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Abstract - In image analysis, image captioning is very essential , and its emphasis is laid on functional and spatial aspects 

modeling of image by use of intuitive models. Based on the Flicker-8k dataset, the proposed model improves the Invasive 

Augmented Transform (IAT) model based on Deep CNN as a framework. The suggested methodology encompasses different 

building blocks such as GAN, LSTM, Oz-Net, and Inception-Net, giving a testing precision of 93%. In an attempt to address the 

computing requirements of bigger samples and proliferated models of IAT of 18- and 36-layers with enhanced accuracy of 99%. 

Compared with the 18-layer model, which is optimized in terms of training efficiency (97 percent accuracy), in the 36 -layer 

model, the added complexity and accuracy are 2 percent. The IAT model uniquely augments the text with images to represent 

intricate processes, utilizing segmentation filters to refine caption coherence. The performance of the trials for the proposed 

model demonstrates that the IAT algorithm surpasses state-of-the-art architectures by 6% in accuracy and reduces execution 

time by 30%, showcasing impressive performance metrics like accuracy and BLEU for image labeling . 

Keywords - Image labelling, Deep Learning, Convolutional Neural Networks, LSTM, Invasive Augmented Transform.  

1. Introduction  
Image Labelling is very essential to visualize data with 

natural, custom aspects of the image features and labels 

associated with each type considered in real time. To 

encompass the requirement of understanding the label and 

captioning of the images, newer features and technologies are 

introduced to enable image labelling and allow an automated 

system to provide usable descriptions of images effectively. 

Similarly, the creation and automatic generation of text 

explanations about the visual content in the form of image 

captioning and labelling has become an essential area  of 

mobile applications in computer vision and artificial 

intelligence. Such technologies are very important in areas 

like remote sensing, autonomous navigation, military 

surveillance, and hazard detection in determining situations 

where scenarios are described automatically to improve the 

understanding and decision-making process [1]. Considering 

the (traditional) encoder-decoder structures, which are limited 

in capturing fine-grained semantics and spatial structure, 

particularly in difficult or high-resolution images. 

Subsequently, new research has offered several improvements 

to provide visual and linguistic comprehension. The 

application of feature enhancement, which enhances the 

quality of visual inputs, is one of the major developments. In 

a Two-Stage Feature Enhancement (TSFE), certain attention 

has been given to where global and local image features are 

processed in isolation successively, giving more descriptive 

and factual captions, especially in remote sensing, where 

objects and spatial layouts matter [3]. Similarly, another 

development aims to enhance the reasoning capacity in 

captioning models. Clear explanations of the processes, i.e. 

ones that rely on utilizing a Language-Matching Module 

(LMM), have been created in order to drive the generation 

procedure of captions by matching visual information with  

linguistic structure to enable the system to deal more 

efficiently with complex scenes involving numerous 

interacting objects [2]. Besides feature processing and 

reasoning, the visual and textual modalities need to be aligned 

so that the overall performance of the multimodal system can 

be enhanced.  

The proposed feature extraction system is a solid design 

of a  feature extraction model that optimizes the cross-modal 

retrieval and captioning performance, respectively, by 

aligning the image features properly with the textual 

embeddings within common spaces [4]. Currently, there are 

advancements in generative modelling. As another example, 

it is presented that a Visual Conditional Control Diffusion 

https://www.internationaljournalssrg.org/
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Network (VCC-DiffNet) is used to integrate diffusion 

processes into generating captions. It can generate more 

contextually aware and precise descriptions because the 

generation of visual content is conditioned on visual content 

at several stages of the creation process, and this approach can 

be especially useful in aerial and satellite image interpretation 

[6].  

To reinforce these works, superior transformer structures 

have been advanced, which take into consideration the 

positional and channel-based semantic coupling to enhance 

the determination of spatial and contextual associations in the 

picture. Such positional-channel integration method permits 

the models to comprehend better where and what visual 

features exactly are, especially in structured remote sensing 

data [8].  

The image captioning has broadened through application-

specific research. Military-specific models have been created 

to interpret imagery in Unmanned Aerial Vehicles (UAVs) 

and Unmanned Ground Vehicles (UGVs), in low altitude and 

domain-specific terms, which have yielded more 

operationally-relevant captions [6]. Equally, image captioning 

has been used in the construction sector to automatically 

detect and describe possible hazards, which clearly shows the 

usefulness of an early-stage image captioning solution to 

safety monitoring and inspection [7]. The other research 

directions are concerned with the choice of the best encoder-

decoder components, where combinations of model 

architectures are researched to find the best combination that 

would provide the best performance on different types of 

image captioning problems [5]. Lastly, there is also an 

enhanced decoding strategy. Meshed context-aware beam 

search has been suggested to simultaneously incorporate 

contextual information on numerous layers of the decoder, 

resulting in fluent, coherent and semantically varied captions 

[9]. A combination of these studies takes the form of the entire 

evolution of image captioning and labelling. The output that 

systems can conceive and convey about ambitious visual 

information has been considerably enriched by combining 

better visual information processing, conceptual conclusion, 

cross-modality adjusting and particular adaptation to a given 

application area [1-9]. 

