
International Journal of Engineering Trends and Technology Volume 73 Issue 7, 308-317, July 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I7P124 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Efficient Lightweight Cryptography Tiny Hash

Function for Data Security in IoT Applications

Mangalampalli Kameswara Subrahmanyam1, Kunjam Nageswara Rao2

1,2Department of Computer Science and System Engineering, Andhra University, Visakhapatnam, Andhra Pradesh, India.

1Corresponding Author : kameswarasubrahmanyam@gmail.com

Received: 11 April 2025 Revised: 25 June 2025 Accepted: 30 June 2025 Published: 30 July 2025

Abstract - Safeguarding data is vital in today’s rapidly evolving technological landscape . Instant encryption and transmission

are imperative to prevent unauthorized access by potential attackers. Lightweight cryptography hash functions are in high

demand since traditional cryptographic techniques are unsuited for Internet of Things (IoT) appl ications with limited resources.

This research presents the development of a new lightweight cryptographic hash function , i.e., Tiny Hash Function (THF). The

proposed design accepts an input message of any length and employs processing the message blocks, compression functions and

round calculations, substitution and linear diffusion layers to produce 64H/128H /256H hex hash values. The strength of the

proposed algorithm is evaluated according to Shannon’s property of “confusion” and “diffusion” and is recorded as 70.2%,

demonstrating high sensitivity to input message changes. THF has undergone extensive testing to ensure its security,

concentrating on three essential lightweight requirements: benchmarking against other hash functions for collisi on resistance,

preimage resistance, and second preimage resistance. The suggested hash function is essential for protecting sensitive data in

cybersecurity, finance transactions and data management sectors.

Keywords - Confusion, Diffusion, Hash function, IoT, Light-weight cryptography, Security.

1. Introduction
The Internet of Things (IoT) now encompasses most

modern-day applications and gadgets. As more IoT devices are

used, they handle more and more data. Managing this big data

involves ensuring security and authenticity through

cryptographic protocols like encryption and decryption.

Traditional cryptographic methods take longer to manage the

large volumes of information produced by IoT devices,

especially when processing data byte by byte. These methods

are seen as inefficient for handling extensive data sets. This

challenge is a major obstacle in the practical implementation of

IoT systems. So, there is a significant need to develop

innovative, lightweight cryptographic hash functions that can

address these concerns effectively. IoT devices have limitations

with regard to processing, memory, and energy. Normal

cryptographic hash functions are too resource-intensive for

them, and most of the lightweight alternatives are not secure or

efficient enough. Something that is both lightweight and highly

secure has to be devised now. Most current lightweight hash

functions are too complicated for small IoT devices or do not

offer strong enough security. Some consume more memory,

some are slow, and others are weak against attacks. No single

lightweight hash function offers strong security, fast

execution, and low resource consumption simultaneously.

Therefore, there is a very evident need for a fresh hash

function that performs well on devices with limited resources

and maintains high security and efficiency for IoT purposes.

A hash function is a mathematical operation that converts an

input message of any size into an output message of a

predetermined size. This technique finds applications in tasks

like ensuring data integrity, creating Message Authentication

Codes (MACs), and generating digital signatures. The primary

attribute of a non-colliding hash function is that it maps inputs

of varying lengths to fixed-length strings, often referred to as

fingerprints [1, 2]. To thwart attackers, the objective is to make

computations intricate, preventing collisions or secondary

breaches. In the case of an ideal n-bit hash function, attackers

require 2n/2 and 2n calculations, respectively, to find collisions

or secondary breaches.

The construction and compression functions are the two

important parts of a hash function. The construction function’s

task is to replicate the compression function’s behaviors.

While a random oracle might not exist, the hash function ’s

design must align with established security criteria. An

effective cryptographic hash function is anticipated to possess

the subsequent key security attributes [3]:

• Collision-resistance: Breaking the collision-resistance of

the hash function involves a significant challenge –

finding two distinct messages, m0 and m1, for which their

hash values satisfy H (m0) = H (m1). This activity

necessitates a minimum computing effort of 2n/2.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kameswarasubrahmanyam@gmail.com)

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

309

• Preimage-resistance: Understanding the preimage

resistance feature requires substantial effort. The aim

involves identifying the initial message m from a

particular H(m) hash value. This project requires a

minimum of 2n computational operations.

• Second preimage-resistance: Breaking the second

preimage-resistance barrier is a significant challenge.

Given an initial input m0, the objective is to identify a

different input m1 so that their hash values match: H(m0)

= H(m1). This endeavour necessitates a computational

workload of at least 2n units.

This study aims to develop a new, lightweigh t

cryptographic hash function known as Tiny Hash Function

(THF). This new design aims to produce a hashing mechanism

that follows the recognized security standards of regular hash

functions and meets the special needs of lightweigh t

applications. The proposed THF aims to provide robust

security and maximum efficiency targeted for lightweigh t

applications. The paper is organized as follows: Within

Section 2, a literature review of lightweight cryptographic

hash algorithms is offered. Section 3 introduces the unique

lightweight hash function that is being suggested. Section 4

provides a quick description of the THF-related security

analysis findings. Lastly, the research article is concluded in

Section 5.

2. Literature Review
Explaining the research, Hash functions use different

structures to achieve cryptographic purposes, such as Merkle-

Damgård [4] and Sponge construction [5]. Merkle and

Damgård independently discovered the Merkle-Damgård

structure, the foundation of cryptographic hash functions from

their early days, in 1989. The MD iterative method is used in

this design, a compression function that accepts an input

length value and also creates constant-sized output values. The

Sponge structure works in a novel way: it absorbs an input

message of arbitrary length into an internal state that begins as

a fixed-size buffer. It then repeatedly applies to the internal

state a permutation function, a process known as “absorbing”.

After absorbing the incoming data, the Sponge construction

enters the “squeezing” Phase, continuously pulling fixed-size

output blocks from the internal state. The squeezing Phase can

provide any output data, making the architecture adaptable to

various applications.

Because of their large memory footprint and high power

consumption, traditional hash algorithms may not be suitable

for scenarios requiring limited space. As a result, the

following lightweight hash functions have evolved.

PHOTON, developed by Guo et al. [28], combines a sponge-

like structure with an AES-style internal permutation to

provide 64-bit collision resistance. It is compact at 1120 gate

equivalents and provides customizable output (64 to 256 bits)

and a changeable hash digest (100 to 288 bits) via parameters

r, r’, and n. PHOTON incorporates a lightweight block cipher

suited for hardware and software settings. It includes the

PRESENT S-box, a 4-bit to 4-bit mapping that increases

encryption complexity and nonlinearity. This S-box, built into

PRESENT, dramatically improves cipher security and

efficiency, making it appropriate for resource-constrained

scenarios that require lightweight cryptographic solutions.

QUARK, a lightweight hash function introduced by

Aumasson in 2010, utilizes the sponge construction technique

[27], emphasizing memory efficiency. Its core is a

permutation, P, inspired by M. Hell [6] and C. De Canniere

[7]. Offering three variants (U, D, T Quarks) for 64, 80, 112-

bit hash values, QUARK ensures minimum security levels,

requiring 1379 to 2296 Gate Equivalents (GE) [27].

KECCAK, a lightweight hash function devised by Kavun

and Yalcin [8], features 200 and 400 variants in SHA-3.

Rooted in the sponge construction, it employs the Keccak-f

permutation with selectable width ‘b’ from 25 to 1600.

Renowned for high-speed performance, robust security, and

resilience, Keccak has undergone rigorous scrutiny, earning

high-speed performance, robust security, and robustness

against potential vulnerabilities. BLAKE, by Jean-Philippe

Aumasson [9], comprises cryptographic hash functions like

BLAKE2s, BLAKE-256, BLAKE2b, and BLAKE-512,

indicating output size. With a parallel design and broad

cryptographic permutation, it uses the Merkle-Damgård

construction to process data in blocks. Recognized for

security, simplicity, and performance, BLAKE undergoes

extensive analysis and standardization, finding widespread

use across diverse applications. The Gimli function,

developed by Bernstein et al. [33, 10], employs a single

permutation for authenticated encryption and hashing tasks. It

utilizes a 384-bit state arranged in a 3x4x32 matrix,

undergoing 24 nonlinear and linear operations rounds.

Notably, every second and fourth round includes linear mixing

and constant addition. A 96-bit SP-box functions on every

state matrix column in the nonlinear layer to ensure

nonlinearity. Swap operations, including big and small swaps,

manipulate rows in the linear layer. Round indices 1 to 24 are

utilized, with round constants XORed at multiples of four,

resulting in a 32-byte hash output. Lesamnta-LWT is a hash

function leveraging AES a s its core component, employing

Merkle-Damgård construction. The chief objective of this

digest is to engender a hash output of 256 bits, which stands

out with an impressive security strength of 2120, addressing

collision, preimage, and second preimage resistance. Its

creators substantiate its efficacy in ensuring robust

cryptographic properties [25, 11].

Bussi et al. introduced a novel ha sh function named

Neeva-hash [32], specifically designed for lightweigh t

cryptography applications. This innovative approach draws its

foundation from the sponge mode of operation and, notably,

leverages the well-established sponge construction utilized in

the victorious Secure Hash Algorithm-3. On this hash, the

input message undergoes XOR operations with the state

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

310

matrix observed by means of five rounds of compression

feature in its absorption segment, a sequence of transitions has

been incorporated within the squeezing section to generate the

desired 224-bit output hash. Mukundan et al. [12, 13]

introduced a hash based on sponge construction. Similar to the

prior approaches, Hash-One incorporates the essential absorb

and squeeze phases within its design framework. Notably,

Hash-One is designed to generate a consistent 160-bit hash

output as a result of the complex operations conducted during

the squeezing Phase, which includes permutation phases.Z. A.

Al-Odat et al. [14] presented a novel lightweigh t

cryptographic hash function that uses S-Box, linear

transformation, and bit permutation operations. Their

suggested framework underwent thorough testing and

validation, with a focus on security analysis. A detailed

security analysis shows that their method successfully meets

the key security requirements of common hash protocols.

Nabeel et al. [15] proposed a fresh and new hash function

called LNMNT Hash, exclusively for resource-constrained

settings. This unique hash underwent a thorough examination

process, demonstrating its ability across multiple dimensions.

Rigorous testing included going through the NIST test suite to

evaluate randomness, diffusion, confusion, and susceptibility

to various attack types. S. Windarta et al. [16] focused on the

critical importance of Lightweight Cryptographic Hash

Functions (LWCHFs) in accelerating IoT progress. The

researchers clearly described the current design trends,

cryptographic properties, and the range of cryptanalytic

attacks associated with advanced lightweight cryptographic

hash functions designed primarily for deployment in

extremely limited devices. Their contribution also included a

comparative analysis of several implementations in the

hardware and software sectors. While numerous lightweigh t

cryptography hash functions have been investigated, the need

for fresh techniques is clear in view of rising security issues

and the growth of IoT devices. Continued research is critical

for developing novel solutions capable of tackling emerging

difficulties and ensuring the security of their technology in the

face of global dynamic change. Windarta et al. [17] designed

a pair of efficient hash algorithms tailored for IoT devices,

named ALIT and TJUILIK, which are built using the

SATURNIN cipher and Beetle mode. Both ALIT-Hash and

TJUILIK-Hash have strong security and were typically shown

to perform similarly or better than existing functions in

hardware and simulation testing. The authors showed that the

pseudo-random values from both functions passed all NIST

randomness tests. However, Windarta et al. did not do side-

channel or post-quantum analyses on either function. Overall,

Windarta et al. concluded that both hash functions were

secure, efficient, and affiliated with IoT applications because

the authors both balanced performance and resource

consumption. Overall, this paper contributes to the field of

lightweight cryptographic solutions for constrained

environments.

The IoT enables physical objects to create, receive, and

share data with minimal human involvement, aiming to

increase automation, comfort, and efficiency. However,

ensuring security, privacy, and trust becomes critical as IoT

applications grow. This paper discusses the key security

challenges and threats present in IoT systems and emphasizes

the need for architectural changes to provide end-to-end

security; it also addresses how new technologies like

blockchain, edge computing, fog computing, and machine

learning can help with the security of IoT environments and

provide means of establishing trust [18].

3. Proposed Methodology
Designing lightweight cryptographic algorithms is a

complex task that involves finding a balance between resource

constraints and maintaining a high level of security. Many

lightweight hashing approaches make the mistake of

oversimplifying existing cryptographic techniques, assuming

that being “lightweight” means compromising security. This

is not the case, as lightweight designs must still provide robust

security comparable to traditional cryptography. To address

this challenge, a new lightweight cryptographic hash function,

Tiny Hash Function (THF), has been developed.

Fig. 1 Proposed system architecture

3.1. Proposed Architecture

The architecture of THF utilizes the sponge construction

technique, which allows for minimizing the internal memory

size while maintaining desirable security. THF is specifically

tailored for efficient operation, processing an input message

of any length to produce 64H/128H /256H hex hash values

(i.e., 256/512/1024 bits) as illustrated in Figure 1. The

Input Message = M

THF: Ms<<S+1⊕RCP

O≤S,p≤len (M)

THF: Mi<<⊕Kj+1

O≤i, j≤len(M)

THF

Squeezing Phase

Substitution and

Linear Diffusion layers

H
6

4

H
1

2
8

H
2

5
6

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

311

proposed THF design involves multiple well-defined phases,

viz., Processing the Message Blocks, Compression functions,

Substitution and Linear Diffusion layers (absorption phase),

Squeezing Phase aimed at achieving the desired robust

security.

3.1.1. Processing the Message Blocks

The message processing in THF includes processing

functional operations on 64-bit blocks of the input message.

For each block, a 64-bit round constant is used, generated with

the help of random prime numbers. Prime numbers are chosen

due to their unique properties, such as difficulty in

factorization and their significance in cryptographic

operations, making them fundamental for security.

3.1.2. Compression Functions

THF uses a compression function to mix the message

blocks and keys, employing bitwise XOR operations, modular

additions, and rotations. It carries out 8 rounds of compression

to thoroughly blend the message blocks with the keys.

3.1.3. Substitution and Linear Diffusion Layer

The Substitution layer in THF introduces confusion into

the state of the sponge function, enhancing security. It is also

known as the absorption phase of THF. It employs a fixed-size

substitution box (S-box) that operates on portions of the keys,

designed with features of cryptography like nonlinearity and

resistance to attacks. However, the Linear Diffusion layer in

THF introduces diffusion into the state, ensuring that changes

in input affect multiple output bits. It uses linear operations

like bitwise XOR and rotations to spread the influence of each

input bit, making the output statistically unrelated to the input

and thwarting pattern detection by potential attackers.

Together, these processes form the core of THF’s

cryptographic sponge function, providing strong security for

various applications in the IoT world.

3.2. THF-Implementation and Experimental Setup

The predicted hash algorithm is conducted on the Linux

platform using an Intel(R) Core(TM) i3-6100U CPU @

2.30GHz and 4GB of RAM.

3.2.1. Algorithm for THF

The goal is to create 64/128/256 hexadecimal hash values

from an input message ‘M’ of varied lengths. Begin by

initializing important blocks with confidential values.

• Divide the input message ‘M’ into smaller chunks.

• Generate a set of confidential Round Constants (RC) and

keep them in a list.

• Each message block undergoes shifting operations and is

combined through XOR with the respective Round

Constant (RC). This processed block then enters the

absorption phase.

• During the absorption phase, a thorough blending of

message blocks and key blocks is executed. This involves

intricate bitwise XOR operations, modular additions, and

rotations to achieve a comprehensive mixing effect.

Execute steps 3 and 4 for all message blocks in the input

• The result derived from the absorption phase is funnelled

into the squeezing Phase to produce the desired hash

output of specified length, ultimately

Numerous concealed values are initialized within the

absorption phase of the THF computation. These values

remain concealed from external visibility, rendering reversing

the absorption phase notably challenging.

4. Security Analysis and the Results
This section assesses the resistance of the THF to a range

of cryptographic attacks. This involves a comprehensive

investigation into the even distribution of the hash digest, its

ability to resist collisions, preimage vulnerability, and

resistance to second preimage attacks, all of which contribute

to evaluating the hash function’s level of security.

4.1. Uniform Distribution of THF

Uniform distribution can be treated as one of the

fundamental attributes of a hash. To comprehend this trait,

illustrate it by envisioning a set of messages, namely M1, M2,

M3, M4, and graphing them on a two-dimensional plot. Figure

2 shows that the plain text representation of the sample

messages M1, M2, M3, and M4 spreads across a set of ASCII

values, typically ranging from 32 to 126. This range covers

various printable characters. On the other hand, Figure 3

presents the hexadecimal representation of the hash digest

generated by THF. It becomes evident that the THF exhibits a

uniform and random distribution of values. This uniformity

ensures that the proposed hash function produces vastly

different outputs for slightly different inputs, promoting

collision resistance. Moreover, the hash function’s uniform

distribution effectively conceals statistical patterns or

information from the original plain text. This property is vital

to prevent attackers from deriving insights about the input data

from the hash digest, thereby bolstering the overall security of

the hash function.

Fig. 2 Distribution of messages

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

312

Fig. 3 Distribution of hash digests

4.2. Diffusion and Confusion Analysis

In the context of hash function design, the terms

“diffusion” and “confusion” are two fundamental concepts

introduced by Claude Shannon [19], and prime numbers play

a significant role in achieving both. Diffusion entails a

property that ensures even a minor alteration in the message

leads to a significant modification in the hash digest. To

achieve effective diffusion in a cryptographic hash function, a

slight change in the message should lead to a significant

alteration, i.e., approximately half of the final hash. On the

other hand, confusion refers to a characteristic that aims to

complicate and obscure the connection between the message

and the hash digest.

Including prime numbers in the design of the THF serves

the purpose of achieving a desirable level of confusion and

diffusion. To validate this claim, an experiment is conducted

as follows: An initial step involves selecting a random

message and generating its hash value using the THF. So, a

single bit within the message is toggled randomly, leading to

a marginally modified message, and a similar hash value is

recalculated. A detailed comparison is carried out between the

two hash values, evaluating the number of changed bits. To

ensure statistical significance, this process is repeated 2500

times, involving different randomly selected messages and bit

toggling for each iteration. For every set of 100 messages, the

average percentage of changed bits in the hash values is

calculated. This data is then plotted in Figure 4, illustrating the

graph representing the average percentage of altered bits in the

hash values for the tested messages, in which Figure 4(a)

shows the Average % of bits changed for every 100 m essages

in each case. The experimental results shown in Figure 4(b)

help illustrate the diffusion level achieved by the THF.

If the average percentage of changed bits is close to 50%,

it indicates that even minor adjustments to the input messages

lead to widespread and balanced modifications in the

corresponding hash values. In this experimental analysis, this

value is 70.2%. This property validates the effectiveness of the

THF in uniformly distributing the influence of individual

message bits across the entire hash output, making it highly

resistant to attacks seeking to deduce patterns or relationships

between the input and the hash digest.

(a)

(b)

Fig. 4 Average percentage of altered bits in the hash values for the
tested messages. (a) Average % of bits changed for every 100 messages

in each case, and (b) Average % of bits changed for 2500 messages.

4.3. Collision Resistance

This property presents a substantial hurdle: discovering

two separate messages, m0 and m1, that result in hash values

meeting the condition H(m0) = H(m1). Accomplishing this

task requires a computational effort of at least 2n/2.To assess

the collision resistance of THF, it undergoes a rigorous test. A

message was randomly selected for this test, and its

corresponding hash value was generated. To challenge the

hash function’s collision resistance, random modifications

were made to a part of the same message and recalculated its

hash value. A meticulous comparison is performed for a pair

of hash values, meticulously tallying the number of identical

ASCII values situated at corresponding positions.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25

A
v

e
ra

g
e
 %

 o
f

b
it

s
 c

h
a
n

g
e
d

Average of 100 Messages each case

0

10

20

30

40

50

60

70

80

Set of 2500 Messages

A
v

e
ra

g
e
 %

 o
f

b
it

s
 c

h
a
n

g
e
d

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

313

This collision resistance test was repeated N times. Out of

the N test cases, 86% showed no identical characters in

corresponding positions within the hash values, indicating a

high level of uniqueness and resistance to collisions. There

were 9% cases where only one character was found to be

identical at the same location, signifying a minor collision

level but still maintaining a strong overall collision resistance.

Furthermore, the examination disclosed that

approximately 4% of cases exhibited two identical characters

appearing in the hash values at corresponding positions.

Moreover, the highest recorded occurrences of three identical

characters in the same position amounted to just 1%, a notably

minimal figure. These findings underscore the hash function’s

efficacy in mitigating such collision occurrences. Drawing

from the outcomes of this experiment, it is justifiable to assert

that our proposed hash function demonstrates a markedly low

likelihood of collisions, which implies its robustness against

second-preimage resistance.

This validates the collision resistance of the THF,

transforming it into a reliable choice for applications where

data integrity and security are paramount concerns. Preimage

resistance states that cracking a message m should be quite

hard, though H(m) is given, which needs at least 2n work. On

the other hand, 2500 unique hash values were generated for

the same message m, and THF is designed to support variable

parameters. From this, it can be deduced that revealing the

hash H(m) does not make it straightforward to decipher the

original message m.

4.4. Comparative Security Analysis of THF

Preimage resistance, second preimage resistance, and

collision resistance constitute essential attributes within

cryptographic hash functions. These characteristics specify

the degree of security and defense against different attacks a

hash function should have.

A comprehensive assessment of the THF’s security is

presented in Table 1, comparing it to several established

lightweight cryptographic hash functions. Preimage, second

preimage and collision resistance values depicted in the last

row of Table 1 are evident that the proposed THF can

withstand desirable cryptography attacks.

Table 1. Security analysis of THF and existing lightweight cryptography hash functions

Algorithm
Hash

Value
Construction

Preimage

resistance
2ndPreimageresistance

Collision-

resistance

Merkle-Damgård

Construction:

ARMADILLO &

ARMADILLO2 [20]

80

Data-dependent bit

transposition [56]

280 280 240

128 2128 2128 264

160 2160 2160 280

192 2192 2192 296

256 2256 2256 218

AI-Odat et al.LWCHF

[21]

160

JH mode

2160 2160 280

224 2224 2224 2112

256 2256 2256 2128

384 2384 2384 2192

512 2512 2512 2256

EI Hanouti et

al.LWCHF[22]
128

Feistel-like structure;

skew tent map

Davies-Meyer

2128 2128 264

Block Cipher-Based

Construction:

DM-PRESENT

64 264 None None

64

H-PRESENT [23, 24] 128
Hirose construction[54]

2128 None None

C-PRESENT 192 2192 None None

Lesamnta-LW [25] 256 LW I block cipher 2256 2256 2120

TWISH [26] 128 Davies-Meyer 2128 2128 264

Sponge Construction:

QUARK [27]

136

P-sponge

2128 264 264

176 2160 280 280

256 2224 2112 2112

PHOTON [28]

64

P-sponge

264 240 240

80 2112 280 280

128 2124 264 264

224 2192 2112 2112

256 2224 2128 2128

SPONGENT [29]
80

P-sponge
280 240 240

128 2120 264 264

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

314

160 2144 280 280

224 2208 2112 2112

256 2240 2128 2128

128 P-sponge 2128 ? 264

256 JH mode 2128 ? 264

GLUON [30]

128

T-sponge

2128 264 264

160 2160 280 280

224 2224 2112 2112

SipHash 64
T-Sponge

JH mode
264 264 none

LHash [31, 32]

80

P-sponge

264 240 240

96 280 240 240

128 296 256 256

128 2120 260 260

Neeva-hash [33] 256 P-sponge; ARX 2224 2112 2112

Gimli-Hash [34, 35] 256 P-sponge 2128 2128 2128

sLiSCP-hash [35, 36, 37]

160

P-sponge

2128 280 280

192 2128 296 296

192 2160 296 296

LNhash [38]

80

P-sponge

272 240 240

96 280 240 240

128 296 256 256

128 2120 260 260

160 2144 280 280

160 2152 280 280

ACE (ACE-H-256) [39] 256 P-sponge 2192 2128 2128

ASCON-HASH [40] 256 P-sponge 2128 2128 2128

KNOT-hash [41]

256

P-sponge

2128 2112 2112

256 2128 2128 2128

384 2192 2168 2168

512 2256 2224 2224

DryGASCON

[42]

128 DrySponge None None 264

256 P-sponge None None 2128

ORANGISH [43] 128 P-sponge 2128 2112 2112

PHOTON_Beetle-Hash

[44]
128 P-sponge 2128 2112 2112

ESCH [45]
256

P-sponge
2128 2128 2128

384 2192 2192 2192

Subterranean 2.0 [46] 256 P-sponge 2224 2224 2224

Xoodyak Hash Mode

[47]
256 P-sponge 2128 2128 2128

HVH [48]

88

P-sponge

272 210 240

128 2120 264 264

160 2144 280 280

224 2208 2112 2112

256 2224 2128 2125

LNMNT Hash [49]

80

P-sponge

250 - -

128 280 - -

160 2100 - -

224 2120 - -

Cellular Automata:

L-CAHASH

128
Cellular Automata

2128 2128 264

256 - - -

LCAHASH1.1
128

Cellular Automata
2128 2128 264

256 - - -

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

315

THF (Proposed one)

(64)H

Sponge

2256 2256 2128

(128)H 2512 2512 2256

(256)H 21024 21024 2512

5. Conclusion
This research article aims to develop a new lightweigh t

cryptographic hash function, i.e., Tiny Hash Function, termed

THF. The proposed design employs Processing the Message

Blocks, Compression functions, Substitution and Linear

Diffusion layers, and Squeezing Phase. THF had a primary

focus on three crucial lightweight requirements: “collision

resistance, preimage resistance, and second preimage

resistance”, and the results are evident that it can withstand

desirable cryptography attacks. The proposed design may be

evaluated on various energy resource parameters to support

resource-constrained applications.

References
[1] Atul Kahate, Cryptography and Network Security, McGraw-Hill International ed., 2003. [Google Scholar]

[2] Mohammad Reza Sohizadeh Abyaneh, “Security Analysis of Lightweight Schemes for RFID Systems,” Doctoral Thesis, The University

of Bergen, pp. 1-162, 2012. [Google Scholar] [Publisher Link]

[3] Elena Andreeva, Bart Mennink, and Bart Preneel, “Security Properties of Domain Extenders for Cryptographic Hash Functions,” Journal

of Information Processing Systems, vol. 6, no. 4, pp. 453-480, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[4] Ivan Bjerre Damgård, “A Design Principle for Hash Functions,” Conference on the Theory and Application of Cryptology, Springer New

York, pp. 416-427, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[5] Guido Berton et al., “Sponge Functions,” In ECRYPT Hash Workshop, vol. 2007, no. 9, pp. 1-23, 2007. [Google Scholar] [Publisher Link]

[6] Martin Hell, Thomas Johansson, and Willi Meier, “Grain: A Stream Cipher for Constrained Environments,” International Journal of

Wireless and Mobile Computing, vol. 2, no. 1, pp. 86-93, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[7] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević, “KATAN and KTANTAN - A Family of Small and Efficient Hardware-

Oriented Block Ciphers,” Cryptographic Hardware and Embedded Systems - CHES 2009 11th International Workshop Lausanne,

Switzerland, pp. 272-288, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[8] Elif Bilge Kavun, and Tolga Yalcin, “A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification

Applications,” Radio Frequency Identification: Security and Privacy Issues 6th International Workshop, RFIDSec 2010, Istanbul, Turkey,

pp. 258-269, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[9] Jean-Philippe Aumasson et al., The Hash Function BLAKE, 1st ed., Information Security and Cryptography, Springer Berlin, Heidelberg,

2014. [CrossRef] [Google Scholar] [Publisher Link]

[10] George Hatzivasilis et al., “A Review of Lightweight Block Ciphers,” Journal of Cryptographic Engineering, vol. 8, no. 2, pp. 141-184,

2017. [CrossRef] [Google Scholar] [Publisher Link]

[11] Asraf Akhimullah, and Shoichi Hirose, “Lightweight Hashing Using Lesamnta-LW Compression Function Mode and MDP Domain

Extension,” 2016 Fourth International Symposium on Computing and Networking (CANDAR), Hiroshima, Japan, pp. 590-596, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Puliparambil Megha Mukundan et al., “Hash-One: A Lightweight Cryptographic Hash Function,” IET Information Security, vol. 10, no.

5, pp. 225-231, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[13] K. Shankar, and Mohamed Elhoseny, An Optimal Lightweight Cryptographic Hash Function for Secure Image Transmission in Wireless

Sensor Networks, Secure Image Transmission in Wireless Sensor Network (WSN) Applications, Springer, Cham, pp. 49-64, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Zeyad A. Al-Odat, Eman M. Al-Qtiemat, and Samee U. Khan, “An Efficient Lightweight Cryptography Hash Function for Big Data and

IoT Applications,” 2020 IEEE Cloud Summit, Harrisburg, PA, USA, pp. 66-71, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Nubila Nabeel, Mohamed Hadi Habaebi, and M.D. Rafiqul Islam, “Security Analysis of LNMNT-LightWeight Crypto Hash Function for

IoT,” IEEE Access, vol. 9, pp. 165754-165765, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Susila Windarta et al., “Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study, and Future Directions,” IEEE

Access, vol. 10, pp. 82272-82294, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Susila Windarta et al., “Two New Lightweight Cryptographic Hash Functions Based on Saturnin and Beetle for the Internet of Things,”

IEEE Access, vol. 11, pp. 84074-84090, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Vikas Hassija et al., “A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures,” IEEE Access, vol. 7,

pp. 82721-82743, 2019.[CrossRef] [Google Scholar] [Publisher Link]

[19] C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948. [CrossRef]

[Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+A.+Kahate%2C+%E2%80%9CCryptography+and+network+security%2C%E2%80%9D+2013&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+analysis+of+lightweight+schemes+for+rfid+systems&btnG=
https://bora.uib.no/bora-xmlui/handle/1956/6106
%5d
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+properties+of+domain+extenders+for+cryptographic+hash+functions&btnG=
https://koreascience.or.kr/article/JAKO201007049666577.page
https://doi.org/10.1007/0-387-34805-0_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Design+Principle+for+Hash+Functions&btnG=
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sponge+Functions&btnG=
https://keccak.team/files/SpongeFunctions.pdf
https://doi.org/10.1504/IJWMC.2007.013798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Grain%3A+A+Stream+Cipher+for+Constrained+Environments&btnG=
https://www.inderscience.com/offers.php?id=13798
https://doi.org/10.1007/978-3-642-04138-9_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Katan+and+ktantan%E2%80%94a+family+of+small+and+efficient+hardware-oriented+block+ciphers&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-16822-2_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lightweight+Implementation+of+Keccak+Hash+Function+for+Radio-Frequency+Identification+Applications&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-16822-2_20
https://doi.org/10.1007/978-3-662-44757-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Hash+Function+BLAKE&btnG=
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://doi.org/10.1007/s13389-017-0160-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Lightweight+Block+Ciphers&btnG=
https://link.springer.com/article/10.1007/s13389-017-0160-y
https://doi.org/10.1109/CANDAR.2016.0107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+Hashing+Using+Lesamnta-LW+Compression+Function+Mode+and+MDP+Domain+Extension&btnG=
https://ieeexplore.ieee.org/abstract/document/7818677
https://doi.org/10.1049/iet-ifs.2015.0385
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hash-one%3A+a+lightweight+cryptographic+hash+function&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-ifs.2015.0385
https://doi.org/10.1007/978-3-030-20816-5_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Optimal+Lightweight+Cryptographic+Hash+Function+for+Secure+Image+Transmission+in+Wireless+Sensor+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-20816-5_4
https://doi.org/10.1109/IEEECloudSummit48914.2020.00016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Lightweight+Cryptography+Hash+Function+for+Big+Data+and+IoT+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9283732
https://doi.org/10.1109/ACCESS.2021.3133097
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+Analysis+of+LNMNT-LightWeight+Crypto+Hash+Function+for+IoT&btnG=
https://ieeexplore.ieee.org/abstract/document/9638508
https://doi.org/10.1109/ACCESS.2022.3195572
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+Cryptographic+Hash+Functions%3A+Design+Trends%2C+Comparative+Study%2C+and+Future+Directions&btnG=
https://ieeexplore.ieee.org/abstract/document/9846993
https://doi.org/10.1109/ACCESS.2023.3301128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two+New+Lightweight+Cryptographic+Hash+Functions+Based+on+Saturnin+and+Beetle+for+the+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/10201838
https://doi.org/10.1109/ACCESS.2019.2924045
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+IoT+Security%3A+Application+Areas%2C+Security+Threats%2C+and+Solution+Architectures&btnG=
https://ieeexplore.ieee.org/document/8742551
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Mathematical+Theory+of+Communication&btnG=
https://ieeexplore.ieee.org/abstract/document/6773024

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

316

[20] Stéphane Badel et al., “ARMADILLO: A Multi-Purpose Cryptographic Primitive Dedicated to Hardware,” Cryptographic Hardware and

Embedded Systems -- CHES 2010 12th International Workshop, Santa Barbara, USA, pp. 398-412, 2010. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Bruno O. Bracht et al., “Data Authentication using Modification Detection Codes Based on a Public One Way Encryption Function,” U.S.

Patent 4908861A, pp. 1-29, 1990. [Google Scholar] [Publisher Link]

[22] Imad El Hanouti et al., “A Lightweight Hash Function for Cryptographic and Pseudo-Cryptographic Applications,” WITS 2020

Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems , Singapore, pp. 495-505,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Andrey Bogdanov et al., “Hash Functions and RFID Tags: Mind the Gap,” Cryptographic Hardware and Embedded Systems - CHES

2008 10th International Workshop, Washington, DC, USA, pp. 283-299, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[24] Axel York Poschmann, Lightweight Cryptography-Cryptographic Engineering for a Pervasive World, Dissertation, Ruhr-University

Bochum, Germany, pp. 1-197, 2009. [Google Scholar] [Publisher Link]

[25] Shoichi Hirose et al., “A Lightweight 256-Bit Hash Function for Hardware and Low-End Devices: Lesamnta-LW,” Information Security

and Cryptology - ICISC 2010 13th International Conference, Seoul, Korea, pp. 151-168, 2010. [CrossRef] [Google Scholar] [Publisher

Link]

[26] Deden Irfan Afryansyah, Magfirawaty, and Kalamullah Ramli, “The Development and Analysis of Twish: A Lightweight-Block-Cipher-

Twine-Based Hash Function,” 2018 Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany,

pp. 210-215, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[27] Jean-Philippe Aumasson et al., “Quark: A Lightweight Hash,” Journal of Cryptology, 2013, vol. 26, no. 2, pp. 313-339, 2013. [CrossRef]

[Google Scholar] [Publisher Link]

[28] Jian Guo, Thomas Peyrin, and Axel Poschmann, “The PHOTON Family of Lightweight Hash Functions,” Advances in Cryptology-

CRYPTO 2011 31st Annual Cryptology Conference, Santa Barbara, CA, USA, pp. 222-239, 2011. [CrossRef] [Google Scholar] [Publisher

Link]

[29] Andrey Bogdanov et al., “SPONGENT: A Lightweight Hash Function,” Cryptographic Hardware and Embedded Systems--CHES 2011

13th International Workshop, Nara, Japan, pp. 312-325, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[30] Thierry P. Berger et al., “The GLUON Family: A Lightweight Hash Function Family Based on FCSRs,” Progress in Cryptology--

AFRICACRYPT 2012 5th International Conference on Cryptology in Africa, Ifrane, Morocco, pp. 306-323, 2012. [CrossRef] [Google

Scholar] [Publisher Link]

[31] Wenling Wu et al., “LHASH: A Lightweight Hash Function,” Information Security and Cryptology 9th International Conference, Inscrypt

2013, Guangzhou, China, pp. 291-308, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[32] Khushboo Bussi et al., “Neeva: A Lightweight Hash Function,” IACR Cryptology ePrint Archive, 2016. [Google Scholar] [Publisher Link]

[33] Daniel J. Bernstein et al., “GIMLI: A Cross-Platform Permutation,” Cryptographic Hardware and Embedded Systems - CHES 2017 19th

International Conference, Taipei, Taiwan, pp. 299-320, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[34] Riham AlTawy et al., “Towards a Cryptographic Minimal Design: The sLiSCP Family of Permutations,” IEEE Transactions on

Computers, vol. 67, no. 9, pp. 1341-1358, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[35] Riham AlTawy et al., “sLiSCP: Simeck-Based Permutations for Lightweight Sponge Cryptographic Primitives,” Selected Areas in

Cryptography - SAC 2017 24th International Conference, Ottawa, ON, Canada, pp. 129-150, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[36] D.R. Stinson, “Some Observations on the Theory of Cryptographic Hash Functions,” Designs, Codes and Cryptography an International

Journal, vol. 38, no. 2, pp. 259-277, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[37] Mark Aagaard et al., “ACE: An Authenticated Encryption and Hash Algorithm,” University of Waterloo, pp. 1-68, 2019. [Google Scholar]

[Publisher Link]

[38] Christoph Dobraunig et al., Ascon V1.2, Submission to NIST, 2021. [Online]. Available:

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf

[39] Wentao Zhang et al., “KNOT: Algorithm Specifications and Supporting Document,” Submission to NIST Lightweight Cryptography

Project, pp. 1-27, 2019. [Google Scholar] [Publisher Link]

[40] Sébastien Riou, DryGASCON Lightweight Cryptography Standardization Process Round 1 Submission, pp. 1-107, 2019. [Online].

Available: https://csrc.nist.gov/csrc/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/drygascon-spec.pdf

[41] Bishwajit Chakraborty, and Mridul Nandi, ORANGE, Isical, 2019. [Online]. Available: https://www.isical.ac.in/~lightweight/Orange/

[42] Zhenzhen Bao et al., PHOTON-Beetle Authenticated Encryption and Hash Family, pp. 1-14, 2019. [Online]. Available:

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf

[43] Christof Beierle et al., “Schwaemm and Esch: Lightweight Authenticated Encryption and Hashing Using the Sparkle Permutation Family,”

NIST Round, vol. 2, pp. 162893-162908, 2019. [Google Scholar]

https://doi.org/10.1007/978-3-642-15031-9_27
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Armadillo%3A+A+Multi-Purpose+Cryptographic+Primitive+Dedicated+to+Hardware&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-15031-9_27
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Authentication+using+Modification+Detection+Codes+Based+on+a+Public+One+Way+Encryption+Function&btnG=
https://patents.google.com/patent/US4908861A/en
https://doi.org/10.1007/978-981-33-6893-4_46
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lightweight+Hash+Function+for+Cryptographic+and+Pseudo-Cryptographic+Applications&btnG=
https://link.springer.com/chapter/10.1007/978-981-33-6893-4_46
https://doi.org/10.1007/978-3-540-85053-3_18
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hash+Functions+and++RFID+Tags%3A+Mind+the+Gap&btnG=/
https://link.springer.com/chapter/10.1007/978-3-540-85053-3_18
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+Cryptography%E2%80%94Cryptographic+Engineering+for+a+Pervasive+world&btnG=
https://eprint.iacr.org/2009/516
https://doi.org/10.1007/978-3-642-24209-0_10
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lightweight+256-Bit+Hash+Function+for+Hardware+and+Low-End+Devices%3A+Lesamnta-LW&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-24209-0_10
https://link.springer.com/chapter/10.1007/978-3-642-24209-0_10
https://doi.org/10.1109/ICDIM.2018.8847056
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Development+and+Analysis+of+Twish%3A+A+Lightweight-Block-Cipher-Twine-Based+Hash+Function&btnG=
https://ieeexplore.ieee.org/abstract/document/8847056
https://doi.org/10.1007/s00145-012-9125-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quark%3A+A+Lightweight+Hash&btnG=
https://link.springer.com/article/10.1007/s00145-012-9125-6
https://doi.org/10.1007/978-3-642-22792-9_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Photon+Family+of+Lightweight+Hash+Functions&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-22792-9_13
https://link.springer.com/chapter/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_21
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spongent%3A+A+lightweight+hash+function&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-31410-0_19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+GLUON+family%3A+A+lightweight+hash+function+family+based+on+FCSRs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+GLUON+family%3A+A+lightweight+hash+function+family+based+on+FCSRs&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-31410-0_19
https://doi.org/10.1007/978-3-319-12087-4_19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LHASH%3A+A+Lightweight+Hash+Function&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-12087-4_19
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neeva%3A+A+Lightweight+Hash+Function&btnG=
https://eprint.iacr.org/2016/042
https://doi.org/10.1007/978-3-319-66787-4_15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gimli%3A+a+cross-platform+permutation&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-66787-4_15
https://doi.org/10.1109/TC.2018.2811467
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+Cryptographic+Minimal+Design%3A+The+SLISCP+Family+of+Permutations&btnG=
https://ieeexplore.ieee.org/abstract/document/8305605
https://doi.org/10.1007/978-3-319-72565-9_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=sLiSCP%3A+Simeck-Based+Permutations+for+Lightweight+Sponge+Crypto+graphic+Primitives&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-72565-9_7
https://link.springer.com/chapter/10.1007/978-3-319-72565-9_7
https://doi.org/10.1007/s10623-005-6344-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Some+observations+on+the+Theory+of+Cryptographic+Hash+Functions&btnG=
https://link.springer.com/article/10.1007/s10623-005-6344-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACE%3A+An+Authenticated+Encryption+and+Hash+Algorithm&btnG=
https://uwaterloo.ca/communications-security-lab/lwc/ace
https://scholar.google.com.sg/scholar?hl=en&as_sdt=0,5&cluster=8158286194858124231
https://csrc.nist.gov/csrc/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/KNOT-spec.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=S%C3%A9bastien+Riou+%2C+DryGASCON+&q=Schwaemm+and+Esch%3A+Lightweight+Authenticated+Encryption+and+Hashing+Using+the+Sparkle+Permutation+Family&btnG=

Mangalampalli Kameswara Subrahmanyam & Kunjam Nageswara Rao / IJETT, 73(7), 308-317, 2025

317

[44] Joan Daemen et al., “The Subterranean 2.0 Cipher Suite,” IACR Transactions on Symmetric Cryptology, vol. 2020, no. S1, pp. 262-294,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[45] Joan Daemen et al., “Xoodyak, A Lightweight Cryptographic Scheme,” IACR Transactions on Symmetric Cryptology, vol. 2020, no. S1,

pp. 60-87, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[46] Yuhua Huang et al., “HVH: A Lightweight Hash Function Based on Dual Pseudo-Random Transformation,” Security, Privacy, and

Anonymity in Computation, Communication, and Storage SpaCCS 2020 International Workshops , Nanjing, China, pp. 492-505, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[47] Charifa Hanin et al., “L-CAHASH: A Novel Lightweight Hash Function Based on Cellular Automata for RFID,” Ubiquitous Networking

Third International Symposium, UNet 2017, Casablanca, Morocco, pp. 287-298, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[48] Anas Sadak et al., “LCAHASH-1.1: A New Design of the LCAHASH System for IoT,” International Journal of Advanced Computer

Science and Applications, vol. 10, no. 11, pp. 253-257, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[49] A.A. Moldovyan, and N.A. Moldovyan, “A Cipher Based on Data- Dependent Permutations,” Journal of Cryptology, vol. 15, no. 1, pp.

61-72, 2002. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=S%C3%A9bastien+Riou+%2C+DryGASCON+&q=The+subterranean+2.0+cipher+suite&btnG=
https://tosc.iacr.org/index.php/ToSC/article/view/8622
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xoodyak%2C+a+Lightweight+CryptographicScheme&btnG=
https://tosc.iacr.org/index.php/ToSC/article/view/8622
https://link.springer.com/chapter/10.1007/978-3-030-68884-4_41
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HVH%3A+A+Lightweight+Hash+Function+Based+on+Dual+Pseudo-Random+Transformation&btnG=
https://doi.org/10.1007/978-3-030-68884-4_41
https://doi.org/10.1007/978-3-319-68179-5_25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=L-CAHASH%3A+A+Novel+Lightweight+Hash+Function+Based+on+Cellular+Automata+for+RFID&btnG=
https://doi.org/10.1007/978-3-319-68179-5_25
https://dx.doi.org/10.14569/IJACSA.2019.0101134
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LCAHASH-1.1%3A+A+New+Design+of+the+LCAHASH+System+for+IoT&btnG=
https://thesai.org/Publications/ViewPaper?Volume=10&Issue=11&Code=IJACSA&SerialNo=34
https://doi.org/10.1007/s00145-001-0012-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Cipher+Based+on+Data-+Dependent+Permutations&btnG=
https://link.springer.com/article/10.1007/s00145-001-0012-9

