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Abstract - In this digital era, software is ruling the world by making the life of humans easier and more convenient in many ways. 

Not only in business, but software is also required for each specific field. Software development has become a predominant and 

common field that provides services to every other field of science and engineering. However, the primary challenge in 

developing software is to identify and fix the faults that occur in various circumstances as early as possible to minimize th e time, 

effort, and associated inconvenience. This paper proposes an effective software fault prediction framework to identify the fault 

modules in software projects. The model applies accelerated k-means clustering for identifying the count of clusters by evaluating 

gap statistics. Then, fuzzy clustering is applied over the training set, which makes use of a probability distribution for initializing 

cluster centroids and feature weights to compute the similarity between the samples and the cluster centroids. As a result, samples 

inside the cluster are strengthened and samples outside the cluster are weakened. Moreover, it also helps to increase the quality 

of the clusters and accelerates the convergence of the clustering process by reducing the iterations. Using the classification 

model, the modules are categorized as non-defective or defective based on their high population in the relevant cluster. The 

effectiveness of the proposed model has been tested experimentally, and the findings show that the framework can suc cessfully 

identify defective software modules in less time and with higher accuracy. 

Keywords - Accelerated k-means, Feature weight, Fuzzy c-means clustering, Probability distribution, Software fault prediction. 

1. Introduction  
A software fault or defect generally refers to the failure or 

error that occurred in the software program or situation in 

which the actual results of the software are different from the 

expected results. In this digital era controlled by software, 

identifying and rectifying the defects or faults in the software 

before dispatching it to the customers is a critical event for 

software developers [1]. Various issues lead to software 

defects, including unclear or incorrect software requirements, 

incorrect design, improper coding, insufficient testing, and 

other environmental issues such as uncertain documentation, 

hardware configuration and deployment [2]. The automation 

of various operations in companies and industries often leads 

to the deployment of software systems to enhance time and 

quality. However, to maintain such systems, each industry has 

invested huge amounts of money in the information 

technology sector [3]. However, apart from the significance of 

IT projects, not all projects achieve the essence of success. 

According to the CHAOS Report published by the Standish 

Group in the year 2020, it was revealed that only 31% of the 

software projects were successful on time and cost with good 

sponsors, good teams and a good place. On the other hand, 

50% of the software projects were highly challenged, and 19% 

were cancelled due to various failures [4].  

Since software development involves a significant time 

and cost investment, errors or failures result in increased 

expenses and time and lower customer satisfaction. Thus, 

identifying the faulty modules in the software at an early stage 

helps the testers and developers to focus on specific problems 

to rectify the defects, thereby reducing the time, effort and 

resources [5]. Thus, software fault prediction has become an 

attractive field of research that can increase software quality 

and reduce the effort in the software development phase. The 

fault prediction helps to identify the faults promptly and 

deliver the software on time and at minimum cost. It identifies 

software faults based on the history of data and previous 

knowledge or information about them [6]. Numerous studies 

that use data mining, machine learning, soft computing, and 

deep learning techniques to anticipate defective software 

modules have been included in the literature. In general, these 

techniques are used in building a model that classifies the 

faulty modules from the non-faulty modules [7].  

With simple statistical and standard Machine Learning 

(ML) models, prediction accuracy is compromised due to the 

complex and difficult relationship between the quality factors 

and the software metrics [5]. Numerous models to forecast 

faulty modules have been suggested over recent years. 

https://www.internationaljournalssrg.org/
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Identifying the most appropriate method for predicting faults 

is very difficult as the performance of the models varies due 

to different influential factors such as software metrics used in 

feature extraction, data quality, classification algorithms used 

and so on [8]. Though all the method aims at providing an 

accurate prediction of faulty modules, most of the methods do 

not seem to be more applicable in the software industry [5]. 

Recently, soft computing has been most widely used in many 

applications, including software fault prediction. The main 

fact of employing soft computing is that it effectively deals 

with the imprecise, uncertain, and incomplete data to achieve 

improved performance at a  low cost [9]. The most common 

methods used in soft computing models are Neural Networks 

(NN), Support Vector Machines (SVM), Fuzzy Logic (FL), 

evolutionary models, metaheuristics, and swarm intelligence 

[10].  

Thus, owing to the significance of early detection of 

software faults, an effective software fault prediction 

framework has been suggested to identify the faulty modules 

of software projects. The model aims to perform the prediction 

using fuzzy clustering, in which the feature weights are also 

employed to enhance the results. To reduce the computational 

and time complexities, the initialization of cluster centroids is 

carried out using probability distribution and the count of 

clusters is initialized by performing k-means clustering with  

gap statistics. The model aids in proliferating the cluster 

quality and accelerates the convergence of the clustering 

process, thereby reducing the computational time.  

Faulty modules on highly populated clusters have been 

predicted using the SVM algorithm, whereas the simple 

similarity measure is used in sparsely populated clusters. The 

efficiency of the proposed framework is approved through 

various results from the experimental analysis. The paper is 

structured as follows. Section 2 presents the associated studies 

on fault prediction from the literature. Section 3 discusses the 

background of the study. Section 4 describes the suggested 

model along with the overall design of the framework and 

algorithm pseudocodes. The experimental study, including the 

datasets employed, performance metrics in section 5. The 

result analysis, is discussed in section 6, and finally, the study 

is concluded in section 7. 

