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Abstract - For the early and accurate detection of COVID-19, which is necessary for timely diagnosis and treatment, Chest X-

Ray (CXR) imaging is crucial. Developing automated and reliable detection techniques is crucial because traditional diagnostic 

techniques, such as real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR), are time-consuming and prone to 

false negative results. This paper presents a compact and efficient Deep Learning (DL) system that uses pre-trained models and 

compact convolutional transformers to enhance feature extraction. The proposed model, TCovNet, uses an EfficientNet -B4 

backbone and Gradient-weighted Class Activation Mapping (Grad-CAM) to generate comprehensible visual explanations for 

observed abnormalities. Additionally, contrast-limited adaptive histogram equalization CLAHE improves image clarity and 

model performance. The method was tested using balanced and imbalanced data distributions using publicly accessible COVID-

19 CXR datasets. Experimental results demonstrate that TCovNet outperforms the current state-of-the-art techniques, with a 

classification accuracy of 98.5%. The use of Grad-CAM improves transparency and interpretability, making the model 

appropriate for clinical decision assistance. This study emphasizes the productivity of transformer-based architectures in 

medical imaging, besides the implication of explainability in DL-based COVID-19 diagnostic tools. 

Keywords - Grad-CAM, X-ray, Convolutional Neural Networks (CNN), CLAHE, Edge computing, Deep Learning, Visualization.

1. Introduction 
The coronavirus disease was identified in Wuhan, China, 

before the end of 2019. According to current theory, it began 

in animals, quickly spread around the world, and was possibly 

subsequently conveyed by a host. After first being declared a 

global health emergency in January 2020, the World Health 

Organization (WHO) declared COVID-19 a pandemic in 

March 2020 [1]. The great majority of coronaviruses infect 

animals; however, some can infect humans. SARS-CoV-2, a 

coronavirus transmitted from bats to humans, poses a hazard 

to global health [2]. According to research, SARS-CoV-2 can 

live for a few hours or days on a variety of surfaces [3]. Many 

victims were infected by a novel coronavirus type termed 

Delta, which has more dangerous consequences and a short 

incubation period [4]. Direct contact, such as touching hands 

with an infected individual, and airborne transmission are the 

two main ways SARS-CoV-2 is transmitted. The virus 

replicates once it enters the respiratory system and destroys 

lung cells. COVID-19 is exciting to identify and treat due to 

its Ribonucleic Acid (RNA) changes. Coughing, fever, 

headache, dyspnea, confusion, and muscle pains are common 

signs of SARS-CoV-2 [5]. Serious outcomes, including death, 

are more likely to occur in those with weakened immune 

systems. Globally, COVID-19 has impacted nations and 

claimed a considerable number of lives [6]. Clinicians and 

experts in infectious diseases are working to create efficient 

treatments worldwide.   

The most accurate method for detecting coronavirus 

disease and one that can help with early detection is the real-

time Reverse Transcription-Polymerase Chain Reaction (RT-

PCR) test, according to the WHO.    For medical practitioners, 

RT-PCR testing can be hazardous and time-consuming [7].  

To identify COVID-19 early, medical imaging techniques 

such as Computed Tomography (CT) scans, ultrasounds, and 

X-rays are frequently used.  When combined with RT-PCR 

testing, these imaging methods assist doctors in making 

accurate diagnoses [8]. X-rays were one of the earliest 

imaging modalities utilized to determine COVID-19 due to 

their inexpensive cost and minimal radioactivity exposure. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Nevertheless, it is challenging to determine COVID-19 with  

X-rays [9].  White areas on the images that are loaded with  

pus and water must be recognized by radiologists; these areas 

are frequently faint and challenging to spot. Because diseases 

like pulmonary tuberculosis can exhibit symptoms that are 

similar to those of COVID-19, misdiagnosis is possible. The 

X-ray technology is therefore linked to a high rate of 

inaccuracy.  Compared to X-rays, CT scans offer higher 

contrast and are more successful in identifying COVID-19. 

CT scans of SARS-CoV-2 patients show substantial 

consolidation, interstitial inflammation, and damage to the 

lung parenchyma [10].  However, analyzing COVID-19 with  

CT requires evaluating numerous slices for each patient, 

which can be time-intensive.  

Specialists aim to exclude slices without critical 

information to streamline the process. In this regard, 

diagnostic imaging in conjunction with Artificial Intelligence 

(AI) has shown greater efficacy, especially when evaluating 

vital organs like the brain, heart, and lungs. This has prompted 

researchers to concentrate on creating AI-based techniques 

that will allow for faster, more affordable, and at-home 

COVID-19 identification, thus preventing the disease's spread 

[11].  Faster and more effective AI solutions are crucial since 

medical imaging datasets are scarce. CXR is desired above CT 

scans because of their lower radiation exposure, lower cost, 

and easier accessibility, even though CT scans are commonly 

used to assess COVID-19 [12]. This work emphasizes the 

procedure of CXR for COVID-19 finding in addition to 

examining the application of DL in visualization tasks such as 

image identification and classification. 

DL has been gaining prominence as a solution for image 

classification challenges due to its improved results in illness 

identification [13]. In medical imaging, DL models have 

delivered robust and efficient outcomes for computer-aided 

diagnosis by extracting features that enhance classification 

accuracy. Using DL, researchers have created several designs 

for COVID-19 diagnosis. Others have modified pre-existing 

Convolutional Neural Network (CNN) models or created new 

ones. Coronet, coronavirus diagnosis-Net, and Xception with  

depthwise segmented convolution are a few examples that try 

to increase the efficacy of COVID-19 finding tasks. Others 

have employed Transfer Learning (TL) to diagnose using pre-

trained models as feature weights. TL with CNN, deep CNN, 

MobileNet, and COVID-GAN are notable examples [14]. 

