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Abstract - This research presents a novel computational model for racial identification and anti -aging skin type analysis, built 

upon a hybrid architecture that integrates the Haar Cascade and a Convolutional Neural Network (CNN) method. This Model 

addresses the limited application of objective skin metrics in conventional racial classification by focusing on the analysis  of 

unique features within digital imagery of the facial T-zone and U-zone. Fine-tuned over 120 training epochs with the Adam 

optimizer, the system achieved a classification accuracy of 99.35% for race and 93.91% for skin type. This high degree of 

Precision underscores the efficacy of leveraging specific facial zones for developing robust and highly accurate classification 

systems, confirming that such computational approaches can overcome the limitations of traditional methods . 
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1. Introduction 
The skin constitutes the largest and most external organ 

of the human body, playing a vital role in protecting internal 

systems from environmental factors while also contributing to 

physiological and aesthetic functions. Structurally complex, 

the skin exhibits significant variation in elasticity, texture, and 

pigmentation, attributes strongly influenced by genetic 

background, ethnicity, and age. In particular, skin 

pigmentation is closely linked to racial classification, which is 

typically based on phenotypic traits, geographic origin, and 

hereditary characteristics. 

Racial classification based on skin features has emerged 

as a prominent issue across multiple disciplines, including 

anthropology, forensic science, and the cosmetic and 

dermatological industries. However, conventional approaches 

to determining race or assessing skin condition often rely on 

manual inspection, which is inherently subjective and 

frequently imprecise. Such limitations can result in 

misclassification, leading to serious social and ethical 

implications, particularly in contexts sensitive to racial bias 

and discrimination [1]. Recent advancements in facial 

analytics have led to investigations that have extensively 

explored the application of digital image processing and 

pattern recognition methods to categorize ethnic 

characteristics and evaluate visible indicators of dermal aging. 

Notably, sophisticated deep learning constructs, such as 

Convolutional Neural Networks (CNNs), have exhibited 

substantial proficiency in discerning intricate facial 

configurations and forecasting demographic traits [2], while 

Haar Cascade classifiers have been effectively used for rapid 

identification of facial features [3]. 

Despite these advancements, the prevailing body of 

literature primarily focuses on generalized demographic 

classification. Consequently, despite advancements, scholarly 

work has not extensively delved into the detailed examination 

of distinct facial contours, particularly neglecting areas widely 

recognized as the T-zone, consisting of the forehead and nasal 

bridge, and the U-zone, which incorporates the malar and 

mental regions, both of which are regions of established 

clinical significance in dermatologica l assessments [4]. This 

gap indicates the absence of an integrated system capable of 

simultaneously classifying racial features and assessing skin 

aging in these targeted facial areas using a hybrid approach 

that incorporates both CNN and Haar Cascade methods.  

This investigation seeks to establish an automated 

framework for discerning ethnic affiliations and identifying 

age-related cutaneous markers through detailed facial skin 

https://www.internationaljournalssrg.org/
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analysis, with particular attention to crucial zones like the T-

zone (forehead and nose) and U-zone (cheeks and Chin). The 

novelty of this research resides in its integrated two-fold 

approach, which synergizes deep learning methodologies with  

feature-centric classification to facilitate both ethnic group 

recognition and dermatological assessments pertinent to 

aging. By concentrating on these vital facial areas, which hold 

considerable importance for clinical dermatology and 

cosmetic applications, the envisioned system possesses the 

capacity to advance intelligent diagnostic utilities within  

skincare development, aesthetic product innovation, and 

continuous dermatological observation. 

2. Methodology 
2.1. Literature Review 

This section reviews relevant literature that informs the 

methodologies adopted in this study. The first study, “Facial 

Skin Image Classification System Using Convolutional 

Neural Networks Deep Learning Algorithm” [5], successfully 

employed CNN-based deep learning to classify facial skin 

images into three categories, achieving a 92% accuracy rate in 

the second classification model. The second study, “Facial 

Skin Classification Using Convolutional Neural Networks”  

[6], focused on three classification categories—normal, spot, 

and wrinkle. By applying CNN in conjunction with  

GoogleNet via the NAG solver, this research attained a peak 

accuracy of 89%.  

The third reference, “Emotion Classification Based on 

Pulsatile Images Extracted from Short Facial Videos via Deep 

Learning” [7], utilized CNN models to classify emotional 

states based on facial video sequences, reporting an average 

classification accuracy of 50%. In the fourth study, 

“Automatic Ethnicity Classification from the Middle Part of 

the Face Using Convolutional Neural Networks” [8], he study 

employed Convolutional Neural Networks (CNNs) to 

autonomously determine ethnic categories across multiple 

datasets, achieving a maximum accuracy of 80.34%. A fifth 

key reference, “Face Detection Using Haar Cascade 

Classifier”, demonstrated that the Haar Cascade technique can 

effectively detect facial regions by analyzing specific image 

segments. This method could identify faces under a wide 

range of expressions and environmental conditions [9]. 

However, this work did not examine detailed skin features 

specific to the T-zone and U-zone, which are the focus of the 

present research. Additional literature, such as “Classification 

of Ethnicity Using Efficient CNN Models” [12], highlighted  

the efficacy of CNN architectures in recognizing ethnicity 

from facial imagery. Likewise, Khan et al. [16] proposed a 

comprehensive deep learning framework for race 

classification that utilized advanced facial feature extraction. 

Notably, most existing studies emphasize global facial 

features or specific components, yet they do not incorporate 

an integrated analysis of the T-zone and U-zone. The present 

research addresses this gap by jointly analyzing these regions 

for both racial classification and anti-aging skin assessment. 

This integrated approach enables the identification of nuanced 

patterns often overlooked in global classification models, 

thereby enhancing the system’s diagnostic Precision and its 

application in anti-aging evaluations. 

2.2. Race 
Race is traditionally defined as a classification system for 

humans based on shared, genetically inherited biological 

traits, distinguishing it from socially constructed attributes 

[10]. Racial categorization typically involves the evaluation of 

observable physical characteristics, such as somatic 

morphology, craniofacial structure (including head shape, 

facial features, and jawline), dentition, nasal configuration, 

and pigmentation of the eyes, skin, and hair. In accordance 

with the framework established by [11], this study employs a 

tripartite racial classification scheme as follows: 

2.2.1. Mongoloid Race 

The Mongoloid race encompasses populations 

predominantly located in East Asia, Southeast Asia, Central 

Asia, and parts of the Americas [12]. 

Principal physical characteristics include: 

• Olive-yellow to light brown skin tone 

• Straight, dark hair 

• Slanted eyes with epicanthal folds (skin folds at the eye 

corners) 

• Prominent cheekbones 

• Generally, medium body stature 

Representative populations include: 

Chinese, Japanese, Koreans, Vietnamese, and indigenous 

Southeast Asian groups such as the Javanese, Sundanese, and 

Malays. 

2.2.2. Mixed Race 

Mixed race refers to individuals with ancestry derived 

from two or more distinct racial groups. Such racial 

amalgamation commonly occurs through processes like 

migration, commerce, colonization, or intermarriage. 

Physical characteristics: 

• Highly variable, contingent upon the ancestral lineages 

involved 

• Typically exhibit a  combination of traits inherited from 

both parents, including variations in skin tone, eye shape, 

hair texture, and height 

Representative populations include: 

• Mestizo (a mix of European and Native American 

ancestry in Latin America) 

• Mulatto (a mix of European and African ancestry across 

various regions) 
• Peranakan populations in Southeast Asia, such as Chinese 

Peranakans in Indonesia and Malaysia  
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2.2.3. Melanesoid Race 

The Melanesoid race is primarily found in Melanesian 

regions, including Papua, the Solomon Islands, and Fiji. This 

group is part of the broader Australoid classification. 

2.2.4. Principal Physical Characteristics Include 

• Dark skin (ranging from deep brown to black) 

• Curly to tightly coiled hair 

• Broad nasal structure 

• Thick lips. 

• Robust and muscular physique 

Representative populations include: 

Indigenous communities in Papua, such as the Dani, 

Asmat, and other Melanesian tribes. 

2.3. Anti Aging 
Anti-aging encompasses a set of concepts, techniques, 

and products aimed at delaying, preventing, or minimizing the 

visible signs of aging on the skin and body. While anti-aging 

strategies primarily focus on skincare, they also encompass 

holistic health measures such as dietary regulation, physical 

exercise, and nutritional supplementation. The objective is to 

mitigate or decelerate aging markers, including wrinkles, fine 

lines, skin laxity, hyperpigmentation, and dullness [13]. Aging 

is attributable to both intrinsic (e.g., genetic predisposition, 

chronological aging) and extrinsic factors (e.g., ultraviolet 

exposure, pollution, and unhealthy lifestyle choices). 

According to [14], anti-aging interventions can be categorized 

into the following levels: 

2.3.1. Lightweight Anti-Aging 
Intended for prevention or addressing the earliest visible 

signs of aging, these methods are typically non-invasive and 

performed at home. 

Methods and products include: 

• Daily use of sunscreen (UV protection) 

• Moisturizers with antioxidants (e.g., vitamins C and E) 

• Low-concentration retinoids (e.g., retinol) 

• Gentle exfoliants (e.g., AHA/BHA) 
• Antioxidant-rich diets 

• Adequate sleep and regular exercise 

Target demographic: 

• Individuals aged 20–30 years are experiencing minor 

issues such as dullness, emerging fine lines, or mild  

hyperpigmentation. 

2.3.2. Medium Class Anti-Aging 
Designed for individuals exhibiting more pronounced 

aging signs, requiring moderate interventions. 

Methods and products include: 

• Higher-strength retinoids (e.g., tretinoin) 

• Active ingredients such as hyaluronic acid, niacinamide, 

or peptides 

• Light-to-moderate chemical peels 

• Microneedling procedures to stimulate collagen 

production 

• Technology-assisted facials (e.g., LED therapy, oxygen 

therapy) 

• Collagen supplementation 

Target demographic: 

• Individuals aged 30–40 years with visible wrinkles, 

pigmentation, or reduced skin elasticity. 

2.3.3. Heavyweight Anti-Aging 

Intended for significant age-related changes, often 

necessitating professional or semi-invasive clinical treatment. 

Methods and products include: 

• Botulinum toxin (Botox) injections for dynamic wrinkle 

reduction 

• Dermal fillers to restore facial volume 

• Laser therapies (e.g., CO₂ fractional lasers, IPL) for deep 

wrinkles and age spots 

• Surgical or minimally invasive lifting procedures (e.g., 

facelifts, thread lifts) 
• Platelet-Rich Plasma (PRP) therapy 

• Radiofrequency or ultrasound skin tightening (e.g., 

Ultherapy) 

Target demographic: 

• Mature adults, specifically those aged 40 and older, 

exhibiting pronounced signs of aging such as prominent 

wrinkles, visible skin laxity, or considerable depletion of 

facial volume 

2.4. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a highly  

effective deep learning architecture designed to process 

structured data arranged in grid formats, such as visual 

imagery or time-series data [15]. In recent years, CNNs have 

become foundational to modern computer vision, driving 

significant advancements and establishing state-of-the-art 

performance across a diverse array of applications. Their 

effectiveness is well-documented in critical domains such as 

medical image segmentation [16], real-time object detection 

[17], and precision agriculture [18]. This widespread success 

is largely attributed to ongoing innovation, including the 

development of lightweight, resource-efficient architectures 

optimized for edge computing [19] and the emergence of 

advanced training paradigms such as self-supervised learning 

[20]. CNNs are fundamentally characterized by their ability to 

autonomously extract and learn spatial features at multiple 

hierarchical levels from input data . This is achieved through a 

multi-layered architecture that progressively abstracts 

information, transitioning from low-level visual patterns to 
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high-level semantic representations. The essential 

components comprising a standard CNN architecture are 

described below: 

2.4.1. Convolutional Layer 

The core role of this specific layer is to discern  

fundamental visual elements from the incoming data, 

including contours, textures, and various hierarchical spatial 

arrangements. This is achieved through a convolutional 

operation, where a filter, typically a compact matrix (such as 

3x3 or 5x5), is methodically traversed across the input image. 

The result of this process is a feature map, which spatially 

registers the occurrence of distinct local patterns. This layer’s 

operation is controlled by several important hyperparameters, 

including the size of the kernels, the number of filters applied, 

and the stride value, which determines how far the filter moves 

across the input. Its principal strength lies in its high efficacy 

for discerning spatially localized patterns within the data. 

2.4.2. Activation Layer 
The essential function of this layer is to impart non-

linearity into the network’s architecture. This critical step 

empowers the Model to learn and represent complex, non-

linear relationships within the data, which would otherwise be 

unattainable through linear transformations alone. ReLU has 

become a standard activation function in many neural network 

architectures in contemporary deep learning practice due to its 

simplicity and effectiveness. This function suppresses 

negative input values by setting them to zero and permits 

positive values to pass through, facilitating efficient learning 

of intricate data representations. 

2.4.3. Pooling Layer 

The function of this layer involves the spatial 

subsampling of feature maps, an operation intended to 

diminish their overall dimensionality. This dimension 

curtailment provides both a reduction in computational 

demands and a regularization effect aimed at curtailing 

overfitting. Prevalent pooling techniques include Max 

Pooling, which isolates the maximum activation in a given 

receptive field, and Average Pooling, which calculates the 

mean magnitude within the relevant pooling zone. This 

operation is commonly configured with a 2×2 window and a 

stride of 2, resulting in a downsampling effect that decreases 

the spatial resolution by a factor of two. 

 

2.4.4. Fully Connected Layer (Dense Layer) 

The concluding layer combines abstracted features from 

earlier layers and generates the final output for classification 

or regression purposes. The spatially organized feature maps 

are first unraveled into a one-dimensional vector to achieve 

this. This flattened vector then serves as the input to a 

sequence of dense layers, which ultimately produce the 

network’s prediction, such as class membership probabilities. 

This hierarchical workflow enables a CNN to transform raw 

pixel data into meaningful, high-level representations, 

facilitating an accurate mapping from input images to their 

designated outputs [21]. 

 

 
Fig. 1 Convolutional Neural Networks 

Figure 1 offers a comparative architectural schematic, 

comparing the architecture of a conventional fully connected 

neural network (shown on the left) with that of a 

Convolutional Neural Network (CNN, depicted on the right) . 

Unlike its fully connected counterpart, a  CNN processes the 

input image directly within its convolutional layer.  

This initial layer applies a series of learnable filters, or 

kernels, across localized sub-regions of the input. These filters 

function as feature detectors, analogous to biological receptive 

fields, enabling the extraction of low-level patterns. A key 

advantage of this architecture is weight sharing, where a single 

filter is replicated across the entire visual field, drastically 

reducing the number of trainable parameters. This design not 

only enhances computational efficiency but also endows the 

network with translational invariance. The configuration of 

the convolutional layer, including its trainable weights and 

various hyperparameters, is critical in shaping the Model’s 

learning process and its ultimate predictive performance [22]. 

2.5. Hair Cascade 

The Haar Cascade is a seminal machine-learning 

algorithm engineered for real-time object detection within  

visual media. Initially introduced by Paul Viola and Michael 

Jones in their seminal 2001 publication, the method offers a 

computationally efficient framework for identifying objects in 

images and video streams. Its architecture leverages a boosted 

cascade of classifiers trained on simple, Haar-like rectangular 

features, which can be computed with extreme rapidity. While 

it has become a benchmark for face detection, its application 

extends to recognizing other objects like eyes, vehicles, and 

various facial expressions.  

The principal advantage of the Haar Cascade lies in its 

ability to rapidly discard background regions of an image 

while focusing computational resources on object-like 

regions. This efficiency, however, often comes at the cost of 

lower accuracy compared to contemporary deep learning-

based detectors. The core components of this methodology are 

detailed subsequently: 

2.5.1. Haar-Like Features 

Definition: Haar-like features are simple rectangular 

patterns that capture changes in pixel intensity within  

localized regions of an image. Types of Features: 
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• Edge Features: Detect transitions between light and dark 

regions, useful for identifying horizontal or vertical 

boundaries. 

• Line Features: Capture linear structures, such as a bright  

stripe bordered by darker areas (or vice versa). 

• Rectangle Features: Recognize more complex 

arrangements, such as corner patterns. Operational 

Principle: Each feature comprises adjacent black and 

white rectangular regions. The feature value is calculated 

as the difference in average intensity between these 

contrasting areas, enabling the identification of 

distinctive textures and shapes. 

2.5.2. Integral Image Representation 

The integral image, also referred to as a summed-area 

table, is a  critical data structure employed as a preprocessing 

step to accelerate the calculation of Haar-like features. It 

functions as a lookup table where the value at any coordinate 

(x, y) represents the cumulative sum of pixel intensities for the 

entire rectangular region originating from the top-left corner 

(0, 0). This representation is powerful because it allows the 

sum of intensities within any rectangular sub-region to be 

computed in constant time, irrespective of the rectangle’s size. 

Specifically, the sum can be calculated with just four array 

lookups. This substantial gain in computational efficiency is 

what enables the Haar Cascade algorithm to perform in real-

time. 

2.5.3. AdaBoost Algorithm 

To enhance detection accuracy and minimize 

computational overhead, the Haar Cascade framework 

employs the AdaBoost algorithm for feature selection and 

classifier training. 

• Among the vast set of potential Haar features, only a 

limited subset is truly discriminative for differentiating 

objects (e.g., separating a face from background). 

• AdaBoost iteratively assigns weights to features based on 

their classification performance, combining a sequence of 

weak learners into a strong ensemble classifier. This 

procedure prioritizes the most informative features while 

discarding redundant or non-contributory ones. 

2.5.4. Cascade Classifier 

The cascade classifier functions as a hierarchical series of 

increasingly complex classifiers, each designed to 

progressively refine detection. Rather than exhaustively 

analyzing all image regions, the cascade architecture performs 

early-stage eliminations of regions unlikely to contain the 

target object. At each level of the cascade: 

• Regions failing to meet basic criteria are rapidly 

discarded. 

• Only candidate regions that pass initial filters proceed to 

deeper stages involving more computationally intensive 

analysis. 

This cascaded architecture significantly boosts 

computational efficiency by progressively eliminating 

background regions, thus ensuring that only promising 

candidate regions undergo a full evaluation. Conceptually, the 

Haar Cascade framework functions as an ensemble classifier, 

where numerous simple Haar-like features are combined to 

form a single, robust decision-making model. The selection 

and weighting of these features are typically accomplished 

using a boosting algorithm, such as AdaBoost, which  

identifies the most discriminative features from a va st pool. 

Each individual feature operates by calculating the difference 

in pixel intensity sums between adjacent rectangular areas 

(e.g., black vs. white regions). While individually weak, these 

contrast-based features are adept at capturing primitive visual 

information like edges and lines. When combined in a 

cascade, they create a highly effective detector capable of 

rapid and accurate object identification [23]. 

 
Fig. 2 Hair-like features 

The structure of the Haar cascade classifier can be seen in 

the image below: 

 
Fig. 3 Haar cascade structure 

Figure 3 depicts the structural flow of a typical Haar 

Cascade classifier. This multi-stage pipeline refines detection 

accuracy by progressively evaluating and filtering candidate 

regions. The Haar Cascade classifier is renowned for its 

computational efficiency in object detection tasks [24]. Once 

a target object, typically a face, is preliminarily located, a 

crucial subsequent step involves isolating the most probable 
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facial regions. Human faces exhibit skin regions characterized 

by distinct chromatic information, making color-based 

segmentation a vital step. Accordingly, appropriate 

segmentation techniques are applied, often relying on the 

color distribution of facial pixels [25, 26]. Recent advances in 

skin segmentation aim to enhance robustness across varying 

illumination conditions and diverse ethnic backgrounds [27].  

Following segmentation, a validation phase is 

undertaken, typically involving geometric verification of 

facial regions. This cross-verification may utilize predefined 

facial templates or facial landmark models and may be refined 

by the Haar Cascade or more advanced models [28]. The 

system confirms successful detection if segmented pixels’ 

chromatic and geometric properties conform to established 

facial patterns. Conversely, regions failing to meet these 

criteria are discarded, enhancing specificity and minimizing 

false positives under visually complex scenarios [29]. 

3. Materials and Methods 
Herein, we present the methodology for designing and 

implementing a software system dedicated to identifying 

racial traits and assessing age-related dermatological features, 

based on digital photographs of faces. The proposed system 

integrates Convolutional Neural Networks (CNNs) with Haar 

Cascade classifiers in a unified algorithmic architecture. The 

methodological pipeline involves the extraction of significant 

visual features, which are then classified into distinct 

categories according to principles of maximal similarity. The 

architecture of the system we developed is illustrated in the 

diagram below: 

 
Fig. 4 Architecture diagram 

1. Image Acquisition: This initial phase involves the 

acquisition of digital facial images. The dataset comprises 

racial phenotype categories, including melanozoid, 

mixed, and mongoloid, as well as various skin types such 

as normal, dry, oily, and combination skin. 

2. Preprocessing: During the preprocessing stage, image 

data are subjected to initial enhancements to improve 

their suitability for subsequent computational analysis. A 

principal operation in this phase is dimensional 

normalization, in which all images, initially varying in  

size, are resized to a uniform resolution standard to ensure 

consistency throughout the dataset. 

3. Model Training: The study implements a CNN 

architecture in combination with the Haar Cascade 

method, designed in accordance with the system ’s 

software specifications. Facial skin images serve as input 

feature maps, each resized to a resolution of 64×64 pixels 

with three RGB channels preserved. The training process 

is bifurcated into two distinct phases: training and 

validation. During the initial training stage, the Model’s 

parameters are fine-tuned using the training data. After 

this optimization is complete, the Model is stored and 

subsequently employed in a validation stage to assess its 

performance on a previously unseen dataset. 

 
Fig. 5 General description 

This system is intended for use by the general public. 

Access to the application is facilitated through an ngrok.io  

address, enabling users to interact with the race and anti-aging 

detection platform. Upon accessing the system, users are 

prompted to upload a facial image of themselves or another 

individual. The uploaded image is processed by the integrated 

CNN and Haar Cascade algorithms. Upon completing this 

computational analysis, the system presents predictions 

regarding the subject’s racial phenotype and age-related skin 

characteristics. 

The study proposes the development of a system for 

classifying racial phenotypes and assessing age-related 

dermatological characteristics from digital image data. The 

proposed methodology employs an algorithmic framework 

integrating Convolutional Neural Network (CNN) and Haar 

Cascade techniques, wherein features extracted from image 

objects are categorized based on maximal similarity.  

The operational workflow of the system is delineated as 

follows: 

1. Load Data : Datasets are loaded into the system, 

comprising two subsets: one for racial phenotype 

classification and the other for evaluating age-related 

dermatological features. 
2. Analyze Data: A preliminary analysis is performed on the 

loaded data to ensure appropriate scaling, resolution, and 

compatibility for model input, including pixel 

normalization and dimensional conformity. 
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Fig. 6 System flowchart 

3. Preprocessing: Image data undergoes initial treatment to 

enhance its characteristics to optimize performance in 

subsequent processing stages. A fundamental procedure 

within this phase is the normalization of image 

dimensions, wherein all images across the dataset, which 

may initially possess heterogeneous sizes, are uniformly 

resized to a consistent dimensional standard. 

4. Data Partition: To enhance the Model’s predictive 
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robustness on unseen examples, the dataset is 

systematically divided into discrete training and 

validation subsets. Customarily, the training partition 

encompasses 80% of the available data, with the residual 

20% employed for comprehensive model assessment. 

5. Convolutional Neural Network: The presented CNN 

framework accommodates input images of 64×64 pixels, 

featuring an RGB color scheme. Data progression  

commences with a series of distinct convolutional blocks. 

Each block is engineered to comprise a convolutional 

layer for attribute detection, a subsequent ReLU 

activation function, and a max-pooling layer to effect 

spatial compression. The derived feature maps are 

linearized into a single-dimensional vector after the final 

pooling procedure. This vectorized representation is 

subsequently channeled into a set of fully-connected 

(dense) layers for subsequent classification, ultimately 

leading to a terminal output layer that applies a softmax 

function to compute the respective class likelihoods. 

6. Model Training: The training regimen is completed upon 

the CNN model’s attainment of convergence over the 

training observations. The fully developed Model, 

encompassing its learned coefficients, is thereafter 

preserved for the subsequent evaluative phase. 

7. Loss Training and Validation: Model performance is 

quantitatively assessed by computing loss values across 

training and validation datasets. Comparative analysis 

facilitates the evaluation of overfitting or underfitting. 

8. Accuracy Training and Validation: Accuracy metrics are 

similarly computed and analyzed to evaluate model 

classification performance across training and validation 

phases. 

9. Trial Evaluation: A comprehensive assessment of the 

model training’s comparative loss and accuracy results is 

performed. This is followed by empirical trials of the 

CNN model’s predictive capabilities on test data. 

10. Haar Cascade Classifier Integration: The outputs of the 

CNN model undergo additional preprocessing before 

integration with the Haar Cascade classifier, which is 

implemented using the OpenCV library. This step 

enhances localized facial feature detection.. 

11. T-Zone and U-Zone Feature Extraction: Fine-grained 

classification is conducted by leveraging the outputs of 

both CNN and Haar Cascade methods. Emphasis is 

placed on T- and U-zone features, delineated using 

bounding boxes for precise localization. 

12. Platform Deployment: The system is deployed as an 

accessible application via a dynamic address generated 

using ngrok. Users input images through the platform, 

which then displays predictions regarding dermatological 

aging patterns and racial phenotype, based on 

computational analysis of the submitted data . 

3.1. Societal Implications of Misidentification 

The deployment of automated systems for race 

classification based on facial features must be critically 

evaluated from both social and ethical standpoints. A primary 

concern is the potential for algorithmic discrimination 

resulting from inaccurate or biased classifications. When such 

systems erroneously classify individuals based on skin tone or 

facial structure, they may reinforce existing stereotypes and 

contribute to racial profiling, particularly when implemented 

in real-world contexts such as surveilla nce, recruitment, or 

public service delivery. Research has shown that physical 

traits, particularly skin color and facial features, play a crucial 

role in shaping how individuals are socially perceived and 

categorized by race, often through unconscious processes. 

Stepanova and Strube [10] observed that individuals 

frequently associate particular facial and dermal 

characteristics with specific racial groups, which subsequently 

affect their attitudes and behaviors toward those individuals. 

When such biases, whether intentional or inadvertent, are 

embedded within machine learning models, they risk 

perpetuating structural inequality in digital form. 

Moreover, the societal consequences of misidentification 

extend beyond personal dignity, encompassing economic and 

psychological ramifications. For example, a  misclassified  

individual may be excluded from personalized cosmetic 

recommendations or medical diagnostics that require precise 

skin type identification. In more critical applications, such as 

forensic analysis or demographic profiling, classification 

errors may lead to misrepresentation or judicial misjudgments. 

In light of these concerns, automated systems must be 

developed with a strong emphasis on transparency, fairness, 

and accountability. Training datasets must be diverse and 

representative, and classification models should undergo 

continuous auditing to detect and mitigate potential biases. 

Furthermore, without appropriate human oversight, such 

systems must not be employed as the sole basis for decisions 

involving identity, access, or legal determinations. 

3.2. Practical Applications in Medical and Cosmetic Fields 

Integrating race and anti-aging skin classification through 

facial image analysis presents several practical applications, 

particularly within medical diagnostics and cosmetic science. 

As demand for personalized skincare and early intervention in 

dermatological conditions increases, intelligent systems, such 

as the one proposed in this study, offer substantial value. In 

the medical domain, the system can serve as an auxiliary tool 

for the early detection of skin conditions, particularly in 

identifying initial signs of skin aging, including wrinkles, 

decreased elasticity, and uneven pigmentation. Early 

diagnosis enables dermatologists and general practitioners to 

recommend preventive strategies or targeted treatments before 

more severe conditions develop. The system ’s capability to 

localize analysis to the T-zone and U-zone further enhances 

diagnostic accuracy, as these regions are often the earliest to 

exhibit signs of aging due to sun exposure and sebaceous 

activity. 



Indriyani et al. / IJETT, 73(7), 217-233, 2025 

 

225 

Within the cosmetic industry, the classification system 

supports the customization of skincare products based on both 

racial characteristics and skin aging profiles. Since various 

racial groups and skin types respond differently to cosmetic 

formulations, accurate identification facilitates optimized 

product development and individualized recommendations. 

For instance, individuals with oily T-zones and dry U-zones 

may benefit from hybrid skincare solutions, while those 

showing early signs of aging could be a dvised to adopt 

proactive anti-aging regimens. Additionally, the system may 

be integrated into consumer-oriented skincare analysis 

platforms, such as mobile applications or smart mirrors, 

providing real-time skin assessments and personalized 

product suggestions. This enhances user engagement, fosters 

trust in technological applications, and promotes informed 

skincare practices. By enabling automated, accurate, and 

individualized skin evaluations, the proposed Model advances 

technical innovation while addressing evolving consumer 

expectations in both clinical and commercial environments. 

3.3. Dataset Description and Diversity 

The dataset employed in this study comprises two 

principal categories: race classification and anti-aging skin 

type classification. The race classification dataset includes 

1,670 facial images in PNG format, categorized into three 

racial groups: Mongoloid, Melanesoid, and Mixed. The anti-

aging skin dataset comprises 3,134 images, classified into 

three aging levels: light, moderate, and severe. The structure 

of the dataset is detailed in the following table: 

Table 1. Datasets of race and anti aging 

Dataset 
Total 

Images 
Categories Race Types 

Skin Aging 

Types 

Internal 

Dataset 1 
1,670 

Race 

Classification 

Mongoloid, 

Melanesoid, 

Mixed 

– 

Internal 

Dataset 2 
3,134 

Anti-Aging 

Skin 

Classification 

– 

Light, 

Moderate, 

Severe 

The images were sourced from diverse demographic 

backgrounds to ensure representativeness and minimize bias 

during model training. The dataset includes individuals from 

various geographic regions across Southeast Asia and 

Melanesia, thereby reflecting regional diversity in phenotypic 

and dermatological traits. Although detailed metadata such as 

age range and gender were not individually annotated for each 

image, sample selection was undertaken to achieve balanced 

representation across different age groups a nd genders.  

To mitigate bias and promote generalizability, the dataset 

was manually curated to avoid disproportionate representation 

of any single demographic group. The race classification 

dataset maintains a balanced distribution of images across the 

three racial ca tegories, while the skin aging dataset 

proportionally represents the three aging levels, thereby 

simulating real-world variability in dermatological conditions. 

This representative approach to dataset construction enhances 

the reliability and fairness of classification outcomes, 

particularly in personalized skincare and clinical dermatology 

applications. 

3.4. Ethical Considerations 

Using facial images for automated classification tasks 

necessitates comprehensive ethical consideration, particularly 

concerning privacy, data governance, and potential misuse. In 

this study, all data processing and model development were 

conducted in accordance with established ethical research 

standards in computer vision and biomedical informatics. For 

this study, we utilized an anti-aging skin dataset sourced from 

a publicly available repository on the Kaggle platform, a 

reputable platform for publicly available datasets intended for 

research and educational use. The dataset was selected for its 

relevance to image classification tasks and was employed 

exclusively for academic and non-commercial purposes.  

All images were anonymized, containing no personally 

identifiable information (PII), such as names, metadata, or 

biometric identifiers. No attempt was made to associate the 

images with the identities of the individuals depicted. For the 

race classification dataset, images were manually collected 

and curated from publicly accessible sources and existing 

research datasets, with strict adherence to excluding personal 

identifiers.  

We utilize this dataset to develop a model that can classify 

two key aspects: group-level racial phenotypes and various 

patterns of skin aging, rather than to recognize or trace 

individual identities. Consequently, the system developed in 

this study is neither intended for nor capable of performing 

personal identification or surveillance functions. 

Additional ethical safeguards were implemented during 

the development of the classification system to promote 

fairness and reduce bias. These include dataset balancing and 

transparent methodological documentation to minimize the 

risk of skewed outputs and algorithmic discrimination. The 

authors recognize the sensitivity surrounding race-related 

technologies and emphasize that the purpose of this study is 

grounded in scientific inquiry aimed at supporting 

dermatological and cosmetic research, rather than 

sociopolitical profiling or categorization. As the research 

progresses, the authors recommend the adoption of ethics 

review protocols and implementation of informed consent 

procedures for future dataset collection, particularly when 

utilizing real-world or clinical imagery. 

4. Results and Discussion 
Testing was conducted across various stages, including 

image acquisition, preprocessing, model training, validation, 

and performance evaluation via a web-based platform: 
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4.1. Image Acquisition Testing 

The experimental process commenced with the 

acquisition of image data from pre-established datasets. 

Specifically, image instances designated for racial phenotype 

classification and those intended for age-related skin analysis 

were uniformly resized to a resolution of 64×64 pixels. 

Following this resizing, the images underwent a preprocessing 

phase involving normalising pixel intensities to an 

approximate value of 0.1. Subsequently, each data sample was 

meticulously annotated with its corresponding label. The 

visual results of this image acquisition and preprocessing 

stage are presented in subsequent sections. 

Table  2. Data acquisition and preprocessing test results 

No. Acquisition Time Label results 

1. Race 
26.34 

seconds 

 

2. Skin 
19.20 

seconds 

 

The data indicate that during image acquisition and 

preprocessing, particularly in the image resizing phase, the 

computational time required to process race-related images 

exceeded that of images intended for skin aging analysis. 

4.2. Testing the Convolutional Neural Network Model 

Subsequent to image capture and initial data preparation 

processes, input dimensions were uniformly adjusted to 

maintain consistency across the dataset. The data was 

bifurcated to facilitate both model learning and performance 

verification: 80% was dedicated to the training set, while the 

remaining 20% constituted the validation set. The designed 

CNN architecture processes incoming data through 

symmetrical convolutional blocks. Within each block, a 2D 

convolutional layer is initially applied for feature 

identification, followed by a Rectified Linear Unit (ReLU) 

activation to provide non-linearity, and culminates in a 2D 

max-pooling layer for spatial compression. Upon completion 

of these two blocks, the generated feature maps are reshaped 

into a linear vector. This vectorized data enters a fully-

connected (dense) layer with ReLU activation, before its 

output is channeled to the final layer responsible for 

categorization. The subsequent discussions will present a 

thorough account of the outcomes from this CNN a rchitecture. 

 
Fig. 7 Results of the race CNN model 

 
Fig. 8 Anti aging convolutional neural network model results 

4.3. Epoch Testing 
Table 3. Epoch test results on race 

Epoch-

race 

Loss-

race 

Accuracy-

race 

Val_Loss-

race 

Val_Accuracy-

race 

1 5,4886 0.3835 10,2789 0.3623 

2 5,4886 0.3566 10,2789 0.3623 

3 5,5587 0.3798 10,2789 0.3623 

4 5,8062 0.3491 10,2789 0.3623 

5 5,4017 0.3648 10,2789 0.3623 

6 5,7072 0.3543 10,2789 0.3623 

7 5,3763 0.3715 10,2789 0.3623 

8 5,5900 0.3453 10,2789 0.3623 

9 5,5671 0.3625 10,2789 0.3623 

10 5,5671 0.3655 10,2789 0.3623 

AVG 5.5551 0.3633 10,2789 0.3623 
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Following the development of the race and anti-aging 

skin classification models, epoch testing was performed over 

120 iterations. For the training process, we set the learning rate 

to 0.001 for both tasks and utilized a batch size of 32. Utilizing 

the Adam optimizer and images of 64×64 pixels, the Model 

achieved optimal accuracy within the initial 10 epochs, 

indicating efficient convergence and performance. 

Table 4. Epoch test results on anti aging skin 

Epoch-

anti-

aging 

Loss-anti-

aging 

Accuracy-

anti-aging 

Val_Loss-

anti-aging 

Val_Accuracy-

anti-aging 

1 0.7224 0.6147 0.7654 0.6715 

2 0.6277 0.7036 0.6416 0.7528 

3 0.5579 0.7483 0.6097 0.7671 

4 0.5034 0.7726 0.6155 0.7400 

5 0.4411 0.7885 0.6240 0.7671 

6 0.3864 0.8149 0.5922 0.7799 

7 0.3131 0.8531 0.5510 0.7974 

8 0.2587 0.8782 0.6494 0.7879 

9 0.2139 0.9054 0.6112 0.7656 

10 0.2139 0.9194 0.6876 0.7799 

AVG 0.4238 0.7999 0.6348 0.7609 

Following the development of models for race and skin 

classification, testing was performed over 120 training epochs.  

We trained the Model with a learning rate of 0.001 and a 

batch size of 32. Utilizing the Adam optimizer and an input 

image resolution of 64×64 pixels, the configuration achieved 

optimal performance at the 120th epoch. Accuracy assessment 

was based on sample outputs collected every 10 epochs, 

indicating that this setup yielded the most reliable results. 

4.4. Racial Classification and Skin Anti-Aging Assessment 

Following the epoch-based model evaluation, the 

subsequent analytical phase involved using confusion 

matrices to assess the performance of the most accurate 

models for racial phenotype classification and skin aging level 

detection. 

 
Fig. 9 Confusion matrix race results 

This image presents a matrix resembling a confusion 

matrix with the categories “Melanesoid,” “Mongoloid,” and 

“Mixed.” A brief analysis is as follows: 

Distribution of Values 

• The matrix displays high values along the main diagonal 

(i.e., Melanesoid-Melanesoid, Mongoloid-Mongoloid, 

Mixed-Mixed), indicating that the classification or 

grouping of data is highly accurate. 

• There are no values outside the diagonal, signifying zero 

misclassifications. 

Category Balance 

• Each of the categories-Melanesoid, Mongoloid, and 

Mixed-contains approximately the same number of data 

points along the diagonal, estimated to be around 100–

120. 

• This even distribution implies that no single category 

dominates the dataset, which is advantageous for 

maintaining classification balance and avoiding model 

bias. 

Potential Performance 

• If this matrix reflects model evaluation, the result 

indicates that the system performs perfectly in predicting 

each racial category. 

 
Fig. 10 Confusion matrix anti aging skin results 

This image presents a heatmap represented in matrix 

form. The matrix appears to display categorical data across 

two dimensions, rows and columns, corresponding to the 

classes “Heavy,” “Moderate,” and “Light.” The following is a 

concise analysis: 

Distribution of Values 

• The highest value (360 or 3.6×10²) is located in the 

“Light” category along the main diagonal, indicating that 

the majority of the data is concentrated within this class. 

• The “Moderate” and “Severe” categories exhibit lower 

frequencies, suggesting that these classes occur less 

frequently in the dataset. 

Category Balance 

• The matrix demonstrates a pronounced skew toward the 

“Light” category, with the other two categories being 
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significantly underrepresented. 

• If this imbalance accurately reflects the actual data 

distribution, it may be acceptable. However, in machine 

learning or further analytical modeling, such an 

imbalance could adversely impact model performance 

and generalizability. 

Potential Performance 

• If this matrix is interpreted as a confusion matrix for 

model evaluation, the concentration of values along the 

main diagonal, where the predicted and actual categories 

align, suggests high predictive accuracy. This indicates 

that the Model frequently produces correct 

classifications. 

4.5. Classification Report Testing 

Following the identification of the optimal epoch and the 

best-performing confusion matrices for both race and anti-

aging classification, the classification report was analyzed: 

 
 

Fig. 11 Classification report race test results 

 

 
Fig. 12 Anti aging skin classification report test results 

After determining the optimal number of training epochs, 

the corresponding confusion matrix was generated from the 

best-performing Model in both race and anti-aging skin 

classification tasks. Subsequently, the classification report 

was examined to evaluate model performance. The analysis 

revealed that the Model achieved an accuracy of 36.23% on 

the race classification task and 77.99% on the skin 

classification task. 

4.6. Training and Validation Loss Testing 

Upon obtaining the accuracy metrics for race and skin 

classification tasks, the subsequent analysis compares these 

outcomes with the corresponding validation loss. The 

following section presents the findings derived from this 

evaluation. 

 
Fig. 13 Training & validation race loss 

 
Fig. 14 Anti aging skin loss training & validation 

The anti-aging skin model exhibited consistent 

convergence between training and validation loss, indicating 

stable learning and minimal overfitting. Conversely, the race 

classification model showed a divergence, with validation loss 

increasing while training loss continued to decrease, 

suggesting potential overfitting. 

 

4.7. Training and Validation Accuracy Testing 

After obtaining the accuracy scores for the race and anti-

aging skin classification tasks, we compared the training 

accuracy against the validation accuracy. This comparison, 

which helps to assess for model overfitting, is detailed below: 

The analysis reveals that the training and validation 

accuracy in the anti-aging skin classification model exhibit a  

similar trend with consistent linearity. In contrast, the race 
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classification model displays a divergence between the 

training and validation accuracy curves. 

 
Fig. 15 Race accuracy training & validation 

 
Fig. 16 Training and validation accuracy skin anti aging 

 

4.8. Image Testing 

This evaluation aimed to verify the efficacy of 

classification results for both race and anti-aging skin types. 

 
Fig. 17 Label test result 

 
Fig. 18 Anti aging results 

The results confirmed the successful classification for 

both parameters. As depicted in Figure 17, the Model 

accurately identified the individual as Mongoloid. In Figure 

18, the system correctly classified the subject’s skin as 

exhibiting moderate aging characteristics. 

4.9. Web-Based System Testing 
In this final stage, we evaluated the performance of our 

fully integrated system. The system, which combines both 

CNN and Haar Cascade methods, was tested within its 

deployment environment on a web platform. The evaluation 

specifically measured its effectiveness in detecting facial skin 

type and performing racial classification. The outcomes of this 

system-wide test are detailed in the following section. 

 

 
Fig. 19 System test results with website 
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Then it was done on five sample images, as follows: 

Table 5. Results tested using five samples 

Picture Race 
Anti 

Aging 
Accuracy 

 

Mongoloid Currently 
Race: 100%, Anti 

Aging: 83.03% 

 

Mongoloid Heavy 
Race: 100%, Anti 

Aging: 93.53% 

 

Melanezoid Light 
Race: 97%, Anti 
Aging: 99.01% 

 

Mixed Currently 
Race: 99.78%, Anti 

Aging: 97.37% 

 

Melanezoid Light 
Race: 99.97, Anti 

Aging: 96.63% 

4.10. Extended Analysis and Discussion 

4.10.1. Error Analysis and Overfitting Behavior 

To further analyze the Model’s learning behavior, we 

compared the training and validation curves for both loss and 

accuracy. A clear distinction emerged between the two tasks. 

For the anti-aging skin classification, the loss curves for both 

training and validation converged smoothly, suggesting a 

well-fitted model without significant overfitting. In stark 

contrast, the race classification task showed clear signs of 

overfitting; after a few epochs, its validation loss began to 

diverge markedly from the training loss. Nonetheless, the final 

Model maintains acceptable validation performance, largely  

due to the application of regularization techniques and the 

implementation of early stopping during training. 

Moreover, the accuracy curves for the anti-aging 

classification model show a steady upward trajectory with  

minimal fluctuations, ultimately achieving an accuracy of 

approximately 93.91%. In comparison, the race classification 

model attained a peak validation accuracy of 99.35%. These 

outcomes demonstrate that the Model successfully captures 

meaningful features, even under multi-class classification 

conditions and when trained on datasets of limited size. 

4.10.2. Comparative Performance with Previous Studies 

In order to gauge the operational success of the developed 

framework, its performance is compared against that of 

previous studies employing similar methodologies. For 

instance, Chin et al. [5] developed a CNN-based facial skin 

classification system that achieved an accuracy of 92% across 

three facial skin classes. Similarly, Alarifi et al. [6] obtained 

an accuracy of 89% in classifying normal, spot, and wrinkle 

skin types using a CNN integrated with GoogleNet and the 

NAG solver. Belcar et al. [8] focused on ethnicity 

classification based on segmented facial images, achieving an 

accuracy of 80.34%. 

The present study exceeds these benchmarks by achieving 

99.35% accuracy in race classification and 93.91% accuracy 

in anti-aging skin type detection. This superior performance is 

attributed not only to the architectural strength of the Model 

but also to its strategic incorporation of T-zone and U-zone 

facial features-regions frequently overlooked in prior research 

but highly informative for classification tasks involving skin 

texture and pigmentation. 

4.10.3. Factors Contributing to High Accuracy 

The Model’s strong performance can be attributed to 

several key factors: 

• Fine-Tuned Hyperparameters: Careful selection of key 

parameters, such as the learning rate and batch size, was 

crucial. This ensured the Model trained efficiently and 

converged to a more optimal solution without instability. 

• Region-Specific Feature Extraction: By focusing 

specifically on the T-zone (forehead, nose) and U-zone 

(cheeks, Chin), the Model could identify distinct textural 

and pigmentation patterns. These localized features are 

highly relevant for accurately classifying race and skin 

aging. 

• Standardized Preprocessing Pipeline: All input images 

were consistently resized and normalized, minimizing 

data variance and noise. This standardized preprocessing 

step significantly enhanced the Model’s generalization 

capability. 

• Balanced Data Partitioning: The dataset was partitioned 

using an 80:20 split for training and validation, which  

supported robust learning and minimized the risk of data 

leakage. 

4.10.4. Comparative Accuracy Table 

The table below summarizes the classification accuracy 

of the proposed system compared to selected prior studies:  

Table 6. Comparative accuracy table 

Reference Method 
Classification  

Task 

Accuracy  

(%) 

Chin et al. 

(2018) [5] 
CNN 

Facial Skin Type  

(3 Classes) 
92.00 

Alarifi et al. 

(2017) [6] 

CNN + 

GoogleNet 

Skin Condition 

(Normal, Spot, 

Wrinkle) 

89.00 

Belcar et al. 

(2022) [8] 
CNN 

Ethnicity 

Classification 
80.34 
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This Study 
CNN + Haar 

Cascade 

Race  

Classification 

99.35 (The 

average results 

from the overall 

testing table 

using  

five samples) 

This Study 
CNN + Haar 

Cascade 

Anti-Aging  

Skin Type 

Classification 

93.91 (The 

average results 

from the overall 

testing table 

using  

five samples) 

The accuracy of the current Model is significantly higher, 

demonstrating the effectiveness of combining deep learning 

with region-focused feature extraction. 

4.10.5. Performance Evaluation: FP/FN Analysis 

To truly understand a classification model’s capabilities, 

it is essential to look beyond simple accuracy metrics and con-

duct a granular analysis of its error patterns. Specifically, ex-

amining its False Positives (FPs) and False Negatives (FNs) 

reveals critical information about the Model’s practical ap-

plicability and underlying biases. This detailed examination is 

what ultimately guides our efforts for refinement and improve-

ment. A classification model can fail in two distinct ways. A 

False Positive (FP) represents a Type I error, where a negative 

case is wrongly flagged as positive, for instance, misattrib-

uting an individual’s racial background. 

In contrast, a  False Negative (FN) is a Type II error, 

where the Model misses a genuinely positive case, such as 

failing to recognize a person’s correct race. To move beyond 

a simple count of these errors and assess their balance, we 

computed Precision, Recall, and the F1-score using the data 

from the confusion matrices presented in Figures 9 and 10 . 

The following metrics are crucial for providing a detailed 

evaluation of a classification model’s performance: 

• Precision (P): This metric, known as Precision, answers 

the question: ‘Of all the predictions the model made as 

positive, what fraction was correct?’ It is determined by 

dividing the count of true positive predictions by the total 

number of instances the Model labeled as positive. The 

formula is as follows: 

𝑃 =  
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  (𝑇𝑃)

𝑇𝑃+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
  

• Recall (R): Whereas Precision measures the accuracy of 

the positive predictions, Recall measures the complete-

ness of these predictions. It quantifies the percentage of 

all true positive cases in the dataset found by the Model. 

It is calculated as: 

       𝑃 =  
𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  (𝑇𝑃)

𝑇𝑃+𝐹𝑎𝑙𝑠𝑒  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  (𝐹𝑁)
  

• F1-Score (F1): To combine Precision and recall into a sin-

gle value, the F1-score is used. It is computed as the har-

monic mean of these two metrics, which penalizes ex-

treme values more heavily, thereby providing a more ho-

listic performance assessment. It is calculated with the 

following formula: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
  

Based on the confusion matrices in Figures 9 and 10, the 

Model demonstrates exceptionally strong classification per-

formance. Specifically, for race classification, the confusion 

matrix indicates perfect prediction across all classes, with no 

instances of misclassification. As a result, the Model yielded 

zero false positives and zero false negatives for every racial 

category. As a result, Precision, Recall, and F1-scores for all 

classes were computed as ideal (1.0 or 100%), signifying a 

perfect categorization accuracy. Such findings validate the ro-

bustness of the presented technique, demonstrating its effec-

tive utilization of the specific features within the T-zone and 

U-zone for distinguishing various racial characteristics.  

5. Conclusion 
The classification system for anti-aging skin types and 

racial identification was developed through the integration of 

CNNs and the Haar Cascade method, and the system’s 

successful implementation was achieved through a targeted 

feature extraction strategy. This approach involved isolating 

and analyzing features from each facial image’s T- and U-

zone areas. This hybrid approach yielded a high level of 

accuracy, achieving 99.35% for race classification and 

93.91% for skin type detection, underscoring the robustness of 

the proposed Model.  

The impressive performance is primarily attributed to the 

Adam optimizer, which proved most effective in optimizing 

model accuracy over 120 training epochs. Model evaluation 

was conducted using a predefined dataset and a set of 

independent test images to ensure the consistency and 

reproducibility of results. Furthermore, the validation losses 

for both classification tasks remained stable and within an 

optimized range, indicating strong generalization capability 

across diverse image samples. These findings confirm that the 

combination of CNN and Haar Cascade is highly suitable for 

complex image classification tasks involving human facial 

features.  

The system has been deployed via a web-based platform, 

allowing users to upload predefined facial images. Upon 

processing, the Model classifies both race and skin aging type, 

displaying the results visually by outlining the T-zone and U-

zone using bounding boxes. The output is accompanied by 

predicted race and skin type labels, providing users with  

interpretable, evidence-based classification outcomes derived 

from the trained Model. 



Indriyani et al. / IJETT, 73(7), 217-233, 2025 

 

232 

5.1. Future Work 

Although the proposed system demonstrates high  

accuracy in classifying racial categories and anti-aging skin 

types based on facial features in the T-zone and U-zone, 

several opportunities remain for enhancing its performance, 

applicability, and generalizability. 

One recommended direction for future research involves 

expanding the dataset to include additional racial groups, such 

as the Caucasoid and Negroid categories. This enhancement 

would improve the Model’s representativeness and increase 

its applicability to a broader demographic, while also reducing 

bias and promoting fairness in prediction outcomes. Greater 

diversity in skin tone and facial structure within the dataset 

would contribute significantly to the equity and inclusivity of 

the classification system. 

Another potential improvement is the integration of 

automated skin segmentation techniques to more precisely 

isolate the relevant facial regions prior to classification. By 

implementing region-specific preprocessing, the system could 

better extract accurate texture and pigmentation features, 

thereby enhancing performance and minimizing noise from 

extraneous facial features. 

Future studies could also explore real-time deployment 

using video input, particularly for mobile or embedded 

applications in dermatology or personalized skincare. 

Achieving this would necessitate optimizing the Model for 

reduced computational complexity while preserving 

predictive accuracy. Additional performance enhancements 

may be achieved by incorporating multispectral or infrared 

(IR) imaging modalities. These modalities can reveal 

subcutaneous details and pigmentation characteristics not 

detectable in standard RGB imagery, offering considerable 

value in clinical or diagnostic settings that require deeper 

dermatological analysis. 

Finally, long-term system development may focus on 

longitudinal tracking of facial aging, enabling the system to 

assess current skin condition and predict future aging 

trajectories. This predictive capability could support 

preventive dermatology and inform personalized skincare 

regimens through dynamic modeling of aging progression. 
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