
International Journal of Engineering Trends and Technology Volume 73 Issue 7, 280-292, July 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I7P122 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Orginal Article

Feature Weight Based Fuzzy C-Means Clustering with

Optimal Initialization for Software Fault Prediction

Yuvaraj K1, Balaji N V2

1,2Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.

1Corresponding Author : kyuvarajj@gmail.com

Received: 12 March 2025 Revised: 11 June 2025 Accepted: 30 June 2025 Published: 30 July 2025

Abstract - In this digital era, software is ruling the world by making the life of humans easier and more convenient in many ways.

Not only in business, but software is also required for each specific field. Software development has become a predominant and

common field that provides services to every other field of science and engineering. However, the primary challenge in

developing software is to identify and fix the faults that occur in various circumstances as early as possible to minimize th e time,

effort, and associated inconvenience. This paper proposes an effective software fault prediction framework to identify the fault

modules in software projects. The model applies accelerated k-means clustering for identifying the count of clusters by evaluating

gap statistics. Then, fuzzy clustering is applied over the training set, which makes use of a probability distribution for initializing

cluster centroids and feature weights to compute the similarity between the samples and the cluster centroids. As a result, samples

inside the cluster are strengthened and samples outside the cluster are weakened. Moreover, it also helps to increase the quality

of the clusters and accelerates the convergence of the clustering process by reducing the iterations. Using the classification

model, the modules are categorized as non-defective or defective based on their high population in the relevant cluster. The

effectiveness of the proposed model has been tested experimentally, and the findings show that the framework can suc cessfully

identify defective software modules in less time and with higher accuracy.

Keywords - Accelerated k-means, Feature weight, Fuzzy c-means clustering, Probability distribution, Software fault prediction.

1. Introduction
A software fault or defect generally refers to the failure or

error that occurred in the software program or situation in

which the actual results of the software are different from the

expected results. In this digital era controlled by software,

identifying and rectifying the defects or faults in the software

before dispatching it to the customers is a critical event for

software developers [1]. Various issues lead to software

defects, including unclear or incorrect software requirements,

incorrect design, improper coding, insufficient testing, and

other environmental issues such as uncertain documentation,

hardware configuration and deployment [2]. The automation

of various operations in companies and industries often leads

to the deployment of software systems to enhance time and

quality. However, to maintain such systems, each industry has

invested huge amounts of money in the information

technology sector [3]. However, apart from the significance of

IT projects, not all projects achieve the essence of success.

According to the CHAOS Report published by the Standish

Group in the year 2020, it was revealed that only 31% of the

software projects were successful on time and cost with good

sponsors, good teams and a good place. On the other hand,

50% of the software projects were highly challenged, and 19%

were cancelled due to various failures [4].

Since software development involves a significant time

and cost investment, errors or failures result in increased

expenses and time and lower customer satisfaction. Thus,

identifying the faulty modules in the software at an early stage

helps the testers and developers to focus on specific problems

to rectify the defects, thereby reducing the time, effort and

resources [5]. Thus, software fault prediction has become an

attractive field of research that can increase software quality

and reduce the effort in the software development phase. The

fault prediction helps to identify the faults promptly and

deliver the software on time and at minimum cost. It identifies

software faults based on the history of data and previous

knowledge or information about them [6]. Numerous studies

that use data mining, machine learning, soft computing, and

deep learning techniques to anticipate defective software

modules have been included in the literature. In general, these

techniques are used in building a model that classifies the

faulty modules from the non-faulty modules [7].

With simple statistical and standard Machine Learning

(ML) models, prediction accuracy is compromised due to the

complex and difficult relationship between the quality factors

and the software metrics [5]. Numerous models to forecast

faulty modules have been suggested over recent years.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kyuvarajj@gmail.com

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

281

Identifying the most appropriate method for predicting faults

is very difficult as the performance of the models varies due

to different influential factors such as software metrics used in

feature extraction, data quality, classification algorithms used

and so on [8]. Though all the method aims at providing an

accurate prediction of faulty modules, most of the methods do

not seem to be more applicable in the software industry [5].

Recently, soft computing has been most widely used in many

applications, including software fault prediction. The main

fact of employing soft computing is that it effectively deals

with the imprecise, uncertain, and incomplete data to achieve

improved performance at a low cost [9]. The most common

methods used in soft computing models are Neural Networks

(NN), Support Vector Machines (SVM), Fuzzy Logic (FL),

evolutionary models, metaheuristics, and swarm intelligence

[10].

Thus, owing to the significance of early detection of

software faults, an effective software fault prediction

framework has been suggested to identify the faulty modules

of software projects. The model aims to perform the prediction

using fuzzy clustering, in which the feature weights are also

employed to enhance the results. To reduce the computational

and time complexities, the initialization of cluster centroids is

carried out using probability distribution and the count of

clusters is initialized by performing k-means clustering with

gap statistics. The model aids in proliferating the cluster

quality and accelerates the convergence of the clustering

process, thereby reducing the computational time.

Faulty modules on highly populated clusters have been

predicted using the SVM algorithm, whereas the simple

similarity measure is used in sparsely populated clusters. The

efficiency of the proposed framework is approved through

various results from the experimental analysis. The paper is

structured as follows. Section 2 presents the associated studies

on fault prediction from the literature. Section 3 discusses the

background of the study. Section 4 describes the suggested

model along with the overall design of the framework and

algorithm pseudocodes. The experimental study, including the

datasets employed, performance metrics in section 5. The

result analysis, is discussed in section 6, and finally, the study

is concluded in section 7.

2. Related Works
A recent review on software fault prediction intends to

gain knowledge on existing models suggested to improve the

prediction performance [11]. Though it is claimed by the

developers that software metrics determine prediction

performance, few researchers insist on the impact of the

prediction model on performance [12, 13]. The ML algorithms

employed in forecasting software faults include Bayesian

learners [14], decision trees [15], evolutionary algorithms

[16], ensemble learners [17], NN [18], SVM [19], and rule-

based learning [20]. A high-performance fault predictor was

suggested that makes use of ML algorithms and a

computational intelligence approach. This study found that

while the Naïve Bayes (NB) algorithm functioned superior

with smaller datasets, the Random Forest (RF) approach

showed superior results with larger datasets [21]. Since the

quality of the data collected from the existing software

versions has a greater impact on the performance of the

prediction model, an outlier detection approach was proposed

by utilizing the metrics threshold and class label for

identifying the outliers. The model was proved to be more

effective in performance with the NASA dataset than

improved random forest (ACF) and improved naïve Bayes

(ACN) algorithms [22].

For classifying the software faults, an adaptive neuro-

fuzzy c-means clustering was suggested that applies a

reasoning fuzzy system on the fuzzy c-means clustering. The

approach lacks an in-depth examination of other datasets,

while it has demonstrated efficacy on the NASA-PC1 dataset

[23]. A new framework clustering was used to group similar

modules, thereby reducing the irrelevant and inconsistent

modules. Then, a Probabilistic Neural Network (PNN)

classifier was applied for the training and test phase. With the

NASA dataset, the model was proven to have an improved

false negative rate than RF and NB [24]. The author also

extended their work to use fuzzy clustering and majority

ranking for improving prediction accuracy. They also

evaluated the model with a fuzzy majority ranking approach

with outliers (FMRT) and a fuzzy majority ranking approach

without outliers (FMR). Additionally, it was noted that it

lessens the influence of unreliable and insignificant

information on prediction performance [24].

A simple model using the k-means algorithm was

proposed to improve the performance. The initialization of

cluster centroids was carried out by applying a novel point

centre algorithm, which is then used to forecast the faulty

modules. The model was more effective than the standard k-

means algorithm [25]. To prioritize test cases in software

projects, two fuzzy-based clustering techniques were

suggested that use a new similarity coefficient and dominance

measure to cluster the project. After that, prioritiza tion would

be done using the mathematical weighted sum product

calculation for ranking [26]. A comprehensive evaluation of

the 10 ML classifiers' performance in detecting software faults

was conducted using 12 NASA datasets. From the detailed

study, the Radial Basis Function (RBF), SVM, RF, and

Multilayer Perceptron (MLP) offered better prediction

accuracy than other simple classifiers [27]. Other than

clustering, the software change metrics were also employed in

predicting software faults [28]. Additionally, it was

demonstrated that using code metrics and change metrics

improves prediction accuracy [29].

3. Background
This section presents the basic background study on

various state-of-the-art clustering algorithms.

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

282

3.1. k-means Clustering

A commonly and widely used paradigm for unsupervised

learning, k-means clustering, groups related data items to

identify hidden patterns. The simple and fastest algorithm

iteratively groups the unlabeled dataset into k clusters by

satisfying the criteria that the samples inside the clusters have

high similarities and the samples outside the cluster have high

dissimilarities [30]. It works with k centroids representing the

centre of the k clusters, which is an imaginary location, and

the samples nearest to the centroids are assigned to the

respective clusters. The centroid is computed by computing

the average of the samples of each cluster.

Generally, Euclidean distance is utilized for computing

the separation between the centroids and the points. Though

the clustering model is simple and fast, choosing arbitrary

cluster centroids at the initialization phase leads to a bad

approximation when compared with optimal clustering.

Algorithm 1 demonstrates the algorithm's pseudocode.

Algorithm 1: means clustering

Input: D={x1, x2, …., xn}

Output: k clusters

Procedure kmeans ()

 //Initialization of k clusters

 Arbitrarily choose the initial k cluster centroids

 C = {c1, c2, …. , ck}.

 Repeat

 Assign each datapoint d i to the cluster Cj that is

closest

 to its centroid, cj

 Update the cluster centroids, cj, by computing the

 means of the samples 𝑐𝑗 =
1

|𝐶𝑗 |
∑ 𝑥𝑥 ∈𝐶𝑗

 Until the convergence criteria (no change in the

 assignment) are met

 Return k clusters

 End Procedure

3.2. k-means++ Clustering

A specific and effective way of choosing the first

centroids of the k-means method was proposed, which offers

a substantial improvement in the final error of clustering [31].

Here, the first cluster centroid is selected at random, and the

other cluster centroids are selected based on a probability

based on their squared distance from the samples that are

nearest to the existing cluster centre.

With this, k-means as the base, several variations on the

algorithm were suggested to decrease the computational

complexity and improve the clustering accuracy. The triangle

inequality was included while computing the distance between

the samples and centroids, reducing the computations [32]. To

make it even faster, the bound is applied to reduce the distance

computations [33]. Algorithm 2 displays the k-means++

clustering algorithm.

Algorithm 2: k-means++ clustering

Input: D={x1, x2, …., xn}

Output: k initial cluster centroids

Procedure kmeans++()

 Arbitrarily choose the cluster centroid c1 uniformly at

 random among datapoints xn.

 Repeat until k centroids are chosen:

 For each sample x other than xn,

 Compute d(x), the distance between x and the

 nearest centroid.

 Choose a point as the new centroid x using weighted

 probability distribution as
𝑑(𝑥)2

∑ 𝑑(𝑥)2
𝑥 ∈𝐷

 //Proceed with the standard k-means algorithm for

 performing clustering

End Procedure

3.3. Fuzzy c-means Clustering

The subject of fuzzy sets was familiarized with cluster

analysis in 1973 [34]. With this as a base, various other

developments have been suggested, and it has become the

most frequently employed algorithm in various applications.

The main thing is that the method performs soft clustering, in

which, unlike assigning each sample into a specific cluster,

each sample ends with a fuzzy membership that specifies the

membership degree concerning each cluster [35]. With a

dataset X = {𝓍1, 𝓍2, … , 𝓍𝑛
} into c clusters where 𝓍𝑖 =

{𝓍𝑖1, 𝓍𝑖2 , … 𝓍𝑖𝑙
} It is a dimensional object. 𝒱 = {ϑ1 , ϑ2, … , ϑ𝑐

}

Is the c cluster centroids where ϑ𝑘 = {ϑ𝑘1 , ϑ𝑘2 , … ϑ𝑘𝑙 } l

dimensions of the k th cluster and 𝒰 = (𝜇𝑖𝑘
)

𝑛 ×𝑐 is a fuzzy

partition matrix, 𝜇𝑖𝑘 (1≤i≤n), (1≤k≤c) represents the

membership degree of the ith sample in the kth cluster. Thus, as

stated in Equation 1, the clustering algorithm seeks to

minimize the objective function.

Minimize

 𝐽𝑚(𝒰, 𝒱) = ∑ ∑ 𝜇𝑖𝑘
𝑚𝑑𝑖𝑘

2𝑐
𝑘=1

𝑛
𝑖=1 (1)

Subject to 𝜇𝑖𝑘 ∈ [0,1]; ∑ 𝜇𝑐
𝑘=1 𝑖𝑘

= 1∀𝑖 = 1,2, … 𝑛; 0 <

∑ 𝜇𝑖𝑘
𝑛
𝑖=1 < 𝑛∀𝑛

Here, dik represents the closeness between the samples. 𝓍𝑖

and ϑ𝑘 Which is calculated employing the Euclidean distance

computed using 𝑑𝑖𝑘 = ‖𝓍𝑖 − ϑ𝑘
‖ And m represents the

fuzzier parameter that determines the cluster fuzziness [36].

The membership becomes increasingly ambiguous as m

increases, and though it was suggested that m can range

between (1.5, 2.5), the optimum value recommended is m=2

[37, 38]. The objective function 𝐽𝑚 is minimized by

computing the values of 𝒰 and 𝒱 as in Equations 2 and 3.

𝜇𝑖𝑘 =
1

∑ (
𝑑𝑖𝑘
𝑑𝑖𝑗

)
2

𝑚−1𝑐
𝑗 =1

 (2)

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

283

ϑ𝑘 =
∑ 𝜇𝑖𝑘

𝑚 𝓍𝑖
𝑛
𝑖 =1

∑ 𝜇𝑖𝑘
𝑚𝑛

𝑖=1

 (3)

Apart from these state-of-the-art clustering algorithms,

various other algorithms were also proposed. Fuzzy c-

means++ is a seeding algorithm that initializes the cluster

centroids by dispersing them across the data space [39].

Instead of Euclidean distance, Canberra weighted distance

was proposed to enhance the FCM algorithm's effectiveness

[40]. The idea behind the membership scaling FCM was to

make the samples close to the centroid converge while

blocking the convergence of the other samples [41]. The

algorithm pseudocode is presented in Algorithm 3.

Algorithm 3: Fuzzy c-means clustering (FCM)

Input: dataset X = {𝓍1 ,𝓍2, … , 𝓍𝑛
}, cluster count c, fuzzy

exponent m, termination limit ε and maximum iteration Imax

Output: Membership degree matrix 𝒰 and 𝒱

Procedure fuzzy_c_means()

Initialize membership degree matrix 𝒰(0) With random

values meeting the constraints.

Set t=1

 Repeat

 Calculate the cluster centroids 𝒱 (𝑡)

 For each i from 1 to n

 Compute 𝑑𝑖𝑘 = ‖𝓍𝑖 − ϑ𝑘
‖ for 1≤ i ≤ n, 1 ≤ k≤ c;

 Calculate the objective function 𝐽𝑚
(𝑡)

 Update the membership degree matrix. 𝒰(𝑡+1)

 Until |𝐽𝑚
(𝑡)

− 𝐽𝑚
(𝑡−1) | < ε or (t >Imax)

End Procedure

4. Proposed Clustering Framework
The proposed model aims at utilizing clustering

techniques for predicting the software fault modules. The

process is broken down into two basic stages: the first is

training, and the second is testing. During the training phase,

the preprocessing is carried out on the training samples. Here,

the recommended model uses accelerated k-means clustering

based on harmonic mean with a seeding strategy and gap

statistics to find an optimal count of clusters. It employs fuzzy

c-means clustering to group related modules after the ideal k

value for the number of clusters has been determined. The

clusters are separated into two categories: high-population and

low-population, in which only high-population clusters are

trained with the SVM classifier to classify the samples as

faulty or non-faulty. During the testing phase, the prediction

is simply carried out by comparing the test sample with the

samples of the low-population clusters to determine if the test

sample is similar. Conversely, the SVM classification

forecasts the high population clusters' non-faulty samples. The

general layout of the suggested prediction model is depicted

in Figure 1.

Fig. 1 Overall framework of the proposed prediction model

Accelerated k-Means Algorithm for Identifying k value

Initialize centroids
with D2 weighting

Set lower bound
and upper bound

Apply triangle inequality
and harmonic mean

Move the cluster
centroids

Update upper and
lower bound

Apply gap statistics for
different k values

Feature Weight-Based Fuzzy C Means Clustering

Initialize cluster
centroid with a

probability distribution

Apply weighted Euclidean
distance with variance to
mean ratio-based feature

weights

Apply fuzzy c-
means clustering

C1 C2 C3 Ck
………

If the count of samples in the cluster is larger than the attributes (n>j) Apply a
Support vector machine for classification

Training Phase

Input Training set Input Test set

Compute the separation between the cluster
centroids and the sample

If a high similarity
centroid is a high
population cluster

(n>j)

Apply SVM classification on the
cluster

Apply similarity measure in the
low population cluster

Yes
No

Identify the class label

Test Phase

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

284

4.1. Accelerated k-means Algorithm

In the proposed model, the accelerated k-means approach

that employs distance bounds and triangle inequality proposed

by Elkan [32] has been used with a simple modification. This

algorithm highly reduces the computations by avoiding point-

centred distance calculations and applying the triangle

inequality.

It achieves the speed by storing the upper limit

representing the distance to the centroid to which it is

assigned, and the lower limit representing the distance to all

the cluster centroids. It verifies whether the point is closer to

any other centroids before computing the distance. This is

carried out by applying the triangle inequality as d(x,z)≤d(x,y)

d (y,z). It uses the two conditions that d(c,c’)≥2d(x,c) then

d(x,c’)≥d(x,c) and d(x,c’)≥max{0, d(x,c)-d(c,c’)} where the

centroids are c and c', and x is a point.

Thus, if the higher limit of x and c is less than the lower

limit of x and c’ or if the higher limit is less than half the

distance between c and c’, then c’ cannot be the closest point,

and thus the calculation can be avoided. The algorithm is

utilized in the proposed model since it outperforms other

models in high-dimensional space.

Instead of random initialization, the seeding approach has

been utilized in the proposed model. Also, to perform cluster

centroids, the harmonic mean, an advanced algebraic method,

is applied as it is more reliable and not affected by the sample

variations. The formula for the harmonic mean of n points is

computed as in Equation 4.

ℎ𝜇 =
𝑛

∑ 1

𝑥𝑖

𝑛
𝑖 =1

= (
∑ 𝑥𝑖

−1𝑛
𝑖=1

𝑛
)

−1

 (4)

Also, the model utilizes a seeding approach instead of

choosing random centroids initially. Here, only the first

centroid is chosen randomly, and the consecutive centroids are

initialized based on the probability computed with the squared

distance to their closest centroid [31]. Algorithm 4 displays

the pseudocode for the algorithm.

Algorithm 4: Accelerated k-means Algorithm

Input: dataset ꭕ, the k value

Output: k clusters

Procedure acc_kmeans()

 //Initialize k cluster centroids

 Choose the first cluster centroid c1 uniformly at random

 from ꭕ

 For j from 2 to k

 cj ← x ϵ ꭕ with probability
𝐷(𝑥)2

∑ 𝐷(𝑥)2
𝑥 ∈ꭕ

 //Set lower and upper bounds

 Lower limit l(x,c)=0 ∀ x∈ ꭕ and c∈ k

 For all x ∈ ꭕ do

 Assign x to the closest initial centroid c(x)=argminc

 ‖𝑥 − 𝑐‖

 Lower limit l(x,c) = ‖𝑥 − 𝑐‖

 Upper limit u(x)=minc ‖𝑥 − 𝑐‖

 While not converged, do

 Compute ‖𝑐 − 𝑐′‖, ∀𝑐, 𝑐′ ∈ 𝑘

 Compute s(c)=
1

2
𝑚𝑖𝑛c ≠c′

‖𝑐 − 𝑐′‖∀𝑐, 𝑐′ ∈ 𝑘

 For all x ∈ ꭕ do

 If u(x)≤s(c(x)) then continue with next x

 r=Ture

 for all c ∈ k do

 z = max(l(x, c), ‖𝑐(𝑥) − 𝑐‖/2)

 if c=c(x) or u(x)≤z then continue with next c

 If r then

 u(x)= ‖𝑥 − 𝑐(𝑥)‖

 r=False

 If u(x) ≤z, then continue with the next c

 l(x, c) = ‖𝑥 − 𝑐‖

 if l(x,c)<u(x) then c(x)=c

 //Update the centroid value

 For all c in K do

 m(c)= ℎ𝜇 (c) as in Equation 1

 //Update upper and lower limits

 For all x in ꭕ do

 u(x)=u(x)+ ‖𝑚(𝑐(𝑥)) − 𝑐(𝑥)‖

 For all c in k do

 l(x,c)=max(l(x,c)- ‖𝑐 − 𝑚(𝑐) ‖, 0)

4.2. Gap Statistics

The accelerated k-means algorithm is executed by

varying the k values from 2 to √|ꭕ|. With k clusters c1, c2, c3,…,

ck, in which nr represents |cr|, the number of samples in cluster

cr.

Next, the gap statistics are computed to determine the

count for the clusters [42]. The formula to compute the gap

statistics is given in Equation 5.

𝐺𝑎𝑝𝑛
(𝑘) = 𝐸𝑛

∗{log(𝑊𝑘
)} − log(𝑊𝑘

) (5)

Where, 𝐸𝑛
∗ represents the expectation of sample size n and

the formula to compute the 𝑊𝑘 is given in Equation 6.

𝑊𝑘 = ∑ 1

2𝑛𝑟

∑ ∑ (𝑥 𝑖𝑗 − 𝑥 𝑖′𝑗)2
𝑗𝑖,𝑖′∈𝑐𝑟

𝑘
𝑟=1 (6)

With this idea, the gap statistics are implemented in the

following steps.

1. Cluster the observed data into k clusters for which Wk is

evaluated.

2. Create the B reference datasets by consistently generating

each reference feature across the feature's observed value

range, then calculate 𝑊𝑘𝑏
∗ .

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

285

3. Estimate the gap statistics 𝐺𝑎𝑝(𝑘) = (
1

𝐵
) ∑ log(𝑊𝑘𝑏

∗)
𝑏 −

log(𝑊𝑘
)

4. Compute standard deviation 𝑠𝑑𝑘 = [(
1

𝐵
) ∑ {log(𝑊𝑘𝑏

∗) −𝑏

𝑙 ̅}2]1/2 where 𝑙 ̅ = (
1

𝐵
) ∑ log(𝑊𝑘𝑏

∗)
𝑏 and define 𝑆𝑘 =

𝑠𝑑𝑘 √(1 +
1

𝐵
)

5. Select the smallest k such that Gap(k)≥Gap(k+1)- 𝑆𝑘+1,

for the cluster count, 𝑘.

6. Select the least of the clusters. 𝑘 As the smallest k.

4.3. Feature Weighting-Based Fuzzy C-Means Clustering

This section presents the fuzzy c-means clustering for

feature weighting, inspired by the model suggested by

Setyawan and Ilham [40]. It uses weighted Euclidean distance,

incorporating each feature's feature weights and variance-to-

mean ratio in identifying the similarity between the samples

and the cluster centroids.

The main issues in fuzzy c-means clustering are the

random initialization and the distance measures used in the

clustering process, which often lead to an ineffective result.

Thus, the fuzzy c-means++ approach was employed in the

proposed model to initialize the spread-out representative

samples as cluster centroids with which the membership

matrix can be assigned a reasonable value [39]. When the

clustering process starts with a better position close to the real

values, the number of iterations to attain the convergence will

be very low.

In this process, the first cluster centroid is chosen

randomly and added to the set 𝒱. With this point, the

probability distribution for all the points 𝑥 𝑖 In the dataset is

evaluated, and the point having a larger distance ha s a higher

chance of being the next centroid. The probability distribution

is computed as in Equation 7.

𝑝𝑏 =
𝑑𝑝(𝓍,𝒱)

𝑠𝑢𝑚 (𝑑𝑝)
 (7)

Here 𝑑 𝑝 (𝓍, 𝒱) represents the distance between the sample

𝓍 to the nearest centroid in 𝒱. 𝑝 signifies the spreading factor,

in which lower values pick the nearest point as the cluster

centroid, whereas higher values pick the outlier as the cluster

centroid.

Thus, p = 1.8 could be chosen as a factor for achieving

better performance. This process continues until the initial

cluster centroids are identified, with which the membership

matrix is computed as in Equation 2.

However, the distance between the points is computed

using Euclidean distance and feature weighting. This is carried

out in three steps by computing the variance-to-mean ratio,

weights for the features and distance with feature weighting

[40]. As each feature possesses a varying degree of relevance

to the clustering process, the weight for each feature in the

dataset is computed using variance-to-mean ratio, a statistical

measure to compute the feature weights has been employed in

the model [43].

The formula to compute the variance-to-mean ratio is

evaluated in Equation 8.

𝑉𝑗 =
𝑠𝑗

2

𝑥̅𝑗
⇒

1

𝑛−1
∑ (𝑥𝑖𝑗 −𝑥̅𝑗)𝑛

𝑖 =1

𝑥̅𝑗
 (8)

Here 𝑠𝑗
2 represents the variance of the features in the

dataset, n represents the dataset's sample count, and 𝑥�̅�

represents the mean of each feature and is computed as

1/𝑛 ∑ 𝑥 𝑖𝑗
𝑛
𝑖=1

Following the computation of the variance-to-mean ratio,

the feature weight from the fuzzy set is determined using

Equation 9.

Here 𝓈 and ℓ represent the smallest and largest variance-

to-mean ratio of the features, and 𝑤𝑗 signifies the feature

weights. This filter method selects the significant features,

thereby eliminating features with weights of 0.

𝑤𝑗 = {

0 𝑉𝑗 = 𝓈
𝑉𝑗−𝓈

𝓈 −ℓ
 𝓈 < 𝑉𝑗 < ℓ

1 𝑉𝑗 = ℓ

 (9)

With the computed weights, Equation 10 is used to

calculate the distance between the two points, where 𝑙

represents the number of features and 𝓍𝑖𝑗 and ϑ𝑘𝑗 Signify the

ith sample and the kth centroid.

𝑑𝑖𝑘
𝑤 = √∑ 𝑤𝑗 (𝓍𝑖𝑗 − ϑ𝑘𝑗)

2
𝑙
𝑗=1 (10)

Thus, the weighted distance can redefine the membership

matrix and objective function, as shown in Equations 11 and

12.

Minimize

 𝐽𝑚
(𝒰, 𝒱) = ∑ ∑ 𝜇𝑖𝑘

𝑚 𝑑𝑖𝑘
𝑤2𝑐

𝑘=1
𝑛
𝑖=1 (11)

𝜇𝑖𝑘 =
1

∑ (
𝑑𝑖𝑘

𝑤

𝑑𝑖𝑗
𝑤)

2
𝑚−1𝑐

𝑗 =1

 (12)

The overall working procedure for the proposed feature

weight-based fuzzy c-means clustering is shown in Figure 2.

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

286

Fig. 2 Overall working procedure of the proposed clustering

Thus, the pseudocode for the proposed feature weight-

based fuzzy c-means clustering is presented in Algorithm 5.

Algorithm 5: Feature weight-based Fuzzy c-means

clustering

Input: dataset X = {𝓍1 ,𝓍2, … , 𝓍𝑛
}, cluster count c, fuzzy

exponent m, termination limit ε, spreading factor p, and

maximum iteration Imax

Output: Membership degree matrix 𝒰 and 𝒱

Procedure fuzzy_c_means()

Initialize_cluster_centroids (dataset X, cluster c)

Compute the membership degree matrix 𝒰(0)

Set t=1

 Repeat

 Calculate the cluster centroids 𝒱 (𝑡)

 For each i from 1 to n

 Compute 𝑑𝑖𝑘
𝑤

 for 1 ≤ i ≤ n, 1 ≤ k≤ c

 Compute the objective function 𝐽𝑚
(𝑡)

 Update the membership degree matrix. 𝒰(𝑡+1)

 Until |𝐽𝑚
(𝑡)

− 𝐽𝑚
(𝑡−1) | < ε or (t >Imax)

End Procedure

Procedure Initialize_cluster_centroids(X, c)

𝒱 = 𝒱 ∪ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑥)

While |𝒱| < 𝑐 do

 For each 𝓍 ∈ X

 If 𝑥 with probability
𝑑𝑝(𝓍,𝒱)

𝑠𝑢𝑚(𝑑𝑝)

 𝒱 = 𝒱 ∪ 𝓍

 End For

End While

End Procedure

Following the clustering of the training samples using the

proposed fuzzy c-means clustering with feature weight, which

divides the clusters into high-population and low-population

categories. The process involves comparing the clusters'

sample count and the attribute count. The high-population

clusters are then trained using the most popular and effective

algorithm, the SVM classifier. It is a supervised ML

classification that utilizes the kernel trick to transform the

given data to find an optimal boundary between the target

classes. SVM is an appropriate choice for various

classification problems, especially with high-dimensional

spaces and memory efficiency. It also helps to identify the

complex associations with the data samples without

performing difficult transformations.

In the test phase, the input test module is compared with

the cluster centroids by evaluating the Euclidean distance

between them. The test sample that has a minimum distance

from the cluster centroid is then included in the respective

cluster. Then, the cluster population is evaluated, and if the

selected cluster has a dense population, the SVM classifier is

Start

Input dataset X
 cluster count c, fuzzy exponent m, termination
limit ε, spreading factor p, maximum iteration

Imax

Fuzzy c means++ for cluster centroid and membership
matrix initialization

Choose a random sample in a representative
centroid set 𝒱

Weighted Euclidian Distance

Compute cluster centroids ϑ𝑘

Compute the variance to mean ratio 𝑉𝑗 to
each feature j

𝒱 < 𝑐

Compute the feature weight 𝑤𝑗 for each
feature j

Yes

If
|𝐽𝑚

(𝑡)
− 𝐽𝑚

(𝑡−1)
| < ε or

(t >Imax)

Compute weighted Euclidean distance with
computed feature weight 𝑑𝑖𝑘

𝑤

Yes

No

If 𝑥 ∈ 𝑋 with the probability
𝑑𝑝 (𝓍 ,𝒱)

𝑠𝑢𝑚(𝑑𝑝)
 then include

𝑥 as a representative in centroid set 𝒱

Compute the membership degree matrix 𝒰(0)

Compute membership degree matrix 𝜇𝑖𝑘

Calculate the objective function Jm

No

End

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

287

applied to the specific cluster to identify the class label as

defect or non-defect samples. On the other hand, if the specific

cluster has had a low population in which the sample count is

less than the attribute count, then the Euclidean distance is

utilised to evaluate the similarity among the test sample and

the other samples in the cluster.

Here, the top three similar modules with the minimum

distance are taken for the analysis. The majority of the top

three sample labels will be chosen as the class label for the test

sample.

5. Experimental Study
This section presents the experimental analysis carried

out for the suggested research. Initially, the datasets utilized

for the analysis are described. The various performance

analyses used to evaluate the study are also discussed. The

experiments are performed in Rstudio installed on an Intel (R)

Pentium CPU 6405U with a 64-bit Windows operating system

and 8 GB RAM.

5.1. Dataset Description

Five NASA datasets from the PROMISE repository were

employed for evaluation. The five datasets are CM1, PC1,

KC1, KC2, and JM1, in which all the datasets contain 22

module-based measures as features that include 5 different

Lines of Code (LOC), 3 McCabe metrics, 4 bases and 8

derived Halstead measures, a branch-count, and 1 goal field.

Thus, software metrics are used to evaluate the modules and

the outcomes of these measures are used as features.

Commonly used software metrics include Halstead software

metrics, which measure base and derived measures in addition

to lines of code, and McCabe software metrics, which measure

essential complexity, cyclomatic complexity, design

complexity, and lines of code. Details regarding the datasets

are provided in Table 1.

Table 1. Dataset from PROMISE repository

Datasets Details
Programming

Language
#Samples

#Non-

Defects
#Defects Defect%

CM1 NASA spacecraft instrument C 498 449 49 10

PC1
Software for satellites in Earth-orbiting

flights
C 1109 1032 77 7

KC1 Ground data storage and processing C++ 2109 1783 326 15

KC2 Science data processing C++ 522 105 415 20

JM1 Predictive ground system in real time C 10,885 8779 2106 19

NASA Metrics Data Program (MDP) datasets are widely

available in different versions. The cleaned version of the

datasets was created by Shepperd et al. [44]. It is available as

a dataset with duplicate and inconsistent samples and a dataset

with duplicate and inconsistent samples removed. The nine

datasets from dataset versions such as PC1, PC2, PC3, PC4,

MW1, CM1, KC1, KC3, and MC2 have been employed and

are available on GitHub. The particulars of the cleaned NASA

MDP datasets are presented in Table 2.

Table 2. NASA MDP datasets

Datasets

Features

Samples

Non-Defects

Defects

Defect

%

PC1 37 759 698 61 8

PC2 36 1585 1569 16 1

PC3 37 1125 985 140 12

PC4 37 1399 1221 178 13

MW1 37 264 237 27 10

CM1 37 344 302 42 12

KC1 21 2096 1771 325 16

KC3 39 200 163 36 19

MC2 39 127 83 44 35

5.2. Performance Metrics

In general, the prediction carried out by the models is

evaluated by generating the confusion matrix for the N

samples grouped as True Positives (TP), False Negatives

(FN), False Positives (FP) and True Negatives (TN). TP and

TN represent correct classification as the count of defective

test instances classified as faulty and non-faulty test instances

classified as non-faulty.

FN and FP represent incorrect classification as the count

of defect test samples classified as non-defective and the count

of non-faulty test samples predicted as defective. With these

four elements of the confusion matrix, various performance

measures can be evaluated.

However, according to Equations 13 to 16, the study

makes use of measures such as Overall Error Rate (OER),

False Positive Rate (FPR), False Negative Rate (FNR) and the

Rand index.

𝑂𝐸𝑅 =
𝐹𝑁+𝐹𝑃

𝑁
 (13)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (14)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (15)

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃+𝑇𝑁

𝑁
 (16)

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

288

6. Results Analysis
This section discusses the various results obtained for the

anticipated model and compares the results with those of the

other existing models. The first stage is to evaluate and assess

the outcomes of the proposed Accelerated k-means algorithm

(AkM) with those of other existing methods, including the

Point Centre k-means algorithm (PCKM) and the k-means

algorithm (kM) [25]. The prediction of defects has been

analyzed with defect prediction rate and defect miss rate for

these models, and the results are presented in Table 3, in which

the high prediction rate and the low miss rate are highlighted

in boldface. Here, the defect prediction represents the

percentage of defects predicted, and the detection miss rate

represents the percentage of defects missed by the models.

Table 3. Comparative analysis of defect prediction

Datasets
Defect Prediction % Defect Miss %

kM PKCM AkM kM PKCM AkM

PC1 98.36 98.36 100.00 1.64 1.64 0

PC2 93.75 93.75 100.00 6.25 6.25 0

PC3 100.00 100.00 100.00 0 0 0

PC4 96.07 96.07 97.19 3.93 3.93 2.81

MW1 77.78 92.59 96.30 22.2 7.41 3.7

CM1 100.00 100.00 100.00 0 0 0

KC1 87.08 87.08 88.31 12.9 12.9 11.7

KC3 80.56 86.11 86.11 19.4 16.7 13.9

MC2 88.37 86.36 88.64 14 13.6 9.09

From the analysis, the defect prediction rate for PC1,

PC2, PC3 and CM1 with the proposed model is 100%. For the

other datasets, the proposed model offers an improved defect

prediction rate compared to the other existing models. The

average defect prediction rate for the proposed model is 95.2%

whereas that of the k-means and PCKM models is 91.3% and

93.4% respectively. Similarly, the defect miss rate is highly

appreciable for the proposed model, with an average of 4.6%

less than k-means (8.9%) and PCKM (6.9%) models. The

obtained defect miss rate is visualized using a line graph in

Figure 3 for better understanding.

Fig. 3 Comparison of defect miss rate

Using the nine NASA MDP datasets, the OER, FPR,

FNR, and the Rand Index are assessed for the k-means (kM),

PKCM, and proposed AkM in addition to the defect prediction

analysis. Table 4 displays the observed values from the

analysis. It is evident from the elaborated outcome that the

suggested accelerated k-means model outperformed the

conventional kM and PCKM models in terms of error rate,

false prediction, and Rand index.

Table 4. Comparative analysis using NASA MDP datasets

Datasets
OER FPR FNR RAND

kM PKCM AkM kM PKCM AkM kM PKCM AkM kM PKCM AkM

PC1 0.003 0.003 0 0.001 0.001 0 0.016 0.016 0 0.997 0.997 1.000

PC2 0.005 0.008 0.003 0.004 0.008 0.003 0.063 0.063 0 0.995 0.992 0.997

PC3 0.001 0.001 0 0.001 0.001 0 0 0 0 0.999 0.999 1.000

PC4 0.015 0.019 0.009 0.011 0.016 0.006 0.039 0.039 0.028 0.985 0.981 0.991

MW1 0.030 0.125 0.008 0.025 0.114 0.004 0.074 0.222 0.037 0.970 0.875 0.992

CM1 0.006 0.006 0.003 0.007 0.007 0.003 0 0 0 0.994 0.994 0.997

KC1 0.035 0.035 0.031 0.018 0.018 0.015 0.129 0.129 0.117 0.965 0.965 0.969

KC3 0.055 0.075 0.040 0.031 0.049 0.018 0.162 0.194 0.139 0.945 0.925 0.960

MC2 0.055 0.055 0.031 0.012 0.012 0 0.136 0.136 0.093 0.945 0.945 0.969

Thus, the average error rate, FPR, and FNR for proposed

accelerated k-means are 0.014, 0.005 and 0.046, which is less

than standard k-means that have OER as 0.036, FPR as 0.025,

FNR as 0.089 and PCKM that has OER as 0.023, FPR as 0.012

and FNR as 0.069. On the other hand, the average rand index

for the standard k-means, PCKM, and proposed accelerated k-

means are 0.964, 0.977 and 0.986, respectively. Thus,

accelerated k-means clustering is a better choice for predicting

software faults.

The PROMISE Repository's five datasets—KC1, KC2,

CM1, PC1, and JM1—are used to conduct the overall analysis

of the suggested model. A comparison is made between the

suggested model's (FW_FCM+SVM) performance with the

other models with conventional classifiers such as NB, RF,

and other existing models such as ACN [22], ACR [22], fuzzy

c-means clustering with probabilistic neural network

(FCM_PNN) [5], FMRT [24], and FMR [24]. The obtained

outcomes are presented in Table 5.

0

5

10

15

20

25

PC1 PC2 PC3 PC4 MW1 CM1 KC1 KC3 MC2

D
ef

ec
t

M
is

s
R

at
e

in
 %

NASA Datasets

PCKM

k-Means

Acc. k-Means

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

289

Table 5. Comparative analysis with different prediction models

Datasets Metrics NB RF ACN ACF FCM_PNN FMRT FMR FW_FCM+SVM

KC1

FPR 0.09 0.06 0.07 0.01 0.19 0.06 0.03 0.02

FNR 0.63 0.73 0.16 0.31 0.21 0.74 0.13 0.11

OER 0.17 0.16 0.06 0.03 0.17 0.16 0.03 0.04

KC2

FPR 0.05 0.09 0.06 0.03 0.25 0.06 0.04 0.03

FNR 0.53 0.53 0.1 0.27 0.12 0.52 0.18 0.15

OER 0.15 0.18 0.07 0.06 0.23 0.17 0.06 0.05

CM1

FPR 0.08 0.02 0.05 0.02 0.04 0.04 0.01 0.02

FNR 0.71 0.81 0.29 0.42 0.45 0.61 0.37 0.21

OER 0.14 0.09 0.07 0.05 0.28 0.16 0.04 0.03

PC1

FPR 0.08 0.02 0.05 0.02 0.17 0.04 0.01 0.02

FNR 0.71 0.81 0.29 0.42 0.38 0.61 0.37 0.24

OER 0.14 0.09 0.07 0.05 0.19 0.16 0.04 0.04

JM1

FPR 0.08 0.02 0.05 0.02 0.08 0.04 0.01 0.02

FNR 0.71 0.81 0.29 0.42 0.18 0.61 0.37 0.23

OER 0.14 0.09 0.07 0.05 0.14 0.16 0.04 0.03

Fig. 4 Comparison of average ranks of various models

While analyzing the FPR, the ACF provides better results

for KC1 and KC2 datasets and the FMR model for CM1, PC1

and JM1 datasets. On the other hand, the proposed

FW_FCM+SVM provides improved FNR for KC1, CM1,

PC1 and JM1 datasets and ACN for the KC2 dataset. The

FMR model offers less OER for KC1 and the proposed

FW_FCM+SVM for KC2, CM1, PC1 and JM1 datasets. Thus,

the average ranks are computed for the 8 models compared,

and the obtained value is depicted in Figure 4. The result

indicates that the ACF model offers better FPR with an

average rank of 1.6. The FMR model and proposed models

acquired a second top position concerning the FPR.

Meanwhile, the FNR and OER for the proposed model are

better, with an average rank of 1.8 and 1.4, respectively.

Table 6. Analysis with different test and training sets

Test set Models FPR FNR EOR

CM1

ACN 0.03 0.41 0.06

ACF 0.02 0.44 0.05

FMR 0.02 0.48 0.05

FW_FCM+SVM 0.02 0.32 0.03

KC1

ACN 0 0.71 0.08

ACF 0.01 0.5 0.07

FMR 0 0.63 0.07

FW_FCM+SVM 0.01 0.36 0.04

KC2

ACN 0 0.54 0.12

ACF 0.02 0.44 0.11

FMR 0 0.48 0.1

FW_FCM+SVM 0.01 0.32 0.1

PC1

ACN 0.02 0.39 0.04

ACF 0.02 0.33 0.04

FMR 0.02 0.33 0.04

FW_FCM+SVM 0.02 0.27 0.03

Finally, as discussed by Abaei and Selamat [5], the

various models are analyzed with different training and test

datasets. The models, such as ACN, ACF, FMR and proposed

FW_FCM+SVM, are evaluated with JM1 as the training set

and CM1, KC1, KC2 and PC1 as test datasets. The results

obtained are presented in Table 6. Using CM1 as the test

sample and JM1 as the learning sample, the suggested model

produces better results with lower FPR, FNR, and OER. The

average FPR for ACN, ACF, FMR and FW_FCM+SVM are

0.013, 0.18, 0.10 and 0.15, respectively. Thus, the FMR has

enhanced FPR results. The FNR values for ACN, ACF, FMR

and FW_FCM+SVM are 0.513, 0.428, 0.48 and 0.318,

respectively, whereas the OER values for ACN, ACF, FMR

and FW_FCM+SVM are 0.075, 0.068, 0.065 and 0.05 ,

6
.6 6
.8

6
.0

3
.4

7
.6

5
.46

.0

2
.2

4
.0

1
.6

4
.8

2
.4

7
.2

3
.2

7
.4

4
.8

6
.4 6
.6

1
.8

3
.0

1
.61
.8

1
.8

1
.4

FPR FNR OER

A
v

er
ag

e
R

an
k

Evalaution Metrics

NB RF ACN

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

290

respectively. Thus, the FNR and OER for the proposed model

with different datasets have better results, indicating that they

effectively detect faults from non-faulty modules.

7. Conclusion
Software fault prediction has gained more attention

among researchers who apply predictive analysis in software

development. Yet, the models still need further enhancement

with high precision and low time complexity. This paper

suggests the feature weight-based fuzzy c-means clustering

for predicting faulty modules from non-faulty ones. The

method clusters the modules based on their characteristics

using fuzzy feature weights and then applies a classification

algorithm to the high-populated clusters to predict software

faults and simple similarity measures to classify them in low-

populated clusters. This method improves fault detection and

reduces computational complexity. The various experimental

analysis have been carried out using 5 datasets from the

PROMISE repository and 9 datasets from NASA MDP. The

outcome shows that compared to other conventional and

existing fault prediction approaches, the suggested model

offers a better FNR and OER. The result analysis shows that

the proposed model is appropriate for predicting software

faults.

References
[1] Norah Abdullah Al-Johany et al., “Static Analysis Techniques for Fixing Software Defects in MPI-Based Parallel Programs,” Computers,

Materials & Continua, vol. 79, no. 2, pp. 3139-3173, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[2] Shahzad Ashiq et al., “Challenges and Barriers to Software Testing,” Bulletin of Business and Economics, vol. 13, no. 1, pp. 628-640,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Marek Molęda et al., “From Corrective to Predictive Maintenance - A Review of Maintenance Approaches for the Power Industry,”

Sensors, vol. 23, no. 13, pp. 1-47, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Jim Johnson, CHAOS 2020: Beyond Infinity, The Standish Group, Boston, MA, 2021. [Google Scholar] [Publisher Link]

[5] Golnoosh Abaei, and Ali Selamat, “Software Fault Prediction Based on Improved Fuzzy Clustering,” International Conference on

Distributed Computing and Artificial Intelligence, pp. 165-172, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[6] Lov Kumar, Sanjay Misra, and Santanu Ku. Rath, “An Empirical Analysis of the Effectiveness of Software Metrics and Fault Prediction

Model for Identifying Faulty Classes,” Computer Standards & Interfaces, vol. 53, pp. 1-32, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[7] Aswathy Rajendra Kurup et al., “Ensemble Models for Circuit Topology Estimation, Fault Detection and Classification in Distribution

Systems,” Sustainable Energy, Grids and Networks, vol. 34, pp. 1-32, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Santosh S. Rathore, and Sandeep Kumar, “A Study on Software Fault Prediction Techniques,” Artificial Intelligence Review, vol. 51, no.

2, pp. 255-327, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Prachi Pramod Shedge et al., “Enhancing Maternal Health: A Soft Computing Approach to Pregnancy Risk Management,” Modernizing

Maternal Care with Digital Technologies, pp. 65-96, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Sarita Negi, Devesh Pratap Singh, and Man Mohan Singh Rauthan, “A Systematic Literature Review on Soft Computing Techniques in

Cloud Load Balancing Network,” International Journal of System Assurance Engineering and Management, vol. 15, no. 3, pp. 800-838,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Tripathi, “Machine Learning Based Methods for Software Fault

Prediction: A Survey,” Expert Systems with Applications, vol. 172, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] Erik Arisholm, Lionel C. Briand, and Eivind B. Johannessen, “A Systematic and Comprehensive Investigation of Methods to Build and

Evaluate Fault Prediction Models,” Journal of Systems and Software, vol. 83, no. 1, pp. 2-17, 2010. [CrossRef] [Google Scholar]

[Publisher Link]

[13] Haonan Tong, Bin Liu, and Shihai Wang, “Software Defect Prediction using Stacked Denoising Autoencoders and Two-Stage Ensemble

Learning,” Information and Software Technology, vol. 96, pp. 94-111, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Triphathi, “Software Bug Prediction Prototype using Bayesian Network

Classifier: A Comprehensive Model,” Procedia Computer Science, vol. 132, pp. 1412-1421, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Aleksey Borodulin et al., “Using Machine Learning Algorithms to Solve Data Classification Problems using Multi-Attribute Dataset,”

BIO Web of Conferences, vol. 84, pp. 1-11, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Asad Ali, and Carmine Gravino, “Bio-inspired Algorithms in Software Fault Prediction: A Systematic Literature Review,” 2020 14th

International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, pp. 1-8, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Santosh S. Rathore, and Sandeep Kumar, “An Empirical Study of Ensemble Techniques for Software Fault Prediction,” Applied

Intelligence, vol. 51, no. 6, pp. 3615-3644, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[18] Jian Li et al., “Software Defect Prediction via Convolutional Neural Network,” 2017 IEEE International Conference on Software Quality,

Reliability and Security (QRS), Prague, Czech Republic, pp. 318-328, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/698_2022_912
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Static+Analysis+Techniques+for+Fixing+Software+Defects+in+MPI-Based+Parallel+Programs&btnG=
https://www.techscience.com/cmc/v79n2/56403
https://doi.org/10.61506/01.00248
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+and+Barriers+to+Software+Testing%2C%E2%80%9D+Bulletin+of+Business+and+Economics&btnG=
https://bbejournal.com/BBE/article/view/741
https://doi.org/10.3390/s23135970
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+corrective+to+predictive+maintenance%E2%80%94A+review+of+maintenance+approaches+for+the+power+industry%2C%E2%80%9D+&btnG=
https://www.mdpi.com/1424-8220/23/13/5970
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B4%5D%09Standish+Group.+CHAOS+2020%3A+Beyond+Infinity.+Standish+Group%2C+Boston%2C+MA.+2020&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-07593-8_21
https://doi.org/10.1007/978-3-319-07593-8_21
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+fault+prediction+based+on+improved+fuzzy+clustering&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-07593-8_21
https://doi.org/10.1016/j.csi.2017.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+analysis+of+the+effectiveness+of+software+metrics+and+fault+prediction+model+for+identifying+faulty+classes%2C%E2%80%9D+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0920548916300885?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548916300885?via%3Dihub
https://doi.org/10.1016/j.segan.2023.101017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+models+for+circuit+topology+estimation%2C+fault+detection+and+classification+in+distribution+systems%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2352467723000255?via%3Dihub
https://doi.org/10.1007/s10462-017-9563-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+study+on+software+fault+prediction+techniques&btnG=
https://link.springer.com/article/10.1007/s10462-017-9563-5
https://doi.org/10.4018/979-8-3693-3711-0.ch004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Maternal+Health%3A+A+Soft+Computing+Approach+to+Pregnancy+Risk+Management&btnG=
https://www.igi-global.com/gateway/chapter/352253
https://doi.org/10.1007/s13198-023-02217-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+on+soft+computing+techniques+in+cloud+load+balancing+network&btnG=
https://link.springer.com/article/10.1007/s13198-023-02217-3
https://doi.org/10.1016/j.eswa.2021.114595
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+based+methods+for+software+fault+prediction%3A+A+survey%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417421000361?via%3Dihub
https://doi.org/10.1016/j.jss.2009.06.055
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+and+comprehensive+investigation+of+methods+to+build+and+evaluate+fault+prediction+models%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121209001605?via%3Dihub
https://doi.org/10.1016/j.infsof.2017.11.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+using+stacked+denoising+autoencoders+and+two-stage+ensemble+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584917300113?via%3Dihub
https://doi.org/10.1016/j.procs.2018.05.071
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+bug+prediction+prototype+using+bayesian+network+classifier%3A+A+comprehensive+model%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050918308032?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1877050918308032?via%3Dihub
https://doi.org/10.1051/bioconf/20248402001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+machine+learning+algorithms+to+solve+data+classification+problems+using+multi-attribute+dataset&btnG=
https://www.bio-conferences.org/articles/bioconf/abs/2024/03/bioconf_aquaculture2024_02001/bioconf_aquaculture2024_02001.html
https://doi.org/10.1109/ICOSST51357.2020.9332995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+Algorithms+in+Software+Fault+Prediction%3A+A+Systematic+Literature+Review%2C%E2%80%9D+International+Conference+on+Open+Source+Systems+and+Technologies&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+Algorithms+in+Software+Fault+Prediction%3A+A+Systematic+Literature+Review%2C%E2%80%9D+International+Conference+on+Open+Source+Systems+and+Technologies&btnG=
https://ieeexplore.ieee.org/document/9332995
https://doi.org/10.1007/s10489-020-01935-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+study+of+ensemble+techniques+for+software+fault+prediction&btnG=
https://link.springer.com/article/10.1007/s10489-020-01935-6
https://doi.org/10.1109/QRS.2017.42
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+via+convolutional+neural+network%2C%E2%80%9D+&btnG=
https://ieeexplore.ieee.org/document/8009936

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

291

[19] Chetan Shelke et al., Optimized Machine Learning Techniques for Software Fault Prediction, Natural Language Processing for Software

Engineering, pp. 207-219, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[20] Nikhil Saji Thomas, and S. Kaliraj, “An Improved and Optimized Random Forest Based Approach to Predict the Software Faults,” SN

Computer Science, vol. 5, no. 5, pp. 1-18, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[21] Misbah Ali et al., “Enhancing Software Defect Prediction: A Framework with Improved Feature Selection and Ensemble Machine

Learning,” PeerJ Computer Science, vol. 10, pp. 1-37, 2024. [Google Scholar] [Publisher Link]

[22] Oral Alan, and Cagatay Catal, “Thresholds Based Outlier Detection Approach for Mining Class Outliers: An Empirical Case Study on

Software Measurement Datasets,” Expert Systems with Applications, vol. 38, no. 4, pp. 3440-3445, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[23] T. Pushpavathi, V. Suma, and V. Ramaswamy, “Analysis of Software Fault and Defect Prediction by Fuzzy C-Means Clustering and

Adaptive Neuro Fuzzy C-Means Clustering,” International Journal of Scientific & Engineering Research, vol. 5, no. 9, 2014. [Google

Scholar] [Publisher Link]

[24] Golnoush Abaei, and Ali Selamat, Increasing the Accuracy of Software Fault Prediction using Majority Ranking Fuzzy Clustering,

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 179-193, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[25] Riski Annisa, Didi Rosiyadi, and Dwiza Riana, “Improved Point Center Algorithm for K-Means Clustering to Increase Software Defect

Prediction,” International Journal of Advances in Intelligent Informatics, vol. 6, no. 3, pp. 328-339, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[26] D. Shrivathsan et al., “Novel Fuzzy Clustering Methods for Test Case Prioritization in Software Projects,” Symmetry, vol. 11, no. 11, pp.

1-22, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[27] Ahmed Iqbal et al., “Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets,”

International Journal of Advanced Computer Science and Applications, vol. 10, no. 5, pp. 1-19, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[28] Wasiur Rhmann et al., “Software Fault Prediction Based on Change Metrics Using Hybrid Algorithms: An Empirical Study,” Journal of

King Saud University-Computer and Information Sciences, vol. 32, no. 4, pp. 419-424, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[29] Garvit Rajesh Choudhary et al., “Empirical Analysis of Change Metrics for Software Fault Prediction,” Computers & Electrical

Engineering, vol. 67, pp. 15-24, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[30] José M. Pena, Jose Antonio Lozano, and Pedro Larranaga, “An Empirical Comparison of Four Initialization Methods for the K-Means

Algorithm,” Pattern Recognition Letters, vol. 20, no. 10, pp. 1027-1040, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[31] David Arthur, and Sergei Vassilvitskii, “k-Means++: the Advantages of Careful Seeding,” Technical Report, Stanford, pp. 1027-1035,

2006. [Google Scholar] [Publisher Link]

[32] C. Elkan, “Using the Triangle Inequality to Accelerate k-Means,” Proceedings of the 20th International Conference on Machine Learning,

Washington, DC, pp. 147-153, 2003. [Google Scholar] [Publisher Link]

[33] Greg Hamerly, “Making k-means Even Faster,” Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 130-140,

2010. [CrossRef] [Google Scholar] [Publisher Link]

[34] Enrique H. Ruspini, “New Experimental Results in Fuzzy Clustering,” Information Sciences, vol. 6, pp. 273-284, 1973. [CrossRef]

[Google Scholar] [Publisher Link]

[35] James C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 1st ed., Advanced Applications in Pattern Recognition ,
Springer New York, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[36] R.E. Hammah, and J.H. Curran, “Fuzzy Cluster Algorithm for the Automatic Identification of Joint Sets,” International Journal of Rock

Mechanics and Mining Sciences, vol. 35, no. 7, pp. 889-905, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[37] Nikhil R. Pal, and C. James, “On Cluster Validity for the Fuzzy C-Means Model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp.

370-379, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[38] Min Ren et al., “A Self-Adaptive Fuzzy C-Means Algorithm for Determining the Optimal Number of Clusters,” Computational

Intelligence and Neuroscience, vol. 2016, no. 1, pp. 1-12, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[39] Adrian Stetco, Xiao-Jun Zeng, and John Keane, “Fuzzy C-Means++: Fuzzy C-Means with Effective Seeding Initialization,” Expert

Systems with Applications, vol. 42, no. 21, pp. 7541-7548, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[40] Andy Arief Setyawan, and Ahmad Ilham, “A Novel Framework of the Fuzzy C-Means Distances Problem Based Weighted Distance,”

Journal of Applied Computing and Informatics, pp. 1-25, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[41] Shuisheng Zhou et al., “A New Membership Scaling Fuzzy C-Means Clustering Algorithm,” IEEE Transactions on Fuzzy Systems, vol.

29, no. 9, pp. 2810-2818, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1002/9781394272464.ch14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+via+convolutional+neural+network%2C%E2%80%9D+&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/9781394272464.ch14
https://doi.org/10.1007/s42979-024-02764-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Improved+and+Optimized+Random+Forest+Based+Approach+to+Predict+the+Software+Faults&btnG=
https://link.springer.com/article/10.1007/s42979-024-02764-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CEnhancing+software+defect+prediction%3A+a+framework+with+improved+feature+selection+and+ensemble+machine+learning&btnG=
https://peerj.com/articles/cs-1860/
https://doi.org/10.1016/j.eswa.2010.08.130
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Thresholds+based+outlier+detection+approach+for+mining+class+outliers%3A+An+empirical+case+study+on+software+measurement+datasets%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417410009383?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+software+fault+and+defect+prediction+by+fuzzy+c-means+clustering+and+adaptive+neuro+fuzzy+c-means+clustering%2C%E2%80%9D&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+software+fault+and+defect+prediction+by+fuzzy+c-means+clustering+and+adaptive+neuro+fuzzy+c-means+clustering%2C%E2%80%9D&btnG=
https://d1wqtxts1xzle7.cloudfront.net/38977154/researchpaper-Analysis-of-Software-Fault-and-Defect-Prediction-by-Fuzzy-C-Means-libre.pdf?1443789744=&response-content-disposition=inline%3B+filename%3DResearchpaper_Analysis_of_Software_Fault.pdf&Expires=1752649862&Signature=PjxRVUVQjxaL66C0EIuyQfJ-WS~iKbJMYfpIjHIetGE0m7cG9ohE5KBL8MP0xtEQGVLL~J0Ia1--0a4rJ0lTxmpgo35MfaHlRf5cN~rzUoTYnYqJxdC8MiMmBBhRpRRfOAl34LeVv9cVAfWmwBlPzJ4zFMGGutplfh20mX72Gmjs0-guhBIQmEBBeX79kQ94ImMXl~xqHLR7qFaF7O-40XlNCydk0VdGdulYrdP5b~UcZDXRHy0EOBRt7NzXTSe8czn88imMNyyQT6Q3qXp5KOLpXw3cQZUNhMSDF4NVIVF8HOoNFQT9ZttdqE9MN8avkSYomdCQTFBESdZavUauGg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1007/978-3-319-10389-1_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Increasing+the+accuracy+of+software+fault+prediction+using+majority+ranking+fuzzy+clustering&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Increasing+the+accuracy+of+software+fault+prediction+using+majority+ranking+fuzzy+clustering&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417410009383?via%3Dihub
https://doi.org/10.26555/ijain.v6i3.484
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+point+center+algorithm+for+k-means+clustering+to+increase+software+defect+prediction&btnG=
https://ijain.org/index.php/IJAIN/article/view/484
https://doi.org/10.3390/sym11111400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+fuzzy+clustering+methods+for+test+case+prioritization+in+software+projects&btnG=.
https://www.mdpi.com/2073-8994/11/11/1400
https://doi.org/10.14569/IJACSA.2019.0100538
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+analysis+of+machine+learning+techniques+on+software+defect+prediction+using+NASA+datasets%2C%E2%80%9D+&btnG=
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=5&Code=IJACSA&SerialNo=38
https://doi.org/10.1016/j.jksuci.2019.03.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+fault+prediction+based+on+change+metrics+using+hybrid+algorithms%3A+An+empirical+study&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157818313077?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1319157818313077?via%3Dihub
https://doi.org/10.1016/j.compeleceng.2018.02.043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+analysis+of+change+metrics+for+software+fault+prediction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790617336121?via%3Dihub
https://doi.org/10.1016/S0167-8655(99)00069-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+comparison+of+four+initialization+methods+for+the+k-means+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865599000690?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=k-means%2B%2B%3A+the+advantages+of+careful+seeding%2C%E2%80%9D+&btnG=
http://ilpubs.stanford.edu:8090/778/?ref=https://githubhelp.com
https://scholar.google.com/scholar?cluster=9250719089309098674&hl=en&as_sdt=0,5
https://cir.nii.ac.jp/crid/1572543025574836352
https://doi.org/10.1137/1.9781611972801.12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Making+k-means+even+faster%2C%E2%80%9D+&btnG=
https://epubs.siam.org/doi/10.1137/1.9781611972801.12
https://doi.org/10.1016/0020-0255(73)90043-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+experimental+results+in+fuzzy+clustering&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0020025573900431?via%3Dihub
https://doi.org/10.1007/978-1-4757-0450-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CPattern+recognition+with+fuzzy+objective+function+algorithms&btnG=
https://link.springer.com/book/10.1007/978-1-4757-0450-1
https://doi.org/10.1016/S0148-9062(98)00011-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+cluster+algorithm+for+the+automatic+identification+of+joint+sets&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0148906298000114?via%3Dihub
https://doi.org/10.1109/91.413225
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09+On+cluster+validity+for+the+fuzzy+c-means+model&btnG=
https://ieeexplore.ieee.org/document/413225
https://doi.org/10.1155/2016/2647389
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+self-adaptive+fuzzy+c-means+algorithm+for+determining+the+optimal+number+of+clusters&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2016/2647389
https://doi.org/10.1016/j.eswa.2015.05.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+C-means%2B%2B%3A+Fuzzy+C-means+with+effective+seeding+initialization&btnG=
https://www.sciencedirect.com/science/article/pii/S0957417415003346?via%3Dihub
https://doi.org/10.48550/arXiv.1907.13513
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+framework+of+the+fuzzy+c-means+distances+problem+based+weighted+distance&btnG=
https://arxiv.org/abs/1907.13513
https://doi.org/10.1109/TFUZZ.2020.3003441
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+membership+scaling+fuzzy+C-means+clustering+algorithm&btnG=
https://ieeexplore.ieee.org/document/9120181

Yuvaraj K & Balaji N V / IJETT, 73(7), 280-292, 2025

292

[42] Robert Tibshirani, Guenther Walther, and Trevor Hastie, “Estimating the Number of Clusters in a Data Set via the Gap Statistic,” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411-423, 2001. [CrossRef] [Google Scholar]

[Publisher Link]

[43] Xizhao Wang, Yadong Wang, and Lijuan Wang, “Improving Fuzzy C-Means Clustering Based on Feature-Weight Learning,” Pattern

Recognition Letters, vol. 25, no. 10, pp. 1123-1132, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[44] Martin Shepperd et al., “Data Quality: Some Comments on the NASA Software Defect Datasets,” IEEE Transactions on Software

Engineering, vol. 39, no. 9, pp. 1208-1215, 2013. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1111/1467-9868.00293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+the+number+of+clusters+in+a+data+set+via+the+gap+statistic&btnG=
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293
https://doi.org/10.1016/j.patrec.2004.03.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+fuzzy+c-means+clustering+based+on+feature-weight+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865504000765?via%3Dihub
https://doi.org/10.1109/TSE.2013.11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+quality%3A+Some+comments+on+the+NASA+software+defect+datasets&btnG=
https://ieeexplore.ieee.org/document/6464273