1.1. Problem Statement 

Image captioning is one of the most important aspects of 

NLP interaction with various vision. Image analysis has come 

a long way thanks to new methods that use deep learning 

models and convolutional nets like Inception-net, Resnet-50, 

Resnet-101, Alex-net, Oz-net, and others.  The exception-net 

for the design of the model involves a combination of  different 

structural designs, encoder-decoder modeling, and 

transformation of the generative AI; as a result, the observed 

results frequently struggle to capture the complex nature of the 

dependent factors indicated by the text and its corresponding 

image. However, the IAT model provides several advantages 

over SOA architectures as mentioned in Table 1. The IAT 

model utilizes filter features and intrusive transform 

approaches to achieve overall augmentations in the image 

data, thereby enhancing the depth of content in elements that 

other layer models might overlook. This model enhances the 

effectiveness and intrusiveness of relevant information by 

incorporating captions. The normalized weights from the IAT 

filter with 18- and 36-layer model designs can also handle the 

different problems, making the accurate descriptions based on 

the 8k-sampled Flicker data even better. 

Table 1. Representing the overall summary of the SOA architecture and its differences with the IAT model 

Feature/Aspect IAT Model [1] TSFE [2] LMM 
[3] Cross-Modal 

Retrieval 

[4] VCC-

DiffNet 

Primary Focus 

Filter-based 

enhancement of image 

+ caption weights 

Two-stage feature 

refinement 

Logical 

caption 

reasoning 

Feature extraction 

for cross-modal 

retrieval 

Diffusion-based 

caption 

generation 

Image Processing 

Approach 

Classical filters (Canny, 

Sobel, Scharr) + 

statistical extraction 

Convolutional 

encoder + 

refinement 

Scene parsing 

+ graph 

reasoning 

CNN encoder 

(ResNet) 

Vision encoder 

+ conditional 

diffusion 

Caption 

Integration 

Numeric conversion of 

captions → weighted 

features 

Enhanced 

attention-guided 

captions 

Predicate logic 

for textual 

analysis 

BERT-based 

embeddings 

Captions guided 

by visual 

conditions 

Feature 

Representation 

DataFrame + CSV 

storage of weighted 

features 

Hierarchical 

latent vectors 

Semantic-

symbolic 

fusion 

Multimodal latent 

space 

Image-text 

attention fusion 

Model Depth 

Configurable: 5, 18, 36 

layers (Conv1D + 

Dense) 

Medium-deep 

encoder-decoder 

Transformer-

based logic 

module 

Medium CNN + 

Transformer 

Deep CNN + 

diffusion 

transformer 

Learning 

Objective 

Classification via 

extracted filter + 

statistical features 

Caption fluency 

and relevance 

Accuracy in 

complex scene 

descriptions 

Precision in 

retrieval tasks 

Caption 

coherence via 

diffusion 

modeling 
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Data Format 

Used 

Structured tabular input 

with images (designed 

with image 

filters/statistics) 

Tensor-based 

image sequences 

Graph + 

tokenized 

captions 

Aligned feature 

vectors 

Sequence 

embeddings 

Unique Strength 

Integrates adaptive 

filters with numerical 

caption weights for 

interpretability 

Visual refinement 

over noisy 

backgrounds 

Enhances 

reasoning in 

ambiguous 

scenes 

Efficient retrieval 

using cross-modal 

mapping 

High-quality 

captioning using 

diffusion control 

1.2. Limitations 

1.2.1. Deep Semantic Understanding in Complex Scenes 

Absence 

Although much progress has been made in the field of 

deep learning, such as ResNet, Inception Net, and encoder-

decoder networks, most of the existing systems seem not to be 

able to adequately recognize the complex associations across 

the plurality of subjects comprising an image and their context 

in it. This leads to descriptions that are correct in grammar but 

narrow in semantics in expressing interactions or spatial 

behaviors of elements, particularly in more complex real-

world or remote sensing situations [3, 6]. 

1.2.2. Minor Generalization of Domains and Views 

Model on these benchmark datasets (such as MSCOCO 

or Flickr8k/30k), but the performance of image captioning 

goals decreases when they are utilized on domain-specific data 

(such as military UAV imagery, construction site images or 

even satellite imagery). Such models do not respond well to 

perspective, resolutions or domain-specific objects, words, 

etc, and that has important implications on how such models 

can be used practically, especially in special purposes [6, 7]. 

1.2.3. Lack of Contextual Integration in the Generation of the 

Caption 

The majority of traditional beam search/greedy decoding 

algorithms produce captions greedily and locally, as opposed 

to global cues offered in context against the whole image. 

Despite the new methods that have been suggested, such as 

meshed attention or context-aware decoding, a lot of models 

still fail to capture significant details of the scene, missing 

important information, or describe it incompletely or 

ambiguously [9]. Such constraints bring to light the necessity 

of models such as IAT (Intrusive Attention Transform) that 

are supposed to capture more accurately neglected visual 

information and, besides, enhance caption relevance with 

extra layers of context and normalized filtering mechanisms. 

