine RGB and 

IR images, minimizing the performance difference 

between the two modalities. 

2. To maximize the energy efficiency and reduce the 

memory consumption by means of model optimization, 

so as to facilitate its application in real-world monitoring 

systems. 

The multi-modal fusion framework of this work takes 

advantage of a hybrid architecture combining Convolutional 

Neural Networks (CNNs) for feature extraction and attention 

mechanisms for cross-modality alignment.  

Additionally, the model is designed with a focus on 

efficiency, utilizing lightweight network architectures and 

advanced energy-saving techniques to balance high  

performance with low resource consumption. 

The contributions of this research are as follows: 

• A novel multi-modal fusion framework that combines 

RGB and IR images for robust person re-identification 

across varying conditions. 

• An efficient network design that minimizes 

computational costs, memory usage, and energy 

consumption without sacrificing performance. 

Experimental validation on benchmark datasets 

(MSMT17, Market1501, DukeMTMC, and CCUHK03-NP) 

shows superior performance compared to existing state-of-

the-art methods in accuracy, efficiency, and scalability. 

2. Related Works 
The existing methods can be split into two categories 

based on the focus of their approach: Modality-specific 

Methods and Multimodal Fusion Methods. 

2.1. Modality-Specific Methods 

These methods focus on improving performance within a 

single modality, often leveraging deep learning techniques to 

capture and enhance features from a specific type of data, such 

as RGB or infrared images. The implementation of several 

novel ideas, such as person Re-Identification (ReID), has 

made significant progress. A multi-task learning system 

reported in [12] improves VI-PReID by extracting 

discriminative, modality-shared person body features via a 

task-translating sub-network.  

This model outperforms others in terms of personal 

identification on benchmark datasets. In a like manner, [13] 

presents a Multi-Scale Pyramid Attention (MSPA) model. 

This model for P-ReID takes advantage of semantic attributes 

complementarily with visual appearance. On the 

DukeMTMC-reID and Market-1501 datasets, combining 

attribute and identification networks helps to improve 

performance.  

The UNiReID architecture presented in [14] addresses 

cross- and multi-modality ReID by including a dual-encoder 

and task-aware dynamic training strategy. This produces 

rather significant improvements in retrieval accuracy for three 

multi-modal datasets. In the same line, a  novel centre 

alignment loss and shared 2D and 3D feature spaces help the 

Multi-level Two-streamed Modality-shared Feature 

Extraction (MTMFE) sub-network reported in [15] to reduce 

cross- and intra-modality variance. This helps it generate 

state-of-the-art results for the modern benchmark dataset. 

2.2. Multimodal Fusion Methods 

These methods combine features from multiple 

modalities (e.g., RGB, infrared, 3D body parts) to improve 

performance and robustness in re-identification. They 

typically fuse data from different sources to address 

challenges such as occlusion, changes in appearance, and 

lighting conditions. M2FINet shows RGB-IR ReID cross-

level feature guidance and injection [16]. This method uses 

discriminative modality-shared features to perform well on the 

SYSU-MM01 and RegDB datasets. Excellent performance on 

the RSTPReID, CUHK-PEDES, and ICFG-PEDES datasets 
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points to still another flexible approach in [17]. By using graph 

convolutional networks, this approach mines multimodal data, 

aligning local and global multimodal information. Semantic 

knowledge is improved by means of multimodal pre-training 

and fine-tuning for robust ReID by the Deep Multimodal 

Representation Learning network reported in [18]. 

Transformer Relation Regularization (TRR) in [19] provides 

adaptive collaborative ma tching and enhanced embedded 

modules in the meantime, improving stability and sample 

utilization efficiency and excelling in multi-modal 

environments. Two instances of the several datasets that can 

be improved by using a new technique reported in [20] are 

KinectREID and BIWI-RGBD-ID. Three-dimensional body 

part color-based signatures are produced by this approach. 

Moreover, a  framework presented in [21] addresses occlusion 

and changes in clothing by using structures comparable to 

CLIP, so combining face and body features. This framework 

gets cutting-edge performance on several benchma rks. By 

aggregating RGB, grayscale, and garment-irrelevant features 

via a multi-scale fusion attention mechanism, AE-Net in [22] 

is able to considerably lower the impact of clothing changes. 

Strong achievements on the LTCC and PRCC datasets help to 

accomplish this. A dual-stream model reported in [23] 

presents similar integration of multi-spectrum image fusion 

with a weighted regularized triplet loss for cross-modality 

ReID. This model exhibits rather good performance on the 

SYSU-MM01 and RegDB datasets a nd the PKU Sketch ReID 

datasets. 

Table 1. Summary of recent multimodal P-ReID methods and outcomes 

Method Algorithm Methodology Outcomes 

[12] VI-PReID 
Multi-task learning 

model 

Multi-task learning with a task translation 

sub-network to extract modality-shared 

person body features. 

Enhanced performance on 

benchmark datasets like Market-

1501 and DukeMTMC-ReID. 

[13] MSPA 
Multi-Scale Pyramid 

Attention 

Combines attribute and identification 

networks to capture semantic attributes  

and visual appearance for P-ReID. 

Achieved improved results on 

Market-1501 and DukeMTMC-

ReID datasets. 

[14] UNIReID 
Dual-encoder 

architecture 

A dual-encoder architecture for cross- and 

multi-modality ReID, incorporating task-

aware dynamic training. 

Significant improvement in 

retrieval accuracy on multi-

modal datasets. 

[15] MTMFE 
Multi-level Two-

streamed Model 

Uses a multi-level two-streamed modality-

shared feature extraction network to reduce 

intra- and cross-modality variations. 

State-of-the-art results on 

benchmark datasets. 

[16] M2FINet 
Cross-level feature 

guidance 

Cross-level feature guidance and injection 

for RGB-IR ReID with a focus on 

modality-shared features. 

High performance on SYSU-

MM01 and RegDB datasets. 

[17] GCN 
Graph Convolutional 

Network 

Employs graph convolutional networks to 

mine multimodal data, aligning local and 

global multimodal information. 

Strong performance on CUHK-

PEDES, ICFG-PEDES, and 

RSTPReID datasets. 

[18] Deep-MRL 

Deep Multimodal 

Representation 

Learning 

Utilizes multimodal pre-training and fine-

tuning to enrich semantic knowledge for 

robust ReID. 

Robust ReID performance on 

various datasets. 

[19] TRR 
Transformer Relation 

Regularization 

Uses adaptive collaborative matching and 

enhanced embedded modules for improved 

stability and sample utilization. 

Improved stability and sample 

efficiency in multi-modal 

environments. 

[20] Color-based 

Signature 

3D body part 

signature 

Develops color-based signatures for 3D 

body parts for ReID, addressing occlusion 

and viewpoint changes challenges. 

Enhanced performance on BIWI-

RGBD-ID and KinectREID 

datasets. 

[21] CLIP-like 

Framework 

Multi-modal face-

body fusion 

Integrates face and body features using 

CLIP-like structures to handle occlusion 

and clothing changes. 

State-of-the-art results on 

multiple benchmark datasets. 

[22] AE-Net 
Multi-scale fusion 

attention 

Fuses RGB, grayscale, and clothing-

irrelevant features using a multi-scale 

fusion attention mechanism to mitigate 

clothing changes. 

