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Abstract - Supply chain decision-making often overlooks the influence of human reliability, even though judgment errors during 

supplier evaluation can significantly alter allocation outcomes. This paper presents a two -layer framework that addresses this 

limitation by combining Performance-Shaping Factors (PSFs) with human error modeling in supplier assessment processes. The 

first layer quantifies the probability and impact of human errors using a fuzzy set approach based on PSFs. These adjustments  

are then integrated into the second layer, where a multi -objective optimization model determines the most suitable supplier 

allocations. The framework is tested through an applied case study, which demonstrates how incorporating human reliability 

considerations leads to more consistent supplier scoring and improved resource distribution. This approach aims to support 

more grounded and adaptive decisions in complex procurement environments. 

Keywords - Performance Shaping Factors (PSFs), Supplier selection, Multi-objective optimization, Decision-making framework, 

Supply Chain Management, Human error mitigation.

1. Introduction  
Recent developments in industrial systems-particularly 

the emergence of Industry 5.0-have brought renewed attention 

to integrating human capabilities alongside advanced 

technologies. While Industry 4.0 largely emphasized 

automation and digital connectivity, the focus has shifted 

toward approaches that value human judgment, collaboration, 

and sustainable practices [1]. This shift reflects the increasing 

complexity of supply cha in structure s, where decisio n -ma k in g 

must rema in flexib le a nd responsiv e to technological changes 

and human-related uncertainties [2–4]. In such an 

environment, it is crucial to recognize that purely technology-

driven solutions are insufficient; human factors are equally 

important in ensuring robust operations. In this evolving 

context, selecting suppliers becomes more critical than ever. 

Supplier choices directly affect key performance metrics such 

as cost efficiency, responsiveness, and customer satisfaction 

[5]. Organizations have traditionally emphasized tangible 

criteria like cost, delivery, and quality factors central to 

supplier evaluation [6]. However, emerging human-centric 

paradigms of Industry 5.0 have high- lighted the need to 

incorporate human reliability into supplier assessment 

processes [7]. In practice, this means acknowledging that the 

people who perform supplier evaluations can introduce 

variability and bias. Failing to consider the reliability of 

human decision-makers can undermine the consistency of 

supplier scoring and introduce unforeseen risks in supply 

chain decisions. Performance Shaping Factors (PSFs) play a 

pivotal role in influencing human reliability during supplier 

evaluation, directly impacting the consistency and accuracy of 

decision-making [8, 9]. PSFs encompass aspects such as 

training adequacy, workload, task complexity, and the 

availability of decision-support systems, which significantly  

shape an evaluator’s ability to make informed and reliable 

judgments. When these human factors are overlooked, the 

likelihood of evaluation errors increases. For example, an 

overburdened or poorly trained procurement officer may 

misjudge a supplier’s performance, leading to suboptimal 

supplier selections, reduced operational efficiency, and 

heightened risks within the supply chain [10, 11]. Human 

Reliability Analysis (HRA) techniques have long been used in 

other high-risk domains (such as nuclear energy and aviation) 

to predict and mitigate human error. Yet, despite the clear 

importance of human reliability, traditional supplier 

evaluation models rarely integrate these insights in a dynamic 

way. Most multi-criteria decision-making frameworks in 

procurement still assume that human inputs are static and 

error-free, an assumption that often does not hold in real-world 

settings. Existing research in this area has been largely  

fragmented: some studies concentrate on modeling or 

predicting human error probabilities in isolation [12], while 

others optimize supplier selection using conventional criteria 

and assume consistent human judgment throughout. Even the 

few recent approaches introducing PSFs into the evaluation 
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process [13] do not fully feed those human reliability insights 

into the supplier allocation decision. This gap in the literature 

points to the need for a more holistic decision-making 

framework that can dynamically integrate human reliability  

factors into supplier evaluation and selection. To address this 

gap, our study proposes a novel two-layer decision-making 

framework that explicitly incorporates human reliability  

considerations into the supplier evaluation and allocation. In 

contrast to prior works focusing solely on predicting human 

error or treating supplier selection as a purely technical 

optimization task, our approach bridges these domains by 

integrating a human factors model with a traditional supplier 

decision model.  

The framework is organized into two interconnected 

layers. Layer 1 (Evaluation Adjustment): We develop a fuzzy 

logic-based PSF modeling tool that quantifies the probability 

and impact of human errors on supplier evaluation criteria. 

This fuzzy PSF model considers the various Performance 

Shaping Factors, translating subjective assessments like “high 

workload” or “low training” into adjusted scores for each 

supplier criterion. Layer 2 (Supplier Allocation): We then 

embed these adjusted, more realistic criteria scores into a 

multi-objective optimization model for supplier allocation. In 

this layer, we solve a supplier selection and allocation problem 

that seeks to maximize overall performance (across objectives 

such as cost, delivery time, and innovation) while explicitly  

accounting for the human-error-adjusted scores from Layer 1. 