1.3. Proposed Work 

The proposed IAT model is inspired by the deficiency of 

current captioning platforms to describe scene semantics and 

scene-context interactions, particularly in the imagery of 

domain-specific interest, such as remote sensing or UAV data. 

Conventional deep learning architectures fail to capture 

minute-level spatial and textural information since they only 

use deep latent representations. As a solution, IAT proposes a 

hybrid solution involving classical f ilters of image processing 

(Canny, Sobel, Laplacian) and statistical descriptors, along 

with adaptive weight-based feature modeling. Captions are 

transformed into numeric weights and combined with features 

derived from images to allow more interpretable and domain-

adaptable representations. The pipeline contains a well -

organised processing of data that extracts these characteristics, 

creates Data Frames, and applies them to a Conv1D-Dense 

hybrid CNN model with depths that can be made adjustable 

(5, 18, or 36 layers). The design makes it flexible, enhances 

feature fusion, and achieves superior performance on image 

types in classification/captioning. The model is trained on 

structured tabular data, which makes it scalable as well as 

interpretable. Hence, the overall contributions of the proposed 

work are depicted below: 

1.4. Objectives 

• A robust IAT filter design is used to extract sensitive 

information from images, and its segmented filter is used 

to extract different spatial domain characteristics 

indicating the feature content of the images. 

• To address the complex and interoperable conditions 

between the text and image data with a unique Structural 

model design with an 18-layer Deep CNN architecture 

(indicating 12 layers in encoding and 6 layers in 

decoding). 

• To impact the depth, a  36-layer design is introduced to 

improve the precise and accurate descriptions of the 

Flicker 8k datasets. 

• Finally, to indicate the best performance metrics with  

BLEU, Accuracy, Compression Factors and other metrics 

indicating the best accuracy observed with benchmarking 

of the results with existing and proposed techniques and 

indicating the stability of the proposed Strategy. 

1.5. Overview 

The overall design of the paper divides the work into 

multiple sections. Section 2a delves into a comprehensive 

review of various advancements in image caption analysis 

using Deep-CNN algorithms. Section 3 outlines the design of 

the detailed framework, which includes the proposed IAT 

layer architecture. This architecture enhances the filter 

weights, ensuring scalability and robustness, and employs an 

invasive approach to address the challenges associated with 

image captions. In Section 4, computation complexities, 

efficacy, and stability are performed with effective results, 

showcasing the best performance of the IAT model. Section 5 

summarizes the overall changes, requirements, and 
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experimental analysis of the proposed approach. The proposed 

work includes multiple experiments and improved evaluation 

metrics. In Section 5, the performance of the existing and 

proposed models is realized with accuracy and BLEU scores 

with an efficient design framework based on 18-layer and 36-

layer architecture designs. Finally, the conclusion of the 

potential awareness and definitive strategies of the proposed 

work provides the need to inculcate the future scope of the 

work. 

2. Literature Review 
2.1. Feature Enhancement and Reasoning-Driven 

Approaches in Remote Sensing Captioning 

The article in [1] presented a Two-Stage Feature 

Enhancement model of remote sensing image captioning 

(called TSFE) that enhances the model attributes by 

improving the semantic accuracy in a two-step fusion process. 

The approach generates superior contextual comprehension 

using the multi-level attention and reports 91.2% of accuracy 

and 88.5 F1-score, but cannot optimally generalize across 

landscapes, which could be addressed by using adaptive 

scene-aware modules. In [2], a  reasoning-based system with 

large multimodal models enhanced factual consistencies and 

informativeness in complex scenes, reporting 87.5% accuracy 

and 85.1% F1-score, but it has a problem with scalability, 

which implies modular reasoning. In [3], cross-modal image 

objects to text retrieval improved matching accuracy using 

global and local features with an accuracy of 89.7% and F1-

score of 86.3%, but with the lack of domain adaptation in an 

unseen environment. The visually grounded and diverse 

captions produced by the diffusion-based VCC-DiffNet in [4] 

introduced generation with controllable generation precision  

of 85.9 as well as an F1-score of 83.7, although the 

computation cost is considerable. 

2.2. Model Architectures and Domain-Specific Captioning 

Solutions 

In reference to the model developed in [5], the authors 

have tested the encoder configuration and decoder architecture 

and have found that the transformers are more successful than 

LSTMs with an accuracy of 93.4 and an F1-score of 90.2; 

however, there is a missing context-sensitive encoder in 

dynamic feature selection. A model of military-specific 

captioning increased tactical usefulness on UAV and UGV 

images with an accuracy of 88.1% and F1-score of 85.5, but 

can only apply to constrained conditions in [6]. The early work 

on captioning hazards of construction in [7] demonstrated a 

good result of 80.3% accuracy and 78.0% F1-score, but had a 

limited amount of data and a lack of temporal attention. 

Positional-channel semantic fusion was rated 90.7% accuracy 

on spatial and semantic consistency and 88.8 F1-score on [8], 

but poor performance in complicated multi-object scenes was 

observed. Context-aware beam search in [9] can achieve 89.4 

percent accuracy and 87 0 percent F1 score with improved 

fluency and relevance, but more object detail capture requires 

hybrid forms of decoding. 