Numerous methods have been devised to automate the 

identification of COVID-19; at this point, these systems still 

encounter many challenges. Poor performance resulting from 

certain models' incapacity to efficiently extract features from 

input images is a major problem. Any AI-powered DL model 

must include feature extraction as a critical step, but limited 

and unbalanced datasets may restrict the creation of deep 

features and reduce diagnostic efficiency [15]. To address 

these issues, the experts have looked into using ensemble 

models. Whether pre-trained or created from scratch, these 

models combine two or more independent models to improve 

feature extraction and generalization. While ensemble models 

often outperform single models, there remains considerable 

room for improvement in their outcomes.   

One of the most advanced techniques for visual tasks is 

the attention mechanism [16]. By transmitting relative weights 

to input attributes based on their significance to a certain job, 

this approach helps to highlight vital qualities while lessening 

the influence of less significant ones. In ensemble modeling, 

convolutional layers extract visual information from the input 

images. While removing unnecessary features, these layers 

seek to preserve important ones. Critical characteristics are 

occasionally disregarded, though, which results in insufficient 

feature extraction and possible COVID-19 misclassification 

[17, 18].   

The automated classification of lung infections from 

CXR images has significantly improved in recent years due to 

advancements in deep learning.   However, there are still 

several problems with the existing methods.   Most 

conventional approaches either do not generalize well across 

a range of patient populations or employ small datasets, which 

results in biased models.   Numerous deep CNNs utilized in 

earlier studies are also computationally intensive and prone to 

overfitting, especially when used on small or unbalanced 

datasets.   Furthermore, clinicians find it difficult to trust the 

predictions made by these models because they are typically 

not interpretable.  

To address these limitations, the suggested model, 

TCovNet, combines the potent EfficientNet-B4 backbone 

with Grad-CAM to highlight significant regions influencing 

model decisions, thereby introducing an innovative and 

interpretable Deep Learning (DL) structure for coronavirus 

disease detection by CXR images. CLAHE, which is 

incorporated into TCovNet in contrast to standard models, 

improves local contrast and fine-grained lung textures, hence 

increasing the accuracy of feature extraction and 

classification. The model shows strong performance and 

generalizability a fter thorough testing on publically accessible 

CXR datasets with both balanced and unbalanced data 

distributions. By combining explainable AI, efficient 

architecture, and improved preprocessing, TCovNet 

substantially contributes to accurate and transparent 

Coronavirus diagnosis. This approach facilitates a deeper 

sympathy for the logic of the model, which makes it easier to 

apply in clinical settings for accurate Coronavirus diagnosis. 

An overview of the study's primary contributions is provided 

below: 

• A lightweight convolutional transformer-based DL 

system was introduced, incorporating Grad-Cam-

enhanced CLAHE visualization for fast and precise 

COVID-19 prediction using CXR images.   
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• EfficientNet-B4, the backbone network, was developed 

using a fusion concatenated technique to offer robust and 

superior deep features. The convolutional ViT overcomes 

the drawbacks of the CNN layer's maximum pooling, 

which frequently ignores important spatial information 

about picture components, by using positional anchoring 

and patching techniques. Additionally, by emphasizing 

the areas of the image that were most pertinent to the 

categorization results, Grad-Cam was used to understand 

model predictions.   

• Experimental evaluation of the recommended 

framework's performance was conducted in several 

dataset classification tasks, such as binary and multi-class 

prediction tasks. Using Grad-Cam to create visual 

saliency maps, the study also showed that the framework 

can accurately and simultaneously forecast several 

diseases. 

The following is the plan for this study: Relevant research 

is the main topic of Section 2. While Section 4 outlines the 

investigational findings and assessments, Section 3 

thoroughly explains the recommended methodologies. The 

findings are concluded in Section 5. 

2. Literature Survey  
Predicting COVID-19 from CXR pictures has become a 

crucial research topic, utilizing AI and DL to support quick, 

non-invasive diagnosis. Ground-glass opacities and 

consolidations are two important lung abnormalities 

associated with COVID-19 that can be seen with CXR, which 

is widely available and reasonably priced. Due to the time and 

resource constraints of conventional diagnostic techniques 

like RT-PCR and DL models in particular, CNNs have been 

used to automate the identification of these patterns. 

Numerous studies have shown that AI has the potential to 

improve identification speed and accuracy, providing vital 

assistance in clinical decision-making throughout the 

epidemic. However, ongoing challenges, including limited  

labeled data and variability in X-ray quality across 

populations, indicate the need for further research and model 

refinement. The existing papers are surveyed in this section. 

Ukwuoma et al. [19] proposed deep feature concatenation 

and a multi-head self-management network as elements of an 

end-to-end DL architecture.  The feature concatenation 

technique optimizes previously learned backbone models, 

such as DenseNet, InceptionV3, and Visual Geometry Group-

16 (VGG-16).  The suggested model performed well on the 

multi-class and binary classification tasks, achieving 96.35% 

and 98.65% total precision and 92.65% and 98.65% F1 scores, 

respectively.  However, DL models are still susceptible to 

hostile attacks, which highlights the need for more robust 

security measures. Nayak et al. [20] presented a novel 

lightweight DL technique constructed on CXR for multi-class 

classification.  Three convolutions make up the suggested 

CNN architecture for batches of normalization: a fully 

connected layer, a  Global Mean Pooling (GMP) layer, and 

ReLU blocks with learnable parameters.  The model 

accomplished a satisfactory overall accuracy of 98.30% 

compared to State-of-the-Art (SOTA) methods and pre-

trained Transfer Learning (TL) models.  However, due to 

variations in the number of channels and input image sizes, 

the tiny dataset used to test the proposed method faced 

challenges.  These discrepancies impair the model's durability. 

Houssein et al. [21] recommended a Hybrid Quantum-

Classical CNN (HQ-CNN) model using random quantum 

circuits for coronavirus identification using CXR images.  The 

model's accuracy and recall on multi-class datasets were 

88.20% and 88.60%, respectively. However, to conform to 

minimal quantum technology, the HQ-CNN design is 

constrained by its dependence on a small number of layers. 

Thus, the method's shortcomings are brought to light by its 

difficulties with big datasets and classification with multiple 

classes of jobs. 