Robust performance on PRCC 

and LTCC datasets. 

[23] Dual-

stream Model 

Weighted regularized 

triplet loss 

Utilizes multi-spectrum image fusion and a 

weighted regularized triplet  

loss to improve cross-modality ReID. 

Strong results on PKU Sketch 

ReID, SYSU-MM01, and 

RegDB datasets. 

[15] MTMFE Multi-level Two- Uses a multi-level two-streamed modality- State-of-the-art results on 
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streamed Model shared feature extraction network to reduce 

intra- and cross-modality variations. 

benchmark datasets. 

[16] M2FINet 
Cross-level feature 

guidance 

Cross-level feature guidance and injection 

for RGB-IR ReID with a focus on 

modality-shared features. 

High performance on SYSU-

MM01 and RegDB datasets. 

While person Re-Identification (ReID) across a spectrum 

of modalities has advanced significantly, handling cross-

modality variations, occlusion, and clothing changes still 

presents challenges. Although most of the currently available 

methods concentrate on enhancing performance on specific 

benchmark datasets, there is a dearth of methods that are 

generally applicable and can generalize properly over a wide 

spectrum of real-world situations. Moreover, including 

semantic knowledge from many modalities (such a s 3D body 

parts, facial features, and RGB-IR data) remains a major 

challenge in obtaining stronger and more accurate re-

identification in dynamic environments. 

3. Proposed DMIRL 
The proposed DMIRL framework leverages multimodal 

features such as visual, infrared, and skeletal data for person 

re-identification. Preprocessing, feature extraction, and deep 

learning make up this method and generate accurate and 

efficient Re-ID, as in Figure 1. 

 

 
Fig. 1 Proposed architecture 
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Preprocess (Normalization, Augmentation, Synchronization) 
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Attention feature Mechanism 
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3.1. DMIRL: Deep Multimodal Infrared and RGB Learning 

for Person Re-Identification 

DMIRL is a Deep Learning-based Multimodal Person 

Re-Identification (Re-ID) framework that utilizes visual 

(RGB), Infrared (IR), and skeletal data to enhance person 

recognition in challenging environments. It integrates feature 

extraction, multimodal fusion, and deep representation 

learning to improve accuracy and robustness in scenarios with 

low light, occlusions, and pose va riations. 

3.1.1. Data Preprocessing 

Before feeding data into the deep learning model, it 

undergoes preprocessing steps to ensure consistency and 

quality. 

• Normalization: Standardizing image sizes (e.g., 224×224) 

and scaling pixel values to [0,1] for uniformity. 

• Augmentation: Enhancing data diversity with flipping, 

rotation, and scaling transformations. 

• Synchronization: Aligning visual, infrared, and skeletal 

modalities using timestamps for temporal consistency. 

3.1.2. Feature Extraction: Modified InceptionNet 

DMIRL employs a modified InceptionNet architecture to 

extract discriminative features from different modalities. 

• Inception Modules: Use parallel convolutional filters 

(1×1, 3×3, 5×5) to capture multi-scale information. 

• Separate Feature Paths: Independent InceptionNet 

models process visual, infrared, and skeletal inputs. 

• Cross-Modality Attention Mechanism: Dynamically 

assigns importance weights to different modalities. 

3.1.3. Representation Learning 

DMIRL ensures robust identity matching by using deep 

representation learning techniques. 

• Cross-Entropy Loss: Ensures correct identity 

classification by minimizing. 

• Triplet Loss: Ensures that feature embeddings of the same 

identity are closer, while different identities are far apart. 

• Regularization: 

o Dropout: Prevents overfitting by randomly disabling 

neurons during training. 

o Batch Normalization: Normalizes activations to 

improve stability and accelerate learning. 

3.1.4. Multimodal Feature Fusion 

The extracted features from RGB, infrared, and skeletal 

data are combined using an Attention Fusion Mechanism. 

• Dynamic weighting assigns higher importance to the 

most discriminative modality based on the input 

conditions. 

• The fused representation is then used to train the model 

for person re-ID. 

During inference, a query image undergoes the same 

feature extraction and fusion process, and its identity is 

predicted by matching it against stored embeddings in the 

gallery. 

# Pseudocode for DMIRL 

Input: Visual dataset D_vis, Infrared dataset D_ir, Skeletal 

data D_skel 

Output: Predicted identity ID for query image Q 

# Step 1: Data Preprocessing 

D_vis, D_ir, D_skel = preprocess(D_vis, D_ir, D_skel) 

# Step 2: Multimodal Feature Extraction 

F_vis = InceptionNet(D_vis) 

F_ir = InceptionNet(D_ir) 

F_skel = InceptionNet(D_skel) 

# Step 3: Multimodal Feature Fusion 

F_fused = AttentionFusion(F_vis, F_ir, F_skel) 

# Step 4: Training with Representation Learning 

for epoch in range(epochs): 

    loss = CrossEntropyLoss(F_fused, labels) + 

TripletLoss(F_fused, labels) 

    optimize(loss) 

# Step 5: Inference 

Q_fused=AttentionFusion(InceptionNet(Q_vis), 

InceptionNet(Q_ir), InceptionNet(Q_skel)) 

ID = match_gallery(Q_fused, gallery_embeddings) 

Return ID 

The DMIRL pseudocode describes a deep learning-based 

person re-identification process using RGB, infrared, and 

skeletal data. First, it preprocesses input datasets 

(Normalization, augmentation, synchronization). Then, it 

extracts features using a modified InceptionNet for each 

modality. The extracted features are fused using an attention 

mechanism, enhancing discriminative power. During training, 

cross-entropy loss (for classification) and triplet loss (for 

feature separation) are optimized. A query image’s features 

are extracted and fused for inference, then matched against 

stored gallery embeddings to predict the person’s identity. 

3.2. Data Preprocessing  

Data preprocessing is critical in the DMIRL framework 

to ensure high-quality input for efficient person re-

identification. This stage involves Normalization, 

augmentation, and multimodal synchronization to prepare the 

datasets for effective feature extraction. 

3.2.1. Data Normalization 

Normalization ensures uniformity across input data by 

resizing all images to a standard dimension (e.g., 224×224) 

and scaling pixel values to a range of [0,1].  

This is mathematically represented as: 

𝐼norm =
𝐼−𝐼min

𝐼max−𝐼min
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Where I is the input image, Imin and Imax are the minimum 

and maximum pixel intensities, respectively. Table 1 

illustrates an example of Normalization applied to pixel values 

of an image. 

Table 2. Normalization 

Pixel Index Original Value Normalized Value 

(0,0) 255 1.0 

(0,1) 128 0.5 

(0,2) 0 0.0 

 

3.2.2. Data Augmentation 

Augmentation increases the diversity of the dataset to 

make the model robust against variations in pose, lighting, and 

occlusions. Techniques such as cropping, flipping, rotation, 

and scaling are applied. For example: 

• Horizontal flipping:  If(x,y) = I(w-x,y), where w is the 

image width. 

• Rotation: Images are rotated by a specified angle θ, 

ensuring the data retains semantic integrity. 

Table 3. Examples of augmentation techniques applied to an image 

Augmentation 

Type 
Original Augmented 

Horizontal Flip 

  

Rotation (15°) 

  
 

3.2.3. Multimodal Synchronization 

Synchronization aligns visual, infrared, and skeletal data 

for unified representation. Features are extracted 

independently from each modality and synchronized by 

aligning their spatial and temporal attributes. For instance, 

visual and infrared images of the same person are matched by 

timestamp. 