2.3. Scene Embeddings, Artistic Captioning, and Multi-

Label Attention Models 

In [10], the sensor scene embedding was applied to the 

captioning system, achieving 91.0 accuracy and 88.7 F1-

score; however, scalability issues may be overcome by meta-

learning approaches. In the Decouple-CLIP [11], a  dual-

branch painting captioning model was introduced with 84.8 

percent and 82.5 percent accuracy and F1-score, respectively, 

yet was adapted to non-contemporary or abstract studies. [12] 

Introduced a patch-level multi-label model providing fine-

grained remote sensing captioning results with 87.9% 

accuracy and 85.3% F1-score, but the occlusion cases are not 

easy to deal with. In [13], a  diffusion-based multi-attentive 

framework was proposed, performing temporal change 

captioning with an accuracy of 86.5 percent and an F1-score 

of 84.1 percent, but it is vulnerable to temporal noise and may 

be enhanced to handle motion. Reference [14] provided a 

literature review and outlined the trend and the shortage of 

common evaluation criteria , but offered no precise measures. 

2.4. Memory Integration, Multimodal Adaptations, and 

Attribute-Guided Captioning 

The author in [15] employed a memory-augmented 

retrieval captioning model that achieved high performance in 

external knowledge integration with accuracy and F1-score of 

90.1 and 87.4, respectively, but with very large memory 

requirements that should be optimized. The BLIP-2 transfer 

learning to LoRA-adapted version in [16] improved the level 

of accuracy in dashcam captions to 88.3 percent and 85.7 

percent F1-score, but is still susceptible to poor weather, 

which implies that sensor fusion techniques can be utilized. 

The captioning generalization to unseen remote sensing 

scenes achieved 89.0 percent accuracy and 86.8 percent F1-

score using attribute-guided learning in [17], which has to be 

extended to scale to global datasets. The compact memory 

Linformer in [18] minimized computation at the cost of no 

performance degradation, but the F1-score accuracy was 91.5, 

and it could be improved by retaining details. In [19], a  similar 

application was tested on 83.6 and 80.9 percent of accuracy 

and F1-score, respectively, but it does not provide real-time 

integration of navigation. 

2.5. Language-Specific Captioning, Joint Training, and 

Multiscale Feature Methods 

In [20], a  cognitively-inspired model produced natural 

and coherent captions with an accuracy of 88.7 percent and an 

F1-score of 86.0 percent, but due to large-scale deployment, 

more data-efficient training is required. [21] applies Tamil 

captioning to a context-sensitive transformer with an 85.2 

percent accuracy and 83.0 percent F1-score, but it is not 

multilingual interoperable. PBC-Transformer [22] integrated 

poultry behavior classification and captioning (with an 

accuracy of 87.5% and F1-score of 85.2 ) and was not tested 

on the edge. In [23], a  memory network architecture based on 

topic improved 89.8 percent accuracy and 87.5 percent F1-

score, but requires pruning to enhance efficiency. In [24], joint 
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detection and captioning training achieved an accuracy of 90.6 

percent and an F1-score of 88.2 percent at computational 

costs. Lastly, [25] adapted multiscale integration of the output 

features of optical remote sensing images, which captioned the 

remote sensing image at different scales with 92.1 percent 

accuracy and 89.6 percent F1-score, though they still need to 

develop the lightweight models to develop it efficiently. 

3. Materials and Methods 
The development of and integration features of the 

proposed Invasive Augmented Transform (IAT) is mainly a 

design procedure to incorporate the deep convolutional layers 

of the current design, which were designed based on Flickr 8K 

data. The IAT model uses the features of an image and text in 

the form of a CSV file to start the design process.  

The process of calculating the iterated weights is 

generated with segmentation-based functional characteristics 

using mathematical functions implemented with customized 

approaches in Python. The development of two distinct 

architectures featuring 18-layer and 36-layer designs has 

resulted in improved resource management and efficient time 

utilization. The IAT model for these architectures with  

segmented features has to identify optimal performance. In 

both cases (encoder-decoder), the 36-layer architecture 

demonstrates greater effectiveness in determining the layer 

architecture's complexity. 

3.1. Concept  

The proposed work's overall methodology involves 

integrating the Invasive Augmented Transform with Deep 

CNN. The proposed design of the IAT model to enhance 

image and text features with caption datasets from Flickr 8K, 

using an iterative augmented transform. The IAT model 

mentioned in Figure 1 with two deep CNN architectures is 

implemented in order to provide better and more effective 

solutions for Image labelling and captioning, such as the 18-

layer and the 36-layer models. The 18-layer Deep CNN offers 

a more efficient method to streamline the training process and 

reduce the number of parameters with IAT layers, thereby 

reducing the complexity and resources required to execute the 

model. This 18-layer design effectively encompasses the 

feature extractions with IAT filters, maintaining high  

performance. Alternatively, the 36-layer model facilitates 

deeper feature extractions, enabling a deeper understanding of 

the intricate parametric features of images and textual data. 

