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Abstract - Safeguarding data is vital in today’s rapidly evolving technological landscape . Instant encryption and transmission 

are imperative to prevent unauthorized access by potential attackers. Lightweight cryptography hash functions are in high 

demand since traditional cryptographic techniques are unsuited for Internet of Things (IoT) appl ications with limited resources. 

This research presents the development of a new lightweight cryptographic hash function , i.e., Tiny Hash Function (THF). The 

proposed design accepts an input message of any length and employs processing the message blocks, compression functions and 

round calculations, substitution and linear diffusion layers to produce 64H/128H /256H hex hash values. The strength of the 

proposed algorithm is evaluated according to Shannon’s property of “confusion” and “diffusion” and is recorded as 70.2%, 

demonstrating high sensitivity to input message changes. THF has undergone extensive testing to ensure its security, 

concentrating on three essential lightweight requirements: benchmarking against other hash functions for collisi on resistance, 

preimage resistance, and second preimage resistance. The suggested hash function is essential for protecting sensitive data in 

cybersecurity, finance transactions and data management sectors. 

Keywords - Confusion, Diffusion, Hash function, IoT, Light-weight cryptography, Security. 

1. Introduction 
The Internet of Things (IoT) now encompasses most 

modern-day applications and gadgets. As more IoT devices are 

used, they handle more and more data. Managing this big data 

involves ensuring security and authenticity through 

cryptographic protocols like encryption and decryption. 

Traditional cryptographic methods take longer to manage the 

large volumes of information produced by IoT devices, 

especially when processing data byte by byte. These methods 

are seen as inefficient for handling extensive data sets. This 

challenge is a major obstacle in the practical implementation of 

IoT systems. So, there is a significant need to develop 

innovative, lightweight cryptographic hash functions that can 

address these concerns effectively. IoT devices have limitations 

with regard to processing, memory, and energy. Normal 

cryptographic hash functions are too resource-intensive for 

them, and most of the lightweight alternatives are not secure or 

efficient enough. Something that is both lightweight and highly 

secure has to be devised now. Most current lightweight hash 

functions are too complicated for small IoT devices or do not 

offer strong enough security. Some consume more memory, 

some are slow, and others are weak against attacks. No single 

lightweight hash function offers strong security, fast 

execution, and low resource consumption simultaneously. 

Therefore, there is a very evident need for a fresh hash 

function that performs well on devices with limited resources 

and maintains high security and efficiency for IoT purposes. 

A hash function is a mathematical operation that converts an 

input message of any size into an output message of a 

predetermined size. This technique finds applications in tasks 

like ensuring data integrity, creating Message Authentication 

Codes (MACs), and generating digital signatures. The primary 

attribute of a non-colliding hash function is that it maps inputs 

of varying lengths to fixed-length strings, often referred to as 

fingerprints [1, 2]. To thwart attackers, the objective is to make 

computations intricate, preventing collisions or secondary 

breaches. In the case of an ideal n-bit hash function, attackers 

require 2n/2 and 2n calculations, respectively, to find collisions 

or secondary breaches. 

The construction and compression functions are the two 

important parts of a hash function. The construction function’s 

task is to replicate the compression function’s behaviors. 

While a random oracle might not exist, the hash function ’s 

design must align with established security criteria. An 

effective cryptographic hash function is anticipated to possess 

the subsequent key security attributes [3]: 

• Collision-resistance: Breaking the collision-resistance of 

the hash function involves a significant challenge – 

finding two distinct messages, m0 and m1, for which their 

hash values satisfy H (m0) = H (m1). This activity 

necessitates a minimum computing effort of 2n/2.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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• Preimage-resistance: Understanding the preimage 

resistance feature requires substantial effort. The aim 

involves identifying the initial message m from a 

particular H(m) hash value. This project requires a 

minimum of 2n computational operations. 

• Second preimage-resistance: Breaking the second 

preimage-resistance barrier is a  significant challenge. 

Given an initial input m0, the objective is to identify a 

different input m1 so that their hash values match: H(m0) 

= H(m1). This endeavour necessitates a computational 

workload of at least 2n units. 

This study aims to develop a new, lightweigh t  

cryptographic hash function known as Tiny Hash Function 

(THF). This new design aims to produce a hashing mechanism 

that follows the recognized security standards of regular hash 

functions and meets the special needs of lightweigh t  

applications. The proposed THF aims to provide robust 

security and maximum efficiency targeted for lightweigh t  

applications. The paper is organized as follows: Within  

Section 2, a  literature review of lightweight cryptographic 

hash algorithms is offered. Section 3 introduces the unique 

lightweight hash function that is being suggested. Section 4 

provides a quick description of the THF-related security 

analysis findings. Lastly, the research article is concluded in 

Section 5. 

2. Literature Review 
Explaining the research, Hash functions use different 

structures to achieve cryptographic purposes, such as Merkle-

Damgård [4] and Sponge construction [5]. Merkle and 

Damgård independently discovered the Merkle-Damgård 

structure, the foundation of cryptographic hash functions from 

their early days, in 1989. The MD iterative method is used in 

this design, a compression function that accepts an input 

length value and also creates constant-sized output values. The 

Sponge structure works in a novel way: it absorbs an input 

message of arbitrary length into an internal state that begins as 

a fixed-size buffer. It then repeatedly applies to the internal 

state a permutation function, a process known as “absorbing”. 

After absorbing the incoming data, the Sponge construction 

enters the “squeezing” Phase, continuously pulling fixed-size 

output blocks from the internal state. The squeezing Phase can 

provide any output data, making the architecture adaptable to 

various applications. 

Because of their large memory footprint and high power 

consumption, traditional hash algorithms may not be suitable 

for scenarios requiring limited space. As a result, the 

following lightweight hash functions have evolved. 

PHOTON, developed by Guo et al. [28], combines a sponge-

like structure with an AES-style internal permutation to 

provide 64-bit collision resistance. It is compact at 1120 gate 

equivalents and provides customizable output (64 to 256 bits) 

and a changeable hash digest (100 to 288 bits) via  parameters 

r, r’, and n. PHOTON incorporates a lightweight block cipher 

suited for hardware and software settings. It includes the 

PRESENT S-box, a 4-bit to 4-bit mapping that increases 

encryption complexity and nonlinearity. This S-box, built into 

PRESENT, dramatically improves cipher security and 

efficiency, making it appropriate for resource-constrained 

scenarios that require lightweight cryptographic solutions. 

QUARK, a lightweight hash function introduced by 

Aumasson in 2010, utilizes the sponge construction technique 

[27], emphasizing memory efficiency. Its core is a 

permutation, P, inspired by M. Hell [6] and C. De Canniere 

[7]. Offering three variants (U, D, T Quarks) for 64, 80, 112-

bit hash values, QUARK ensures minimum security levels, 

requiring 1379 to 2296 Gate Equivalents (GE) [27]. 

KECCAK, a lightweight hash function devised by Kavun 

and Yalcin [8], features 200 and 400 variants in SHA-3. 

Rooted in the sponge construction, it employs the Keccak-f 

permutation with selectable width ‘b’ from 25 to 1600. 

Renowned for high-speed performance, robust security, and 

resilience, Keccak has undergone rigorous scrutiny, earning 

high-speed performance, robust security, and robustness 

against potential vulnerabilities. BLAKE, by Jean-Philippe 

Aumasson [9], comprises cryptographic hash functions like 

BLAKE2s, BLAKE-256, BLAKE2b, and BLAKE-512, 

indicating output size. With a parallel design and broad 

cryptographic permutation, it uses the Merkle-Damgård 

construction to process data in blocks. Recognized for 

security, simplicity, and performance, BLAKE undergoes 

extensive analysis and standardization, finding widespread 

use across diverse applications. The Gimli function, 

developed by Bernstein et al. [33, 10], employs a single 

permutation for authenticated encryption and hashing tasks. It 

utilizes a 384-bit state arranged in a 3x4x32 matrix, 

undergoing 24 nonlinear and linear operations rounds. 

Notably, every second and fourth round includes linear mixing 

and constant addition. A 96-bit SP-box functions on every 

state matrix column in the nonlinear layer to ensure 

nonlinearity. Swap operations, including big and small swaps, 

manipulate rows in the linear layer. Round indices 1 to 24 are 

utilized, with round constants XORed at multiples of four, 

resulting in a 32-byte hash output. Lesamnta-LWT is a hash 

function leveraging AES a s its core component, employing 

Merkle-Damgård construction. The chief objective of this 

digest is to engender a hash output of 256 bits, which stands 

out with an impressive security strength of 2120, addressing 

collision, preimage, and second preimage resistance. Its 

creators substantiate its efficacy in ensuring robust 

cryptographic properties [25, 11]. 

Bussi et al. introduced a novel ha sh function named 

Neeva-hash [32], specifically designed for lightweigh t  

cryptography applications. This innovative approach draws its 

foundation from the sponge mode of operation and, notably, 

leverages the well-established sponge construction utilized in 

the victorious Secure Hash Algorithm-3. On this hash, the 

input message undergoes XOR operations with the state 
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matrix observed by means of five rounds of compression 

feature in its absorption segment, a  sequence of transitions has 

been incorporated within the squeezing section to generate the 

desired 224-bit output hash. Mukundan et al. [12, 13] 

introduced a hash based on sponge construction. Similar to the 

prior approaches, Hash-One incorporates the essential absorb 

and squeeze phases within its design framework. Notably, 

Hash-One is designed to generate a consistent 160-bit hash 

output as a result of the complex operations conducted during 

the squeezing Phase, which includes permutation phases.Z. A. 

Al-Odat et al. [14] presented a novel lightweigh t  

cryptographic hash function that uses S-Box, linear 

transformation, and bit permutation operations. Their 

suggested framework underwent thorough testing and 

validation, with a focus on security analysis. A detailed 

security analysis shows that their method successfully meets 

the key security requirements of common hash protocols. 

Nabeel et al. [15] proposed a fresh and new hash function 

called LNMNT Hash, exclusively for resource-constrained 

settings. This unique hash underwent a thorough examination 

process, demonstrating its ability across multiple dimensions. 

Rigorous testing included going through the NIST test suite to 

evaluate randomness, diffusion, confusion, and susceptibility 

to various attack types. S. Windarta et al. [16] focused on the 

critical importance of Lightweight Cryptographic Hash 

Functions (LWCHFs) in accelerating IoT progress. The 

researchers clearly described the current design trends, 

cryptographic properties, and the range of cryptanalytic 

attacks associated with advanced lightweight cryptographic 

hash functions designed primarily for deployment in 

extremely limited devices. Their contribution also included a 

comparative analysis of several implementations in the 

hardware and software sectors. While numerous lightweigh t  

cryptography hash functions have been investigated, the need 

for fresh techniques is clear in view of rising security issues 

and the growth of IoT devices. Continued research is critical 

for developing novel solutions capable of tackling emerging 

difficulties and ensuring the security of their technology in the 

face of global dynamic change. Windarta et al. [17] designed 

a pair of efficient hash algorithms tailored for IoT devices, 

named ALIT and TJUILIK, which are built using the 

SATURNIN cipher and Beetle mode. Both ALIT-Hash and 

TJUILIK-Hash have strong security and were typically shown 

to perform similarly or better than existing functions in 

hardware and simulation testing. The authors showed that the 

pseudo-random values from both functions passed all NIST 

randomness tests. However, Windarta et al. did not do side-

channel or post-quantum analyses on either function. Overall, 

Windarta et al. concluded that both hash functions were 

secure, efficient, and affiliated with IoT applications because 

the authors both balanced performance and resource 

consumption. Overall, this paper contributes to the field of 

lightweight cryptographic solutions for constrained 

environments. 

The IoT enables physical objects to create, receive, and 

share data with minimal human involvement, aiming to 

increase automation, comfort, and efficiency. However, 

ensuring security, privacy, and trust becomes critical as IoT 

applications grow. This paper discusses the key security 

challenges and threats present in IoT systems and emphasizes 

the need for architectural changes to provide end-to-end 

security; it also addresses how new technologies like  

blockchain, edge computing, fog computing, and machine 

learning can help with the security of IoT environments and 

provide means of establishing trust [18]. 

3. Proposed Methodology  
Designing lightweight cryptographic algorithms is a 

complex task that involves finding a balance between resource 

constraints and maintaining a high level of security. Many 

lightweight hashing approaches make the mistake of 

oversimplifying existing cryptographic techniques, assuming 

that being “lightweight” means compromising security. This 

is not the case, as lightweight designs must still provide robust 

security comparable to traditional cryptography. To address 

this challenge, a new lightweight cryptographic hash function, 

Tiny Hash Function (THF), has been developed. 

 
Fig. 1 Proposed system architecture 

3.1. Proposed Architecture 

The architecture of THF utilizes the sponge construction 

technique, which allows for minimizing the internal memory 

size while maintaining desirable security. THF is specifically  

tailored for efficient operation, processing an input message 

of any length to produce 64H/128H /256H hex hash values 

(i.e., 256/512/1024 bits) as illustrated in Figure 1. The 

Input Message = M 
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proposed THF design involves multiple well-defined phases, 

viz., Processing the Message Blocks, Compression functions, 

Substitution and Linear Diffusion layers (absorption phase), 

Squeezing Phase aimed at achieving the desired robust 

security. 

3.1.1. Processing the Message Blocks 

The message processing in THF includes processing 

functional operations on 64-bit blocks of the input message. 

For each block, a 64-bit round constant is used, generated with 

the help of random prime numbers. Prime numbers are chosen 

due to their unique properties, such as difficulty in 

factorization and their significance in cryptographic 

operations, making them fundamental for security. 

3.1.2. Compression Functions 

THF uses a compression function to mix the message 

blocks and keys, employing bitwise XOR operations, modular 

additions, and rotations. It carries out 8 rounds of compression 

to thoroughly blend the message blocks with the keys. 

3.1.3. Substitution and Linear Diffusion Layer 

The Substitution layer in THF introduces confusion into 

the state of the sponge function, enhancing security. It is also 

known as the absorption phase of THF. It employs a fixed-size 

substitution box (S-box) that operates on portions of the keys, 

designed with features of cryptography like nonlinearity and 

resistance to attacks. However, the Linear Diffusion layer in 

THF introduces diffusion into the state, ensuring that changes 

in input affect multiple output bits. It uses linear operations 

like bitwise XOR and rotations to spread the influence of each 

input bit, making the output statistically unrelated to the input 

and thwarting pattern detection by potential attackers. 

Together, these processes form the core of THF’s 

cryptographic sponge function, providing strong security for 

various applications in the IoT world. 

3.2. THF-Implementation and Experimental Setup 

The predicted hash algorithm is conducted on the Linux 

platform using an Intel(R) Core(TM) i3-6100U CPU @ 

2.30GHz and 4GB of RAM. 

3.2.1. Algorithm for THF 

The goal is to create 64/128/256 hexadecimal hash values 

from an input message ‘M’ of varied lengths. Begin by 

initializing important blocks with confidential values. 

• Divide the input message ‘M’ into smaller chunks. 

• Generate a set of confidential Round Constants   (RC) and 

keep them in a list. 

• Each message block undergoes shifting operations and is 

combined through XOR with the respective Round 

Constant (RC). This processed block then enters the 

absorption phase. 

• During the absorption phase, a  thorough blending of 

message blocks and key blocks is executed. This involves 

intricate bitwise XOR operations, modular additions, and 

rotations to achieve a comprehensive mixing effect. 

Execute steps 3 and 4 for all message blocks in the input 

• The result derived from the absorption phase is funnelled 

into the squeezing Phase to produce the desired hash 

output of specified length, ultimately 

Numerous concealed values are initialized within the 

absorption phase of the THF computation. These values 

remain concealed from external visibility, rendering reversing 

the absorption phase notably challenging. 

4. Security Analysis and the Results 
This section assesses the resistance of the THF to a range 

of cryptographic attacks. This involves a comprehensive 

investigation into the even distribution of the hash digest, its 

ability to resist collisions, preimage vulnerability, and 

resistance to second preimage attacks, all of which contribute 

to evaluating the hash function’s level of security. 

4.1. Uniform Distribution of THF 

Uniform distribution can be treated as one of  the 

fundamental attributes of a hash. To comprehend this trait, 

illustrate it by envisioning a set of messages, namely M1, M2, 

M3, M4, and graphing them on a two-dimensional plot. Figure 

2 shows that the plain text representation of the sample 

messages M1, M2, M3, and M4 spreads across a set of ASCII 

values, typically ranging from 32 to 126. This range covers 

various printable characters. On the other hand, Figure 3 

presents the hexadecimal representation of the hash digest  

generated by THF. It becomes evident that the THF exhibits a 

uniform and random distribution of values. This uniformity 

ensures that the proposed hash function produces vastly 

different outputs for slightly different inputs, promoting 

collision resistance. Moreover, the hash function’s uniform 

distribution effectively conceals statistical patterns or 

information from the original plain text. This property is vital 

to prevent attackers from deriving insights about the input data 

from the hash digest, thereby bolstering the overall security of 

the hash function. 

 
Fig. 2 Distribution of messages 
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Fig. 3 Distribution of hash digests 

4.2. Diffusion and Confusion Analysis 

In the context of hash function design, the terms 

“diffusion” and “confusion” are two fundamental concepts 

introduced by Claude Shannon [19], and prime numbers play 

a significant role in achieving both. Diffusion entails a 

property that ensures even a minor alteration in the message 

leads to a significant modification in the hash digest. To 

achieve effective diffusion in a cryptographic hash function, a 

slight change in the message should lead to a significant 

alteration, i.e., approximately half of the final hash. On the 

other hand, confusion refers to a characteristic that aims to 

complicate and obscure the connection between the message 

and the hash digest. 

Including prime numbers in the design of the THF serves 

the purpose of achieving a desirable level of confusion and 

diffusion. To validate this claim, an experiment is conducted 

as follows: An initial step involves selecting a random 

message and generating its hash value using the THF. So, a 

single bit within the message is toggled randomly, leading to 

a marginally modified message, and a similar hash value is 

recalculated. A detailed comparison is carried out between the 

two hash values, evaluating the number of changed bits. To 

ensure statistical significance, this process is repeated 2500 

times, involving different randomly selected messages and bit 

toggling for each iteration. For every set of 100 messages, the 

average percentage of changed bits in the hash values is 

calculated. This data is then plotted in Figure 4, illustrating the 

graph representing the average percentage of altered bits in the 

hash values for the tested messages, in which Figure 4(a) 

shows the Average % of bits changed for every 100 m essages 

in each case. The experimental results shown in Figure 4(b) 

help illustrate the diffusion level achieved by the THF. 

If the average percentage of changed bits is close to 50%, 

it indicates that even minor adjustments to the input messages 

lead to widespread and balanced modifications in the 

corresponding hash values. In this experimental analysis, this 

value is 70.2%. This property validates the effectiveness of the 

THF in uniformly distributing the influence of individual 

message bits across the entire hash output, making it highly  

resistant to attacks seeking to deduce patterns or relationships 

between the input and the hash digest. 

 
(a) 

 
(b) 

Fig. 4 Average percentage of altered bits in the hash values for the 
tested messages. (a) Average % of bits changed for every 100 messages 

in each case, and (b) Average % of bits changed for 2500 messages. 

4.3. Collision Resistance 

This property presents a substantial hurdle: discovering 

two separate messages, m0 and m1, that result in hash values 

meeting the condition H(m0) = H(m1). Accomplishing this 

task requires a computational effort of at least 2n/2.To assess 

the collision resistance of THF, it undergoes a rigorous test. A 

message was randomly selected for this test, and its 

corresponding hash value was generated. To challenge the 

hash function’s collision resistance, random modifications 

were made to a part of the same message and recalculated its 

hash value. A meticulous comparison is performed for a pair 

of hash values, meticulously tallying the number of identical 

ASCII values situated at corresponding positions. 
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This collision resistance test was repeated N times. Out of 

the N test cases, 86% showed no identical characters in 

corresponding positions within the hash values, indicating a 

high level of uniqueness and resistance to collisions. There 

were 9% cases where only one character was found to be 

identical at the same location, signifying a minor collision  

level but still maintaining a strong overall collision resistance.  

Furthermore, the examination disclosed that 

approximately 4% of cases exhibited two identical characters 

appearing in the hash values at corresponding positions. 

Moreover, the highest recorded occurrences of three identical 

characters in the same position amounted to just 1%, a notably 

minimal figure. These findings underscore the hash function’s 

efficacy in mitigating such collision occurrences. Drawing 

from the outcomes of this experiment, it is justifiable to assert 

that our proposed hash function demonstrates a markedly low 

likelihood of collisions, which implies its robustness against 

second-preimage resistance.  

This validates the collision resistance of the THF, 

transforming it into a reliable choice for applications where 

data integrity and security are paramount concerns. Preimage 

resistance states that cracking a message m should be quite 

hard, though H(m) is given, which needs at least 2n work. On 

the other hand, 2500 unique hash values were generated for 

the same message m, and THF is designed to support variable 

parameters. From this, it can be deduced that revealing the 

hash H(m) does not make it straightforward to decipher the 

original message m. 

4.4. Comparative Security Analysis of THF 

Preimage resistance, second preimage resistance, and 

collision resistance constitute essential attributes within  

cryptographic hash functions. These characteristics specify 

the degree of security and defense against different attacks a 

hash function should have.  

A comprehensive assessment of the THF’s security is 

presented in Table 1, comparing it to several established 

lightweight cryptographic hash functions. Preimage, second 

preimage and collision resistance values depicted in the last 

row of Table 1 are evident that the proposed THF can 

withstand desirable cryptography attacks. 

Table 1. Security analysis of THF and existing lightweight cryptography hash functions 

Algorithm 
Hash 

Value 
Construction 

Preimage 

resistance 
2ndPreimageresistance 

Collision-

resistance 

Merkle-Damgård 

Construction: 

ARMADILLO & 

ARMADILLO2 [20] 

80 

Data-dependent bit 

transposition [56] 

280 280 240 

128 2128 2128 264 

160 2160 2160 280 

192 2192 2192 296 

256 2256 2256 218 

AI-Odat et al.LWCHF 

[21] 

160 

JH mode 

2160 2160 280 

224 2224 2224 2112 

256 2256 2256 2128 

384 2384 2384 2192 

512 2512 2512 2256 

EI Hanouti et 

al.LWCHF[22] 
128 

Feistel-like structure; 

skew tent map 

Davies-Meyer 

2128 2128 264 

Block Cipher-Based 

Construction: 

DM-PRESENT 

64 264 None None 

64    

H-PRESENT [23, 24] 128 
Hirose construction[54] 

2128 None None 

C-PRESENT 192 2192 None None 

Lesamnta-LW [25] 256 LW I block cipher 2256 2256 2120 

TWISH [26] 128 Davies-Meyer 2128 2128 264 

Sponge Construction: 

QUARK [27] 

136 

P-sponge 

2128 264 264 

176 2160 280 280 

256 2224 2112 2112 

PHOTON [28] 

64 

P-sponge 

264 240 240 

80 2112 280 280 

128 2124 264 264 

224 2192 2112 2112 

256 2224 2128 2128 

SPONGENT [29] 
80 

P-sponge 
280 240 240 

128 2120 264 264 
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160 2144 280 280 

224 2208 2112 2112 

256 2240 2128 2128 

128 P-sponge 2128 ? 264 

256 JH mode 2128 ? 264 

GLUON [30] 

128 

T-sponge 

2128 264 264 

160 2160 280 280 

224 2224 2112 2112 

SipHash 64 
T-Sponge 

JH mode 
264 264 none 

LHash [31, 32] 

80 

P-sponge 

264 240 240 

96 280 240 240 

128 296 256 256 

128 2120 260 260 

Neeva-hash [33] 256 P-sponge; ARX 2224 2112 2112 

Gimli-Hash [34, 35] 256 P-sponge 2128 2128 2128 

sLiSCP-hash [35, 36, 37] 

160 

P-sponge 

2128 280 280 

192 2128 296 296 

192 2160 296 296 

LNhash [38] 

80 

P-sponge 

272 240 240 

96 280 240 240 

128 296 256 256 

128 2120 260 260 

160 2144 280 280 

160 2152 280 280 

ACE (ACE-H-256) [39] 256 P-sponge 2192 2128 2128 

ASCON-HASH [40] 256 P-sponge 2128 2128 2128 

KNOT-hash [41] 

256 

P-sponge 

2128 2112 2112 

256 2128 2128 2128 

384 2192 2168 2168 

512 2256 2224 2224 

DryGASCON 

[42] 

128 DrySponge None None 264 

256 P-sponge None None 2128 

ORANGISH [43] 128 P-sponge 2128 2112 2112 

PHOTON_Beetle-Hash 

[44] 
128 P-sponge 2128 2112 2112 

ESCH [45] 
256 

P-sponge 
2128 2128 2128 

384 2192 2192 2192 

Subterranean 2.0 [46] 256 P-sponge 2224 2224 2224 

Xoodyak Hash Mode 

[47] 
256 P-sponge 2128 2128 2128 

HVH [48] 

88 

P-sponge 

272 210 240 

128 2120 264 264 

160 2144 280 280 

224 2208 2112 2112 

256 2224 2128 2125 

LNMNT Hash [49] 

80 

P-sponge 

250 - - 

128 280 - - 

160 2100 - - 

224 2120 - - 

Cellular Automata: 

L-CAHASH 

128 
Cellular Automata  

2128 2128 264 

256 - - - 

LCAHASH1.1 
128 

Cellular Automata  
2128 2128 264 

256 - - - 
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THF (Proposed one) 

(64)H 

Sponge 

2256 2256 2128 

(128)H 2512 2512 2256 

(256)H 21024 21024 2512 
 

5. Conclusion  
This research article aims to develop a new lightweigh t  

cryptographic hash function, i.e., Tiny Hash Function, termed 

THF. The proposed design employs Processing the Message 

Blocks, Compression functions, Substitution and Linear 

Diffusion layers, and Squeezing Phase. THF had a primary 

focus on three crucial lightweight requirements: “collision  

resistance, preimage resistance, and second preimage 

resistance”, and the results are evident that it can withstand 

desirable cryptography attacks. The proposed design may be 

evaluated on various energy resource parameters to support 

resource-constrained applications. 
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