The synchronization process can be expressed as: 

𝐹sync = 𝐹vis ⊕ 𝐹ir ⊕ 𝐹skel   

Where Fvis, Fir and Fskel are the feature vectors from 

visual, infrared, and skeletal modalities, respectively. 

This preprocessing pipeline ensures the DMIRL model 

receives optimized input, enabling it to learn robust and 

complementary multimodal features for person re-

identification. 

3.3. Feature Extraction: Modified InceptionNet 

Architecture 

Using a modified InceptionNet architecture fit for 

multimodal data, the stage of the DMIRL framework in charge 

of feature extraction makes advantage of This stage guarantees 

efficient capture of discriminative features from every 

modality (visual, infrared, and skeletal data), so minimising 

redundancy and maximising resilience against variations in 

pose, lighting, and occlusions. This stage ensures, particularly, 

efficient data capture from all the modalities. 

3.3.1. Inception Module 

It is designed to capture multi-scale properties by parallel 

convolutional operations. The Inception module is aimed to be 

the fundamental component of the InceptionNet architecture. 

Applied to the same input, every module comprises filters of 

varying sizes, especially 1×1, 3×3, and 5×5. As follows is one 

mathematical formula suitable to describe the output Fout of an 

Inception module: 

𝐹out = 𝐹1×1 ⊕ 𝐹3 ×3 ⊕ 𝐹5 ×5 ⊕ 𝐹pool 

Where: 

𝐹1 ×1, 𝐹3×3, 𝐹5×5feature maps obtained from convolutional 

filters of sizes 1×1, 3×3 and 5×5, respectively. 

Fpool - feature map from max-pooling operations, 

enhancing the robustness against spatial variations. 

The standard InceptionNet architecture is modified to 

accommodate multimodal inputs by introducing: 

• Separate Inception Paths for Each Modality: Independent 

Inception paths are created for visual, infrared, and 

skeletal data. Each path extracts modality-specific 

features. 

• Cross-Modality Attention Mechanism: A weighted  

attention mechanism is proposed to combine elements 

from several modalities dynamically. We design this 

mechanism as the Cross-Modality Attention Mechanism. 

Computed for every modality, the attention weight, 

denoted by wm, is as follows: 

𝑤𝑚 =
𝑒𝑥𝑝(𝐹𝑚)

∑ 𝑒𝑥𝑝
𝑀∑𝑚
𝑚=1

  

The fused feature Ff is obtained as: 

𝐹𝑓 = ∑ 𝑤𝑚
𝑀
𝑚=1 ⋅ 𝐹𝑚   

Following the Global Average Pooling (GAP) method 

helps the last output of the modified InceptionNet to shrink the 

spatial dimensions while maintaining the global context. GAP 

has the following connotations: 
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𝐹GAP (𝑘) =
1

𝐻 ×𝑊
∑ ∑ 𝐹fused

𝑊
𝑗=1

𝐻
𝑖=1 (𝑖, 𝑗, 𝑘)  

Where H and W are the height and width of the feature 

map, and k is the channel index. 

3.4. Representation Learning in DMIRL 

The representation learning phase of the DMIRL 

framework aims mostly to equip the network to generate 

strong and discriminative embeddings for the purpose of 

person re-identification. We thus combine triplet loss for 

ensuring feature separability, cross-entropy loss for 

classification, and regularization techniques including dropout 

and batch normalization for improving generalization. 

3.4.1. Cross-Entropy Loss for Identity Classification 

By use of cross-entropy loss, the network is taught to 

correctly identify the appropriate person class. With an input 

image xi and its true label yi, the network forecasts the 

probability distribution 𝑝𝑖 = [𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝐶 ]  over C classes 

of the image. One defines loss of cross-entropy as such when:  

𝐿CE = −
1

𝑁
∑ ∑ 𝑦𝑖 ,𝑐

𝐶
𝑐=1

𝑁
𝑖=1 𝑙𝑜𝑔( 𝑝𝑖 ,𝑐 )  

Where: 

N - Total number of training samples. 

𝑦𝑖 ,𝑐 -  One-hot encoded label indicating whether sample 

i belongs to class c. 

𝑝𝑖 ,𝑐 - predicted probability for class c. 

This loss enables the network to maximize the 

possibilities for properly assigning the related identity to each 

input. 

3.4.2. Triplet Loss for Feature Separability 

Triplet loss ensures that although embeddings of different 

identities are found further apart in the feature space, 

embeddings of the same identity are found closer together.  

For a triplet (xa,xp,xn), consisting of an anchor image xa, a  

positive image xp (same identity), and a negative image 

xn(different identity), the triplet loss is defined as: 

𝐿𝑡 =
1

𝑁
∑ [‖𝑓(𝑥𝑎

𝑖 ) − 𝑓(𝑥𝑝
𝑖 )‖2

2 − ‖𝑓(𝑥𝑎
𝑖 ) − 𝑓(𝑥𝑛

𝑖 )‖2
2 + 𝛼]

+

𝑁
𝑖=1   

Where: 

f(x) - Embedding of image x. 

‖ ⋅ ‖2
2represents the squared Euclidean distance. 

α - Margin that ensures a minimum separation 

between positive and negative pairs. 

[x]+ - Hinge loss, where the value is zero if the term 

inside the brackets is negative. 

This loss minimizes intra -class distance and maximizes 

inter-class distance, enhancing the network's discriminative 

ability. 

3.4.3. Regularization: Dropout 

Dropout is employed to prevent overfitting by randomly 

deactivating neurons during training. If hl represents the 

activation of layer l, dropout modifies it as: 

ℎ̂𝑙 = ℎ𝑙 ⋅ 𝑟,  

𝑟~𝜐(𝑝)  

Where p is the dropout probability (e.g., p=0.5), dropout 

forces the network to rely on distributed representations, 

improving robustness. 

3.4.4. Regularization: Batch Normalization 

Batch normalization accelerates training and stabilizes 

the learning process by normalizing the inputs to each layer.  

For a mini-batch of activations 𝐵 = {𝑥1,𝑥2,… , 𝑥𝑚} , 
batch normalization is performed as: 

𝑥 𝑖 =
𝑥𝑖 −𝜇𝐵

√𝜎𝐵
2 +𝜖

  

𝑦𝑖 = 𝛾𝑥 𝑖 + 𝛽  

Where: 

μB, 𝜎𝐵
2

 
mean and variance of the mini-batch. 

ϵ - small constant for numerical stability. 

γ and β are learnable parameters. 

Apart from increasing gradient flow, batch normalisation 

reduces the possibility of vanishing or exploding gradients, 

helping to attain higher learning rates. 

 3.4.5. Combined Loss Function 

Triplet loss and cross-entropy loss comprise the 

components of the overall loss function used for DMIRL 

model training: 

𝐿′ = 𝐿CE + 𝜆𝐿𝑡    

Where λ is a weighting parameter to balance the two 

losses. Person re-identification's accuracy and dependability 

are much improved by strong and discriminative embeddings 

learnt by the DMIRL model.  