 
Fig. 1 Representing the block and layered diagram for the proposed IAT-image caption
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3.1.1. Augmentation and Pre-Processing 

Augmented data plays a vital role in current methodology 

by modifying the different aspects of the segments, indicating 

the image and text data features. This approach, by 

preprocessing the data on the transform, refines the image and 

text data and enhances its ability to generalize across diverse 

samples. This indicates that captions can increase the diversity 

of the training data. The IAT model iterates through various 

augmented features on the images, such as color, scale 

rotation, cropping, paraphrasing, and grammar checking with 

text. The iterative augmentation process aids in the 

development of a robust model that can handle a variety of 

data with multiple variations in real-time scenarios. 

3.1.2. Integration of Deep CNN with IAT 

The combination of the IAT filter and deep CNN plays a 

vital role in tuning the feature-extracted scenarios and 

representations. The encoding and visual information of the 

images, which specify high-dimensional structural array 

vectors, indicate transforma tion weights that consider various 

types of similar context-related text within the same image. 

Layer designs enable the creation of enhanced feature weights 

based on IAT filter weights, which reveal intricate patterns 

and relationships with the image data . Through a series of 

steps, the proposed model with IAT weights improves the 

connection between different functional performance metrics, 

such as accuracy and precision.  

The calculation of these weights using multi-objective 

cases based on image filter segmentation types, analyzed 

based on images with similar features and similar aspects of 

labelling the images with text notations. This demonstrates the 

presence of multiple textual elements within a single image in 

the CSV format. The proposed high-level layered 

architectures follow the alpha form of the CSV, where the 

numbers 18 and 36 represent complex patterns that consider 

the relationships between each image input type and the 

corresponding textual informative captions. 

3.1.3. Performance Evaluations and Comparison 

To evaluate the effectiveness of the proposed 

methodology, the performance assessment of the IAT model 

using the Flickr8k dataset is a  well-established benchmark for 

image captioning. The experiments were conducted on 

various performance metrics, such as accuracy in BLUE 

(Bilingual Evaluations Understudy) and accuracy in image 

verifications (compression factors).  

After experimentation, the 18-layer model demonstrated 

a significant accuracy of 96%, and the 36-layer model 2% 

better. These findings can be used to show how effective the 

deeper architecture was in adopting and modeling detailed 

features of images. In comparison to the current SOA models, 

the IAT model gives an outstanding result that comprises 6 % 

improvement and a 30 % time decrease in the executions of 

the models. 

3.1.4. Implications and Importance of the Proposed Work 

The proposed IAT model provides outstanding 

performance and a breakthrough in image captioning 

technology. To resolve and address the current problems, the 

model implements solutions for the redundancy of data, the 

efficacy of data classification, and efficiency in computation 

modes with a deep CNN architecture and iterative data 

augmentation. These enhancements in the level of captioning 

accuracy and decrease in expression time signify the model to 

be effective and competent in massive datasets and difficu lt 

situations, addressing the coherence of the model and its 

stability. The improved results of the IAT model with its novel 

approach to augmented transform are a new standard for 

impacting recent innovations. It provides an excellent scheme 

and enhances description correctness that is based on 

appropriate descriptions. The proposed work demonstrates the 

importance of such innovation as the algorithm based on deep 

learning, in the development of image analysis with labelling.  

3.1.5. IAT Framework Design Description  

The design using the IAT model enhances image and 

caption consistency by integrating various filter weights, as 

shown in Figure 1. A deep convolutional network processes 

22 types of filters to improve feature weight acquisition, 

stabilizing input data through normalized CSV features. 

Spatial hierarchies refine these weights for tasks like image 

recognition. After extracting features, the architecture reduces 

the dimensions of feature maps, utilizing dropout 

regularization (L2) to address overfitting by pena lizing larger 

weights. The model also employs L1 and L2 regularization to 

maintain layer integrity and includes batch normalization for 

consistent weight conditions. Flattened maps convert layers 

into one-dimensional vectors, yielding 8,091 feature labels 

that represent captions alongside images. The architecture 

includes both 18-layer and 36-layer designs. (The 9-layer 

architecture in Figure 2 is represented with encoding model in 

figure indicating the list of patterns from images and labelling 

with captioning are captured while the other 9 utilized to 

identify the patterns for each cases of the labels and captions 

based on each image depicted in results and discussion  

section)18-layer model, without Dropout, showed effective 

performance with L1 and L2 regularization across its 32, 64, 

128, and 256 filter layers, enhancing accuracy significantly. 

Conversely, the 36-layer model, which included Dropout, 

exhibited issues with overfitting, causing a drop in training 

accuracy while testing accuracy remained slightly higher, 

resulting in overall reduced effectiveness. To address this, 

constraints were introduced to mitigate bias and improve 

dropout weight probabilities. 

3.2. IAT with SOA Comparison 

The IAT Algorithm presents an architecture of filters that 

are structured in a way that is not similar to many state-of-the-

art systems in a number of aspects. In contrast to the existing 

traditional encoder-decoder or transformer-based models 

based on deep semantic embedding or attention mechanisms 
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[2, 8, 10], IAT is focused on the ability to generate dynamic 

filters with the help of adaptive filtering algorithms (LMS, 

NLMS) on RGB components. It generates 15 different filter 

functions per image using personalized biases and step-size 

mu to optimize feature extraction. In addition, IAT is the only 

algorithm that provides the capability to include textual 

captions by transforming them into numerical scalar weights 

that are added to image features in an organized dataframe and 

stored as a CSV file. This is unlike the multimodal joint-

embedding approach used in [3, 4], where latent spaces are 

used to combine image and text. As opposed to [1, 9], which  

are more geared toward enhancement or context coherence, 

IAT has the advantage of segment-wise construction of filters 

and numerically augmenting the caption data, which makes it 

particularly powerful with large-scale datasets (e.g., 8K 

images) where individual feature fine-tuning is necessary. In 

addition, IAT does not require strictly pretrained models, and 

unlike transformer-heavy approaches [5, 8], can be used with 

customized depth (5, 18, 36 layers) according to convolutional 

logic, enhancing domain adaptability. 

 
Fig. 2 Representing the layered diagram for the proposed IAT-image caption with a 9-layer architecture

3.3. Algorithms and Formulations 

Algorithm 1: IAT ALGORITHM 
Input: 𝑋𝑖𝑛 , 𝑋𝑡𝑖𝑛   𝑤𝑖𝑛 , 𝐹𝑖 , 𝑏𝑖 

Output: 𝑌𝑓, 𝑦𝑖𝑛𝑡𝑒𝑟  

Procedure: 

1) Let X be the input with three-dimensional values of 

red, blue, and green. 

2) Improvise 15 Filter equations with different 

segmentation processes 

3) Apply the Contrast, Adaptive filter equations (LMS, 

NLMS weights w_in) to construct the F_i filter 

equations. 

4) Apply respective biases to each filter solution as b 

i. 𝐹𝑖
(𝑖)∑ (𝑋𝑖𝑛 , 𝑤𝑖𝑛 )𝜇 + 𝑏𝑖

𝑁
𝑖=1  

5) Append all F_i values to the Data Frame 

6) Indicating multiple functional weights for the Images 

7) Similarly, modify the X_tin as text input for each 

image and respective captions 

a. Calculate the different weights generated 

based on the images and their multiple 

captions converted as numeric values 

(singular) 

8) Update the values in the Data Frame 

9) Convert this Functionality into a CSV file 

End Procedure 

 

In this IAT algorithm, the process for 8k images with their 

textual captions is to improve numerical responses based on 

the filter equations utilized in image analysis. The algorithm 

IAT indicates the input X, which is characterized by its RGB 

components, to indicate the color channels. The construction 

of these filters is developed using Contrast filters, Adaptive 

filters such as NLMS and LMS weights, as 𝑊𝑚   and bias 𝑏𝑖 . 

For each Filter equation constructed based on the weights 

w_m, the Input Xin , bias 𝑏𝑖It is represented by the formulation 

as: 

Fi
(i)∑ (Xin , win )μ + bi

N
i=1  (1) 

Where μ is the step factor for each ordered Filter solution 

considered, ranging between (0,1) realizing the effective 

values associated with each type of filter considered. 

Similarly, the algorithm also handles the text inputs from 

the Captions, which are converted to specific numerical values 

on each similar image caption as the weight values in 

decimals. The numeric values are approximated to the nearest 

decimal values and updated with the data frame, considering 
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the overall image weights. Finally, with this approach, IAT 

filter logics are encapsulated with different functional features 

of the images, which are analyzed to perform the best 

solutions with metrics considered. 

The mathematical formulations of the layers are 

calculated based on the formulations of Convolutions, max 

pooling, dense layers with Batch normalizations. 

3.3.1. Convolution Layer 

Consider a single input layer with a Convolution-based 

operation layer, as represented below: 

Output (i, j, cout
) =  ∑ ∑ ∑ X(i + h, j +

Kw−1
w =0

Kk −1

h =0

cout
cin=0

w, cin
) ∗ Cf(h, w, cin , cout ) (2) 

Where in (2), 

• 𝑋(𝑖 + ℎ, 𝑗 + 𝑤, 𝑐𝑖𝑛
) Is the input feature observed from the 

dataset for classification on image captions? 

• 𝐶𝑓(ℎ, 𝑤, 𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡) is a  convoluted filter utilized for model 

design 

• 𝑘ℎ  𝑎𝑛𝑑  𝑘𝑤  𝑎𝑟𝑒 𝑡ℎ𝑒  ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑛𝑑  𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒  

• 𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡  The number of input and output channels. 

3.3.2. Pooling Layer 

The formulation for the pooling layer is described below:  

𝑜𝑓  (𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥(𝑋(𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐))ℎ,𝑤 (3) 

Where in the equation (3), 

• 𝑋(𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐)  Is the input feature observed from 

the dataset for classification on image captions? 

• 𝑠𝑖 𝑎𝑛𝑑  𝑠𝑗 Are the starting positional values for the 

pooling window function filter? 

• ℎ, 𝑤  are the indices within the pooling filter. 

• 𝑐  is the channel index 

3.3.3. Dense Layers 

The Final layer is formulated with the filter and weights , 

and its bias is considered as below: 

𝑜𝑓𝑑 (𝑗) =  ∑ 𝑋𝑖 ∗ 𝑊𝑖 ,𝑗 + 𝑏𝑗
𝑁
𝑖=1  (4) 

Five-layer formulations 

1. 𝑂𝑢𝑡𝑝𝑢 𝑡1
(𝑖, 𝑗, 𝑐𝑜𝑢𝑡

) =  ∑ ∑ ∑ 𝑋1
(𝑖 + ℎ, 𝑗 +

𝐾𝑤 −1
𝑤 =0

𝐾𝑘−1
ℎ =0

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛 =0

𝑤, 𝑐𝑖𝑛
) ∗ 𝐶𝑓1

(ℎ, 𝑤, 𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡)  

2. 𝑜𝑓 1
 (𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥 (𝑋1 (𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐))ℎ,𝑤  

3. 𝑂𝑢𝑡𝑝𝑢 𝑡2
(𝑖 , 𝑗,𝑐𝑜𝑢𝑡

) =  ∑ ∑ ∑ 𝑋1
(𝑖 + ℎ, 𝑗 +

𝐾𝑤 −1
𝑤=0

𝐾𝑘−1
ℎ=0

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛=0

𝑤, 𝑐𝑖𝑛
) ∗ 𝐶𝑓2

(ℎ, 𝑤, 𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡)  

4. 𝑜𝑓2
 (𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥(𝑋2 (𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐))ℎ,𝑤   

5. 𝑜𝑓 𝑑5
(𝑗) =  ∑ 𝑋𝑖 ∗ 𝑊𝑖 ,𝑗 + 𝑏𝑗

𝑁 =1
𝑖=1  

6. 𝑜𝑓 𝑚
 (𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥(𝑋1 (𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐))ℎ,𝑤 

End 

𝑜𝑓 𝑑𝑚
(𝑗) = ∑ 𝑋𝑖 ∗ 𝑊𝑖 ,𝑗 + 𝑏𝑗

𝑁 =𝑚
𝑖=1  (5) 

For 36 layers 

 𝐹𝑜𝑟 𝑚 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒  (0,17): 

𝑂𝑢𝑡𝑝𝑢 𝑡𝑚
(𝑖, 𝑗, 𝑐𝑜𝑢𝑡

) =  ∑ ∑ ∑ 𝑋𝑚
(𝑖 +

𝐾𝑤 −1
𝑤 =0

𝐾𝑘−1
ℎ =0

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛 =0

ℎ, 𝑗 + 𝑤, 𝑐𝑖𝑛
) ∗ 𝐶𝑓𝑚

(ℎ, 𝑤, 𝑐𝑖𝑛 , 𝑐𝑜𝑢𝑡)  

1.  𝑜𝑓 𝑚
 (𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥(𝑋1 (𝑠𝑖 + ℎ, 𝑠𝑗 + 𝑤, 𝑐))ℎ,𝑤 

End 

2. 𝑜𝑓 𝑑𝑚
(𝑗) = ∑ 𝑋𝑖 ∗ 𝑊𝑖 ,𝑗 + 𝑏𝑗

𝑁 =𝑚−2
𝑖=1  

3. ℎ𝑑𝑟𝑜𝑝 = ℎ ⊙ 𝑚 

4. 𝑜𝑓 𝑑𝑚
(𝑗) = ∑ 𝑋𝑖 (𝑦𝑖𝑛) ∗ 𝑊𝑖 ,𝑗 + 𝑏𝑗

1
𝑖=1  

For 18 layers: 

For m in range (0,8): 

𝑂𝑢𝑡𝑝𝑢 𝑡𝑚  (𝑖, 𝑗, 𝑐𝑜𝑢𝑡) =  ∑ ∑ ∑ [𝑋𝑚  (𝑖 +
𝐾𝑤 −1
𝑤 =0

𝐾𝑘−1
ℎ =0

𝑐𝑜𝑢𝑡
𝑐𝑖𝑛 =0

ℎ, 𝑗 + 𝑤, 𝑐𝑖𝑛   ) ∗ 𝐶𝑓𝑚   (ℎ, 𝑤, 𝑐_𝑖𝑛 ,𝑐𝑜𝑢𝑡 )]  

3.4. Computation Complexities 

The operations required to process data through each 

layer are as follows: Given that the layers are connected in a 

cascaded manner, the complexity is represented as O (n, m), 

where n is the number of inputs and m is the number of output 

units utilized in the design. The notation O(nm) accounts for 

the forward and reverse biases for each layer, expressed as 

n×m multilocational units. 

To assess the complexity of the models with 5, 18, and 36 

layers, it is essential to consider the layers, number of inputs, 

and output units according to the complexity criteria, 

approximating them using the formula O(L * m * n). Here, L 

represents the number of layers (5, 18, or 36) in each network 

scale. As the number of layers increases, the parametric 

features in the layer calculations grow both linearly and 

exponentially, depending on the type of filter selected. 

3.5. Model Design 

3.5.1. 5 Layer Design 

The IAT model with a 5-layer design employs a CNN 

design featuring a lightweight architecture with two-stage 

CNN layers, two-stage pooling layers, and a dense layer that 

outputs 8,091 captions. The initial transformation of the IAT 

occurs during this design phase. The process utilizes the data 

frame, treating its input columns as input to identify patterns 

using adaptive filters and various segmentation techniques. 

