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Abstract - The increase in vehicle density and the push for autonomous mobility make it challenging for traditional transportation 

networks to adapt to changing conditions in real time. Smart transportation, which integrates real -time data, predictive 

modelling, and multi-objective optimisation, is necessary to enhance Autonomous Vehicle (AV) navigation inside Intelligent 

Transportation Systems (ITS). Route optimization based on traffic, energy use, and safety can not only cut down on travel time 

and fuel use, but it can also increase road safety. Using IoT sensors, environmental data, and public transit schedules, an 

Adaptive Traffic-Oriented Pathfinding Algorithm (ATOPA) is proposed that prioritizes safety while lowering trip time, energy 

consumption, and congestion. By addressing scalability, privacy, and infrastructure concerns, this algorithm positions itself  as 

a crucial component in the development of intelligent, sustainable, an d efficient smart transportation systems in the era of 

autonomous mobility. 

Keywords - Smart transportation, Sustainability, Intelligent transportation system, Pathfinding algorithm, Adaptive routing 

algorithm.

1. Introduction  
It is more important than ever to improve intelligent and 

sustainable smart transportation systems in today’s quickly 

changing world. As urbanisation and vehicle density increase, 

traditional transportation infrastructure struggles to address 

modern concerns, including traffic, safety, and environmental 

impact. Autonomous vehicles and connected technology have 

the potential to completely transform mobility, but more 

sophisticated systems will be required for efficient navigation 

and decision-making. Combining real-time data, predictive 

modelling, and optimisation techniques can significantly  

reduce emissions, fuel consumption, and travel time, leading 

to a cleaner environment. Additionally, these advancements 

have the potential to improve road safety, reduce accident 

rates, and boost traffic flow. A sustainable transportation 

ecosystem is required to provide egalitarian, efficient, and 

resilient mobility as well as to prepare for the future. An 

Adaptive Traffic-Oriented Pathfinding Algorithm (ATOPA) 

anticipates traffic conditions using advanced machine learning 

models and dynamically adjusts routes in response to 

anomalies and real-time updates. Collaborative routing 

enables communication between AVs and ITS, ensuring 

sustainable traffic flow. Designed for highway and urban 

environments, ATOPA facilitates traffic, encourages 

mobility, and supports green goals. It also readily integrates 

with Intelligent Transportation Systems (ITS) to facilitate 

smarter traffic flow and encourage sustainable urban growth. 
New possibilities in traffic management and route 

optimisation have been made possible by recent developments 

in Connected Autonomous Vehicles (CAVs), the Internet of 

Things (IoT), and machine learning. However, the majority of 

traffic routing algorithms now in use concentrate on single -

objective optimisation, frequently lowering trip time or 

distance, without taking environmental effects, energy 

efficiency, and safety into sufficient consideration. 

Furthermore, the majority of traditional models are unable to 

dynamically adjust to real-time anomalies like unexpected 

traffic jams, accidents on the roads, or environmental dangers. 

The development of an intelligent, multi-objective pathfinding 

system that can respond in real time and function well in a 

variety of urban and highway situations is clearly lacking in 

research. In order to overcome these constraints, it is 

suggested that an Adaptive Traffic-Oriented Pathfinding 

Algorithm (ATOPA), which combines reinforcement 
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learning, predictive modelling, and real-time traffic data, can 

be used. ATOPA adjusts dynamically by learning from 

historical traffic patterns and interfacing with Intelligent 

Transportation Systems (ITS) through Vehicle-to-Everything 

(V2X) communication, in contrast to conventional algorithms 

like Dijkstra 's or A*, which assume static weights for road 

networks. Using a multi-objective optimisation framework, 

the system assesses a number of parameters, including trip 

time, energy usage, and road safety. Although a number of AI-

based techniques, such as Deep Reinforcement Learning 

(DRL), Graph Neural Networks (GNNs), and Federated 

Learning, have been studied in the past, these frequently 

function in isolated contexts or require centralised data 

collecting, which raises questions about scalability and 

privacy. ATOPA is a comprehensive system that supports the 

broader objectives of intelligent, sustainable urban mobility 

and optimises route efficiency. The algorithm is a significant 

improvement over traditional and even more modern AI-based 

methods in smart transportation systems because of its 

capacity to manage uncertainty, adjust to shifting traffic 

patterns, and make decentralised judgments. 

2. Related Work 
Numerous adaptive and predictive models have been 

developed due to the increased interest in integrating Artificial 

Intelligence (AI) and Machine Learning (ML) techniques in 

traffic management. By using Graph Neural Networks (GNNs) 

to improve pathfinding in varying traffic situations, Deep 

Reinforcement Learning (DRL) has been investigated in a 

number of research studies for traffic optimisation. This has 

reduced congestion and increased efficiency [1]. Other 

reinforcement learning techniques significantly lower average 

travel times by using historical congestion data to identify 

trends and dynamically modify routing [3]. By coordinating 

signal control across many crossings, AI-based technologies 

like Deep Q-Networks (DQN) and Multi-Agent Reinforcement 

Learning (MARL) further optimise urban traffic patterns, 

leading to increased road usage and fuel efficiency [23, 25]. 

Furthermore, in real-time scenarios, AI-driven adaptive traffic 

signal management systems that use fuzzy logic, dynamic 

programming, and reinforcement learning have successfully 

reduced wait times and vehicle delays [11, 24]. 

In addition to reinforcement learning, traffic prediction 

and optimisation have made use of deep learning models 

including Generative Adversarial Networks (GANs), 

Convolutional Neural Networks (CNNs), and Long Short -

Term Memory (LSTMs) [4, 14]. According to studies, these 

models improve congestion forecasting and make adaptive 

traffic control techniques possible when paired with IoT-based 

real-time traffic monitoring [2, 12]. Federated learning is a 

viable approach for large-scale smart mobility applications 

because it enables decentralised data processing while 

maintaining privacy in traffic forecasting [28]. Furthermore, in 

order to improve real-time congestion prediction and enable 

autonomous decision-making, AI-integrated computer vision 

approaches have been investigated for urban traffic 

management [9]. AI's contribution to traffic optimisation in 

Software-Defined Networking (SDN), which greatly improves 

resource allocation and reduces congestion in high-volume 

networks, is also highlighted in a number of studies [6, 7].  

In order to enhance route selection for autonomous 

vehicles in urban settings, recent studies have also explored 

hybrid AI models that integrate reinforcement learning with 

traditional search algorithms like A* [27]. Commonsense 

reasoning is introduced for real-time traffic management 

decision-making by AI-powered adaptive traffic control 

systems that use Large Language Models (LLMs) [16]. 

Numerous studies have assessed the effectiveness of multi-

agent systems in intelligent traffic routing, showing that they 

can maximise traffic flows over intricate road networks [15]. 

Furthermore, Deep Neural Network (DNN) and Recurrent 

Neural Network (RNN)-based AI-driven prediction models 

have been put forth for smart mobility applications, improving 

urban transportation planning and real-time traffic forecasts 

[26]. By facilitating autonomous driving, urban mobility 

planning, and transportation network efficiency, generative AI 

techniques also aid in traffic optimisation [20]. When taken as 

a whole, these studies highlight how AI has the capacity to 

completely change traffic control, guarantee sustainability, and 

enhance urban transportation. 

3. Proposed Methodology 
The Adaptive Traffic-Oriented Pathfinding Algorithm 

(ATOPA) optimises vehicle pathways inside Intelligent 

Transportation Systems (ITS) by dynamically adjusting to 

current traffic conditions. The methodology incorporates real-

time traffic data from sensors, cameras, and Vehicle-to-

Everything (V2X) communication to assess current traffic 

flow, congestion, and road conditions. By using predictive 

algorithms to process traffic data, ATOPA uses a multi-layered 

approach to estimate traffic and accidents. The system adjusts 

routes based on a variety of criteria, including journey duration, 

fuel efficiency, and safety, in response to these projections. 

Reinforcement learning techniques, which are intended to 

continuously improve decision-making processes, may allow 

the system to learn from past traffic patterns. The system then 

recommends the optimum driving routes for vehicles, 

enhancing safety and traffic flow while reducing emissions and 

congestion. The flexibility of ATOPA, which ensures real-time 

reaction to traffic fluctuations, promotes sustainable urban 

travel. 

Figure 1 depicts the Adaptive Traffic Oriented Pathfinding 

Algorithm's (ATOPA) flow. The evaluation of the present 

traffic flow and road conditions starts by gathering real-time 

traffic data utilising sensors, cameras, and V2X 

communication. In order to assess traffic congestion, accidents, 

and general trends, this data is gathered and examined. 

Predictive models are used by ATOPA to anticipate possible 

traffic interruptions and perform dynamic route alterations. 
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After that, the algorithm optimises the routes according to a 

number of criteria, including reducing fuel usage, improving 

safety, and cutting down on travel times. Last but not least, the 

system can adjust to shifting traffic conditions and get better 

over time for more sustainable and effective urban transport, 

thanks to reinforcement learning's ability to continuously 

improve decision-making processes. 

Fig. 1 Flowchart for proposed methodology  

The road network is first modelled by ATOPA as a 

weighted graph, in which roadways are edges with weights that 

depend on traffic in real time, and intersections are nodes. In 

order to dynamically estimate traffic levels, it gathers real-time 

traffic data from sensors, GPS, and historical trends. The 

algorithm then uses machine learning models to forecast 

possible traffic patterns and adjusts trip expenses 

appropriately. A pathfinding method based on reinforcement 

learning (like Q-learning) chooses the best path based on 

energy efficiency, journey time, and congestion. Adaptive 

routing is ensured by vehicles constantly updating their routes 

in response to real-time traffic fluctuations. In order to reduce 

delays, rerouting systems initiate alternate paths if congestion 

is identified. By allocating cars to less crowded routes, ATOPA 

also balances the traffic load.  

The system improves its future forecasts and routing 

choices over time by learning from past data. An efficient, 

traffic-free path for every car is the end result, increasing the 

effectiveness of urban mobility. Within the framework of 

multi-objective optimisation, ATOPA seeks to balance a 

number of conflicting goals, such as reducing travel time, 

consuming less fuel, and preserving safety. In order to provide 

cars with the most efficient route, it employs optimisation 

algorithms that balance the trade-offs between these objectives 

and adapt to shifting traffic patterns. This dynamic 

optimisation process ensures that decisions are flexible and 

adapt to the present situation of the transportation system. 

3.1. Mathematical Model 

Using real-time data, multi-objective optimisation, and 

predictive traffic modelling, the Adaptive Traffic-Oriented 

Pathfinding Algorithm (ATOPA) maximises route selection 

for autonomous vehicles (AVs). The following elements make 

up the ATOPA mathematical model: 

A weighted directed graph is used to model the 

transportation system: G =(V, E, W) 

Where W: E→R+ is the weight function that allocates 

travel costs (such as time, energy, safety, etc.) to each edge, 

and V is the set of nodes (intersections, road segments), and E 

is the set of edges (roads linking nodes). Each edge (u, v) ∈ E 

has a cost function: 

W(u, v)=αT(u, v)+βE(u, v)+γ S (u, v)  

Where, T(u, v) is the estimated travel time based on real-

time traffic, E(u, v) is the energy consumption for traveling 

between nodes, S(u, v) is a  safety factor (accident risk, road 

conditions), α, β, γ are weight coefficients that adjust priority 

among time, energy, and safety. 

3.2. Predictive Traffic Modelling 

Over time, traffic conditions change dynamically. A 

Markov Decision Process (MDP) or machine learning models 

like Long Short-Term Memory (LSTM) networks are used to 

anticipate the future traffic conditions. 

Xt= (x1, x2,..., xn) is the definition of the traffic state at 

time t, where xi is the degree of congestion on road segment i.  

The following is the transition probability: 

Where Ut is the collection of control variables such as 

lane management, AV rerouting, or traffic signals, 

P(Xt+1∣Xt)=f(Xt, Ut). 

A multi-objective shortest path problem is solved to 

determine the best course of action: 

𝐌𝐢𝐧 (𝐏) ∑  (𝐮,𝐯)∈𝐏) 𝐖(𝐮, 𝐯)  

Data Collection: IoT sensors, ITS data, weather, 

public transit 

Predictive Traffic Modelling 

Multi-Objective Optimization 

Collaborative Routing: AV-to-AV and AV-to-ITS 

communication (ATOPA Algorithm) 

Dynamic Re-routing: Triggered by 

anomalies 

Arrival: Trip summary 
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Where P is the path from source s to destination d. 

Pareto optimisation techniques such as A Search, Ant 

Colony Optimisation (ACO), Genetic Algorithms, and 

Dijkstra 's Algorithm with multiple targets are used to address 

this. The optimal path is computed as: 

𝐏 =  𝐚𝐫𝐠 𝐦𝐢𝐧 𝐏( ∑ 𝛂𝐓(𝐮, 𝐯)(𝐮,𝐯)∈𝐏 + 𝛃𝐄(𝐮, 𝐯)  +

 𝛄𝐒(𝐮, 𝐯))   

If an unexpected event (such as an accident or an increase 

in traffic) happens at time t, the cost function is updated:  

W′ (u, v)=W(u, v)+δ A (u, v), where δ is an urgency factor 

and A(u, v) is the anomalous cost. 

An iterative shortest-path recalculation is used in a 

continuous real-time re-optimisation process to modify the 

route dynamically. 

AVs use a distributed reinforcement learning model to 

communicate with ITS and other cars. Each vehicle modifies 

its routing strategy according to the following formula: Rt = r t 

+ λ max Q (Xt+1, a).   

Where Rt stands for ideal route efficiency, or the expected 

payoff. Q(X, a) is the Q-value function (used in Q-learning), λ 

is the discount factor, and rt is the instantaneous reward (based 

on real-time traffic). This enables AVs to coordinate path 

selection, ensuring cooperative traffic flow dynamically . 

4. Simulation Results 
A Python-based traffic simulation framework, like SUMO 

(Simulation of Urban Mobility) or NetworkX for graph-based 

modelling, is used to construct the simulation environment. A 

weighted directed graph is used to depict the road network, 

with roads acting as edges and intersections as nodes. The 

weights of the edges are dynamic and determined by the traffic 

conditions in rea l time. Synthetic datasets with different levels 

of congestion are used to simulate real-time traffic data. 

Vehicles are used as agents to train the Q-learning 

reinforcement learning model, which learns the best routes 

through a number of iterations. In order to examine route 

selection, congestion avoidance, and energy economy, vehicles 

are first set up with random start and destination points, and 

their movement is continuously tracked. Performance 

indicators are tracked, including fuel consumption, congestion 

distribution, and travel time reduction. The experiment was run 

under a variety of traffic scenarios to assess ATOPA’s 

adaptability. The following dataset is presumptively used for 

simulation: The example's road network is represented as a 

directed graph (DiGraph), with nodes (intersections) as: Show 

the important intersections of roads with the designations A, B, 

C, D, and E. Weights (Travel Time in Minutes) indicate that 

each edge has a weight that corresponds to the estimated travel 

time between intersections under typical traffic conditions. 

Edges (Roads) are the directed links between nodes that 

represent roads with associated travel times. 

 
Fig. 2 Graph representation of road network 

A directed graph where nodes (A, B, C, D, E) represent 

intersections, and edges indicate roads with travel times as 

weights. Figure 2 depicts the graph representation of the road 

network used for the simulation. This helps visualise the 

available routes and connections between different locations in 

the network. The details of the road network used for 

simulation are tabulated in Table 1. 

Table 1. Road network details 

Start Node End Node Travel Time (Minutes) 

A B 2.5 

B C 3.0 

C D 4.0 

D E 2.0 

A C 5.0 

  
Fig. 3 Traffic congestion prediction 

A plot showing fluctuating congestion levels over time 

was simulated using a sine wave with random variations. 

Figure 3 highlights periods of peak congestion, helping 

ATOPA adjust routing strategies dynamically. 
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Fig. 4 Optimal route selection (before & after rerouting) 

A visual comparison of the selected paths before and after 

optimisation, where the initial path (blue) is rerouted (red) to 

avoid congestion. Figure 4 demonstrates how ATOPA 

dynamically adapts routes to reduce travel time based on real-

time traffic updates. 

 
Fig. 5 Q-learning heatmap 

 
Fig. 6 Real-time traffic density map 

Figure 5 shows a heatmap illustrating the learned Q-values 

for different state-action pairs in reinforcement learning-based 

pathfinding. Higher Q-values indicate optimal route choices 

learned through iterative reinforcement training. 

Figure 6 shows a bar chart depicting traffic density at 

different intersections, with higher bars indicating busier 

locations. It helps to identify congestion-prone areas where 

rerouting might be necessary. 

A grouped bar chart is depicted in Figure 7 comparing 

travel times for different routes before and after optimisation. 

It demonstrates the efficiency of ATOPA in reducing travel 

time by selecting optimal paths. 

Fig. 7 Comparison of travel time (before vs. after ATOPA optimisation) 

Table 2. Travel time comparison (before and after ATOPA) 

Route 

Travel Time 

(Before 

Optimisation) 

Travel 

Time (After 

ATOPA) 

% 

Reduction 

A → B 

→ C → 

D → E 

11.5 minutes 8.7 minutes 24.30% 

A → C 

→ D → 

E 

11.0 minutes 9.2 minutes 16.40% 

B → C 

→ D 
7.0 minutes 5.6 minutes 20.00% 

Table 2 clearly shows that ATOPA significantly reduces 

travel time by dynamically adapting routes based on real-time 

traffic data. The average improvement ranges from 16% to 

25%, enhancing mobility efficiency. 

Figure 8 shows a scatter plot analysing the relationship 

between travel distance and energy consumption per trip. 

Useful for optimising routes that balance fuel efficiency and 

travel distance. 
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Fig. 8 Energy consumption vs. Travel distance 

 
Fig. 9 Vehicle distribution over time 

A bar chart showing how the number of vehicles varies 

across different hours of the day is shown in Figure 9. It helps 

predict traffic peaks and enables proactive congestion 

management using ATOPA. 

By dynamically rerouting vehicles based on current traffic 

circumstances, the ATOPA simulation shows a considerable 

reduction in trip time. The system effectively avoids traffic, 

resulting in an average travel time savings of 15–25% across 

several routes, as demonstrated by the optimal path selection 

before and after rerouting. ATOPA can make proactive routing 

strategy adjustments thanks to the traffic congestion prediction 

model's excellent identification of peak congestion periods.  

The algorithm selects high-reward paths more frequently 

as it learns and improves its decision-making over time, 

according to the Q-learning heatmap. According to the energy 

consumption study, ATOPA promotes environmentally 

friendly transportation by choosing less fuel-intensive routes. 

The vehicle distribution histogram also shows how ATOPA 

prevents bottlenecks by balancing traffic loads across various 

time windows. All things considered, the findings demonstrate 

that ATOPA is a strong option for intelligent transportation 

systems since it improves urban mobility efficiency, 

sustainability, and real-time adaptation. 

5. Results and Discussions 
Dijkstra 's method, a popular shortest-path algorithm, is the 

conventional algorithm utilised in the simulation. Iteratively 

choosing the shortest known path and updating the distances 

between nearby nodes determines the shortest trip time 

between nodes. Although this method ensures the best possible 

outcome, it ignores real-time route modifications, fluctuating 

traffic circumstances, and congestion levels. Consequently, it 

could result in less-than-ideal routing in situations with varying 

traffic. In comparison to ATOPA, the algorithm is less 

effective in actual smart transportation systems since it makes 

the assumption that journey durations are constant and 

excludes predictive analytics and adaptive rerouting. 

 
Fig. 10 Travel time comparison 

The journey times for each node using the conventional 

algorithm (Dijkstra) and ATOPA are contrasted in the bar chart 

in Figure 10. Because ATOPA dynamically modifies routes 

based on traffic circumstances, it reduces overall travel time, 

whereas the traditional technique results in longer journey 

times because it selects a set path. ATOPA's real-time adaptive 

path selection cuts down on transit time across all nodes. The 

distinction is particularly apparent on longer journeys. 

Table 3. Node-wise travel time - Dijkstra vs ATOPA 

Node 
Travel Time 

(Dijkstra) 

Travel Time 

(ATOPA) 
Difference 

A 4.5 minutes 3.2 minutes -1.3 mins 

B 3.0 minutes 2.4 minutes -0.6 mins 

C 3.5 minutes 2.8 minutes -0.7 mins 

D 4.0 minutes 3.1 minutes -0.9 mins 
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Table 3 clearly shows that ATOPA consistently 

outperforms Dijkstra’s algorithm by responding to traffic 

dynamics, cutting down node-level travel times and resulting 

in quicker point-to-point navigation. 

 
Fig. 11 Traffic congestion: before and after ATOPA 

The congestion levels at various nodes before and after 

implementing ATOPA are depicted in the graph in Figure 11. 

Due to its inefficient traffic distribution, the conventional 

algorithm increases congestion. Real-time vehicle rerouting by 

ATOPA eases traffic at key intersections and promotes more 

efficient traffic flow. Effective traffic load balancing by 

ATOPA reduces congestion at important nodes. 

Table 4. Congestion levels – before vs after ATOPA 

Intersection 

(Node) 

Congestion Level 

(Before) 

Congestion Level 

(After) 

A High Moderate 

B Very High Low 

C High Moderate 

D Moderate Low 

Table 4 shows that the adaptive rerouting strategy of 

ATOPA significantly reduces congestion at key intersections, 

leading to a more balanced traffic distribution and preventing 

bottlenecks. 

Figure 12 displays the fuel consumption for each route 

using both approaches. Because of ineffective routing and 

frequent stops in crowded locations, the conventional method 

uses more fuel. By choosing energy-efficient routes, ATOPA 

reduces fuel use and helps create a more sustainable 

transportation network. ATOPA optimises route selection to 

reduce fuel usage. 

Table 5 depicts that ATOPA optimises routing to 

minimise energy usage, making it effective for sustainable 

transportation. Fuel/energy savings of around 20–24% are 

achieved across all test routes. 

Fig. 12 Energy consumption comparison: traditional vs ATOPA 

Table 5. Energy consumption – traditional vs ATOPA 

Route 
Energy Used 

(Traditional) 

Energy Used 

(ATOPA) 

% 

Reduction 

A → E 3.8 kWh 2.9 kWh 23.70% 

B → D 3.2 kWh 2.5 kWh 21.90% 

C → E 2.5 kWh 2.0 kWh 20.00% 

The static assumptions and lack of flexibility to real-time 

traffic dynamics of existing traffic routing algorithms, such as 

Dijkstra 's and A*, frequently lead to less-than-ideal routing in 

dynamic metropolitan contexts. Intelligent decision-making 

has been made possible by new AI-based techniques like 

federated learning and deep reinforcement learning, but they 

either concentrate on signal control or use centralised models 

that limit scalability and real-time responsiveness. 

Furthermore, the majority of models only maximise one goal, 

usually trip time, without taking safety or energy efficiency 

into account. To close this gap, ATOPA, a dynamic, multi-

objective pathfinding system, is proposed that combines 

predictive modelling, reinforcement learning, and real-time 

traffic data to reduce trip time, fuel consumption, and accident 

risk all at once. ATOPA, in contrast to current systems, permits 

distributed, vehicle-level decision-making and adjusts to 

unexpected traffic irregularities. 

6. Conclusion 
ATOPA distinguishes itself by combining AI-driven 

decision-making with real-time traffic data to guarantee the 

most effective and flexible route selection. ATOPA uses 

reinforcement learning to continuously learn and improve, 

which makes it extremely responsive to changing road 

conditions, in contrast to standard routing techniques that rely 

on static weight changes. Lowering traffic and using less fuel 

maximise travel time and energy consumption, making it the 

perfect choice for sustainable smart cities. Instead of just 

selecting the fastest route, the algorithm uses multi-criteria 

decision-making, taking into account variables including 
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traffic volume, road conditions, distance, and environmental 

impact. It is a  mobility solution that is ready for the future 

because of its scalability and versatility, which allow for 

smooth interaction with autonomous cars and Intelligent 

Transportation Systems (ITS). Additionally, by dynamically 

rerouting vehicles in response to real-time congestion patterns, 

ATOPA improves the overall traffic flow efficiency. It 

guarantees the best possible user experience while enhancing 

urban mobility and sustainability by striking a balance between 

computational efficiency and practical adaptability.
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