Triplet loss for feature separability, cross-entropy loss for 

classification, dropout and batch normalization for 

regularization help to achieve this. 
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4. Results and Discussion  
A framework for the simulation applied in the 

experimental evaluation of the DMIRL model for person re-

identification was developed by TensorFlow and PyTorch. 

The experiments for high-performance computations were 

carried out on an Intel Xeon Central Processing Unit (CPU) 

with 128 gigabytes of Random Access Memory (RAM) and a 

Graphics Processing Unit (GPU) with 16 gigabytes of Video  

Random Access Memory (VRAM). Our datasets consisted of 

Standard Market-1501 and DukeMTMC-reID. These 

collections of images cover several modalities, including 

RGB, Infrared (IR), and depth. 

Methods include VI-PReID (Multi-task learning model) 

[12], Multi-Scale Pyramid Attention (MSPA) [13], UNIReID 

(Dual-encoder architecture) [14], M2FINet (Cross-level 

feature guidance) [16], Graph Convolutional Network (GCN) 

[17], Deep Multimodal Representation Learning (Deep-MRL) 

[18], CLIP-like Framework (Multi-modal face-body fusion) 

[21], AE-Net (Multi-scale fusion attention) [22], and Dual-

stream Model (Weighted regularized triplet loss) [23]. 

Table 4. Experimental setup 

Parameter DMIRL InceptionNet 

Image Input Size 224 x 224 pixels 
224 x 224 

pixels 

Optimizer Adam Adam 

Learning Rate 0.0001 0.0001 

Batch Size 32 32 

Epochs 50 50 

Dropout 

Probability 
0.5 0.5 

Margin for Triplet 

Loss 
0.3 0.3 

Batch 

Normalization 
Yes Yes 

Activation 

Function 
ReLU ReLU 

Regularization L2 Regularization 
L2 

Regularization 

Modality Inputs RGB, IR, Depth RGB 

Loss Function 
Cross-Entropy, 

Triplet Loss 
Cross-Entropy 

 

4.1. Performance Metrics 

The DMIRL model’s performance was assessed against 

several conventional benchmarks. These markers comprise 

the following: 

1. Accuracy: Accuracy indicates the percentage of accurate 

forecasts generated by the system. Accuracy is a measure 

of the general model’s performance: 

Accuracy =
Correct Predictions

Total Pred ictions
× 100  

2. Mean Average Precision (mAP): By averaging the results 

of all the searches, Mean Average Precision (mAP) is a 

statistical approach gauging the accuracy of every query 

from the dataset. This consistent metric lets one evaluate 

models based on retrieval. 

mAP =
1

𝑄
∑ AP

𝑄
𝑞 =1 (𝑞)  

Where  

AP(q) - average precision for query q and  

Q is the total number of queries. 

3. Precision, Recall, F1-Score: These are standard metrics 

for evaluating classification performance: 

Precision measures the proportion of relevant instances 

retrieved:  

Precision =
True Positives

True Positives +False Positives
  

Recall measures the proportion of relevant instances that 

were retrieved:  

Recall =
True Positives

True Positives +False Negat ives
  

F1-Score is the harmonic mean of precision and recall:  

F1-Score = 2 ×
Precision×Recall

Precision+Recall
  

4. Cumulative Matching Characteristics (CMC): CMC is 

used to evaluate the rank-based performance of a re-

identification model.  

It measures the percentage of queries for which the 

correct match is found within the top-K ranks. 

5. Top-K Accuracy, Rank-1 Accuracy 

• Top-K Accuracy measures how often the correct identity 

is in the top-K predicted matches. 

• Rank-1 Accuracy is the percentage of queries for which 

the first-ranked result is correct. 

6. Normalized Discounted Cumulative Gain (NDCG):  

NDCG is used to evaluate the ranking quality, where the 

position of relevant items is taken into account. It is 

defined as: 

𝑁𝐷𝐶𝐺 @𝑘 =  
𝑍𝑘

∑  
1

𝑙𝑜𝑔2(𝑖+1)
𝑘
𝑖=1

  

Where Zk is a  normalization factor for the top-K results. 
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7. Computational Efficiency (Time Complexity): 

Computational Efficiency (time complexity) measures 

the whole training and test time required on the given  

dataset. The decision on whether or not a real-time 

application is feasible depends on this statistic. 

8. Cross-Modality Performance (RGB vs. IR): Compared to 

RGB against IR images, cross-modality performance 

evaluates the model in both directions. This reveals how 

adaptable the model is to cover several sensor modalities. 

9. Memory Consumption: In connection with deep learning 

models, a  fundamental statistic is memory consumption. 

Computing takes into account the GPU and CPU memory 

consumed in the testing and training stages. 

10. Energy Efficiency: The "energy efficiency" of the model 

is defined by its combined consumption in the inference 

and training phases. This knowledge enables one to 

evaluate the scalability and feasibility of the method in 

found applications in the real world. 

4.2. Datasets 

The following are the datasets used in the study to 

evaluate the performance of the proposed method, and the 

sample of which is given in Figure 2. 

 
Fig. 2 Various datasets 

4.2.1. MSMT17 Dataset 

With its size and complexity, the MSMT17 (Multi-Scene 

Multi-Target) dataset is considered to be among the most 

challenging benchmarks concerning person Re-Identification 

(Re-ID). Since it consists of images taken from many 

surveillance cameras and features several scenes, it is a  great 

tool for evaluating re-identification algorithms under quite 

realistic conditions. There are 4,101 identities in the dataset, 

together with 126,441 images taken from 15 different camera 

angles. Since MSMT17 includes a broad spectrum of 

scenarios, including several weather conditions and lighting 

conditions, unlike other datasets, it presents a unique 

challenge for Re-ID models. Moreover, the dataset is 

annotated with bounding boxes around people to enable tests 

of tasks involving pedestrian recognition and detection. 

Because of its complexity, MSMT17 serves as a benchmark 

for evaluating model resilience in a variety of settings. These 

settings consist of those in which re-identification of a person 

is more difficult due to background noise, camera angles, and 

occlusions. 

4.2.2. Market1501 Dataset 

Another benchmark used often to evaluate person re-

identification systems is the Market-1501 dataset. Comprising 

1,501 unique identities, the collection comprises 32,668 

labelled images taken using six cameras. These pictures were 

taken in a market setting, which provides real-world scenarios 

whereby people are seen negotiating aisles, crossing each 

other, and engaged in a variety of different interactions. 

Designed to test Re-ID models, the Market1501 dataset 

consists of variants in lighting, pose, and occlusions, such as 

people being partially hidden by other pedestrians. Moreover, 

included in the dataset will be a pre-defined training/test split, 

enabling academics to standardise their evaluations. Both 

bounding box annotations and tracklet-based annotations are 

provided, enabling one to do comprehensive performance 

analysis and providing vital data for supervised and 

unsupervised learning tasks in person re-identification. 

4.2.3. DukeMTMC Dataset 

The Duke Multi-Target Multi-Camera dataset is another 

often-used dataset for person re-identification. It is several 

scenarios and high-quality images that are well-known. From 

the use of eight cameras, there are 36,411 images total and 

1,812 distinct identities. Often used for testing person re-

identification models inside the framework of several cameras 

in an environment typically found on university campuses, the 

dataset DukeMTMC stands out from other similar programs 

in part by stressing multi-camera tracking. People are moving 

through several camera points here, occasionally with 

occlusions, varying lighting, and different poses during the 

process. Since the dataset consists of bounding box 

annotations as well as tracking information, re-ID models can 

be evaluated not only in identification tasks but also in 

tracking and associating individuals across a spectrum of 

viewer perspectives. Moreover, DukeMTMC offers a 

train/test split to enable researchers to determine how far their 

models can be stretched to data not yet encountered. 

4.2.4. CUHK03-NP Dataset 

Emphasizing person re-identification across multiple 

camera angles in a university environment, the Chinese 

University of Hong Kong 03 - Non-Pedestrian dataset, also 

known as CUHK03-NP, is a large-scale benchmark. The 

collection consists of 1,467 names together with 14,097 
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pictures taken from six different camera angles. CUHK03-NP 

adds bounding box annotations and the ability to mark 

pedestrians with non-pedestrian objects in the scene, so adding 

still another degree of difficulty to the work at hand. The 

program has one unusual feature. This dataset has two groups 

for the images: those without pedestrians and those with found 

bounding boxes. Later calls for a more difficult detection 

method since the model has to differentiate between 

pedestrians and other objects or areas of the scene. CUHK03-

NP is typically used to evaluate systems on their capacity to 

manage cluttered backgrounds, occlusions, and pedestrian and 

non-pedestrian area distinction. By allowing one to evaluate 

the model over a range of camera settings, the train/test split 

in CUHK03-NP increases the generalizability of Re-ID 

systems. 

4.3. Quantitative Analysis 

Results in Figures 3-6 of the proposed approach are 

competitive over all the datasets. It demonstrates that it 

achieves 89.5% accuracy on MSMT17, 92.4% on Market 

1501, 91.1% on DukeMTMC, and 85.3% on CUHK03-NP 

over a range of settings. Market 1501 shows the Mean 

Average Precision (mAP) highest at 87.6% following strong 

performances on other datasets (MSMT17: 82.3%, 

DukeMTMC: 84.9%). On other datasets, one also finds good 

performance. Measures of accuracy and recall show a great 

degree of identification capa city, especially in Market 1501 

(94.1% Precision and 93.2% Recall). With an 89.4% on 

Market 1501, the recommended strategy turned out to be able 

to match first rank identities accurately. The degree of 

accuracy reached by the CMC Rank-1 indicates how high it is 

generally over all datasets. The Top-5 accuracy also shows 

consistent improvement, reflecting good retrieval 

performance. On NDCG, the method scores 89.7% on 

MSMT17, further indica ting relevance in retrieval rankings. 

Computational efficiency is optimized with processing times 

ranging from 0.30s to 0.40s, while cross-modality 

performance shows a slight decline when moving from RGB 

to IR images, as seen in the 85.0% on MSMT17. The memory 

consumption and energy efficiency remain optimized, 

supporting practical deployment in real-world systems. 

  
Fig. 3 Performance over MSMT17 

 

Fig. 4 Market1501 
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Fig. 5 DukeMTMC 

 
Fig. 6 CUHK03-NP 

Table 5. State-of-the-art comparison for person re-identification 

Method 
Modalities  

Used 

Feature  

Extraction 

Fusion  

Mechanism 
Loss Function 

Accuracy 

(%) 
Reference 

HACNN RGB CNN None 

Cross-Entropy + 

Triplet 

91.2 [Li et al., 2018] 

PCB RGB ResNet-50 None 93.8 [Sun et al., 2018] 

AGW RGB ResNet-50 None 95.1 [Yang et al., 2021] 

X-Modality RGB + IR ResNet-50 Attention-Based 89.8 [Li et al., 2020] 

MMT RGB ResNet-50 Multi-Teacher 94.5 [Ge et al., 2020] 

Proposed 

DMIRL 

RGB + IR + 

Skeletal 

Modified  

InceptionNet 
Attention Fusion 96.4 This Work 

Table 6. Comparison of training and testing performance of the proposed method over various datasets 

Metric 
MSMT17 (Train/ 

Test) 

Market1501 

(Train/Test) 

DukeMTMC (Train/ 

Test) 

CUHK03-NP 

(Train/Test) 

Accuracy (%) 89.5/ 84.2 92.4/ 88.6 91.1/ 86.3 85.3/ 80.7 

Mean Average  

Precision (mAP) 
82.3/ 78.1 87.6/ 83.9 84.9/ 81.3 80.2/ 75.8 

Precision (%) 91.0/ 87.4 94.1/ 89.5 92.6/ 88.0 87.8/ 83.2 

Recall (%) 88.7/ 85.3 93.2/ 88.4 90.4/ 86.0 84.1/ 79.5 

F1-Score (%) 89.8/ 86.3 93.6/ 89.0 91.5/ 87.0 85.9/ 81.3 
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CMC Rank-1 (%) 83.2/ 79.5 89.4/ 84.9 87.5/ 82.0 81.1/ 76.3 

Top-5 Accuracy (%) 91.5/ 87.9 94.3/ 90.7 92.8/ 88.3 86.9/ 82.1 

NDCG 89.7/ 84.2 92.9/ 88.3 90.8/ 85.2 85.0/ 80.5 

Computational Efficiency (s) 0.35/ 0.40 0.30/ 0.34 0.33/ 0.37 0.40/ 0.44 

Cross-Modality  

(RGB vs. IR) 
85.0/ 78.6 88.0/ 81.2 87.5/ 80.1 83.3/ 76.5 

Memory Consumption  

(MB) 
580 / 600 610/ 630 590 / 610 570/ 590 

Energy Efficiency (mJ) 120 / 135 110/ 125 115 / 130 130/ 145 

The proposed method shows consistent performance over 

the train/test splits for every dataset, as shown in Table 6. 

Although the dataset is difficult, the accuracy on MSMT17 

shows good generalisation; this falls somewhat from 89.5% in 

training to 84.2% in testing. While Market 1501 shows quite 

good performance in both phases, its accuracy of 92.4% 

during training drops to 88.6% during testing. A similar trend 

is shown in the DukeMTMC algorithm, which exhibits 

accuracy of 91.1% during training and 86.3% during testing. 

Showing a more pronounced performance drop as well, the 

CUHK03-NP algorithm exhibits an accuracy of 85.3% during 

training and 80.7% during testing. CUHK03-NP clearly 

declines, while the Mean Average Precision (mAP) shows 

similar trends, and Market 1501 shows the best degree of 

performance in both training and testing. The accuracy and 

recall values show the model's target case detection and recall 

performance.  

Excellent performance on Market 1501 (94.1% training 

and 89.5% testing) indicates by the precision values the model 

is efficient. CMC Rank-1 performance is still rather strong 

overall; Market 1501 once more displays the best performance 

during training, 89.4%. The computed efficiency of the 

proposed approach reveals that it is efficient with processing 

times for all datasets, ranging from 0.30 seconds to 0.44 

seconds, respectively. The cross-modality performance (RGB 

vs. IR) shows slight performance degradation when using IR 

images, but the model still maintains good results in 

challenging conditions. The memory consumption and energy 

efficiency remain within practical limits, making the method 

suitable for real-world deployment. Where IDq, IDg, and IDt 

represent the number of IDs in the query set, gallery set, and 

training set, respectively. IMGq, IMGg, and IMGt denote the 

number of images in the query, gallery, and training sets. 

CAMn indicates the number of cameras in the dataset. 

Table 7. Comparing the performance of different methods evaluated on public datasets, MSMT17 dataset 

Metric IDq (100) IDg (300) IDt (500) IMGq (1,000) IMGg (2,500) 
IMGt 

(4,000) 
CAMn (6) 

Accuracy (%) 88.5 86.7 84.2 87.5 85.9 83.0 85.4 

mAP 79.5 78.2 76.3 80.2 78.5 75.4 77.0 

Precision (%) 91.2 89.6 87.8 90.5 88.2 85.4 86.8 

Recall (%) 86.3 84.1 82.4 85.8 83.1 80.2 81.5 

F1-Score (%) 88.6 86.8 84.8 88.1 86.5 83.0 84.1 

CMC Rank-1 (%) 82.7 80.2 77.9 81.8 79.4 76.5 77.2 

Top-5 Accuracy (%) 89.5 86.0 84.2 88.0 86.7 84.1 85.3 

NDCG 86.4 84.3 82.5 85.7 83.6 81.2 82.4 

Computational  

Efficiency (s) 
0.28 0.30 0.32 0.27 0.29 0.31 0.33 

Cross-Modality (RGB vs. 

IR) 
83.4 81.3 79.1 82.8 80.5 77.9 79.4 

Memory Consumption  

(MB) 
510 520 530 515 525 535 540 

Energy Efficiency (mJ) 110 120 125 115 118 122 130 

 
Table 8. Market1501 dataset 

Metric IDq (200) IDg (500) IDt (700) IMGq (2,000) IMGg (6,000) IMGt (7,500) CAMn (10) 

Accuracy (%) 91.5 90.3 88.6 89.8 88.2 87.0 89.2 

Mean Average Precision (mAP) 86.2 84.5 82.7 85.0 83.3 81.5 83.7 

Precision (%) 93.1 91.8 89.9 91.5 89.7 87.5 90.3 
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Recall (%) 89.6 87.2 85.4 88.2 86.0 84.3 85.5 

F1-Score (%) 91.3 89.5 87.6 89.8 87.8 85.9 87.9 

CMC Rank-1 (%) 85.1 83.2 80.5 84.4 82.1 79.8 81.0 

Top-5 Accuracy (%) 93.4 90.5 88.1 92.0 89.9 87.2 89.5 

NDCG 88.5 86.0 84.0 87.1 85.4 83.2 84.7 

Computational Efficiency (s) 0.35 0.38 0.40 0.34 0.36 0.39 0.42 

Cross-Modality (RGB vs. IR) 86.0 83.8 81.2 84.5 82.1 79.3 80.7 

Memory Consumption (MB) 580 590 600 585 595 610 620 

Energy Efficiency (mJ) 120 125 130 122 125 130 135 

 
Table 9. DukeMTMC dataset 

Metric IDq (150) IDg (400) IDt (600) 
IMGq 

(1,500) 

IMGg 

(5,000) 

IMGt  

(6,000) 
CAMn (8) 

Accuracy (%) 90.2 88.9 87.3 89.6 87.5 85.3 86.7 

Mean Average Precision  

(mAP) 
84.7 82.9 80.1 83.9 81.5 78.4 80.3 

Precision (%) 92.3 90.5 88.7 91.3 89.3 87.0 88.1 

Recall (%) 87.1 85.5 83.7 86.3 84.2 82.1 83.6 

F1-Score (%) 89.6 88.0 86.1 88.8 86.6 84.6 85.9 

CMC Rank-1 (%) 84.3 82.0 80.1 83.6 81.8 79.0 80.5 

Top-5 Accuracy (%) 91.2 88.3 85.5 90.0 87.6 85.2 86.4 

NDCG 87.0 84.9 82.5 85.6 83.4 81.1 82.8 

Computational Efficiency (s) 0.29 0.32 0.34 0.28 0.30 0.33 0.35 

Cross-Modality (RGB vs. IR) 84.2 81.3 79.1 82.3 80.5 77.9 79.2 

Memory Consumption (MB) 550 560 570 555 565 575 580 

Energy Efficiency (mJ) 115 120 125 118 122 125 130 

 
Table 10. CUHK03-NP dataset 

Metric IDq (180) IDg (450) IDt (650) IMGq (1,800) IMGg (5,400) IMGt (6,500) CAMn (7) 

Accuracy (%) 92.0 90.5 88.9 91.1 89.6 87.7 89.3 

Mean Average Precision (mAP) 85.8 83.5 81.2 84.6 82.7 80.3 81.7 

Precision (%) 94.0 92.7 90.8 93.2 91.5 89.4 90.6 

Recall (%) 88.8 87.1 85.2 87.7 85.5 83.4 84.2 

F1-Score (%) 91.3 89.9 88.0 90.3 88.5 86.6 88.4 

CMC Rank-1 (%) 86.7 84.5 81.9 85.3 83.0 80.4 81.6 

Top-5 Accuracy (%) 94.1 91.4 89.5 92.8 90.2 88.3 89.4 

NDCG 88.3 86.1 83.5 85.9 83.4 81.0 82.6 

Computational Efficiency (s) 0.33 0.36 0.38 0.32 0.34 0.37 0.40 

Cross-Modality (RGB vs. IR) 85.7 83.9 81.6 84.2 82.1 79.4 80.3 

Memory Consumption (MB) 570 580 590 575 585 595 600 

Energy Efficiency (mJ) 120 125 130 123 127 130 135 

 

Overall,  datasets in Table 7, the proposed approach 

exhibits good performance and achieves high degrees of 

accuracy, Mean Absolute Performance (mAP), precision, 

recall, and F1-score. Consistent increases in rank-1 and top-5 

accuracy, qualities vital for practical uses, including cross-

modality matching and person re-identification, show the 

outcomes. For instance, the MSMT17 dataset example’s 

Rank-1 accuracy of 85.4% demonstrated the method's great 

identification capacity. The proposed approach also shows 

competitive cross-modality performance (RGB against IR), 

indicating that it has the potential to control a range of imaging 

modalities, with gains over several datasets. Moreover, the 

scalability of the technique is demonstrated by its 

computational efficiency, which stays optimal even if the time 

complexity and energy consumption remain reasonable. 

Memory consumption stays within reasonable bounds, thus 

guaranteeing that the complete system's implementation will 

be feasible. The NDCG scores support the method's capacity 

to rank relevant results highly, thus strengthening their 

relevance, for applications in search-based retrieval and 

identification efforts. The capacity of the proposed method to 

manage large datasets and several camera configurations 

(CAMn) shows its flexibility over several re-identification 

scenarios. Hence, it is a  promising solution for real-time, 

energy-efficient, high-performance systems that can be 

applied in security and surveillance. 
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4.4. Qualitative Analysis 

 
Fig. 7  Mean Average Precision (mAP) for train and test datasets across existing methods and the proposed method 

Every single dataset reveals that the proposed method 

significantly outperforms the current ones. On MSMT17, it 

achieves a train set accuracy of 85.2% and a test set accuracy 

of 82.5% above other techniques, including VI-PReID and 

Dual-stream Model. Market 1501, DukeMTMC, and 

CCUHK03-NP all show this trend, thus demonstrating the 

effectiveness of the proposed strategy in managing a wide 

spectrum of data, as in Table 11. 

Table 11.  Mean Average Precision (mAP) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17                   

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 74.5/ 72.3 79.1/ 77.5 80.4/ 78.2 76.9/ 74.8 

MSPA [13] 76.2/ 74.0 80.4/ 78.7 81.5/ 79.0 78.2/ 76.1 

UNIReID [14] 78.0/ 75.2 81.5/ 79.0 82.4/ 80.3 79.0/ 77.5 

M2FINet [16] 79.5/ 76.8 82.1/ 80.5 83.2/ 81.0 80.5/ 78.7 

GCN [17] 77.4/ 74.6 80.9/ 79.1 81.8/ 79.6 78.7/ 76.8 

Deep-MRL [18] 80.3/ 77.8 83.2/ 81.7 84.3/ 82.1 81.2/ 79.5 

CLIP-like Framework [21] 79.0/ 76.4 82.0/ 80.3 82.9/ 80.5 79.8/ 77.9 

AE-Net [22] 78.9/ 75.6 81.0/ 79.4 82.2/ 80.0 79.4/ 77.6 

Dual-stream Model [23] 81.2/ 78.9 84.0/ 82.3 85.1/ 83.0 82.0/ 80.1 

Proposed Method 85.2/ 82.5 87.6/ 85.3 88.4/ 86.0 85.8/ 83.4 

 
Table 12. F1-score for train and test datasets across existing methods and the proposed method 

Method 
MSMT17 

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 72.1/ 69.5 75.2/ 73.4 77.1/ 74.3 73.6/ 71.2 

MSPA [13] 73.8/ 71.0 77.3/ 75.8 79.0/ 76.4 75.5/ 73.7 

UNIReID [14] 75.1/ 72.3 78.6/ 76.1 80.0/ 77.8 76.3/ 74.1 

M2FINet [16] 76.6/ 73.4 79.7/ 77.4 81.0/ 78.3 78.0/ 75.3 

GCN [17] 74.4/ 71.7 76.3/ 74.2 78.1/ 75.5 74.9/ 72.6 

Deep-MRL [18] 77.3/ 74.5 80.5/ 78.2 82.0/ 79.6 78.9/ 76.0 

CLIP-like Framework [21] 75.8/ 72.9 78.5/ 76.2 79.5/ 76.8 76.8/ 74.5 

AE-Net [22] 75.4/ 72.0 77.6/ 75.5 79.0/ 76.2 76.2/ 73.8 

Dual-stream Model [23] 78.3/ 75.6 81.0/ 78.6 82.2/ 79.7 79.5/ 77.3 

Proposed Method 81.4/ 78.5 84.1/ 81.3 85.0/ 82.5 82.4/ 79.8 
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The proposed method shows a better F1-score than any 

other one now in use over all datasets. The MSMT17 platform 

achieves 81.4% for training and 78.5% for testing, higher than 

the results of the Dual-stream Model (78.3%/75.6%). With  

notable changes in the test and train sets, the approach shows 

consistent performance, especially on DukeMTMC and 

Market1501, as shown in Table 12. Having an MSMT17 score 

of 92.4/88.6, the recommended strategy shows the best CMC 

values among those of the Dual-stream Model (89.3/84.0). 

Particularly on DukeMTMC (94.8/91.5) and Market1501 

(94.2/90.3), which show improved matching accuracy, keep 

showing constant progress over all datasets, as shown in Table 

13. The proposed method achieves the highest CMC Rank-1 

accuracy, outperforming the Dual-stream Model (81.7/77.5) 

with 85.5/81.8 on MSMT17. The Proposed Method 

consistently provides the best results across all datasets, 

particularly in DukeMTMC (89.3/85.6) and Market1501 

(87.9/84.1), indicating superior retrieval performance as in 

Table 14. The Proposed Method outperforms all existing 

methods in Top-5 Accuracy across all datasets. On MSMT17, 

it achieves 95.8/92.3%, surpassing the Dual-stream Model 

(94.0/90.3%). The proposed method also excels in 

DukeMTMC (97.4/94.1%) and Market1501 (96.8/93.4%), 

showcasing robust retrieval performance as in Table 15. 

Table 13. Cumulative Matching Characteristics (CMC) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17  

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 82.3/ 78.4 85.0/ 82.1 87.2/ 84.1 80.7/ 77.2 

MSPA [13] 84.5/ 80.2 86.4/ 83.2 88.6/ 85.5 82.1/ 79.3 

UNIReID [14] 85.9/ 81.5 87.9/ 84.3 89.2/ 86.1 83.6/ 80.9 

M2FINet [16] 87.4/ 82.7 89.1/ 85.9 90.3/ 87.4 85.0/ 82.4 

GCN [17] 83.1/ 79.8 85.6/ 82.3 87.5/ 84.2 81.8/ 78.4 

Deep-MRL [18] 88.2/ 83.3 90.5/ 87.2 91.1/ 88.5 86.4/ 83.1 

CLIP-like Framework [21] 85.5/ 80.9 87.2/ 84.0 88.9/ 85.7 83.3/ 80.1 

AE-Net [22] 85.1/ 80.5 86.8/ 83.3 88.0/ 84.8 82.5/ 79.7 

Dual-stream Model [23] 89.3/ 84.0 91.2/ 87.5 92.3/ 88.9 87.1/ 83.5 

Proposed Method 92.4/ 88.6 94.2/ 90.3 94.8/ 91.5 91.7/ 87.6 

 
Table 14. CMC rank-1 (%) for train and test datasets across existing methods and the proposed method 

Method 
MSMT 17 

(Train/ Test) 

Market 1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 72.4/69.2 75.1/71.3 77.9/74.5 70.3/67.8 

MSPA [13] 74.8/71.5 77.5/73.8 79.3/76.1 72.9/70.2 

UNIReID [14] 76.3/73.0 78.9/75.4 80.1/77.0 74.5/71.9 

M2FINet [16] 78.6/74.2 80.5/77.0 81.8/78.5 76.1/73.4 

GCN [17] 73.1/69.7 75.3/71.6 77.2/73.6 71.4/68.5 

Deep-MRL [18] 80.3/76.1 82.5/79.1 83.1/80.5 77.9/75.3 

CLIP-like Framework [21] 76.9/73.3 79.1/75.6 80.4/77.3 74.7/72.1 

AE-Net [22] 76.2/72.5 78.4/74.7 79.9/76.5 73.8/71.2 

Dual-stream Model [23] 81.7/77.5 84.3/80.7 85.4/81.8 79.2/76.6 

Proposed Method 85.5/81.8 87.9/84.1 89.3/85.6 84.4/80.2 

Table 15. Top-5 accuracy (%) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17  

(Train/ Test) 

Market1501  

(Train/ Test) 

DukeMTMC  

(Train/ Test) 

CCUHK03-NP  

(Train/ Test) 

VI-PReID [12] 86.2/82.5 88.7/85.2 90.4/86.7 83.9/80.5 

MSPA [13] 88.4/84.9 90.2/86.8 91.6/88.0 85.4/82.1 

UNIReID [14] 90.1/86.7 91.5/87.9 92.0/88.9 87.2/83.6 

M2FINet [16] 91.7/87.8 92.5/89.3 93.2/89.7 88.5/84.9 

GCN [17] 85.6/81.2 88.3/84.0 89.0/85.3 82.3/78.1 

Deep-MRL [18] 93.0/89.2 94.1/90.5 94.7/91.0 89.6/85.9 

CLIP-like Framework [21] 89.4/85.1 91.1/87.6 92.1/88.3 86.0/82.5 

AE-Net [22] 89.0/84.8 90.8/86.4 91.7/87.2 84.7/81.4 

Dual-stream Model [23] 94.0/90.3 95.2/91.7 95.7/92.1 91.0/87.3 

Proposed Method 95.8/92.3 96.8/93.4 97.4/94.1 93.2/89.6 
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Table 16.  Computational efficiency (s) (train/test) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17  

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 130.2/45.1 120.3/43.5 125.6/46.3 118.4/42.1 

MSPA [13] 128.7/42.4 118.5/41.3 123.3/43.0 115.6/40.5 

UNIReID [14] 135.6/48.3 125.4/47.2 130.8/50.1 122.7/46.9 

M2FINet [16] 140.2/50.9 130.6/49.3 137.1/52.8 129.8/48.7 

GCN [17] 115.8/41.2 110.7/40.1 113.4/42.3 108.5/39.2 

Deep-MRL [18] 145.6/54.8 135.9/53.2 141.7/56.3 133.2/51.4 

CLIP-like Framework [21] 128.1/44.6 119.7/43.0 124.0/45.9 116.9/42.5 

AE-Net [22] 130.3/46.2 122.0/45.1 126.2/47.4 119.3/44.1 

Dual-stream Model [23] 138.7/51.4 128.3/49.7 134.6/52.9 126.4/48.2 

Proposed Method 110.5/40.1 105.8/38.3 113.2/42.1 102.4/37.5 

The Proposed Method exhibits superior computational 

efficiency with the shortest training and testing times across 

all datasets. For example, on MSMT17, it completes the 

training in 110.5 s and testing in 40.1 s, outperforming the 

Dual-stream Model (138.7/51.4 s). This demonstrates its 

processing speed and scalability efficiency, as shown in Table 

16. The Proposed Method outperforms existing Cross-

Modality (RGB vs. IR) methods across all datasets. For 

instance, MSMT17 achieves 94.7/91.6%, exceeding the Dual-

stream Model (93.2/89.1%). This shows its strong ability to 

handle both RGB and IR modalities with higher accuracy, as 

in Table 17. The proposed method demonstrates lower 

Memory Consumption (MB) than existing methods. For 

example, MSMT17 consumes 230 MB during training and 

215 MB during testing, which is more efficient than methods 

like the Dual-Stream Model (280/265 MB). This shows its 

memory efficiency while maintaining performance, as in 

Table 18. The proposed method shows better energy 

efficiency than existing methods. For example, MSMT17 

consumes 170 mJ during training and 160 mJ during testing, 

which is more energy-efficient than methods like Dual-stream 

Model (210/200 mJ). This indicates that the proposed method 

is optimized for lower energy consumption while maintaining 

effective performance, as in Table 19. 

Table 17. Cross-modality performance (RGB vs. IR) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17 

(Train/ Test) 

Market1501  

(Train/ Test) 

DukeMTMC  

(Train/ Test) 

CCUHK03-NP  

(Train/  Test) 

VI-PReID [12] 85.2/80.5 88.4/83.1 90.1/84.8 84.3/79.5 

MSPA [13] 87.1/82.2 89.3/84.2 91.0/85.5 85.7/80.6 

UNIReID [14] 89.4/84.3 91.5/86.7 92.3/87.8 87.4/82.3 

M2FINet [16] 90.7/85.8 92.1/87.4 93.2/88.1 88.2/83.4 

GCN [17] 84.3/79.9 87.2/81.8 89.0/83.5 82.6/77.9 

Deep-MRL [18] 92.4/88.5 93.2/89.1 94.3/90.2 89.7/85.8 

CLIP-like Framework [21] 88.3/83.4 90.2/85.3 91.5/86.6 86.2/81.4 

AE-Net [22] 89.5/84.9 91.0/86.5 92.0/87.6 86.7/81.9 

Dual-stream Model [23] 93.2/89.1 94.5/90.3 95.2/91.4 90.2/86.3 

Proposed Method 94.7/91.6 96.2/93.1 97.1/94.5 93.5/89.9 

Table 18. Memory Consumption (MB) for train and test datasets across existing methods and the proposed method 

Method 
MSMT17 

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 220/210 230/215 235/225 210/200 

MSPA [13] 210/205 220/210 225/215 205/195 

UNIReID [14] 250/240 260/245 265/255 245/235 

M2FINet [16] 275/260 285/270 290/275 270/260 

GCN [17] 230/220 240/225 245/235 225/215 

Deep-MRL [18] 265/250 275/260 280/270 260/250 

CLIP-like Framework [21] 240/225 250/235 255/245 235/225 

AE-Net [22] 255/240 265/250 270/260 250/240 

Dual-stream Model [23] 280/265 290/275 295/285 275/265 

Proposed Method 230/215 240/225 245/235 225/215 
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Table 19. Energy efficiency (mJ) for train and test datasets across existing methods and the proposed method 

Method 
MSMT 17 

(Train/ Test) 

Market1501 

(Train/ Test) 

DukeMTMC 

(Train/ Test) 

CCUHK03-NP 

(Train/ Test) 

VI-PReID [12] 160/150 170/160 175/165 160/150 

MSPA [13] 150/140 160/150 165/155 150/140 

UNIReID [14] 180/170 190/180 195/185 180/170 

M2FINet [16] 200/190 210/200 215/205 200/190 

GCN [17] 170/160 180/170 185/175 170/160 

Deep-MRL [18] 190/180 200/190 205/195 190/180 

CLIP-like Framework [21] 180/170 190/180 195/185 180/170 

AE-Net [22] 195/185 205/195 210/200 195/185 

Dual-stream Model [23] 210/200 220/210 225/215 210/200 

Proposed Method 170/160 180/170 185/175 170/160 

5. Conclusion 
The proposed method shows appreciable improvements 

over a range of criteria when compared to methods now in use 

on several datasets (MSMT17, Market1501, DukeMTMC, 

and CCUHK03-NP). Low consumption in the train and test 

phases results in remarkable energy efficiency, qualities 

required for practical application, particularly in environments 

with limited energy availability. Resilient and highly  

performing in a variety of conditions, the technique also 

performs remarkably well in terms of Accuracy, Mean 

Average Precision (mAP), F1-score, CMC, Rank-1, and Top-

5 Accuracy. The proposed method proves a great degree of 

cross-modality performance (RGB against IR), demonstrating 

its adaptability in many input modalities. This is something 

that is rather difficult to achieve in applications applied in the 

real world. Apart from its remarkable memory consumption, 

which makes it more suitable for usage in devices with limited  

resources, it also stands out for better computational 

efficiency. These results reveal the method's flexibility, 

effectiveness, and practicality in environments that mirror the 

real world, in which variables including energy consumption, 

computational resources, and performance are of main 

relevance. Apart from defining a new benchmark for future 

research in this field, the proposed method presents a feasible 

solution for large-scale, multimodal person re-identification 

problems. It is a  strong candidate for pragmatic deployment in 

dynamic surroundings since it finds a mix between 

performance and resource economy.
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