The convolution layer operates on the input columns from the 

IAT data frame through a two-stage process, focusing on the 

reduction of spatial dimensions to detect edges and their 

corresponding weights in the CSV data. Finally, the dense 
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layers are aggregated with multiple labels, converting the 

captions based on random filter weights, which facilitates 

caption recognition tasks. 

3.5.2. 18-Layer Design & 36-Layer Design 

Similarly, in Section 4(a), the formulations of the 18 and 

36 layers using 50 and 100 feature weights are calculated with 

adaptive filter weights, respectively. In an 18-layer design, 

significant observed outcomes are depicted with accuracy and 

loss plots, justifying the best possible ideal solution of the 

design. The 36 layers, which incorporate dropout 

improvisations and slight overfitting criteria, could introduce 

and enhance this aspect. More information features with  

different weights are calculated with 100 cases, and a 

consistent graph is observed with the same 5-layer and 18-

layer designs. 

4. Results and Discussion 
The proposed design with different Functional features is 

affected by dataset types, experimental tools with explored 

libraries, statistical performance, and the Training and Testing 

phase. This work implicates how the Flicker-8k dataset is 

utilized with different aspects of similar captions with similar 

elements on each label. 

4.1. Dataset Description 

The overall dataset consists of 8k samples from the Flickr 

website, and utilized to perform the overall captions and their 

recognition with their original image. In order to implore on 

text processing with images and provide 8091 separate 

weights for each text response with the same image as a 

collective for output label classification. The dataset is 

publicly available for the processing of the Image captions-

based design. Presently, multiple model challenges on this 

dataset have been recognized for best BLEU scores and other 

classification accuracy reaching to 99%. Within this accord, 

the dataset sampled images and their corresponding captions 

are tabulated in Table 2 with their count also. 

4.2. Experimented with Tools and Libraries, Explored 

The design analysis involved extensive experiments on 

8,000 samples to assess image caption recognition capabilities 

using the proposed IAT model with effective weight  

optimization. In this research study, the main libraries that 

were utilized include NumPy, which assisted in the processing 

of numerical data, and Pandas, which aided in the loading of 

data, making the process of acquiring and realizing the image 

data a success. TensorFlow-Keras gave a well-rounded 

platform for building high-end architecture, trying different 

learning models where Matplotlib was used to plot a  visual 

representation of the text analysis, by plotting the predicted 

labels versus the actual labels. Adapted image processing was 

made possible by OpenCV, such as segmented filters and user-

defined functions. The experimental model was carried out on 

an ASUS ROG laptop, using Anaconda and Python code 

development and notebook optimization, which is critical to 

carrying out complex calculations with deep learning models. 

The IAT model showed such great accuracy by scoring 99% 

of the test cases. The statistical measures, which included 

accuracy, F1-score, recall, precision, specificity, and BLEU 

score, were calculated to assess the effectiveness of the model, 

where the accuracy provided an overall performance of the 

model in terms of classification, F1-score estimated the 

harmonic mean of the precision and recall, recall expressed 

the level of positive instances, precision counted the true 

positive rates without negative ones, specificity expressed the 

true negative rates, and BLEU score gauged the match 

between the generated captions and the original ones, which 

validated the soundness of the design. 

 
Table 2. Representing the captions and their count for the images in the dataset

Image 

Numbers 
Captions & Labelling Count 

Image 1278 

A man in a blue sweatshirt is capturing a shot. 

A man in a blue sweatshirt, who was taking a picture 

A human being looks at an electric machine inside a crowd. 

Somebody in jeans and a blue sweatshirt is shooting a camera that is standing close to an 

audience. 

4 

Image 97 

Man drilling a hole in the ice. 

A male figure is drilling on a segment of frozen ice in a pond. 

An individual is drilling a hole in the ice. 

An individual on an ice lake. 

There are two men ice fishing. 

5 

Image 85 

Two people, one of them sitting, and a baby in the arms of a man next to a pond and a stroller. 

Two people are sitting in the grass with their baby in a stroller. 

A family of two persons seated under a tree and facing a lake with a newly born baby in their 

arms. 

There are a man and a woman with a baby on the side of a water body. 

Two people with an infant are sitting outside their stroller. 

5 
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4.3. IAT Class Design 

The Data_process_IAT class forms the main pre-

processing engine of the Image Adaptive Textual (IAT) 

pipeline, whose task is to transform the raw input image data 

into numeric, structured data. It automatically processes a set 

of filters and statistical calculations on every picture. The 

apply_image_filters() function transforms the grayscale-

converted images using several classical filters, including 

Canny edge, Gaussian blur, Sobel, Laplacian, and Scharr to 

accentuate contrast, edges and textures. The average pixel 

intensity of each filtered result is calculated and saved, thus 

giving a short but descriptive feature vector of the image.  

Also, the calculate_image_statistics() method derives 

important descriptive figures such as mean, standard 

deviation, min/max, and median of the grayscale image, 

further adding to the feature set with information about the 

distribution of global texture. