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Abstract - Selecting the most relevant features remains a crucial challenge in optimizing classification accuracy and 

computational efficiency, especially in high-dimensional datasets. Most of the approaches select a single subset, claiming it to 

be the most optimal. However, diverse combinations of features may compete on computational overhead and model selection. 

Different feature subsets may highlight distinct aspects of the dataset, helping domain experts gain better insights. This pa per 

presents a novel approach for detecting multiple optimized feature subsets using a novel Genetic Algorithm (GA) variant for 

ECG-based identification. The proposed method employs GA to identify multiple optimal feature combinations, improving both 

accuracy and robustness. Experimental evaluations on the ECG dataset demonstrate the effectiveness of the approach in selecting 

optimal feature subsets, leading to enhanced classification performance. The results indicate that the proposed method can 

significantly improve identification accuracy while reducing feature dimensionality, making it a viable solution for real -world 

applications. 

Keywords - Genetic Algorithm, ECG-based identification, Multiobjective optimization, Multi -optima optimization, Niching.  

1. Introduction 
Biometric identification has become an essential 

component in security systems. ECG-based authentication is 

emerging as a promising alternative due to its inherent 

physiological uniqueness [1]. Unlike traditional biometric 

traits such as fingerprints or facial recognition, ECG signals 

offer the advantage of being difficult to replicate, enhancing 

security and reliability. However, ECG data’s high 

dimensionality and variability pose challenges in developing 

efficient identification systems [2]. Feature selection is crucial 

for high-dimensional data, as redundant and irrelevant 

features can degrade classification performance and increase 

computational overhead [3]. Traditional feature selection 

methods, such as Principal Component Analysis (PCA)[4] and 

filter-based techniques [5], may not always yield optimal 

results, as they rely on predefined heuristics and correlation 

between features [6]. To overcome these limitations, 

researchers have increasingly explored Evolutionary 

Algorithms (EA) [7]. The evolutionary approach to feature 

selection dynamically explores the search space to identify 

optimal subsets that maximize classification performance [8]. 

EAs, including Differential Evolution (DE) [9]Genetic 

Algorithms (GA) [10, 11]. Ant Colony Optimization 

(ACO)[12], and Particle Swarm Optimization (PSO) [13], 

have been widely studied in feature selection [14]. They can 

also address multiple conflicting criteria simultaneously, such 

as minimizing feature count and maximizing model 

performance, leading to multiobjective optimization [15]. 

However, the standard EA typically generates a single optimal 

subset of features, whereas in real-world scenarios, multiple 

distinct subsets may satisfy the optimization criteria. Different 

subsets can reveal unique aspects of the data, enabling domain 

experts to discover hidden patterns or relationships between 

features and target variables [16]. In a dynamic environment, 

where data distribution or context may change over time, 

multiple feature subsets provide a range of options, allowing 

for seamless adaptation to new conditions. The identification 

of multiple subsets offers insights into the problem domain 

and clarifies the mapping between features and target labels.  

Feature selection is often influenced by constraints such 

as computational efficiency, interpretability, and domain-

specific priorities. Multiple subsets allow for the selection of 

features that align with these specific needs. Analyzing 

multiple subsets helps to balance trade-offs, such as 

performance versus computational cost, accuracy versus 

simplicity, and predictive power versus interpretability. 

Exploring multiple subsets can also reveal redundancies or 

interactions among features, potentially improving the 

model’s generalization to unseen data. In situations where 

optimization involves competing objectives, such as 

maximizing accuracy while minimizing the number of 

features, having multiple subsets enables the selection of those 

that achieve the best balance. Lastly, in scenarios with missing 
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or corrupted data, alternative subsets serve as backup 

solutions, ensuring that the model remains reliable and 

effective. GA is a robust evolutionary algorithm suitable for 

high-dimensional and complex data [17]. This paper addresses 

the above-said requirements and overcomes limitations of the 

standard version by a novel variant of the genetic algorithm 

designed to detect multiple optimized feature subsets that 

enhance classification accuracy while minimizing subset size. 

In contrast with traditional approaches, the proposed 

algorithm generates multiple subsets that satisfy the 

optimization criteria. The proposed algorithm has been 

applied to an ECG dataset to identify individuals based on 

their ECG features. The contributions of this work are as 

follows. 

1. A novel variant of GA for generating multiple optimized 

feature subsets from a high-dimensional dataset and its 

application to the ECG dataset. 

2. Identification of critical features for ECG-based  

identification by analyzing multiple optimized feature 

subsets 

3. Performance analysis evaluation across the ten best 

resultant optimal feature subsets.  

The related research works, methodology, dataset, 

algorithm, and results are detailed in the subsequent sections 

of the paper. 

2. Related Work 
GA is a powerful optimization technique inspired by the 

process of natural evolution. The algorithm utilizes stochastic 

search methods to explore multiple solutions simultaneously 

[18]. GAs can be applied to a wide range of problems, as they 

work with a population of potential solutions, allowing them 

to search various areas of the solution space at the same time. 

It has been applied to several problem domains like heart 

disease diagnosis [19], heart rate variability [11], ear 

biometrics [20], ECG signal processing [21], solar radiation 

estimation [16], biodiesel synthesis [22], intrusion detection 

[23], phishing URL detection [24] GAs are also useful for 

parameter tuning of various machine learning models [25, 26]. 

The selection and crossover operators generate new solutions 

and update the population with fitter individuals. In mutation, 

random changes are introduced in offspring, such as flipping 

a bit in a binary-encoded solution to maintain diversity. This 

diversity prevents premature convergence to suboptimal 

solutions [27].  

GAs can efficiently search vast, multi-dimensional 

spaces, making them useful for problems with thousands or 

even millions of potential solutions. However, GAs do not 

guarantee finding the absolute best solution. Instead, they are 

heuristic-based methods, which means they focus on finding 

satisfactory solutions rather than mathematically provable 

optimal ones [28]. GA has a high computation time due to 

slow convergence. To address these issues, various forms of 

genetic algorithms have been developed, utilizing different 

selection [29, 30], crossover [27, 31, 32], and mutation 

operators. Several hybrid approaches of GA with other 

techniques like particle swarm optimization [13] and fuzzy 

logic[19, 33] have been applied to various problem domains. 

GA has been enhanced using several techniques for obtaining 

multiple optima [34]. Several variants of niching[16, 35] and 

crowding [36] techniques have been studied for locating 

multiple optima. These techniques use multiple populations to 

explore diverse areas of the search space.  

Crowding focuses on regulating how offspring replace 

individuals within the population. Rather than randomly 

replacing individuals, offspring are positioned to replace those 

that are most similar to them in terms of fitness or distance. 

This strategy prevents dominance by highly similar 

individuals, thereby ensuring a more diverse population. 

Variants of crowding include deterministic crowding, where 

offspring directly compete with their parents, and fitness-

sharing-based crowding, which takes into account both fitness 

and similarity. Conversely, niching [37] promotes and 

preserves subpopulations, or “niches,” within the search 

space, making it particularly effective for multimodal 

optimization problems. This approach encourages the 

algorithm to explore different regions of the solution space 

and maintain multiple optima.  

Common niching methods include fitness sharing, where 

an individual’s fitness is reduced based on the number of 

others within its niche; speciation, which groups individuals 

into species based on similarity; and clearing, which restricts 

the number of individuals in a niche by removing excess ones 

[38, 39]. These techniques are generally utilized on continuous 

search spaces and real values. They can be effectively used to 

discover multiple optimized subsets. 

Electrocardiogram (ECG) signals are complex, noisy, and 

high-dimensional [40]. ECG-based biometric identification 

has gained significant attention due to its uniqueness and 

resilience against spoofing attacks. ECG data typically 

includes hundreds of features extracted from waveforms, such 

as the P wave, QRS complex, and T wave. However, not all 

features are useful; some may be redundant or noisy [41]. EA 

can help select the most important features, reducing 

computational requirements and enhancing classification 

accuracy [2, 8].  

However, most previous works have utilized EAs to 

generate a single optimum subset, leaving other subsets that 

may compete significantly. Detection of multiple optimal 

subsets can facilitate a better understanding of relevance, 

dependencies, and redundancies in ECG features that are not 

interpretable in the single optimal solution. GA is a robust EA 

that has been successfully applied to various problem 

domains, making it dependable for ECG data. This study 

presents a novel variant of GA to identify multiple optimal 
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ECG feature subsets. The proposed GA uses neither a standard 

crowding nor a niching technique. It handles multiple 

populations that converge to different optima simultaneously. 

The solutions may have different fitness values. These 

solutions are further analyzed to detect critical features for 

ECG-based identification.  

3. Methodology 
A Genetic Algorithm (GA) is an optimization technique 

inspired by the principles of natural selection. It addresses 

complex problems by evolving solutions over several 

generations.  

The process starts with a population of individuals, also 

known as candidate solutions or chromosomes, which are 

represented in a suitable format. Each individual is evaluated 

using a fitness function to determine its effectiveness. The best 

solutions are then selected and combined through a process 

called crossover to create new offspring. 

Additionally, mutation introduces small changes to 

maintain diversity within the population. Over multiple 

generations, the population gradually evolves toward an 

optimal or near-optimal solution. The proposed GA uses 

binary encoding, random selection, uniform crossover and 

random mutation [18]. The specifics of these are defined as 

follows. 

3.1. Encoding 

GA requires a compatible representation of possible 

solutions into chromosomes. Each chromosome contains a set 

of genes representing a solution characteristic. In the proposed 

GA, each feature subset is encoded into a binary string. For n 

features, there are 2n subsets. Each subset A is represented by 

a binary string B of n bits. For each ith bit, B[i]=1 if the ith 

feature belongs to A, otherwise, B[i]=0.  

3.2. Fitness Function 

The fitness function is a multiobjective composite 

function given by equation 1.   

Maximize f(A) =  CLF(A). performance +  (n − |A|)/n
 (1) 

Where A is a feature subset. The first term of the fitness 

function is the performance of the classifier CLF when trained 

and tested with features only in subset A.  CLF can be any 

state-of-the-art classifier, like a Neural Network or Support 

Vector Machine (SVM). Performance can be measured by 

metrics such as accuracy, precision, specificity, or F1-score or 

their combination. The second term represents the number of 

absent features in the subset. If the cardinality of A is 0 

(minimum), then the value of this term is 1(maximum). If the 

cardinality of A is n(maximum), then its value is 0 (minimum). 

For all other subsets, its value is between 0 and 1. Maximizing 

fitness function maximizes classifier performance and the 

number of absent features in the subset, that is, minimizes 

feature count.  

3.3. Initialization 

A population of possible solutions (individuals) is 

generated randomly. Each solution is a subset encoded as a 

binary string as discussed above. The fitness value of each 

individual is calculated using Equation 1.  

3.4. Selection 

Individuals are randomly selected to form a mating pool, 

which may include duplicates. In this random selection 

process, every individual in the population has an equal 

chance of being chosen. Individuals are selected from the 

population at random and added to the mating pool.  

3.5. Crossover (Recombination) 

During crossover, two parent solutions are combined to 

create new offspring. Members of the mating pool are then 

paired randomly as parents P1 and P2, and a crossover 

operator is applied on each pair to create two offspring C1 and 

C2. The jth (0 ≤ j ≤ n) bit of offspring is calculated by Equation 

2. Where CR is the crossover rate defined between 0 and 1. A 

random number r is generated for each bit of offspring.  

If r < CR, the corresponding bit is copied from P1 to C1 

and from P2 to C2. If r > CR, then the corresponding bit is 

copied from P2 to C1 and from P1 to C2. It is like flipping a 

coin to choose a gene from any one of the parents. 

( 𝐶1𝑗 =𝑃1𝑗,𝐶2𝑗 = 𝑃2𝑗 𝑖𝑓  𝑟≤𝐶𝑅

𝐶1𝑗=𝑃2𝑗,𝐶2𝑗  = 𝑃1𝑗  𝑖𝑓 𝑟>𝐶𝑅
) (2) 

3.6. Mutation 

Mutation is performed on offspring randomly according 

to the mutation rate. The mutation rate is a real number 

between 0 and 1. Random mutation flips a random number of 

bits depending on the mutation rate, MR. MR is set between 0 

and 1. A random number r is generated for each bit. If r ≤ MR, 

then the corresponding bit is flipped. The j th bit of the ith 

offspring is obtained by Equation 3. 

𝐶𝑖𝑗 =   {
1 − 𝐶𝑖𝑗 𝑖𝑓 𝑟 ≤ 𝑀𝑅

𝐶𝑖𝑗         𝑖𝑓 𝑟 ≥ 𝑀𝑅
 (3) 

3.7. Replacement (Survivor Selection) 

The Fitness of parents and offspring are compared, and 

those with better fitness value go to the next generation, and 

the cycle repeats. This continues until a stopping condition is 

met, that is, a maximum number of generations have evolved 

or a sufficiently good solution is found. 

3.8. Multi-Optima Optimization 

The above steps generate a single optimized subset. To 

achieve multiple optimal solutions, N populations evolve 

simultaneously.  

The classifier’s performance with all n features serves as 

the threshold for the minimum performance required from the 

subset. An optimized subset must perform equally well or 

better than this threshold. The proposed algorithm is designed 
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to generate multiple optimized subsets. The steps of the 

proposed GA are as follows. For simplification, the 

performance of CLF is being measured through accuracy.  

1. Classifier CLF is trained and tested with all N features, 

and its accuracy, Acc, has been recorded as the threshold 

value.  

2. N populations are initialized, each with M individuals, 

where each individual is a  binary encoded subset. 

3. Initial fitness values of all individuals in each population 

are calculated using Equation 1. 

4. A mating pool of K individuals is created through random 

selection. 

5. Individuals from the mating pool are paired, and 

crossover is performed using Equation 2.  

6. The fitness value is calculated for each offspring, and 

individuals are replaced by their fitter child. 

7. In each population, an individual with the maximum 

fitness value is obtained. 

8. For each population i, if the accuracy of classifier CLF 

trained and tested with features in m i is greater than or 

equal to Acc and if m i is a  unique subset derived so far, 

then it is saved as an optimal subset. The corresponding 

population is randomly reinitialized with new M 

individuals. 

9. Steps 5 to 8 are repeated until a  maximum number of 

epochs have expired or no new optimal solution is 

obtained over a set of iterations. 

Figure 1 depicts the flowchart of the algorithm. After 

deriving multiple subsets, further analysis is performed to find 

critical features for the given problem domain. In general, 

features in more than 90 percent of subsets can be considered 

highly critical and less than 30 percent as least critical [16]. 

 
Fig. 1 Genetic algorithm with niching

If accuracy(m i) ≥Acc 

Find accuracy Acc of SVM classifier with all features 

Randomly initialize N populations each with n number of individuals Calculate the 

fitness value for each individual in each population and  

Randomly choose k individuals to create mating pool  

Randomly pair individuals from the mating pool and perform crossover using Eq 2  

 if mi is unique, then save m i as optimum. Reinitialize population i 

For each population i, find individual m i with maximum fitness value 

N 

Y 

Perform Mutation using Eq 3 and choose two best individuals from parent and child 

for next generation 
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4. Results and Discussion 
4.1. Dataset 

The dataset was obtained from digital ECG samples 

recorded in the Biotechnology and Bioengineering Lab, Birla 

Institute of Technology, Mesra, Ranchi, India. It comprises 71 

fiducial features of 19 individuals (19-55 years male/female) 

listed in Table 1. P, Q, R, S, and T, known as fiducial points, 

represent the peaks and troughs in an ECG cardiac cycle, as 

illustrated in Figure 2. Each point in the digital ECG signal 

can be expressed as coordinate points (t, a), where a ‘denotes 

the amplitude (y-axis) and ‘t’ represents the time instance (x-

axis). The features listed in Table 1 have been computed using 

the amplitude and time values of the fiducial points across all 

cardiac cycles for a specific ECG sample. The names of the 

features indicate which fiducial points were used to calculate 

their values. Temporal features represent the time intervals 

between the PQRST points, while amplitude features indicate 

the absolute differences in amplitudes. Distance, slope, angle, 

and miscellaneous features have been calculated using 

formulas from coordinate geometry. The suffix in each feature 

name denotes the type of feature. For example, QT, QTa, QTd, 

and QTs refer to the time interval, absolute amplitude 

difference, distance, and slope between the fiducial points Q 

and T, respectively. 

 
 Fig. 2 ECG fiducial points PQRST 

Table 1. ECG fiducial features 

Temporal 

Features 
 PQ, QS, QT, PT, PS, ST, QT/QS, PT/QS 8 

Amplitude 

Features 

Py, Qy, Ry, Sy, Ty, ,PSa, QSa, RSa, STa, PQa, PTa, QRa, QTa, RS/QRa, RS/QSa, ST/QSa, 

PQ/RSa, PQ/QSa, RS/QTa, PQ/QTa, ST/PQa, PQ/PSa, ST/QTa, PQ/QRa  
24 

Distance Features PQd, RSd, QSd, QRd, STd, ST/QSd, PRd, RS/QRd  9 

Slope Features PQs, STs, PSs, QRs, QSs, QTs, RSs, PTs, PRs, RTs 10 

Angle Features PQR, RST, RSQ, QRS, RQS, RTS 6 

Miscellaneous 

Features 

QRS area, S angle/PQ dis, S angle/QT time, QRS perimeter, QRS area/RSˆ2, (R/Q) angle, QRS 

in radius, (R/S)angle, (R/T) angle, QRS x-centroid, QRS y-centroid, R angle/QS time, (Q/T) 

angle,   QRS area/ QR amp, RR  

14 

Total 71 

If an ECG recording lasts for 30 seconds and includes 35 

complete cardiac cycles, there will be 35 sets of PQRST 

fiducial points within that sample. Consequently, this results 

in 35 sets of 71 fiducial features for the sample. The number 

of cardiac cycles in a given duration varies from person to 

person. The recordings vary from 8 seconds to 10 minutes in 

duration, leading to the creation of 10 to 680 feature sets. For 

the classification problem, a dataset was constructed by 

randomly selecting 300 feature sets from each sample and 

shuffling them. Each sample is labeled with a unique person 

ID (1, 2, 3, …, 19), resulting in 19 distinct class labels. Feature 

sets from shorter samples have been selected multiple times. 

Finally, the dataset consists of 5700 tuples with 71 columns 

and 19 class labels. 

The study involves a set of 71 features with 271 possible 

subsets. The objective is to identify all subsets that optimize 

the fitness function defined by Equation 1. Each subset is 

encoded as a binary string of 71 bits as discussed in the 

methodology section. A feature subset A is represented by a 

binary string B, where B[i] = 1 indicates that the ith feature is 

included in subset A, while B[i] = 0 indicates its exclusion. 

The fitness value for each binary string is calculated using the 

objective function in Equation 1, where the classifier used is a 

Support Vector Machine (SVM) with a linear kernel and n = 

71. The SVM classifier has been trained and tested to identify 

individuals based on these 71 fiducial features. The data is 

split into training and testing sets with an 80:20 ratio, 

achieving an accuracy of 0.98. This accuracy serves as the 

threshold A for the minimum performance of an optimized 

subset. The other parameters are set as follows: the Crossover 

Rate (CR) is 0.5, the Mutation Rate (MR) is 0.5, and the 

number of epochs is 500. When the simple genetic algorithm 

with a single population was applied, each run generated a 

different subset with varying numbers and types of features, 

achieving accuracy greater than or equal to 0.98, indicating 

more than one competing optimized subset. Figure 2 depicts 

the convergence of a single population. When the proposed 

version of the genetic algorithm with multiple populations was 

applied, 500 distinct optimal subsets were achieved of 

cardinality from 25 to 46, each with a classifier accuracy from 

0.98 to 0.990476. The result clearly shows that there is a 

significant reduction in the cardinality of features without 

compromising the classifier’s performance. 
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Fig. 3 Convergence of the simple genetic algorithm 

 
Fig. 4 Heat map of subsets 

Table 2. Optimal feature subsets 

SL 

No 
Subset 

Number  

of 

Features 

Accuracy 

1 

'Qy', 'Ry', 'Ty', 'PQ', 'PQa', 'QRa', 'RSa', 'ST/QSa', 'PQ/QSa', 'ST/PQ', 'QRd', 'STd', 'STs', 

'QSs', 'PTs', 'PRs', 'RTs', 'RST', 'RTS', 'arQRS', 'arQRS/RSa^2', '<QRS/<RST', '<RST/QT', 

'QRS Xcentroid', 'RR' 

25 0.990476 

2 

'Py', 'Qy', 'Ty', 'PT', 'PT/QS', 'QT/QS', 'PQa', 'QRa', 'PTa', 'PQ/PS', 'PQ/RS', 'RS/QT', 

'ST/QT', 'PQd', 'ST/QS', 'QRs', 'RTs', 'PQR', 'RSQ', 'RTS', 'arQRS', '<RST/PQd', 

'<QRS/<RTS', 'arQRS/QRa', 'QRSradius', 'RR' 

26 0.987302 

3 

'Qy', 'Ty', 'PQ', 'QT', 'PT/QS', 'RSa', 'ST/QSa', 'PQ/QSa', 'PQ/QTa', 'PQ/QR', 'RS/QS', 

'ST/QT', 'STd', 'QSd', 'ST/QS', 'PQs', 'STs', 'QSs', 'PQR', 'RTS', 'arQRS', '<QRS/QS', 

'<QRS/<RQS', 'QRSperimeter', 'QRSradius', 'RR' 

26 0.987302 
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4 

'PT', 'ST', 'PS', 'QT/QS', 'QRa', 'RSa', 'PTa', 'QTa ', 'RS/QRa', 'PQ/QR', 'PQ/RS', 'RS/QS', 

'ST/PQ', 'ST/QS', 'QRs', 'STs', 'PSs', 'QTs', 'PRs', 'RTs', 'RST', 'RQS', 'arQRS/RSa^2', 

'<QRS/<RTS', 'QRSradius', 'RR' 

26 0.987302 

5 

'Py', 'Sy', 'PT', 'ST', 'PS', 'PQa', 'QSa', 'PSa', 'ST/QSa', 'PQ/QTa', 'RS/QS', 'RS/QT', 'ST/PQ', 

'ST/QT', 'RSd', 'STd', 'PRd', 'QRs', 'PSs', 'PRs', 'RSQ', 'arQRS', '<RST/QT', '<RQS/RTS', 

'QRS Xcentroid', 'RR' 

26 0.987302 

6 

'Qy', 'Ry', 'Ty', 'PQ', 'PT', 'ST', 'QRa', 'RSa', 'PQ/QTa', 'PQ/RS', 'RS/QT', 'QRd', 'STd', 'PRd', 

'RSs', 'STs', 'QTs', 'RTs', 'PQR', 'RST', 'RQS', 'arQRS', '<RST/QT', '<RST/PQd', 

'<QRS/<RQS', '<RQS/RTS', 'RR' 

27 0.987302 

7 

'Ry', 'Sy', 'PQ', 'ST', 'RSa', 'QSa', 'PSa', 'PTa', 'PQ/QSa', 'PQ/QTa', 'ST/PQ', 'STd', 'QSd ', 

'PQs', 'QRs', 'RSs', 'QSs', 'PRs', 'PQR', 'RSQ', 'arQRS/RSa^2', '<QRS/<RST', '<RST/QT', 

'arQRS/QRa', 'QRSperimeter', 'QRSradius', 'RR' 

27 0.987302 

8 

'Qy', 'Ry', 'Sy', 'PQ', 'PS', 'QT/QS', 'RSa', 'PTa', 'ST/QSa', 'PQ/QR', 'PQ/RS', 'RS/QS', 

'RS/QT', 'ST/QT', 'RSd', 'PRd', 'ST/QS', 'RS/QR', 'QRs', 'STs', 'PTs', 'RTS', '<RST/PQd', 

'arQRS/QRa', 'QRSradius', 'QRS Ycentroid', 'RR' 

27 0.987302 

9 

'Ry', 'QT', 'PT/QS', 'QRa', 'PTa', 'QTa', 'ST/QSa', 'PQ/QTa', 'RS/QS', 'RS/QT', 'ST/QT', 

'PQd', 'QRd', 'QSd', 'PRd', 'PQs', 'RSs', 'PTs', 'PSs', 'RTS', 'arQRS/RSa^2', '<QRS/<RST', 

'<RST/QT', '<QRS/<RQS', '<RQS/RTS', 'arQRS/QRa', 'RR' 

27 0.987302 

10 

'Sy', 'Ty', 'PQ', 'QT/QS', 'QRa', 'STa', 'PSa', 'PTa', 'RS/QRa', 'RS/QS', 'RS/QT', 'ST/QT', 

'QRd', 'STd', 'PRd', 'ST/QS', 'RS/QR', 'PSs', 'PQR', 'QRS', 'RSQ', 'arQRS/RSa^2', 

'<RST/QT', '<RST/PQd', 'arQRS/QRa', 'QRSradius', 'RR' 

27 0.987302 

 
Figure 6 depicts the simultaneous convergence of ten 

populations. The drift in a graph indicates reinitialization of 

the corresponding population. Figure 4 is a heatmap of all 

subsets. The rows correspond to subsets, and the columns to 

features. The dark cell indicates the presence, and the light cell 

indicates the absence of the corresponding feature. The darker 

column indicates that the corresponding feature is present in 

more subsets than the feature corresponding to the lighter 

column. Figure 5 illustrates the occurrences of various 

features within optimal subsets.  

The presence of a feature in an optimal subset signifies its 

importance in identifying a person. Features that appear in 

90% or more of the optimal subsets are deemed critical, while 

those present in less than 30% are considered least critical. It 

has been observed that the ‘RR distance’ is the most critical 

feature, appearing in 98% of the subsets. In contrast, the ‘Y-

centroid’ and ‘QRS angle’ appear in less than 30% of the 

subsets, categorizing them as the least critical features.  

Analyzing different subsets can reveal unique 

characteristics of ECG signals, aiding domain experts in 

uncovering subtle patterns or relationships between features 

and identity-related markers. In cases of missing or corrupted 

ECG data, alternative subsets provide reliable backup 

solutions, ensuring the identification system remains 

functional and effective. Table 2 lists the top ten optimal 

subsets of cardinalities 25, 26, and 27 and accuracies from 

0.987302 to 0.990476. Figure 7 shows a comparison among 

the classifier performances of these ten subsets and the set of 

all 71 features. The identification precision is high with all 71 

features, but accuracy, recall, and F1-score are low. The 

classifier performances with other optimal subsets are more 

stable. 

The subset with the fewest features is often considered the 

most optimal. However, a subset with low cardinality may not 

always be the most computationally efficient. Different types 

of features require varying amounts of computation time. For 

example, calculating straight distance, slope, amplitude, and 

temporal difference involves evaluating a single expression, 

making them relatively simple. In contrast, computing ratios 

of these features requires a three-step process (calculating both 

the numerator and the denominator). Calculating angles, 

areas, and centroids is more complex.  

By detecting multiple subsets, we can facilitate 

comparisons and choose from various solutions based on 

computation time. For instance, in Table 2, subsets 2 and 3 

both have 26 features. However, set 2 has five ratio features, 

whereas set 3 has seven; hence, set 2 has less computation 

time.  

Additionally, subsets can be compared across various 

models, situations, or configurations of ensemble models. In 

dynamic environments where the distribution of ECG signals 

or context may change, maintaining multiple feature subsets 

ensures adaptability. This approach allows models to switch to 

subsets that are better suited for new conditions. 

In the future, identifying multiple optimal subsets and 

critical features will be highly beneficial and insightful for 

studying Heart Rate Variability (HRV) and developing robust 

systems for authentication, disease and stress prediction using 

various ECG features. The authors also plan to experiment 

with combining other feature optimization techniques 

alongside the proposed method. Although the proposed 

algorithm is applied and tested on the ECG dataset, it is a 

generalized approach for feature optimization.  
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Fig. 5 Occurrences of features in optimal subsets 
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Fig. 6 Simultaneous convergence of ten populations 

 
Fig. 7 Performance comparison of all features vs Top 10 subsets 

5. Conclusion 
This paper presents a novel variant of the Multiobjective 

Multi-Optima Genetic Algorithm (GA) that incorporates 

niching techniques for identifying multiple optimal feature 

subsets in ECG-based identification. The approach explores 

multiple populations simultaneously to generate diverse 

feature subsets, each designed to maximize classifier 

performance while minimizing the cardinality. The algorithm 

has been applied to an ECG dataset containing 71 fiducial 

features, resulting in 500 distinct feature subsets with 

cardinalities ranging from 25 to 46. This approach improved 

SVM classifier accuracy from 0.98 to 0.9904. Further analysis 

of these subsets revealed critical features for identification. 

The RR-distance and QRS angle features were found to be the 

most critical, appearing in over 90% of the subsets, while the 

Y-centroid feature was the least critical, with a presence in less 

than 30% of the subsets. 
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