By linking the fuzzy human reliability model with the 

optimization process, the framework ensures that insights 

about evaluator reliability directly inform the final supplier 

allocation decisions. This cross-layer integration of HRA into 

multi-criteria decision-making is what distinguishes our 

approach. It addresses the inherent uncertainties in human 

judgment and highlights the critical interplay between human 

reliability and supplier performance in a dynamic way. 

Ultimately, the proposed framework yields a more robust and 

realistic supplier evaluation process, leading to more 

consistent supplier rankings, better-informed resource 

distribution, and improved risk mitigation in complex 

procurement environments. (As a validation, we demonstrate 

these benefits through an applied case study, showing that 

incorporating human reliability leads to significantly more 

stable decision outcomes, without sacrificing other 

performance goals.) 

2. Literature Review 
Building on the introduction’s emphasis on human 

reliability, we now examine how this concept has been studied 

and applied in decision‐making systems, especially within  

supply chain management. First, HRA has a long history of 

helping practitioners anticipate and mitigate errors in high‐risk  

domains. Classic methods such as the Technique for Human 

Error Rate Prediction (THERP) [14] and the Human Error 

Assessment and Reduction Technique (HEART) [15] provide 

structured, quantitative estimates of human‐error likelihood. 

These techniques proved their worth in nuclear power, 

aviation and healthcare, where even small lapses can have 

catastrophic consequences [16, 17]. Recognizing this track 

record, recent work has explored adapting HRA to supply 

chains: Rodriguez‐Perez [12] demonstrated that HRA can 

pinpoint evaluation tasks most vulnerable to error, enabling 

targeted training or system improvements. Complementing 

this, dynamic Bayesian network models capture evolving 

dependencies between human errors and operational 

performance, dating error probabilities in real time as 

conditions change [18, 19]. 

A central challenge in applying HRA to supplier 

evaluation lies in the subjectivity and uncertainty of PSFs—

for example, how to quantify “high workload” or “moderate 

training” when expert opinions diverge. Fuzzy Set Theory 

(FST) offers a natural remedy by converting linguistic 

assessments into quantitative measures. Gholamizadeh et al. 

successfully applied fuzzy logic to weight PSFs and adjust 

human‐error probabilities in a supply chain context, blending 

qualitative judgments with robust numerical analysis [13, 20]. 

In parallel, Arioglu et al. constructed a Bayesian‐fuzzy hybrid 

network to visualize interdependencies among PSFs and their 

joint impact on error rates during supplier evaluations [21]. 

These hybrid frameworks—combining FST, Bayesian 

inference, and other probabilistic models—have shown 

promising improvements in modeling the multi‐dimensional 

nature of human reliability [22]. Despite these methodological 

advances, integrating human reliability insights into Multi‐

Criteria Decision‐Making (MCDM) for supplier selection 

remains partial. While machine learning–based HRA 

frameworks (e.g. ANNHRA with RSM and SHERPA) can 

identify the most influential PSFs and reduce computational 

overhead [23], and MCDM techniques like TOPSIS, VIKOR 

or AHP excel at ranking alternatives under fixed criteria [24–

26], few approaches truly close the loop. Cui et al. [27] 

enhanced MCDM stability with a Monte Carlo simulation, yet 

still treated human‐error adjustments as an upstream input  

rather than weaving them directly into the optimization. Most 

supplier‐evaluation models continue to assume static, error‐

free human inputs or introduce PSFs without fully feeding the 

resulting reliability measures into allocation decisions. This 

fragmentation underscores the need for a holistic, cross‐layer 

framework that dynamically integrates fuzzy‐based PSF 

modeling, probabilistic error quantification, and multi‐

objective supplier allocation in a single, coherent process. In 

summary, the current state of the literature reveals three main 

gaps: 

1. Most supplier selection models ignore the variability 

introduced by human factors. 

2. HRA and PSF studies often stop at error prediction, 

without feeding those insights into allocation models. 

3. No comprehensive framework unites fuzzy‐based PSF 

analysis, probabilistic error modeling, and multi‐

objective supplier allocation. 
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To address these gaps, the present study introduces a 

cross‐layer decision‐making framework that:  

• Integrates PSF‐driven human‐error quantification with  

traditional supplier‐evaluation criteria; 

• Adjusts supplier scores based on error probabilities 

derived via fuzzy logic; 

• Embeds these dynamic adjustments within a multi‐

objective optimization model to produce robust, 

adaptable supplier allocations. 

3. Human Error Analysis and Optimal Supplier 

Allocation 
This section concentrates on identifying and quantifying 

human errors and their respective contributions to 

inaccuracies in supplier evaluation. These errors are shaped by 

various PSFs representing the critical variables influencing 

human reliability. The methodology is implemented in two 

distinct phases. 

3.1. Selection of PSFs and Modeling Human Errors 

3.1.1. Selection of PSFs 

In manufacturing, selecting PSFs is crucial for identifying 

the most influential human performance variables. These 

factors encompass critical dimensions such as training, task 

complexity, and environmental conditions, all of which have 

a direct impact on decision-making and reliability. Drawing 

on a comprehensive review of academic literature and domain 

expertise [28–36], Table 1 summarizes the PSFs evaluated in 

this study. 

Table 1. Performance Shaping Factors (PSFs) for the manufacturing industry  

PSF Name Description 

SF1 Training Adequacy The level of training provided to workers affects performance and error rates. 

SF2 Task Complexity The complexity of tasks assigned to workers influences the likelihood of errors. 

SF3 Stress Levels 
Psychological pressure experienced by workers affects their focus and decision-

making. 

SF4 Decision-Support Systems Availability and usability of tools that assist in decision-making processes. 

SF5 Environmental Conditions Noise, lighting, and ergonomics influence worker comfort and reliability. 

SF6 Workload 
The amount of work assigned to an individual affects efficiency and error 

propensity. 

SF7 Team Dynamics 
The quality of interactions and communication among team members 

influences collaborative outcomes. 

SF8 Safety Culture 
Organizational commitment to Safety, compliance, and continuous 

improvement. 

SF9 Operator Fatigue 
Physical or mental exhaustion resulting from extended work hours or 

insufficient rest. 

SF10 Procedural  Clarity The clarity and accessibility of work instructions, manuals, and guidelines. 

3.1.2. Weighting PSFs using Fuzzy Set Theory 

Fuzzy Set Theory (FST) is a powerful method for 

weighting PSFs, effectively handling the uncertainty and 

subjectivity inherent in human judgment [13, 20]. In 

evaluating PSFs, experts often rely on linguistic terms such as 

”high importance” or ”moderate influence,” which are 

inherently imprecise. FST provides a systematic framework to 

transform these qualitative assessments into quantitative 

values, enabling a structured and reliable analysis. 

Expert Evaluation and Input Collection  

For this study, three decision-makers with substantial 

expertise in supplier evaluation and operational performance 

were selected: 

• Decision-Maker 1 (DM1): A supply chain management 

specialist with 6 years of experience. 

• Decision-Maker 2 (DM2): A quality management expert 

with 8 years of experience. 

• Decision-Maker 3 (DM3): A logistics manager with 11 

years of experience. 

Each decision-maker evaluated the PSFs using linguist ic 

terms (e.g., ”Low,” ”Medium,” ”High”) to express their 

perceived importance. These evaluations were collected 

through a structured questionnaire to ensure consistency and 

systematic input (see Figure 1). Table 2 shows the conversion 

of linguistic terms into triangular fuzzy numbers, facilitating 

numerical representation of qualitative inputs, and Table 3 

presents the questionnaire results provided by the three 

decision-makers, expressed as fuzzy numbers. 

 
Fig. 1 Part of the questionnaire for PSF evaluation 
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Table 2. Conversion of linguistic variables into triangular fuzzy 
numbers 

Linguistic 

Term 
Triangular Fuzzy Number (a, b, c) 

Low (0.0, 0.1, 0.3) 

Medium (0.2, 0.5, 0.8) 

High (0.6, 0.8, 1.0) 

Very High (0.8, 1.0, 1.0) 

 
Table 3. PSFs evaluations by three decision-makers with corresponding 

fuzzy numbers 

PSF 

ID 

Decision-

Maker 1 

Decision-

Maker 2 

Decision-

Maker 3 

SF1 (0.6, 0.8, 1.0) (0.2, 0.5, 0.8) (0.8, 1.0, 1.0) 

SF2 (0.2, 0.5, 0.8) (0.6, 0.8, 1.0) (0.6, 0.8, 1.0) 

SF3 (0.0, 0.1, 0.3) (0.2, 0.5, 0.8) (0.6, 0.8, 1.0) 

SF4 (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.6, 0.8, 1.0) 

SF5 (0.2, 0.5, 0.8) (0.0, 0.1, 0.3) (0.2, 0.5, 0.8) 

SF6 (0.6, 0.8, 1.0) (0.2, 0.5, 0.8) (0.6, 0.8, 1.0) 

SF7 (0.2, 0.5, 0.8) (0.2, 0.5, 0.8) (0.6, 0.8, 1.0) 

SF8 (0.8, 1.0, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) 

SF9 (0.0, 0.1, 0.3) (0.2, 0.5, 0.8) (0.2, 0.5, 0.8) 

SF10 (0.2, 0.5, 0.8) (0.2, 0.5, 0.8) (0.6, 0.8, 1.0) 
 

Fuzzy Set Theory Framework  

The following definitions outline the key elements of the 

FST framework used for PSF weighting: 

Fuzzy Set: A fuzzy set 𝐴 in the universe of discourse 𝑋 

is defined as:  

𝐴 = {(𝑥, 𝜇𝐴(𝑥)) | 𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ∈ [0,1]}  

Where 

• X : Represents the range of possible evaluations for a 

PSF ("Low" to "Very High"). 

• ( )A x : Denotes the membership degree x  in the fuzzy 

set A , reflecting the extent to which a particular PSF 

evaluation belongs to the fuzzy set. 

Membership Function 

The membership function is essential for quantifying 

linguistic evaluations. A commonly used function is the 

triangular membership function. The graphical 

representation, depicted in Figure 2, illustrates the extent of 

membership A  and is interpreted as: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏,

  
𝑐−𝑥

𝑐−𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐,

  
0, 𝑥 < 𝑎 or 𝑥 > 𝑐.

  

Where a, b, and c (as defined in Table 2) define the lower 

limit, peak, and upper limit of the triangular function. 

 
Fig. 2 Fuzzy triangular number 

Aggregation of Expert Opinions  

To combine the evaluations provided by multiple experts 

for a PSF, a weighted average approach is used: 

𝜇𝐴(𝑥) =
∑ 𝑣𝑖
𝑘
𝑖=1 ⋅𝜇𝐴𝑖

(𝑥)

∑ 𝑣𝑖
𝑘
𝑖=1

,  

Where: 

• 𝑘Total number of experts. 

• 𝑣𝑖Weight assigned to the i-th expert, reflecting their 

expertise or reliability. 

• 𝜇𝐴𝑖(𝑥) Membership degree assigned by the i-th expert for 

the PSF under evaluation. 

Defuzzification  

Defuzzification converts the aggregated fuzzy set into a 

crisp value to facilitate ranking and weight assignment. One 

commonly used method is the centroid method: 

𝑧∗ =
∫𝑥⋅𝜇𝐴(𝑥)𝑑𝑥

∫ 𝜇𝐴(𝑥)𝑑𝑥
,  

Where
*z does the crisp score represent the importance of 

the PSF? 

Weight Assignment 

The final weight jw for each PSF is determined by 

normalizing the defuzzified scores: 

𝑤𝑗 =
𝑧𝑗
∗

∑ 𝑧𝑗
∗𝑚

𝑗=1

,  
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Where: 

𝑧𝑗
∗Defuzzified value for PSF j. 

m: Total number of PSFs. 

 

Prioritization of PSFs 

The prioritization step involves ranking the PSFs based 

on their calculated weights 𝑤𝑗 , which reflect their relative 

importance. This process ensures that the PSFs with the 

highest impact are identified and retained for further analysis. 

Table 4 presents the results of this step. 

Table 4. Aggregation, defuzzified scores, and normalized weights of PSFs (descending order of importance) 

PSF ID Aggregated Fuzzy Number Defuzzified Score Normalized Weight 

SF8 (0.733, 0.933, 1.0) 0.889 0.141 

SF4 (0.667, 0.867, 1.0) 0.844 0.134 

SF1 (0.533, 0.767, 0.933) 0.744 0.118 

SF2 (0.467, 0.700, 0.933) 0.700 0.111 

SF6 (0.467, 0.700, 0.933) 0.700 0.111 

SF7 (0.333, 0.600, 0.867) 0.600 0.095 

SF10 (0.333, 0.600, 0.867) 0.600 0.095 

SF3 (0.267, 0.467, 0.700) 0.478 0.076 

SF5 (0.133, 0.367, 0.633) 0.378 0.060 

SF9 (0.133, 0.367, 0.633) 0.378 0.060 

From the prioritization process, we identified the top six  

PSFs that collectively capture 71% of the total importance 

based on their normalized weights. These factors are SF8  

(Safety Culture), SF4 (Decision-Support Systems), SF1  

(Training Adequacy), SF2 (Task Complexity), SF6  

(Workload), and SF7 (Team Dynamics).  

By selecting these six PSFs, we ensure that the most 

critical factors influencing the system’s performance are 

included in subsequent a na lysis while ma inta in in g a  focused a nd 

ma na gea ble scope. This threshold provides an effective balance 

between comprehensiveness and practical feasibility. 

3.1.3. Error Probabilities and Contributions 

After prioritizing the PSFs, the next step involves leveraging the 

selected PSFs to compute the probabilities of errors and their 

contributions to system inaccuracies. The probability of each error Ei 

is determined using the following formula: 

𝐸𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑃𝑗 + 𝜖𝑖 , (1) 

Where: 

• 𝑤𝑗Weight of PSF j, obtained from the prioritization 

process. 

• 𝑃𝑗The value of PSF j represents its current state. 

• 𝜖𝑖Residual uncertainty associated with error i, capturing 

any unexplained variance. 

To assess the impact of each error on overall system 

performance, the contribution of error i is calculated as: 

𝐶𝑖 =
𝛥𝑆𝑘(𝐸𝑖)

∑ 𝛥𝑛
𝑖=1 𝑆𝑘(𝐸𝑖)

, (2) 

Where 𝛥𝑆𝑘(𝐸𝑖) is the Deviation in the Supplier's score 

𝑆𝑘caused by error 𝐸𝑖 , and is computed as: 

𝛥𝑆𝑘(𝐸𝑖 ) = ∑ 𝐸𝑖
𝑚
𝑗 =1 ⋅ 𝑅𝑖𝑗 ⋅ 𝛽𝑗, (3) 

 where  

• 𝑅𝑖𝑗Sensitivity of criterion j to error i, indicating the level 

of influence of the error on specific evaluation criteria. 

• 𝛽𝑗Weight of criterion j in the overall supplier score. 

3.1.4. Quantifying the Impact of Errors and Adjusting Criteria 

Scores 

This pha se integra te s the influen ce of huma n errors into th e  

supplie r eva lua tion process by a djusting the scores for th e  

prima ry crite ria : cost, delive ry time, a nd innova tion . Th e  

a djustments ensure tha t these scores a ccura tely reflect th e  

potentia l devia tio ns ca used by huma n errors. 

Compute Criteria Devia t ion s: The first step quantifies the 

impact of errors on each criterion by calculating the Deviation 

(𝛥𝑆𝑐). This Deviation represents the extent to which errors 

influence the score of each criterion and is given by: 

𝛥𝑆𝑐 = ∑ 𝐸𝑗
𝑛
𝑗=1 ⋅ 𝐶𝑗 ⋅ 𝑅𝑐𝑗, (4) 

Where (𝛥𝑆𝑐) is the Deviation in the score of criterion c 

(cost, delivery, or innovation) due to errors. 

The result of this step is a set of deviations for the three 

main criteria (cost, delivery, and innovation), reflecting the 

cumulative impact of errors on each. Adjust Criteria Scores: 

Using the deviations computed in the previous step, the scores 

for the primary criteria are adjusted to account for the 
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influence of human errors. The adjusted score for criterion c 

for supplier k is calculated as: 

𝑆𝑐𝑘′ = 𝑆𝑐𝑘 − 𝛥𝑆𝑐 , (5) 

Where 𝑆𝑐𝑘 is the original score of criterion c for supplier 

k? 

3.2. Supplier Allocation Optimization 

Supplier allocation optimization leverages the adjusted 

scores to construct a multi-objective optimization model that 

determines the optimal distribution of resources among 

suppliers. This optimization ensures that the influence of 

human errors is thoroughly incorporated into the supplier 

selection and allocation process. 

3.2.1. Objective Function 

The goal of the optimization model is to maximize the 

overall performance of the Supplier, considering cost, delivery  

time, and innovation criteria. The objective function is defined 

as: 

𝑍 = ∑ (𝑤𝐶𝑆𝐶𝑘 + 𝑤𝐷𝑆𝐷𝑘 + 𝑤𝐼𝑆𝑖𝑘
′ )𝐾

𝑘=1 𝑥𝑘, (6) 

Where for supplier k: 

• 𝑆𝐶𝑘Adjusted cost score. 

• 𝑆𝐷𝑘Adjusted delivery time score. 

• 𝑆𝐼𝑘
′ Adjusted innovation score, incorporating human error 

impacts. 

• 𝑤𝐶 , 𝑤𝐷 , 𝑤𝐼Weights are assigned to cost, delivery time, 

and innovation, respectively. 

• 𝑥𝑘: Allocation variable for supplier k, representing the 

proportion of resources allocated to supplier k. 

3.2.2. Constraints 

The optimization problem is subject to the following 

constraints to ensure feasibility and alignment with real-world 

operational requirements: 

1. Weight Normalization: The sum of the criteria weights 

must equal 1. 

𝑤𝐶 + 𝑤𝐷 + 𝑤𝐼 =  1 (7) 

2. Allocation Constraint: The total allocation across all 

suppliers must equal 1, with no negative allocations: 

∑ 𝑥𝑘
𝐾
𝑘=1 = 1,  𝑥𝑘 ≥ 0 (8) 

3. Capacity Constraint: The quantity of products allocated 

to each supplier k must not exceed the Supplier's capacity 

C_k: 

∑ 𝑥𝑘
𝑀
𝑗=1 𝑄𝑗 ≤ 𝐶𝑘,  ∀𝑘, (9) 

Where: 

• 𝑄𝑗 : Quantity of product j to be allocated. 

• 𝐶𝑘Maximum capacity of supplier k. 

4. Delivery Time Constraint: Each Supplier's delivery time 

𝐷𝑘   must not exceed the maximum acceptable delivery 

time𝐷∗: 

𝐷𝑘 ≤ 𝐷
∗,  ∀𝑘. (10) 

4. Cross-Layer Decision-Making Framework 
The cross-layer decision-making framework integrates 

human error analysis into the supplier evaluation and 

allocation. The model is composed of two interconnected 

layers: 

Layer 1: Human Error Analysis and Adjusted Criteria 

Scores focuses on identify in g a nd qua ntifyin g the impa ct of  

huma n errors on supplie r eva lua tion crite ria  and adjusting the 

scores accordingly. 

Layer 2: Supplier Allocation Optimization utilizes the 

adjusted scores from Layer 1 to construct a multi-objective 

optimization model for determining the optimal allocation of 

suppliers while fully accounting for human errors. 

Algorithm 1 provides a detailed outline of the steps used 

to implement the proposed framework. 

5. Experimental Case Study 
5.1. Input Data 

The experimental case study demonstrates the 

effectiveness of the proposed methodology for supplier 

selection and allocation. The study evaluates the performance 

of four suppliers (S1, S2, S3, S4) for three strategic products 

(P1, P2, P3). The evaluation incorpora tes cost, delive ry t im e , 

a nd innova tio n a s the ma in crite ria , with cost a nd delive ry t im e  

represented as stochastic variables (mean and standard 

Deviation) and innovation scores expressed as fuzzy numbers. 

Product demand and supplier capacity are also included as 

constraints. The input data are summarized in Tables 5-9. 

Algorithm 1 Cross-layer decision-making framework 

Input: Supplier scores (SCk, SDk, SIk), Performance  

Shaping Factors (PSFs), product demand (Dj), and 

supplier capacity (Ck). 

Output: Optimal supplier allocations (xk). 

 

Layer 1: Human Error Analysis and Adjusted Scores 

Step 1.1: Identify Relevant PSFs: Select the top m 

PSFs using expert judgment and Fuzzy Set Theory to 

account for uncertainty and variability. (As in section 

3.1.2) 

Step 1.2: Calculate Error Probabilit ies. Determine the 
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likelihood of key errors (Ei) based on the selected PSFs 

using Equation 1. 

Step 1.3: Quantify Error Contributions. Assess the 

relative impact (Ci) of each error on the supplier scores 

using Eq. 2. 

Step 1.4: Adjust Criteria  Scores Modify supplier 

scores (SCk, SDk, SIk) for cost, delivery, and innovation by 

incorporating error impacts using Eqs. 4 and 5. 

 

Layer 2: Supplier Allocation Optimization 

Step 2.1: Define the Objective Ma ximize supp lie r 

performa nc e ba sed on the a djusted scores for cost, deliv e r y , 

a nd innovation using Eq. 6. 

Step 2.2: Incorporate Constraints Ensure constraints 

for demand satisfaction (Dj), capacity limits (Ck), and 

allocation feasibility are met as defined in section 3.2.2. 

Step 2.3: Solve the Optimization Problem. Compute 

the optimal supplier allocations (xk).  

Return: Optimal supplier allocations (xk). 
 

Table 5. Cost data (SCk) with mean and standard deviation (units) 

Supplier/ 

Product 
P 1 P 2 P 3 

S1 50 ± 2 70 ± 3 80 ± 4 

S2 52 ± 2.5 69 ± 3.5 77 ± 3 

S3 51 ± 2.2 71 ± 3.2 79 ± 3.8 

S4 53 ± 2.3 72 ± 3.3 78 ± 3.5 

Table 6. Delivery time data (𝑺𝑫𝒌) with mean and standard deviation 
(days) 

Supplier/Product P 1 P 2 P 3 

S1 10 ± 1.2 15 ± 1.5 12 ± 1.3 

S2 12 ± 1.4 14 ± 1.2 13 ± 1.1 

S3 11 ± 1.0 13 ± 1.3 11 ± 1.2 

S4 10 ± 1.1 12 ± 1.4 10 ± 1.0 

Table 7. Innovation score data (𝑺𝑰𝒌) as fuzzy numbers 

Supplier/ 

Product 
P 1 P 2 P 3 

S1 (0.6, 0.8, 1.0) (0.5, 0.7, 0.9) (0.4, 0.6, 0.8) 

S2 (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.5, 0.7, 0.9) 

S3 (0.5, 0.7, 0.9) (0.4, 0.6, 0.8) (0.6, 0.8, 1.0) 

S4 (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) 

Table 8. Demand for each product 

Product (Pj) Demand (Units) 

1 120 

2 150 

3 100 

Table 9. Capacities for each supplier 

Supplier (Sk) Capacity (Units) 

1 300 

2 250 

3 200 

4 220 

5.2. Supplier Allocation Results Using Cross-Layer 

Optimization 

5.2.1. Error Probabilities and Contributions 

We define three common errors (E1, E2, E3) in this study 

and establish their relationship with the top six PSFs. 

Definition of Errors (Ei) 

• E1: Cost-related Error: Represents inaccuracies in cost 

evaluation due to factors like insufficient training (SF1) 

and task complexity (SF2). These factors directly affect 

the precision of cost estimation during supplier 

evaluations. 

• E2: Delivery-related Error: Reflects errors in estimating 

delivery times, influenced by workload (SF6) and team 

dynamics (SF7). These factors impact the reliability of 

delivery performance assessments. 

• E3: Innovation-related Error: Captures inaccuracies in 

innovation score evaluation, driven by decision-support 

systems (SF4) and safety culture (SF8). These factors 

shape the consistency of decision-making in assessing 

innovation capabilities. 

Relationship Between Errors and PSFs: Each error (Ei) is 

modeled as a function of the PSFs most relevant to its nature. 

The fuzzy aggregated values (Pj) of these PSFs, combined 

with their weights (wj), determine the probability of each 

error.  

Using the aggregated fuzzy values and weights of the top 

PSFs from Table 4, we calculate the probabilities of E1, E2, 

and E3 using equation 1, and the corresponding contributions 

Ci using equation 2. The calculated error probabilities and 

contributions are presented in Table 10. 

Table 10. Calculated error probabilities and contributions 

Error 
Probabili ty  

(Ei) 
Contribution (Ci) 

E1 (0.115, 0.169, 0.213) 0.33 

E2 (0.084, 0.135, 0.185) 0.25 

E3 (0.192, 0.248, 0.275) 0.42 

5.2.2. Initial and Adjusted Scores 

Calculating adjusted scores integrates the impact of 

human errors (Ei) and their contributions (Ci) into evaluating 

each Supplier.  

Table 11. Initial and adjusted scores for each supplier 

Supplier 

Cost  

(SCk) 

Delivery  

(SDk) 

Innovation  

(SIk) 

I A I A I A 

S1 50 48.7 9 8.8 0.6 0.54 

S2 52 50.5 12 11.6 0.7 0.63 

S3 51 49.9 11 10.5 0.5 0.42 

S4 55 53.1 10 9.6 0.8 0.77 
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The adjusted scores for cost, delivery, and innovation are 

calculated using equation 5 to reflect the deviations caused by 

errors (calculated based on equation 4), providing a more 

accurate assessment of supplier performance. The initial and 

adjusted scores for each Supplier and criterion are summarized 

in Table 11. 

5.2.3. Optimization Results 

The fina l step in the methodolo gy uses the a djusted sc o re s 

for cost, delive ry , a nd innova tio n to determine the optimal 

allocation of resources among suppliers. This is achieved using 

the multi-objective optimization model that balances the 

trade-offs between the three criteria  in equation 6, subject to the 

constraints defined in section 3.2.2. Table 12 presents the mean 

allocations (xk) for each Supplier under two scenarios: 

• Without Errors: The initial scores are used in the 

optimization without adjusting for human errors. 

• With Errors: The adjusted scores are used, incorporating 

the effects of human errors on supplier performance. 

Table 12. Mean allocations for each supplier 

Supplier 

(Sk) 

Allocation 

Without 

Errors 

Allocation With 

Errors 

1 0.28 0.27 

2 0.24 0.26 

3 0.22 0.20 

4 0.26 0.27 

 

The results of comparing mean allocations for each 

Supplier, as illustrated in Figure 3, reveal the nuanced impact 

of incorporating human errors into the supplier selection and 

allocation process. The reallocation of resources is evident as 

the inclusion of human errors causes minor but meaningful 

shifts in the mean allocations for all suppliers.  

These changes signify the robustness of the cross‐layer 

optimization model, which adapts to reflect adjustments in 

criteria scores due to the impact of errors. 

Supplier‐Specific Observations 

The increase from 0.24 to 0.26 indicates that S2 benefited 

from the adjustments. This relative gain suggests that S2’s 

delivery and innovation evaluations were less sensitive to 

fluctuations in PSFs, such as workload and decision‐support 

usability. In other words, even when human assessors 

experienced increased cognitive load or variation in tool 

support, the adjusted scores for S2 remained comparatively 

stable, strengthening its attractiveness in the optimized 

allocation.  Conversely, the drop for S3 from 0.22 to 0.20 

highlights its vulnerability to error‐induced deviations, 

particularly in the innovation criterion, where subtle biases or 

misinterpretations of supplier proposals can lead to 

disproportionate score reductions. This sensitivity may stem 

from a heavier reliance on qualitative judgments or more 

complex innovation metrics, which amplify the effect of PSFs 

such as training adequacy and procedural clarity.  

These allocation shifts, though quantitatively small, carry 

significant qualitative meaning. For S2, the capacity to absorb 

human‐error variability points to a supplier evaluation profile 

characterized by clear, measurable performance indicators. In 

contrast, S3’s steeper decline underlines the need for greater 

consistency in how innovation is assessed, suggesting that 

standardizing evaluation templates or enhancing training 

around innovation metrics could reduce score volatility. 

Moreover, the fact that all suppliers experienced adjustments 

shows that human errors are not random but affect every part 

of the evaluation, from reading data to assigning scores. 

Managers must consider these facts because it turns supplier 

selection from a fixed checklist into a flexible process where 

human factors are key to managing risk. 

 
Fig. 3 Comparison of mean allocations for each supplier 
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Strategic Insights 

The shifts in allocation suggest concrete steps for 

improving both supplier performance and internal processes. 

For example, S3’s lower share after accounting for human 

errors indicates that its innovation scores are especially 

sensitive to how evaluators interpret criteria. Working more 

closely with procurement teams to define and standardize 

those innovation metrics, such as clear scoring rubrics, should 

reduce subjective variation. In contrast, S2 and S4 maintain 

more stable allocations, implying that their documentation and 

presentations match well with key PSFs. 

5.2.4. Sensitivity Analysis 

The sensitivity analysis evaluates the impact of varying 

weights assigned to the three evaluation criteria (Cost, 

Delivery, and Innovation) on the mean allocations for 

suppliers (S1, S2, S3, S4). We define four scenarios as 

follows: 

• Sc1: Baseline (wC = 0.4, wD = 0.3, wI = 0.3) 

• Sc2 : High Cost (wC = 0.6, wD = 0.2, wI = 0.2) 

• Sc3 : High Delivery (wC = 0.2, wD = 0.6, wI = 0.2) 

• Sc4 : High Innovation (wC = 0.2, wD = 0.2, wI = 0.6) 

From Table 13, we observe that each Supplier’s share 

responds predictably to shifts in strategic emphasis: 

• When cost dominates (wC = 0.6), S1 gains the most (+0.01 

from baseline), reflecting its competitive pricing, while S2 

and S4 lose ground. 

• Under a delivery focus (wD = 0.6), S2 jumps to 0.28, 

confirming its superior delivery performance; S1 and S3 
correspondingly decrease. 

• With innovation prioritized (wI = 0.6), S3 increases to 

0.24, indicating that its strength in innovation becomes 

more valuable, even though it is sensitive to human‐error 

adjustments in other scenarios. 

Table 13. Mean allocations for each Supplier under different weight 

scenarios 

Scenario S1 S2 S3 S4 

Sc1 0.27 0.26 0.20 0.27 

Sc2 0.28 0.24 0.22 0.26 

Sc3 0.24 0.28 0.22 0.26 

Sc4 0.23 0.26 0.24 0.27 

 

To quantify each Supplier’s responsiveness, we calculate 

the allocation elasticity with respect to each criterion weight:  

𝐸𝑘 ,𝐶 =
𝛥𝑥𝑘

𝛥𝑤𝐶
,  𝐸𝑘 ,𝐷 =

𝛥𝑥𝑘

𝛥𝑤𝐷
,  𝐸𝑘 ,𝐼 =

𝛥𝑥𝑘

𝛥𝑤𝐼
.  

For example,𝐸2,𝐷 = (0.28 − 0.26)/(0.6 − 0.3) ≈ 0.067 

confirming S2’s high sensitivity to delivery weight. In 

contrast, 𝐸1,𝐶 ≈ 0.033S1 is less elastic to cost changes, 

underscoring its stable pricing advantage. Further, mapping 

allocations over a continuous range of weights (e.g. a  heatmap 

over (𝑤𝐶 , 𝑤𝐷 )) 𝑤𝐼  =  1 − 𝑤𝐶  − 𝑤𝐷 reveals non‐linear 

thresholds. Small increases 𝑤𝐼beyond 0.5 trigger a rapid shift 

from S3 to S4, suggesting a tipping point where innovation 

leadership outweighs other factors. 

Implications for Decision‐Making: These insights enable 

procurement managers to: 

• Set criteria weights with a clear understanding of each 

Supplier’s strategic fit and vulnerability to human  error 

variability. 

• Identify weight thresholds that produce disproportionate 

allocation shifts, informing risk‐averse strategies (e.g. 

avoiding abrupt reassignments when 𝑤𝐼crossing 0.5). 

• Balance robustness and agility by combining suppliers 

with complementary elasticities. For instance, pairing a 

supplier whose allocation is stable under cost‐weight  

changes with another whose allocation responds strongly 

to delivery‐weight shifts, thereby hedging against 

evolving strategic priorities. 

6. Discussion and Conclusions 
The cross-layer decision-making framework introduced 

in this study provides an innova tive approach to integrating 

human error analysis into supplier evaluation and allocation 

processes. Traditional supplier evaluation methods often 

neglect the critical influence of human reliability factors, 

which can lead to suboptimal decisions, operational 

inefficiencies, and increased risks.  

By incorporating PSFs into the evaluation process, this 

framework quantifies the probabilities and impacts of human 

errors, resulting in a  more realistic and robust assessment of 

suppliers. The findings of this study underline the critical role  

of human factors in supply chain decision-making. Human 

errors, shaped by PSFs, directly impact supplier evaluation 

and allocation processes, and addressing these factors 

provides decision-makers with a structured approach to 

mitigate their effects.  

This improves the reliability and efficiency of supply 

chain operations and enhances adaptability in environments 

characterized by high complexity and uncertainty. Several 

opportunities for future research and development emerge 

from this study. The framework could be extended to 

incorporate dynamic modeling of PSFs, enabling adjustments 

over time to reflect changes in operational conditions, 

evaluator performance, or supplier reliability.  

Integrating machine learning and artificial intelligence 

tools offers another promising avenue, enhancing error 

probability estimation, automating PSF identification, and 

improving real-time decision-making capabilities. Expanding 
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the framework to include sustainability metrics, such as 

carbon footprint, waste reduction, and ethical sourcing, would 

align supplier evaluations with global sustainability goals and 

organizational priorities. Developing real-time decision-

support systems based on the framework could enhance its 

utility in dynamic and fast-paced supply chain environments. 

Additionally, applying the framework to a broader range of 

industries and supply chain contexts would validate its 

versatility and uncover new areas for refinement. In 

conclusion, the integration of human reliability analysis into 

supplier evaluation processes represents a  significant 

advancement in addressing the complexities of modern supply 

chain management. By accounting for human errors and their 

underlying factors, the proposed framework bridges the gap 

between theoretical models and practical decision-making. Its 

ability to dynamically adjust supplier scores and optimize 

resource allocations gives decision-makers a powerful tool to 

enhance efficiency, reliability, and adaptability. Continued 

development of this framework, including its integration with  

emerging technologies and sustainability considerations, will 

ensure its relevance and impact in addressing the challenges 

of future supply chains. 

Data Availability Statements 
The datasets generated and analyzed during this study are 

available from the corresponding author upon reasonable 

request. 
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