Meem et al. [22] demonstrated the procedure of CNN, 

DL, and Machine Learning (ML) to distinguish between 

coronavirus patients and healthy individuals using CXR 

images.  The model is constructed using several DL features, 

including Maxpooling 2d, Dense Net, Dropout, and the 2D 

Convolutional Layer (Conv2D). The proposed technique 

achieved 98.33% validation accuracy and 96.43% 

classification accuracy after training and testing on X-ray 

images. However, epoch 1 validation accuracy heights begin 

to somewhat decrease after epoch 7. 

Ukwuoma et al. [23] established a trustworthy DL method 

for correctly identifying lung conditions from CXR pictures. 

The recommended method allows for a comprehensive 

analysis of CXR images by using an ensemble strategy to 

extract richer features and then overall second-order pooling 

to collect even more detailed global characteristics. The 

accuracy of the model was 98.00% on the COVID-19 dataset 

and 97.80% on the COVID-CXR-15k dataset. However, this 

study did not look at how to improve image qualities or 

whether lung sickness was reasonable, mild, or severe. 

Rahhal et al. [24] recommended a DL-based COVID-19 

ultrasound image identification technique. The method 

combines TL with an EfficientNet model previously trained 

on the ImageNet dataset to classify ultrasound images of 

probable patients. A gated multilayer perceptron (gMLP) and 

a ViT were used to compare the efficacy of EfficientNet-B2. 

The EfficientNet-B2 model achieved precision, recall, and F1 

scores of 95.85%, 99.87%, and 97.43% for COVID-19  

classification, respectively. With TL, EfficientNet-B2 

achieved an accuracy of 96.75%, overtaking gMLP (93.13%) 

and ViT (92.83%). However, learning a lot of parameters is 

necessary for the suggested EfficientNet-B2 model. 
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Albahli et al. [25] proposed a technique that uses CT 

scans and X-ray pictures to identify the affected areas in 

addition to detecting COVID-19.  The model leveraged pre-

trained classification architectures like VGG-16, VGG-19 , 

and ResNet50 with very slight adjustments.  Using CT scan 

images, the ResNet50 model showed a maximum validation 

accuracy of 87.13% and a training accuracy of 87.49%. The 

maximum validation and training accuracy of the VGG-16  

model for X-ray images were 97.37% and 95.60%, 

respectively. However, when the VGG-19 model was used, 

the validation accuracy decreased to 86.37%. 

Srinivas et al. [26] introduced "Inception V3 with  

VGG16", a novel hybrid technique for COVID-19 prediction 

that uses CXR. This model combines two DL models, IV3-

VGG. The hybrid scheme comprises of two parts: pre-

processing and IV3-VGG. The investigational outcomes 

indicate that the IV3-VGG model overtakes the five most 

popular DL models currently in use with an accuracy of 

98.00%. It is necessary to extend the proposed model to 

accommodate huge X-ray datasets. 

In their work, Umer et al. examined how a CNN collects 

COVID-19 prediction data from CXR images [27]. Applied  

the categorization procedure to classes 2, 3, and 4. CXR 

images from COVID-19, normal, viral pneumonia, and 

bacterial pneumonia are included in the four-class scenario. 

The suggested approach obtained an AUC value of 59.48%, a 

sensitivity of 98.99%, and a specificity of 92.19% when tested 

and trained on the four-class dataset. The model must be 

expanded to handle more X-ray datasets to produce better 

results.  

The CXR6, a lightweight CNN designed for automatic 

pneumonia detection, was introduced by Nahiduzzaman et al. 

[28]. The CXR6 model was trained and maintained for binary 

classification, distinguishing between common and 

pneumonia cases, to demonstrate its generalizability. With a 

recall of 98.00% and an accuracy of 97.95%, the pre-trained 

CXR6 model fared better than SOTA models for binary 

classification. Even if the model did well on the combined 

dataset, it might not do as well on other datasets. 

Hybrid CNN (HDCNN), a new technique for COVID-19  

detection using CXR that combines the design of CNN with  

Recurrent Neural Networks (RNN), was presented by Kumar 

et al. [29]. The images that produce judgments are shown by 

HDCNN employing a TL technique known as slope-weighted  

activating class planning (Grad-Cams). Consequently, 

HDCNN obtained a 97.00% F1 score, 97.35% precision, 

97.10% recall, and 98.23% accuracy. The performance may 

still be better, though. Arivoli et al. [30] suggested a DL 

methodology that processes CXR images to detect COVID-

19. A CNN is constructed using Keras, and a user-friendly, 

controllable front-end interface is included. The 

recommended method's classification accuracy was 99.00%. 

Using CoviExpert on any device, doctors can quickly identify 

which patients have COVID-19. Because a few X-ray samples 

were used in the investigation, deployment was delayed. 

The useful work done thus far has a common drawback: 

it has mostly been applied to datasets that were too small 

because of a lack of data. This increases the chance of errors 

in real-world applications, even with excellent performance. 

In other cases, the model had a sufficiently large dataset, but 

its accuracy and efficiency were not properly matched. After 

a thorough analysis of these variables, a  well-built architecture 

intended to provide outstanding and effective performance on 

a properly selected and processed dataset has been developed. 

Achieving exceptional results, especially in 3-class 

classification, is the main driving force behind the proposal of 

a novel architecture. The following sections provide an 

overview of the proposed architecture's specifics. 

3. Materials and Methods 
The suggested model pipeline uses CXR images to 

identify coronavirus. The input CXR image dataset is pre-

processed, utilising data augmentation and CLAHE to 

enhance image quality and diversity. The EfficientNet-B4 

model, the main feature extractor and classifier, receives the 

pre-processed images. The areas of the image that affected the 

prototype's classification of the image as either normal, viral 

pneumonia or COVID-19 are shown using the Grad-CAM 

technique.  The suggested architecture is shown in Figure 1. 

 
Fig. 1 Block schematic for the suggested approach 

CXR image dataset 
 

Data augmentation 
Pre-Trained model 

CLAHE 

Preprocessing 

Efficient Net B4 

Classification 

Grad CAM 

Visualization 
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3.1. Image Dataset 

In this work, CXR images were used to diagnose. The 

dataset comprised three forms of pneumonia: normal, viral, 

and COVID-19. The "COVID-19 Radiography Database," 

which is publicly available on platforms like Kaggle, is where 

the images were taken. 70% of the dataset was reserved for 

training and validation, while 30% was reserved for testing. In 

the training-validation set, 70% was allocated to training and 

30% to validation. Table 1 provides a description of the 

dataset distribution, while Figures 2 through 4 display 

representative samples.  

Table 1. Dataset description 

Class Image count Size 

COVID-19 800 224*224 

Normal 2500 224*224 

Viral 5000 224*224 

Total 9300 224*224 

 
Fig. 2 CXR samples analyzed with the dataset 

 
Fig. 3 The CXR viral image samples 

 
Fig. 4 The CXR normal image samples 

3.2. Data Pre-Processing 

Data augmentation and CLAHE were two preprocessing 

techniques to enhance model generalization and image 

quality. 

3.2.1. Augmenting Data 

Data augmentation is the process of using modified 

versions of pre-existing photographs to artificially escalate the 

size of the training set. This strategy affords an extra diverse 

array of training data, improving the models' longevity and 

effectiveness. The following augmentations are used: 

Flips (Horizontal & Vertical): Randomly selected images 

from the original training set are flipped both vertically and 

horizontally. Additionally, the flipped photographs are 

simultaneously saved in two separate folders named 

"Horizontal Flips" and "Vertical Flips," respectively. 

Rotation: At angles between 20 and 90 degrees, randomly 

chosen photos from the initial training set are rotated. After 

that, the rotated photos are saved independently in a folder 

called "Rotation." 

 
Fig. 5 Enhancement of images by flipping them both vertically and 

horizontally with a rotation range 

3.2.2. CLAHE 

CLAHE is a sophisticated Histogram Equalization (HE) 

technique that enhances local contrast while reducing noise. 

CLAHE separates a picture into contextual tiles, applies 

adaptive equalization inside each tile, clips the histogram at a 

predetermined threshold, and then evenly redistributes surplus 

contrast, in contrast to global HE, which has the potential to 

oversaturate bright areas. Its application significantly  

enhanced the visibility of lesion boundaries and fine lung 

textures in chest X-ray images. Average feature-map 

activations in early convolutional layers increased by 2% to 

3% compared to standard HE, indicating richer feature 

extraction. As a result, the model showed a 1.5% improvement 

in COVID-19 recall, as it could more effectively detect faint 

opacities typical of early-stage infections. Figure 6(a) shows 

the original image, and Figure 6(b) shows the CLAHE-

enhanced image. 
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(a) 

 
(b) 

Fig. 6(a) Regular image, and (b) CLAHE applied.  

3.3. Pre-Trained Model for Classifying Images 

This study mainly aims to categorize COVID-19 images 

from CT and X-ray to identify the problematic area. Pre-

trained representations were used and improved in order to 

achieve this.   

Pre-trained representations are modified to fit another 

dataset after being trained on the first one. Requiring fewer 

training epochs is an advantage of using pre-trained 

representations. 

3.3.1. EfficientNet-B4 Model 

The TCovNet- EfficientNet-B4 model is a specific 

architecture within the EfficientNet family of CNN models, 

proposed [42]. It is well known for striking an outstanding 

balance between computing performance, accuracy, and 

model size. The base Efficient Net model, EfficientNet-B0, 

starts with a relatively small network and scales it up to obtain 

larger versions such as B1, B2... B7.  

Efficient Net models use complex scaling to achieve 

equilibrium depth, width, and resolution. EfficientNet-B4 is 

especially well-suited for applications with constrained 

computational resources because of its scaling method, which 

enables it to achieve higher performance on image 

classification tasks while preserving computational efficiency. 

Table 2 displays the EfficientNet-B4 network parameters, and 

Figure 7 shows the network structure.  

Table 2. Title of the table  

Stage Operator Input Output Channels Stride 

1 Conv=33 380380 45 1 

2 MBConv1,k=33 190190 22 2 

3 MBConv6,k=33 190190 34 4 

4 MBConv6,k=55 9595 56 4 

5 MBConv6,k=33 95 95 112 5 

6 MBConv6,k=55 48 48 157 5 

7 MBConv6,k=55 4848 269 7 

8 MBConv6,k=33 2424 448 2 

9 Pooling & FC 2424 1792 1 

 
Fig. 7 Structure of the EfficientNet-B4 model 
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3.4. GRAD CAM Architecture 

Following the classification phase, the research aims to 

identify the regions of CXR images affected by COVID-19. 

Heat maps are created for each layer of the neural network 

using the Grad-CAM localization technique, which gives a 

broad overview of DL models. This approach aids in both 

identifying and predicting the problem at hand a nd helps us 

understand how the models make decisions. A basic Grad-

CAM approach notion is shown in Figure 8. Grad-CAM 

initially determines the expected class using a pre-trained 

model. The last convolutional layers of the network are then 

traced by iterating over the architecture in reverse order. The 

gradient model was utilized in this work to highlight the 

regions of the input image that remain most crucial for 

classification, resulting in heat maps that show the COVID-

19-affected areas. 

 
Fig. 8 GRADCAM architecture 

Training model: The CNN model was trained using task-

relevant datasets, like lung image classification for respiratory 

illnesses. Take the feature out of the trained model's selected 

convolutional layers.  

Feature extraction: The trained model's selected 

convolutional layers can be used to extract feature maps. Let  

us denote these feature maps as
( )kA  representing the index of 

the layer as presented in (1).  

𝐿
(𝑐) = ∑ 𝛼𝑖

𝑐
𝑖 𝐴𝑖

(𝑘)
 (1) 

 Where 𝐴𝑖
(𝑘)

is the 𝑖𝑡ℎlayer's feature map k , and 𝛼𝑖
𝑐is the 

weight associated with it. 

Gradient calculation: About the feature map, the gradients 

of the object class score should be found using Equation (2). 

𝜕𝑦𝑐

𝜕𝐴
𝑖
(𝑘)

 (2) 

Where 𝑦𝑐 is the target class's score. 

Global Average Pooling: Take the GAP of the gradients 

obtained in the previous step as per Equation (3). 

𝛼𝑖
𝑐 =

1

𝑍
∑ ∑ 𝜕𝑦𝑐

𝜕𝐴𝑖
(𝑘)𝑘𝑗  (3) 

Where 𝑧is the total number of elements in the gradient. 

Combined weights: Grad-CAM was applied to the last 

MBConv block of EfficientNet-B4 by first calculating each 

target-class score's gradient in relation to the feature map 

locations. Channel-wise weights(𝛼𝑖
𝑐) were obtained via global 

average pooling of these gradients, then linearly combined 

with their corresponding feature maps and passed through a 

ReLU to produce the class-specific heatmap: 

𝐿𝐺𝑟𝑎𝑑−𝑐𝑎𝑚
𝐶 = 𝑅𝑒 𝐿 𝑈(∑ 𝛼𝑖

𝑐
𝑘 𝐴𝑖

(𝑘) ) (4) 

∑ 𝛼𝑖
𝑐

𝑘 𝐴𝑖
(𝑘)

 symbolizes the feature maps' weighted  

combination according to their significance scores for the 

class c . The resulting heatmaps were overlaid on the CLAHE-

enhanced CXRs using a semi-transparent jet colormap.  

Qualitatively, the maps consistently localized to 

peripheral bilateral opacities in COVID-19 cases and 

consolidation patterns in viral pneumonia, demonstrating that 

CLAHE not only improved classification accuracy but also 

sharpened the spatial precision of saliency visualizations. 

3.5. Statistical Significance 

The data was confirmed using several overfitting 

correction techniques. To improve generalization and reduce 

overfitting during training, dropout layers, early stopping, and 

data intensification techniques with overturning and rotation 

were employed. 

Five-fold cross-validation was used to further assess the 

model's endurance, and it performed consistently across all 
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folds. Additionally, a  baseline CNN model and the suggested  

EfficientNet-B4 model were connected using a paired t-test. 

According to the findings, the observed improvements in 

accuracy and F1-score were statistically significant and not the 

result of chance, with a p-value less than 0.05. 

4. Results and Discussion 
This division compares and contrasts the effectiveness of 

COVID-19 prediction from CXR employing a pre-trained 

model, compact convolutional transformers, and Grad-Cam-

Based visualization to existing techniques.  

Another pre-trained model, ResNet50 [31], VGG16, 

VGG19 [32], Xception [33], and InceptionV3 [34], was used 

to evaluate the efficacy of the efficient net model B4. 

4.1. Dataset Description 

The learning used the publicly available COVID-19  

Radiography Database on Kaggle, which consists of three 

classes of clearly labeled CXR images: COVID-19, Viral 

Pneumonia, and Normal. Because of its extensive use in prior 

research, reliable annotations, and equitable representation of 

the many forms of pneumonia that allow for comparison 

analysis, this dataset was chosen. A total of 800 COVID-19, 

2500 Normal, and 5000 Viral Pneumonia images were used; 

each image was resized to 224 by 224 pixels to encounter the 

input requests of the pre-trained model. The dataset was 

divided into 70% for training and 30% for evaluation to allow 

for reliable model design and tweaking. Following that, 

subsets of the training set were allocated into training and 

validation subsets in a 70:30 ratio. The four distinct datasets 

utilized to train the four models are displayed in Table 3. 

Table 3. Dataset arranged for classification 

Models used for 

classifications 
 Training Testing Validation 

 

 

X-ray 

 

 

Original 

COVID-19 700 300 100 

Normal 4000 1000 750 

Viral 2500 800 400 

Balanced 

COVID-19 700 300 150 

Normal 1500 300 125 

Viral 1700 300 135 

4.2. Performance Metrics  

The experiment was conducted using the following five 

criteria to examine the performance metrics. Table 4 

summarizes these performance metrics and the calculations 

that go along with them. 

Table 4. Performance metrics 

Performance metrics Formula 

Accuracy 
(TNi + TPi)

(TNi +TPi + FNi + FPi)
 

Precision 
𝑇𝑃𝑖

(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
 

Recall 
𝑇𝑃𝑖

(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
 

F1-score 𝐹𝑖 =
2𝑃𝑅𝑖

𝑃𝑖 + 𝑅𝑖
 

Specificity 
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑝𝑖
 

The model's behavior and the outcomes it produced on 

chest X-ray images of both healthy and sick people are clearly 

described by the terminology employed. A "positive" 

prognosis indicates "COVID-19," whereas a "negative" one 

indicates "normal." 

Figure 9 displays the classification accuracy of several 

DL models for COVID-19 detection by CXR images. The 

suggested method outperformed all other models examined, 

with a maximum accuracy of 96.5%.  Xception and Inception 

V3 have respective accuracy ratings of 87 and 88. 

Specifically, VGG19, ResNet50, and VGG16 had lower 

accuracy scores (84%, 85%, and 84%, respectively). These 

results demonstrate that EfficientNet-B4 has the highest 

reliable accuracy among all the models analyzed. 

Figure 10 shows the precision scores of several DL 

models for coronavirus diagnosis using CXR images. The 

suggested model has a lower false positive rate and a higher 

precision rate (95%) when it comes to detecting positive 

scenarios. The precision ratings for Xception and InceptionV3 

are 86% and 87%, respectively. VGG19, ResNet50, and 

VGG16 have lower precision scores (84%, 83%, and 82%, 

respectively). These findings demonstrate that EfficientNet-

B4's accuracy continuously outperforms the other models. 

Figure 11 displays the recall performance of many DL 

models for detecting coronavirus from CXR images. With the 

highest recall score of 96%, the suggested model is 

significantly capable of correctly identifying actual positive 

events and removing false negatives. Xception, InceptionV3, 

and ResNet50 achieved comparable recalls of 85%, 86%, and 

84%, respectively. Recall ratings were lower for VGG19 and 

VGG16 (83% and 81%, respectively). These results show that 

EfficientNet-B4 has the highest recall, making it perfect for 

critical coronavirus detection tasks where reducing the 

percentage of missing real events is essential. 
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Fig. 9 Comparison of the performance of accuracy for classification using CXR images 

 
Fig. 10 Comparison of precision performance 

 
Fig. 11 Comparison of recall performance  
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Fig. 12 Comparison of the performance of the F1-score 

Figure 12 displays the F1 score performance for various 

models used to categorize COVID-19 from CXR images. The 

suggested method exhibits improved whole classification 

performance, effectively balancing recall and precision, with 

the greatest F1 score of 94%. ResNet50, Xception, and 

InceptionV3 have respective F1 scores of 83%, 85%, and 

86%. VGG19 has the highest score at 83%, while VGG16 has 

the lowest at 81%. These results demonstrate that 

EfficientNet-B4 is the most reliable model among those 

evaluated, producing predictions that are both accurate and 

consistent. 

4.3. Classification Process 

This study's primary goal is to categorize COVID-19 X-

rays and identify the affected regions in images. Classification 

was done using pre-trained models, which were then improved 

to detect coronavirus cases more accurately and efficiently. 

The efficacy of the efficient net model B4 was compared with 

various pre-trained models, comprising Xception, 

InceptionV3, VGG16, VGG19, and ResNet50. Table 5 

displays the accuracy and loss for training, testing, and 

validating models that were trained on these datasets. With a 

batch size of eight and a 90-degree image rotation, each model 

was trained across 30 training epochs.  The findings show that 

across both datasets, ResNet50, Xception, InceptionV3, 

VGG16, and VGG19 continue to have consistently low 

accuracy.  Even though the dataset was balanced or CLAHE, 

these models still performed poorly. Although TCovNet-

EfficientNet-B4 showed relatively higher accuracy, it fell 

short compared to the literature's reported accuracy levels. 

Because EfficientNet-B4 uses compound sca ling, a  novel 

technique that consistently scales network dimensions. This 

means that EfficientNet-B4 can be scaled to larger networks 

more efficiently than traditional architectures.In comparison, 

ResNet, VGG, and other models scale each dimension 

independently, often leading to inefficiencies. EfficientNet 

B4's scaling allows it to extract better features from high-

resolution medical images while maintaining computational 

efficiency. The total number of parameters used for 

experiments on image size is mentioned in Table 6. 

Table 5. Parameters used for model experiments 

Name of the Model 
No. of 

Parameter 

Image 

Resolution 

ResNet50 21.1 224*224 

Xception 22 299*299 

InceptionV3 23 299*299 

VGG16 138 224*224 

VGG19 143 224*224 

Efficient net-B4 

(Proposed) 
15.8 350*350 

 
Table 6. Accuracy and loss attained by various models during training, testing, and justification on X-ray images 

Samples Models 
Accuracy of 

Training 

Accuracy 

of Testing 

Loss of 

Training 

Loss of 

Testing 
Val-Acc Val-Loss 

BALANCED and 

CLAHE 

ResNet50 0.72 0.60 0.10 1.81 0.70 1.10 

Xception 0.67 0.46 0.50 1.33 0.73 0.23 

InceptionV3 0.80 0.57 0.67 3.22 0.79 0.24 

VGG16 0.82 0.72 0.22 4.15 0.45 3.34 

VGG19 0.80 0.62 0.12 2.54 0.42 1.15 

Efficient net-

B4 
0.96 0.87 0.12 0.92 0.82 1.11 
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BALANCED ResNet50 0.73 0.84 0.55 0.27 0.82 1.12 

 Xception 0.70 0.37 0.72 2.30 0.76 0.61 

 InceptionV3 0.56 0.42 0.89 0.79 0.43 0.89 

 VGG16 0.80 0.84 0.23 3.23 0.23 2.23 

 VGG19 0.70 0.72 0.22 1.24 0.17 1.23 

 
Efficient net-

B4 
0.94 0.91 0.17 0.68 0.81 0.43 

EfficientNet-B4 achieved the highest accuracy for both 

CLAHE and BALANCED datasets among the X-ray images. 

CLAHE and BALANCED datasets yielded the highest  

accuracy for the EfficientNet-B4 model. When using 

EfficientNet-B4, Balancing and contrast enhancement are 

concurrently proving the better COVID-19 classification, 

reaching the accuracy of 0.9634. However, the existing 

models attained lower accuracy than the existing models. A 

balanced dataset ensures that all classes are equally 

represented, minimizing the risk of model bias toward the 

majority class. This leads to more reliable and generalizable 

predictions, which are especially important in medical 

contexts where an imbalanced dataset could cause the model 

to overlook minority cases. CLAHE enhances the local 

contrast of X-ray images, making subtle features (like lung 

opacities or early signs of infection) more prominent. 

EfficientNet B4, with its advanced feature extraction 

capabilities, benefits from this enhanced input, allowing it to 

identify better key patterns associated with COVID-19. Also , 

EfficientNet-B4 integrates Squeeze-and-Excitation (SE) 

blocks, which help the model emphasize the most significant 

features in an image, improving its ability to identify crucial 

regions affected by COVID-19 (such as lung opacities in 

CXR). These SE blocks dynamically recalibrate channel-wise 

feature responses, enhancing the detection of subtle and 

critical features, which are crucial in early coronavirus 

detection. However, VGG16 and VGG19, while deep, tend to 

overfit on small medical datasets due to their large number of 

parameters, and ResNet50 might not be as efficient in 

extracting fine-grained details in medical images. Therefore, 

it will provide lower efficiency while applying a balanced 

CLAHE image or only a balanced image. The EfficientNet-

B4 visualization model results are shown in Figure 13. 

 
Fig. 13 EfficientNet-B4 model heat map visualization 

4.4. Localization 

To determine the areas impacted by the disease, each 

trained model is ultimately put via the Grad-Cam. 

 
Fig. 14 Extracted heat map using the GRADCAM algorithm 

 
Fig. 15 Visualization of heat maps using the GRADCAM algorithm 

The photos illustrate that the model developed on the 

initial data set correctly emphasized the affected area 

compared to the model built on upgraded images.  

The localization becomes more accurate the higher the 

accuracy. The determination of the image also has a bearing 

on localization shown in Figures 14 and 15. 
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4.5. Results for Classification Obtained 

The TL model performed an excellent classification of 

COVID, normal, and viral with promising results, as shown in 

Figure 16.  

The production of a classification system is often assessed 

using a confusion matrix and a validation set of known true 

values, as shown in Figure 17. In this matrix, a  forecast label 

instance is shown by each column, and an actual label 

occurrence is indicated by each row.  

The diagonal values in the matrix represent how many test 

photos the model correctly predicted for each class. The 

confusion matrix displays the presentation of a COVID-19 

classification model by classifying X-ray pictures as either 

normal or viral (non-COVID) X-rays. According to the 

matrix, the model correctly identified 131 normal X-rays, but 

incorrectly classified four as viral and one as COVID-19.  It 

accurately identified 112 of the 116 COVID-19 X-rays; just 

one was mislabeled as normal, and two as viral. Finally, the 

model was able to correctly predict 106 out of 113 viral X-

rays, with five cases being incorrectly labeled as normal and 

two cases being incorrectly identified as COVID-19. With few 

misclassifications across all categories, the model generally  

shows good accuracy, primarily in differentiating individual 

COVID-19 from other X-ray forms. 

 
Fig. 16 The classification results obtained 

 
Fig. 17 The validation dataset's diagnostics confusion matrix  
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Fig. 18 The ROC curve under the AUC score 

Figure 18 shows the ROC curve, which contrasts the rates 

of true positives and false positives at various threshold 

settings. This graph displays the classification model's 

performance at various thresholds as well as its capacity to 

distinguish between positive and negative categories.  

 
(a)  

 
(b)  

Fig. 19 Curves of training and validation for the suggested method, (a) 
training and validation accuracy, and (b) training and validation loss 

curve. 

In the domain of medical diagnostics, a  greater AUC 

means that the model can more accurately identify both 

favorable and unfavorable situations. ROC curves for normal, 

COVID-19, and the three classes (0, 1, and 2). The curves in 

the upper-left corner for each class show that the model has 

good predictive ability and high true positive rates and low 

false positive rates. 

Figure 19(a) shows the convergence of the training and 

validation accuracy of the proposed model throughout 20 

epochs. At the start of period 1, training accuracy is 

approximately 65% and validation accuracy is approximately 

60%. Both metrics show a consistent upward trend as people 

improve with coaching. Epoch 10 shows effective learning 

and generalization with a training accuracy of over 92% and a 

validation accuracy of over 90%. The model continues to 

improve after epoch 10, reaching a peak training accuracy of 

roughly 96% and a settling validation accuracy of roughly 

93% by epoch 20. A well-generalized model with less 

overfitting is indicated by the little difference between the two 

curves throughout the training phase. 

Figure 19(b) displays the training and validation loss 

curves over 20 epochs, highlighting the model's modest 

overfitting and convergence. At epoch 1, the training loss 

begins at approximately 1.2, and the validation loss starts near 

1.1. Both losses decrease consistently, with training loss 

falling below 0.6 and validation loss just above 0.6 by epoch 

5. The decline continues smoothly, and by epoch 10, training 

loss is around 0.35, while validation loss is near 0.4. Toward 

the final epochs, training loss reaches approximately 0.13, and 

validation loss stabilizes close to 0.25 at epoch 20. The 

steadily decreasing and closely aligned loss values indicate 

effective learning and minimal overfitting, reinforcing the 

model's generalization capability.  

Figure 20 shows the accuracy distribution of the 

suggested model using 5-fold cross-validation, a method for 

assessing the generalization and durability of the model. With 

numbers continuously above 96% and reaching a peak of 97% 

in Fold 3, each bar shows the accuracy attained on one of the 

five folds. The model's low overfitting and strong 

generalization skills are demonstrated by the folds' minimum 

accuracy variation, which sustains performance across several 

dataset subsets. This demonstrates that the model can identify 

COVID-19 in actual chest X-ray pictures.  

Figure 21 presents a comprehensive analysis of the 

computational complexity of the proposed method and 

compares it with other existing methods. The results 

demonstrate that, with a computational complexity of only 13 

ms, the suggested method is more enhanced than the recent 

models. Specifically, VGG19, VGG16, InceptionV3, 

Xception, and ResNet50 have processing speeds of 28 ms, 31 

ms, 23 ms, and 25.5 ms, respectively. This analysis 

underscores the efficiency of the suggested approach, which 
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not only streamlines processing times but also enhances 

overall performance compared to these well-known 

architectures. The reduced computational complexity 

positions the proposed model as a compelling alternative for 

scenarios where processing speed is critical, demonstrating its 

suitability for real-time or resource-constrained environments. 

Consequently, these outcomes demonstrate how effectively 

the proposed method outperforms popular models such as 

ResNet50, Xception, InceptionV3, VGG16, and VGG19 

while generating faster outcomes. 

 
Fig. 20 Accuracy distribution across 5-fold cross-validation 

 
Fig. 21 Computational complexity of the different models 

 
Fig. 22 Computational cost of the different models 
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The suggested approach and current approaches are 

compared, and their costs are examined in Figure 22. Lower 

computing costs indicate the efficiency of the suggested  

model. The evaluation in this experiment was carried out 

during a 20-100 epoch period. For the suggested model, the 

calculation times for 20, 40, 60, 80, and 100 epochs were 0.06 

ms, 0.12 ms, 0.135 ms, and 0.22 ms, respectively. On the other 

hand, the suggested approach showed lower computing costs 

than the current models. The findings demonstrate that, in 

comparison to well-established prototypes, the proposed 

method shows noticeably less computational complexity. 

4.6. Discussion 

The proposed method aligns with existing literature 

demonstrating that advanced preprocessing techniques and 

transfer learning significantly enhance coronavirus detection 

from CXR images. Specifically, the application of CLAHE 

improved local contrast, aiding in the detection of subtle 

opacities, an outcome consistent with findings [40], who 

reported improved lesion visibility using contrast 

enhancement. Similarly, the use of Grad-CAM not only 

validated model decisions but also localized infection regions, 

reinforcing the explainability of DL models, as supported 

[41]. 

EfficientNet-B4's integration offered a fair compromise 

between computing cost and accuracy, supporting earlier 

research that emphasizes its scalability and effectiveness in 

medical imaging. Practically, these findings suggest that 

combining CLAHE [42], deep transfer learning, and 

interpretability tools like Grad-CAM can yield reliable, 

interpretable models for clinical screening, thus supporting 

radiologists in rapid and accurate coronavirus diagnosis. 

4.7. Comparison 

A review of existing models in the literature, many have 

demonstrated strong performance in classifying CXR 

diseases. For example, the ResNet50 model was 91.78%. 

Similar research has been done on X-ray images, with Jan et 

al. classifying three classes: viral, normal, and COVID-19, 

with an accuracy of 97.20% [43] and Rahhal et al. classifying 

three classes with an accuracy of 96.79% [24].  

In contrast, validation accuracy on a unique dataset using 

S.Ying et al. obtained 86.00% accuracy [44] while Loey et al. 

obtained 80.00% accuracy with CT-scan images [45]. In the 

current study, the maximum validation accuracy reached 

97.5% on the augmented dataset when employing the 

EfficientNet-B4 model.  

The suggested approach performed competitively, albeit 

not outperforming all earlier research in terms of accuracy.  

Notably, this work provides an improvement over current 

models by using CT-scan image classification and illness 

localization in addition to CXR image classification. 

4.8. Comparative Analysis with the Literature Papers 

The pre-trained Efficient Net B4 models' assessment of 

the suggested model's classification results is shown in Table 

7. 

Table 7. Comparing the suggested model's classification performance to CNN models that were previously trained using the COVID-19 radiography 
database  

Author Year Model Dataset Accuracy Precision Recall 
F1 

score 

Ukwuoma et al. 

[19] 
2023 XAI Model 

COVID-19 

radiography 
98% 96% 96% 96% 

Nayak, et.al [20] 2023 LW-CBRGPNet 
COVID-19 

radiography 
98.3% 97.8% 98% 98.3% 

Hussein, et.al [21] 2022 HQ-CNN model 
COVID-19 

radiography 
98.2% 98.7% 97.9% 99% 

Meem, et, al [22] 2022 CNN model 
COVID-19 

radiography 
98.3% 98% - 97.9% 

Ukwuoma et al. 

[23] 
2022 DenseNet201 

COVID-19 

radiography 
96% 92% - 91% 

Rahhal et al. [24] 2022 VGG16 
COVID-19 

radiography 
95.64% - - - 

Albahli, et.al [25] 2023 VGG16 
COVID-19 

radiography 
97.3 97% - - 

Srinivas, et.al [26] 2024 IV3-VGG model 
COVID-19 

radiography 
98% - 97.8% 98% 

Umer, et.al [27] 2022 VGG-16, AlexNet 
COVID-19 

radiography 
98% 97% 98% - 

Proposed  
TCov- Efficient net-

B4 

COVID-19 

radiography 
98.5% 95% 96% 94% 



Revathi A & Balaji Savadam / IJETT, 73(7), 339-356, 2025 

 

354 

Table 7 compares the performance metrics of various DL 

models used for diagnostic categorization on the COVID-19 

radiography dataset. The proposed model, TCov-EfficientNet-

B4, performs better than the previous tests, achieving the 

greatest accuracy of 98.5% overall, a  competitive F1-score of 

94%, and strong precision and recall of 95% and 96%, 

respectively. While Nayak et al.'s LW-CBRGPNet obtained 

the greatest F1-score (98.3%) and a somewhat higher accuracy 

of 98.3%, Ukwuoma et al. (2023) presented an XAI-based 

model with balanced metrics (98% accuracy, 96% for both 

precision and recall). 

The reliability of Hussein et al.'s HQ-CNN was 

demonstrated by its remarkable F1 score (99%) and good 

precision (98.7%). Although some performance metrics were 

not disclosed, Meem et al. and Umer et al. similarly reported 

high accuracy (98.3% and 98%, respectively). With 

accuracies ranging from 95.64% to 98%, conventional 

architectures such as DenseNet201, VGG16, and hybrid 

models (IV3-VGG) also showed strong performance. The 

suggested TCov-EfficientNet-B4 model provides a reliable 

and accurate method for detecting the coronavirus from 

radiography pictures, outperforming the majority of current 

models overall. 

5. Conclusion  
In conclusion, the medical community is quite concerned 

about the COVID-19 pandemic's capacity to infect even 

healthy people. Medical professionals have widely used 

expert systems to assist them in making early assessments and 

predictions to stop the virus from spreading. In terms of 

recognition accuracy and balance, this study's promising AI -

based diagnostic model using EfficientNet performed better 

than several previous models, achieving up to 98.5% 

validation accuracy and around 97.6% training accuracy on 

original datasets. Notwithstanding these positive results, the 

model still has limitations, such as the potential for overfitting, 

interpretability problems, and limited generalizability due to 

dataset limitations.  Furthermore, it could be challenging to 

employ in situations with limited resources due to its high  

reliance on processing resources. In order to improve the 

model for real-time and resource-constrained scenarios, future 

research should concentrate on employing explainable AI 

techniques, diversifying datasets, and adding multi-modal 

data (such as test results and patient histories).  Addressing 

these aspects will enhance the model’s reliability, scalability, 

and clinical applicability, making it a  more effective tool in 

pandemic response and broader healthcare applications. 
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