2. Related Works  
A recent review on software fault prediction intends to 

gain knowledge on existing models suggested to improve the 

prediction performance [11]. Though it is claimed by the 

developers that software metrics determine prediction 

performance, few researchers insist on the impact of the 

prediction model on performance [12, 13]. The ML algorithms 

employed in forecasting software faults include Bayesian 

learners [14], decision trees [15], evolutionary algorithms 

[16], ensemble learners [17], NN [18], SVM [19], and rule-

based learning [20]. A high-performance fault predictor was 

suggested that makes use of ML algorithms and a 

computational intelligence approach. This study found that 

while the Naïve Bayes (NB) algorithm functioned superior 

with smaller datasets, the Random Forest (RF) approach 

showed superior results with larger datasets [21]. Since the 

quality of the data collected from the existing software 

versions has a greater impact on the performance of the 

prediction model, an outlier detection approach was proposed 

by utilizing the metrics threshold and class label for 

identifying the outliers. The model was proved to be more 

effective in performance with the NASA dataset than 

improved random forest (ACF) and improved naïve Bayes 

(ACN) algorithms [22].  

For classifying the software faults, an adaptive neuro-

fuzzy c-means clustering was suggested that applies a 

reasoning fuzzy system on the fuzzy c-means clustering. The 

approach lacks an in-depth examination of other datasets, 

while it has demonstrated efficacy on the NASA-PC1 dataset 

[23]. A new framework clustering was used to group similar 

modules, thereby reducing the irrelevant and inconsistent 

modules. Then, a  Probabilistic Neural Network (PNN) 

classifier was applied for the training and test phase. With the 

NASA dataset, the model was proven to have an improved 

false negative rate than RF and NB [24]. The author also 

extended their work to use fuzzy clustering and majority 

ranking for improving prediction accuracy. They also 

evaluated the model with a fuzzy majority ranking approach 

with outliers (FMRT) and a fuzzy majority ranking approach 

without outliers (FMR). Additionally, it was noted that it 

lessens the influence of unreliable and insignificant  

information on prediction performance [24].  

A simple model using the k-means algorithm was 

proposed to improve the performance. The initialization of 

cluster centroids was carried out by applying a novel point 

centre algorithm, which is then used to forecast the faulty 

modules. The model was more effective than the standard k-

means algorithm [25]. To prioritize test cases in software 

projects, two fuzzy-based clustering techniques were 

suggested that use a new similarity coefficient and dominance 

measure to cluster the project. After that, prioritiza tion would 

be done using the mathematical weighted sum product 

calculation for ranking [26]. A comprehensive evaluation of 

the 10 ML classifiers' performance in detecting software faults 

was conducted using 12 NASA datasets. From the detailed 

study, the Radial Basis Function (RBF), SVM, RF, and 

Multilayer Perceptron (MLP) offered better prediction 

accuracy than other simple classifiers [27]. Other than 

clustering, the software change metrics were also employed in 

predicting software faults [28]. Additionally, it was 

demonstrated that using code metrics and change metrics 

improves prediction accuracy [29]. 

3. Background  
This section presents the basic background study on 

various state-of-the-art clustering algorithms. 
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3.1. k-means Clustering 

A commonly and widely used paradigm for unsupervised 

learning, k-means clustering, groups related data items to 

identify hidden patterns. The simple and fastest algorithm 

iteratively groups the unlabeled dataset into k clusters by 

satisfying the criteria that the samples inside the clusters have 

high similarities and the samples outside the cluster have high 

dissimilarities [30]. It works with k centroids representing the 

centre of the k clusters, which is an imaginary location, and 

the samples nearest to the centroids are assigned to the 

respective clusters. The centroid is computed by computing 

the average of the samples of each cluster.  

Generally, Euclidean distance is utilized for computing 

the separation between the centroids and the points. Though 

the clustering model is simple and fast, choosing arbitrary 

cluster centroids at the initialization phase leads to a bad 

approximation when compared with optimal clustering.  

Algorithm 1 demonstrates the algorithm's pseudocode.  

Algorithm 1: means clustering 

Input: D={x1, x2, …., xn} 

Output: k clusters 

Procedure kmeans () 

     //Initialization of k clusters 

     Arbitrarily choose the initial k cluster centroids  

     C = {c1, c2, …. , ck}. 

     Repeat 

          Assign each datapoint d i to the cluster Cj that is 

closest  

          to its centroid, cj 

          Update the cluster centroids, cj, by computing the  

          means of the samples 𝑐𝑗 =
1

|𝐶𝑗 |
∑ 𝑥𝑥 ∈𝐶𝑗

 

          Until the convergence criteria (no change in the  

          assignment) are met 

          Return k clusters 

          End Procedure 

 
3.2. k-means++ Clustering 

A specific and effective way of choosing the first  

centroids of the k-means method was proposed, which offers 

a substantial improvement in the final error of clustering [31]. 

Here, the first cluster centroid is selected at random, and the 

other cluster centroids are selected based on a probability 

based on their squared distance from the samples that are 

nearest to the existing cluster centre. 

With this, k-means as the base, several variations on the 

algorithm were suggested to decrease the computational 

complexity and improve the clustering accuracy. The triangle 

inequality was included while computing the distance between 

the samples and centroids, reducing the computations [32]. To 

make it even faster, the bound is applied to reduce the distance 

computations [33]. Algorithm 2 displays the k-means++ 

clustering algorithm. 

Algorithm 2: k-means++ clustering 

Input: D={x1, x2, …., xn} 

Output: k initial cluster centroids 

Procedure kmeans++() 

     Arbitrarily choose the cluster centroid c1 uniformly at  

     random among datapoints xn.  

     Repeat until k centroids are chosen: 

          For each sample x other than xn,  

                Compute d(x), the distance between x and the  

                nearest centroid. 

          Choose a point as the new centroid x using weighted  

          probability distribution as 
𝑑(𝑥)2

∑ 𝑑(𝑥)2
𝑥 ∈𝐷

 

     //Proceed with the standard k-means algorithm for  

     performing clustering 

End Procedure 

 

3.3. Fuzzy c-means Clustering 

The subject of fuzzy sets was familiarized with cluster 

analysis in 1973 [34]. With this as a base, various other 

developments have been suggested, and it has become the 

most frequently employed algorithm in various applications. 

The main thing is that the method performs soft clustering, in 

which, unlike assigning each sample into a specific cluster, 

each sample ends with a fuzzy membership that specifies the 

membership degree concerning each cluster [35]. With a 

dataset X = {𝓍1, 𝓍2, … , 𝓍𝑛
} into c clusters where 𝓍𝑖 =

{𝓍𝑖1, 𝓍𝑖2 , … 𝓍𝑖𝑙
} It is a  dimensional object.  𝒱 = {ϑ1 , ϑ2, … , ϑ𝑐

} 

Is the c cluster centroids where ϑ𝑘 = {ϑ𝑘1 , ϑ𝑘2 , … ϑ𝑘𝑙 }  l 

dimensions of the k th cluster and 𝒰 = (𝜇𝑖𝑘
)

𝑛 ×𝑐 is a  fuzzy 

partition matrix, 𝜇𝑖𝑘 (1≤i≤n), (1≤k≤c) represents the 

membership degree of the ith sample in the kth cluster. Thus, as 

stated in Equation 1, the clustering algorithm seeks to 

minimize the objective function. 

Minimize 

 𝐽𝑚(𝒰, 𝒱) = ∑ ∑ 𝜇𝑖𝑘
𝑚𝑑𝑖𝑘

2𝑐
𝑘=1

𝑛
𝑖=1  (1) 

Subject to 𝜇𝑖𝑘 ∈ [0,1]; ∑ 𝜇𝑐
𝑘=1 𝑖𝑘

= 1∀𝑖 = 1,2, … 𝑛; 0 <

∑ 𝜇𝑖𝑘
𝑛
𝑖=1 < 𝑛∀𝑛 

Here, dik represents the closeness between the samples. 𝓍𝑖 

and ϑ𝑘  Which is calculated employing the Euclidean distance 

computed using 𝑑𝑖𝑘 = ‖𝓍𝑖 −  ϑ𝑘
‖ And m represents the 

fuzzier parameter that determines the cluster fuzziness [36].  

The membership becomes increasingly ambiguous as m 

increases, and though it was suggested that m can range 

between (1.5, 2.5), the optimum value recommended is m=2 

[37, 38]. The objective function 𝐽𝑚 is minimized by 

computing the values of 𝒰 and 𝒱 as in Equations 2 and 3. 

𝜇𝑖𝑘 =
1

∑ (
𝑑𝑖𝑘
𝑑𝑖𝑗

) 
2

𝑚−1𝑐
𝑗 =1

  (2) 
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ϑ𝑘 =
∑ 𝜇𝑖𝑘

𝑚 𝓍𝑖
𝑛
𝑖 =1

∑ 𝜇𝑖𝑘
𝑚𝑛

𝑖=1

 (3) 

Apart from these state-of-the-art clustering algorithms, 

various other algorithms were also proposed. Fuzzy c-

means++ is a seeding algorithm that initializes the cluster 

centroids by dispersing them across the data space [39]. 

Instead of Euclidean distance, Canberra weighted distance 

was proposed to enhance the FCM algorithm's effectiveness 

[40]. The idea behind the membership scaling FCM was to 

make the samples close to the centroid converge while 

blocking the convergence of the other samples [41]. The 

algorithm pseudocode is presented in Algorithm 3. 

Algorithm 3: Fuzzy c-means clustering (FCM) 

Input: dataset X =  {𝓍1 ,𝓍2, … , 𝓍𝑛
}, cluster count c, fuzzy 

exponent m, termination limit ε and maximum iteration Imax 

Output: Membership degree matrix 𝒰  and  𝒱 

Procedure fuzzy_c_means() 

Initialize membership degree matrix 𝒰(0)  With random 

values meeting the constraints. 

Set t=1  

    Repeat 

         Calculate the cluster centroids 𝒱 (𝑡)  

         For each i from 1 to n 

              Compute 𝑑𝑖𝑘 = ‖𝓍𝑖 − ϑ𝑘
‖  for 1≤ i ≤ n, 1 ≤ k≤ c; 

         Calculate the objective function 𝐽𝑚
(𝑡)

  

         Update the membership degree matrix. 𝒰(𝑡+1)  

    Until |𝐽𝑚
(𝑡)

− 𝐽𝑚
(𝑡−1) | < ε or (t >Imax)  

End Procedure 

4. Proposed Clustering Framework 
The proposed model aims at utilizing clustering 

techniques for predicting the software fault modules. The 

process is broken down into two basic stages: the first is 

training, and the second is testing. During the training phase, 

the preprocessing is carried out on the training samples. Here, 

the recommended model uses accelerated k-means clustering 

based on harmonic mean with a seeding strategy and gap 

statistics to find an optimal count of clusters. It employs fuzzy 

c-means clustering to group related modules after the ideal k 

value for the number of clusters has been determined. The 

clusters are separated into two categories: high-population and 

low-population, in which only high-population clusters are 

trained with the SVM classifier to classify the samples as 

faulty or non-faulty. During the testing phase, the prediction 

is simply carried out by comparing the test sample with the 

samples of the low-population clusters to determine if the test 

sample is similar. Conversely, the SVM classification 

forecasts the high population clusters' non-faulty samples. The 

general layout of the suggested prediction model is depicted 

in Figure 1. 

 
Fig. 1 Overall framework of the proposed prediction model 
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4.1. Accelerated k-means Algorithm 

In the proposed model, the accelerated k-means approach 

that employs distance bounds and triangle inequality proposed 

by Elkan [32] has been used with a simple modification. This 

algorithm highly reduces the computations by avoiding point-

centred distance calculations and applying the triangle 

inequality.  

It achieves the speed by storing the upper limit 

representing the distance to the centroid to which it is 

assigned, and the lower limit representing the distance to all 

the cluster centroids. It verifies whether the point is closer to 

any other centroids before computing the distance. This is 

carried out by applying the triangle inequality as d(x,z)≤d(x,y) 

d (y,z). It uses the two conditions that d(c,c’)≥2d(x,c) then 

d(x,c’)≥d(x,c) and d(x,c’)≥max{0, d(x,c)-d(c,c’)} where the 

centroids are c and c', and x is a point.  

Thus, if the higher limit of x and c is less than the lower 

limit of x and c’ or if the higher limit is less than half the 

distance between c and c’, then c’ cannot be the closest point, 

and thus the calculation can be avoided. The algorithm is 

utilized in the proposed model since it outperforms other 

models in high-dimensional space.  

Instead of random initialization, the seeding approach has 

been utilized in the proposed model. Also, to perform cluster 

centroids, the harmonic mean, an advanced algebraic method, 

is applied as it is more reliable and not affected by the sample 

variations. The formula for the harmonic mean of n points is 

computed as in Equation 4. 

ℎ𝜇 =
𝑛

∑ 1

𝑥𝑖

𝑛
𝑖 =1

= (
∑ 𝑥𝑖

−1𝑛
𝑖=1

𝑛
)

−1

 (4) 

Also, the model utilizes a seeding approach instead of 

choosing random centroids initially. Here, only the first 

centroid is chosen randomly, and the consecutive centroids are 

initialized based on the probability computed with the squared 

distance to their closest centroid [31]. Algorithm 4 displays 

the pseudocode for the algorithm.  

Algorithm 4: Accelerated k-means Algorithm 

Input: dataset ꭕ, the k value 

Output: k clusters 

 

Procedure acc_kmeans() 

     //Initialize k cluster centroids 

     Choose the first cluster centroid c1 uniformly at random  

      from ꭕ 

     For j from 2 to k 

          cj ← x ϵ ꭕ with probability 
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥 ∈ꭕ

 

     //Set lower and upper bounds 

     Lower limit l(x,c)=0 ∀ x∈ ꭕ and c∈ k 

     For all x ∈ ꭕ do 

          Assign x to the closest initial centroid c(x)=argminc   

          ‖𝑥 − 𝑐‖ 

          Lower limit l(x,c) = ‖𝑥 − 𝑐‖ 

          Upper limit u(x)=minc ‖𝑥 − 𝑐‖ 

     While not converged, do 

          Compute ‖𝑐 − 𝑐′‖, ∀𝑐, 𝑐′ ∈ 𝑘 

          Compute s(c)= 
1

2
𝑚𝑖𝑛c ≠c′

‖𝑐 − 𝑐′‖∀𝑐, 𝑐′ ∈ 𝑘 

          For all x ∈ ꭕ do 

               If u(x)≤s(c(x)) then continue with next x  

               r=Ture 

               for all c ∈ k do 

                    z = max(l(x, c), ‖𝑐(𝑥) − 𝑐‖/2) 

                    if c=c(x) or u(x)≤z then continue with next c 

                    If r then 

                         u(x)= ‖𝑥 − 𝑐(𝑥)‖ 

                            r=False 

                            If u(x) ≤z, then continue with the next c 

                    l(x, c) = ‖𝑥 − 𝑐‖  

                   if l(x,c)<u(x) then c(x)=c 

          //Update the centroid value 

          For all c in K do 

                   m(c)= ℎ𝜇 (c) as in Equation 1 

         //Update upper and lower limits 

         For all x in ꭕ do 

                  u(x)=u(x)+ ‖𝑚(𝑐(𝑥)) − 𝑐(𝑥)‖  

                    For all c in k do 

                       l(x,c)=max(l(x,c)- ‖𝑐 − 𝑚(𝑐) ‖, 0) 

 

4.2. Gap Statistics 

The accelerated k-means algorithm is executed by 

varying the k values from 2 to √|ꭕ|. With k clusters c1, c2, c3,…, 

ck, in which nr represents |cr|, the number of samples in cluster 

cr.  

Next, the gap statistics are computed to determine the 

count for the clusters [42]. The formula to compute the gap 

statistics is given in Equation 5. 

𝐺𝑎𝑝𝑛
(𝑘) = 𝐸𝑛

∗{log(𝑊𝑘
)} − log(𝑊𝑘

) (5) 

Where, 𝐸𝑛
∗ represents the expectation of sample size n and 

the formula to compute the 𝑊𝑘  is given in Equation 6. 

𝑊𝑘 = ∑ 1

2𝑛𝑟

∑ ∑ (𝑥 𝑖𝑗 − 𝑥 𝑖′𝑗)2
𝑗𝑖,𝑖′∈𝑐𝑟

𝑘
𝑟=1  (6) 

With this idea, the gap statistics are implemented in the 

following steps. 

1. Cluster the observed data into k clusters for which Wk is 

evaluated. 

2. Create the B reference datasets by consistently generating 

each reference feature across the feature's observed value 

range, then calculate 𝑊𝑘𝑏
∗ . 
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3. Estimate the gap statistics 𝐺𝑎𝑝(𝑘) = (
1

𝐵
) ∑ log(𝑊𝑘𝑏

∗ )
𝑏 −

log(𝑊𝑘
)    

4. Compute standard deviation  𝑠𝑑𝑘 = [(
1

𝐵
) ∑ {log(𝑊𝑘𝑏

∗ ) −𝑏

𝑙 ̅}2]1/2 where 𝑙 ̅ = (
1

𝐵
) ∑ log(𝑊𝑘𝑏

∗ )
𝑏  and define 𝑆𝑘 =

𝑠𝑑𝑘 √(1 +
1

𝐵
) 

5. Select the smallest k such that Gap(k)≥Gap(k+1)- 𝑆𝑘+1, 

for the cluster count, 𝑘.  

6. Select the least of the clusters. 𝑘 As the smallest k. 

4.3. Feature Weighting-Based Fuzzy C-Means Clustering 

This section presents the fuzzy c-means clustering for 

feature weighting, inspired by the model suggested by 

Setyawan and Ilham [40]. It uses weighted Euclidean distance, 

incorporating each feature's feature weights and variance-to-

mean ratio in identifying the similarity between the samples 

and the cluster centroids.  

The main issues in fuzzy c-means clustering are the 

random initialization and the distance measures used in the 

clustering process, which often lead to an ineffective result.  

Thus, the fuzzy c-means++ approach was employed in the 

proposed model to initialize the spread-out representative 

samples as cluster centroids with which the membership 

matrix can be assigned a reasonable value [39]. When the 

clustering process starts with a better position close to the real 

values, the number of iterations to attain the convergence will 

be very low.  

In this process, the first cluster centroid is chosen 

randomly and added to the set 𝒱. With this point, the 

probability distribution for all the points 𝑥 𝑖 In the dataset is 

evaluated, and the point having a larger distance ha s a higher 

chance of being the next centroid. The probability distribution 

is computed as in Equation 7. 

𝑝𝑏 =
𝑑𝑝(𝓍,𝒱)

𝑠𝑢𝑚 (𝑑𝑝)
 (7) 

Here 𝑑 𝑝 (𝓍, 𝒱) represents the distance between the sample 

𝓍 to the nearest centroid in 𝒱. 𝑝 signifies the spreading factor, 

in which lower values pick the nearest point as the cluster 

centroid, whereas higher values pick the outlier as the cluster 

centroid.  

Thus, p = 1.8 could be chosen as a factor for achieving 

better performance. This process continues until the initial 

cluster centroids are identified, with which the membership 

matrix is computed as in Equation 2.  

However, the distance between the points is computed 

using Euclidean distance and feature weighting. This is carried 

out in three steps by computing the variance-to-mean ratio, 

weights for the features and distance with feature weighting 

[40]. As each feature possesses a varying degree of relevance 

to the clustering process, the weight for each feature in the 

dataset is computed using variance-to-mean ratio, a  statistical 

measure to compute the feature weights has been employed in 

the model [43].  

The formula to compute the variance-to-mean ratio is 

evaluated in Equation 8. 

𝑉𝑗 =
𝑠𝑗

2

𝑥̅𝑗
⇒

1

𝑛−1
∑ (𝑥𝑖𝑗 −𝑥̅𝑗)𝑛

𝑖 =1

𝑥̅𝑗
 (8) 

Here 𝑠𝑗
2 represents the variance of the features in the 

dataset, n represents the dataset's sample count, and 𝑥�̅� 

represents the mean of each feature and is computed as 

1/𝑛 ∑ 𝑥 𝑖𝑗
𝑛
𝑖=1   

Following the computation of the variance-to-mean ratio, 

the feature weight from the fuzzy set is determined using 

Equation 9.  

Here 𝓈  and ℓ represent the smallest and largest variance-

to-mean ratio of the features, and 𝑤𝑗  signifies the feature 

weights. This filter method selects the significant features, 

thereby eliminating features with weights of 0. 

𝑤𝑗 = {

0                             𝑉𝑗 = 𝓈
𝑉𝑗−𝓈

𝓈 −ℓ
         𝓈 < 𝑉𝑗 < ℓ 

1                             𝑉𝑗 = ℓ

 (9) 

With the computed weights, Equation 10 is used to 

calculate the distance between the two points, where 𝑙 

represents the number of features and 𝓍𝑖𝑗  and ϑ𝑘𝑗  Signify the 

ith sample and the kth centroid. 

𝑑𝑖𝑘
𝑤 = √∑ 𝑤𝑗 (𝓍𝑖𝑗 −  ϑ𝑘𝑗 )

2
𝑙
𝑗=1  (10) 

Thus, the weighted distance can redefine the membership 

matrix and objective function, as shown in Equations 11 and 

12. 

Minimize 

 𝐽𝑚
(𝒰, 𝒱) = ∑ ∑ 𝜇𝑖𝑘

𝑚 𝑑𝑖𝑘
𝑤2𝑐

𝑘=1
𝑛
𝑖=1  (11) 

𝜇𝑖𝑘 =
1

∑ (
𝑑𝑖𝑘

𝑤

𝑑𝑖𝑗
𝑤 ) 

2
𝑚−1𝑐

𝑗 =1

 (12) 

The overall working procedure for the proposed feature 

weight-based fuzzy c-means clustering is shown in Figure 2. 
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Fig. 2 Overall working procedure of the proposed clustering  

Thus, the pseudocode for the proposed feature weight-

based fuzzy c-means clustering is presented in Algorithm 5. 

Algorithm 5: Feature weight-based Fuzzy c-means 

clustering  

Input: dataset X =  {𝓍1 ,𝓍2, … , 𝓍𝑛
}, cluster count c, fuzzy 

exponent m, termination limit ε, spreading factor p, and 

maximum iteration Imax 

Output: Membership degree matrix 𝒰  and  𝒱 

Procedure fuzzy_c_means() 

Initialize_cluster_centroids (dataset X, cluster c) 

Compute the membership degree matrix 𝒰(0)   

Set t=1  

    Repeat 

         Calculate the cluster centroids 𝒱 (𝑡) 

         For each i from 1 to n 

              Compute 𝑑𝑖𝑘
𝑤

  for 1 ≤ i ≤ n, 1 ≤ k≤ c  

         Compute the objective function 𝐽𝑚
(𝑡)

  

         Update the membership degree matrix. 𝒰(𝑡+1)  

    Until |𝐽𝑚
(𝑡)

− 𝐽𝑚
(𝑡−1) | < ε or (t >Imax)  

End Procedure 

 

Procedure Initialize_cluster_centroids(X, c) 

𝒱 = 𝒱 ∪ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑥) 

While |𝒱| < 𝑐  do 

       For each 𝓍 ∈ X 

           If 𝑥  with probability 
𝑑𝑝(𝓍,𝒱)

𝑠𝑢𝑚(𝑑𝑝)
 

            𝒱 = 𝒱 ∪  𝓍  

        End For 

End While  

End Procedure 
 

Following the clustering of the training samples using the 

proposed fuzzy c-means clustering with feature weight, which 

divides the clusters into high-population and low-population 

categories. The process involves comparing the clusters' 

sample count and the attribute count. The high-population 

clusters are then trained using the most popular and effective 

algorithm, the SVM classifier. It is a  supervised ML 

classification that utilizes the kernel trick to transform the 

given data to find an optimal boundary between the target 

classes. SVM is an appropriate choice for various 

classification problems, especially with high-dimensional 

spaces and memory efficiency. It also helps to identify the 

complex associations with the data samples without 

performing difficult transformations. 

In the test phase, the input test module is compared with 

the cluster centroids by evaluating the Euclidean distance 

between them. The test sample that has a minimum distance 

from the cluster centroid is then included in the respective 

cluster. Then, the cluster population is evaluated, and if the 

selected cluster has a dense population, the SVM classifier is 

Start 

Input dataset X 
 cluster count c, fuzzy exponent m, termination 
limit ε, spreading factor p, maximum iteration 

Imax 

 
 
 
 
 
 

Fuzzy c means++ for cluster centroid and membership 
matrix initialization 

Choose a random sample in a representative 
centroid set 𝒱 

Weighted Euclidian Distance 

Compute cluster centroids ϑ𝑘 

Compute the variance to mean ratio 𝑉𝑗 to 
each feature j 

𝒱 < 𝑐 

Compute the feature weight 𝑤𝑗 for each 
feature j  

Yes 

If 
|𝐽𝑚

(𝑡)
− 𝐽𝑚

(𝑡−1 )
| < ε  or 

(t >Imax) 
 

Compute weighted Euclidean distance with 
computed feature weight 𝑑𝑖𝑘

𝑤  

Yes 

No 

If 𝑥 ∈ 𝑋  with the probability 
𝑑𝑝 (𝓍 ,𝒱 )

𝑠𝑢𝑚(𝑑𝑝 )
 then include 

𝑥 as a representative in centroid set 𝒱 

Compute the membership degree matrix 𝒰(0) 

Compute membership degree matrix 𝜇𝑖𝑘  

Calculate the objective function Jm 

No 

End 
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applied to the specific cluster to identify the class label as 

defect or non-defect samples. On the other hand, if the specific 

cluster has had a low population in which the sample count is 

less than the attribute count, then the Euclidean distance is 

utilised to evaluate the similarity among the test sample and 

the other samples in the cluster.  

Here, the top three similar modules with the minimum 

distance are taken for the analysis. The majority of the top 

three sample labels will be chosen as the class label for the test 

sample. 

5. Experimental Study 
This section presents the experimental analysis carried 

out for the suggested research. Initially, the datasets utilized 

for the analysis are described. The various performance 

analyses used to evaluate the study are also discussed. The 

experiments are performed in Rstudio installed on an Intel (R) 

Pentium CPU 6405U with a 64-bit Windows operating system 

and 8 GB RAM. 

5.1. Dataset Description 

Five NASA datasets from the PROMISE repository were 

employed for evaluation. The five datasets are CM1, PC1, 

KC1, KC2, and JM1, in which all the datasets contain 22 

module-based measures as features that include 5 different 

Lines of Code (LOC), 3 McCabe metrics, 4 bases and 8 

derived Halstead measures, a  branch-count, and 1 goal field. 

Thus, software metrics are used to evaluate the modules and 

the outcomes of these measures are used as features. 

Commonly used software metrics include Halstead software 

metrics, which measure base and derived measures in addition 

to lines of code, and McCabe software metrics, which measure 

essential complexity, cyclomatic complexity, design  

complexity, and lines of code. Details regarding the datasets 

are provided in Table 1. 

Table 1. Dataset from PROMISE repository 

Datasets Details 
Programming 

Language 
#Samples 

#Non-

Defects 
#Defects Defect% 

CM1 NASA spacecraft instrument C 498 449 49 10 

PC1 
Software for satellites in Earth-orbiting 

flights 
C 1109 1032 77 7 

KC1 Ground data storage and processing C++ 2109 1783 326 15 

KC2 Science data processing C++ 522 105 415 20 

JM1 Predictive ground system in real time C 10,885 8779 2106 19 

NASA Metrics Data Program (MDP) datasets are widely  

available in different versions. The cleaned version of the 

datasets was created by Shepperd et al. [44]. It is available as 

a dataset with duplicate and inconsistent samples and a dataset 

with duplicate and inconsistent samples removed. The nine 

datasets from dataset versions such as PC1, PC2, PC3, PC4, 

MW1, CM1, KC1, KC3, and MC2 have been employed and 

are available on GitHub. The particulars of the cleaned NASA 

MDP datasets are presented in Table 2. 

Table 2. NASA MDP datasets 

Datasets 
# 

Features 

# 

Samples 

# 

Non-Defects 

# 

Defects 

Defect 

% 

PC1 37 759 698 61 8 

PC2 36 1585 1569 16 1 

PC3 37 1125 985 140 12 

PC4 37 1399 1221 178 13 

MW1 37 264 237 27 10 

CM1 37 344 302 42 12 

KC1 21 2096 1771 325 16 

KC3 39 200 163 36 19 

MC2 39 127 83 44 35 

 

5.2. Performance Metrics 

In general, the prediction carried out by the models is 

evaluated by generating the confusion matrix for the N 

samples grouped as True Positives (TP), False Negatives 

(FN), False Positives (FP) and True Negatives (TN). TP and 

TN represent correct classification as the count of defective 

test instances classified as faulty and non-faulty test instances 

classified as non-faulty.  

FN and FP represent incorrect classification as the count 

of defect test samples classified as non-defective and the count 

of non-faulty test samples predicted as defective. With these 

four elements of the confusion matrix, various performance 

measures can be evaluated.  

However, according to Equations 13 to 16, the study 

makes use of measures such as Overall Error Rate (OER), 

False Positive Rate (FPR), False Negative Rate (FNR) and the 

Rand index. 

𝑂𝐸𝑅 =  
𝐹𝑁+𝐹𝑃

𝑁
 (13) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (14) 

𝐹𝑁𝑅 = 
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (15) 

𝑅𝑎𝑛𝑑  𝐼𝑛𝑑𝑒𝑥 =  
𝑇𝑃+𝑇𝑁

𝑁
 (16) 
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6. Results Analysis 
This section discusses the various results obtained for the 

anticipated model and compares the results with those of the 

other existing models. The first stage is to evaluate and assess 

the outcomes of the proposed Accelerated k-means algorithm 

(AkM) with those of other existing methods, including the 

Point Centre k-means algorithm (PCKM) and the k-means 

algorithm (kM) [25]. The prediction of defects has been 

analyzed with defect prediction rate and defect miss rate for 

these models, and the results are presented in Table 3, in which  

the high prediction rate and the low miss rate are highlighted  

in boldface. Here, the defect prediction represents the 

percentage of defects predicted, and the detection miss rate 

represents the percentage of defects missed by the models. 

Table 3. Comparative analysis of defect prediction 

Datasets 
Defect Prediction % Defect Miss % 

kM PKCM AkM kM PKCM AkM 

PC1 98.36 98.36 100.00 1.64 1.64 0 

PC2 93.75 93.75 100.00 6.25 6.25 0 

PC3 100.00 100.00 100.00 0 0 0 

PC4 96.07 96.07 97.19 3.93 3.93 2.81 

MW1 77.78 92.59 96.30 22.2 7.41 3.7 

CM1 100.00 100.00 100.00 0 0 0 

KC1 87.08 87.08 88.31 12.9 12.9 11.7 

KC3 80.56 86.11 86.11 19.4 16.7 13.9 

MC2 88.37 86.36 88.64 14 13.6 9.09 

From the analysis, the defect prediction rate for PC1, 

PC2, PC3 and CM1 with the proposed model is 100%. For the 

other datasets, the proposed model offers an improved defect 

prediction rate compared to the other existing models. The 

average defect prediction rate for the proposed model is 95.2% 

whereas that of the k-means and PCKM models is 91.3% and 

93.4% respectively. Similarly, the defect miss rate is highly  

appreciable for the proposed model, with an average of 4.6% 

less than k-means (8.9%) and PCKM (6.9%) models. The 

obtained defect miss rate is visualized using a line graph in 

Figure 3 for better understanding. 

 
Fig. 3 Comparison of defect miss rate 

Using the nine NASA MDP datasets, the OER, FPR, 

FNR, and the Rand Index are assessed for the k-means (kM), 

PKCM, and proposed AkM in addition to the defect prediction 

analysis. Table 4 displays the observed values from the 

analysis. It is evident from the elaborated outcome that the 

suggested accelerated k-means model outperformed the 

conventional kM and PCKM models in terms of error rate, 

false prediction, and Rand index. 

Table 4. Comparative analysis using NASA MDP datasets 

Datasets 
OER FPR FNR RAND 

kM PKCM AkM kM PKCM AkM kM PKCM AkM kM PKCM AkM 

PC1 0.003 0.003 0 0.001 0.001 0 0.016 0.016 0 0.997 0.997 1.000 

PC2 0.005 0.008 0.003 0.004 0.008 0.003 0.063 0.063 0 0.995 0.992 0.997 

PC3 0.001 0.001 0 0.001 0.001 0 0 0 0 0.999 0.999 1.000 

PC4 0.015 0.019 0.009 0.011 0.016 0.006 0.039 0.039 0.028 0.985 0.981 0.991 

MW1 0.030 0.125 0.008 0.025 0.114 0.004 0.074 0.222 0.037 0.970 0.875 0.992 

CM1 0.006 0.006 0.003 0.007 0.007 0.003 0 0 0 0.994 0.994 0.997 

KC1 0.035 0.035 0.031 0.018 0.018 0.015 0.129 0.129 0.117 0.965 0.965 0.969 

KC3 0.055 0.075 0.040 0.031 0.049 0.018 0.162 0.194 0.139 0.945 0.925 0.960 

MC2 0.055 0.055 0.031 0.012 0.012 0 0.136 0.136 0.093 0.945 0.945 0.969 

Thus, the average error rate, FPR, and FNR for proposed 

accelerated k-means are 0.014, 0.005 and 0.046, which is less 

than standard k-means that have OER as 0.036, FPR as 0.025, 

FNR as 0.089 and PCKM that has OER as 0.023, FPR as 0.012 

and FNR as 0.069. On the other hand, the average rand index 

for the standard k-means, PCKM, and proposed accelerated k-

means are 0.964, 0.977 and 0.986, respectively. Thus, 

accelerated k-means clustering is a better choice for predicting 

software faults. 

The PROMISE Repository's five datasets—KC1, KC2, 

CM1, PC1, and JM1—are used to conduct the overall analysis 

of the suggested model. A comparison is made between the 

suggested model's (FW_FCM+SVM) performance with the 

other models with conventional classifiers such as NB, RF, 

and other existing models such as ACN [22], ACR [22], fuzzy 

c-means clustering with probabilistic neural network 

(FCM_PNN) [5], FMRT [24], and FMR [24]. The obtained 

outcomes are presented in Table 5. 
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Table 5. Comparative analysis with different prediction models 

Datasets Metrics NB RF ACN ACF FCM_PNN FMRT FMR FW_FCM+SVM 

KC1 

FPR 0.09 0.06 0.07 0.01 0.19 0.06 0.03 0.02 

FNR 0.63 0.73 0.16 0.31 0.21 0.74 0.13 0.11 

OER 0.17 0.16 0.06 0.03 0.17 0.16 0.03 0.04 

KC2 

FPR 0.05 0.09 0.06 0.03 0.25 0.06 0.04 0.03 

FNR 0.53 0.53 0.1 0.27 0.12 0.52 0.18 0.15 

OER 0.15 0.18 0.07 0.06 0.23 0.17 0.06 0.05 

CM1 

FPR 0.08 0.02 0.05 0.02 0.04 0.04 0.01 0.02 

FNR 0.71 0.81 0.29 0.42 0.45 0.61 0.37 0.21 

OER 0.14 0.09 0.07 0.05 0.28 0.16 0.04 0.03 

PC1 

FPR 0.08 0.02 0.05 0.02 0.17 0.04 0.01 0.02 

FNR 0.71 0.81 0.29 0.42 0.38 0.61 0.37 0.24 

OER 0.14 0.09 0.07 0.05 0.19 0.16 0.04 0.04 

JM1 

FPR 0.08 0.02 0.05 0.02 0.08 0.04 0.01 0.02 

FNR 0.71 0.81 0.29 0.42 0.18 0.61 0.37 0.23 

OER 0.14 0.09 0.07 0.05 0.14 0.16 0.04 0.03 

 
Fig. 4 Comparison of average ranks of various models 

While analyzing the FPR, the ACF provides better results 

for KC1 and KC2 datasets and the FMR model for CM1, PC1 

and JM1 datasets. On the other hand, the proposed 

FW_FCM+SVM provides improved FNR for KC1, CM1, 

PC1 and JM1 datasets and ACN for the KC2 dataset. The 

FMR model offers less OER for KC1 and the proposed 

FW_FCM+SVM for KC2, CM1, PC1 and JM1 datasets. Thus, 

the average ranks are computed for the 8 models compared, 

and the obtained value is depicted in Figure 4. The result 

indicates that the ACF model offers better FPR with an 

average rank of 1.6. The FMR model and proposed models 

acquired a second top position concerning the FPR. 

Meanwhile, the FNR and OER for the proposed model are 

better, with an average rank of 1.8 and 1.4, respectively. 

Table 6. Analysis with different test and training sets 

Test set Models FPR FNR EOR 

CM1 

ACN 0.03 0.41 0.06 

ACF 0.02 0.44 0.05 

FMR 0.02 0.48 0.05 

FW_FCM+SVM 0.02 0.32 0.03 

KC1 

ACN 0 0.71 0.08 

ACF 0.01 0.5 0.07 

FMR 0 0.63 0.07 

FW_FCM+SVM 0.01 0.36 0.04 

KC2 

ACN 0 0.54 0.12 

ACF 0.02 0.44 0.11 

FMR 0 0.48 0.1 

FW_FCM+SVM 0.01 0.32 0.1 

PC1 

ACN 0.02 0.39 0.04 

ACF 0.02 0.33 0.04 

FMR 0.02 0.33 0.04 

FW_FCM+SVM 0.02 0.27 0.03 

 

Finally, as discussed by Abaei and Selamat [5], the 

various models are analyzed with different training and test 

datasets. The models, such as ACN, ACF, FMR and proposed 

FW_FCM+SVM, are evaluated with JM1 as the training set 

and CM1, KC1, KC2 and PC1 as test datasets. The results 

obtained are presented in Table 6. Using CM1 as the test 

sample and JM1 as the learning sample, the suggested model 

produces better results with lower FPR, FNR, and OER. The 

average FPR for ACN, ACF, FMR and FW_FCM+SVM are 

0.013, 0.18, 0.10 and 0.15, respectively. Thus, the FMR has 

enhanced FPR results. The FNR values for ACN, ACF, FMR 

and FW_FCM+SVM are 0.513, 0.428, 0.48 and 0.318, 

respectively, whereas the OER values for ACN, ACF, FMR 

and FW_FCM+SVM are 0.075, 0.068, 0.065 and 0.05 , 
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respectively. Thus, the FNR and OER for the proposed model 

with different datasets have better results, indicating that they 

effectively detect faults from non-faulty modules. 

7. Conclusion 
Software fault prediction has gained more attention 

among researchers who apply predictive analysis in software 

development. Yet, the models still need further enhancement 

with high precision and low time complexity. This paper 

suggests the feature weight-based fuzzy c-means clustering 

for predicting faulty modules from non-faulty ones. The 

method clusters the modules based on their characteristics 

using fuzzy feature weights and then applies a classification 

algorithm to the high-populated clusters to predict software 

faults and simple similarity measures to classify them in low-

populated clusters. This method improves fault detection and 

reduces computational complexity. The various experimental 

analysis have been carried out using 5 datasets from the 

PROMISE repository and 9 datasets from NASA MDP. The 

outcome shows that compared to other conventional and 

existing fault prediction approaches, the suggested model 

offers a better FNR and OER. The result analysis shows that 

the proposed model is appropriate for predicting software 

faults. 
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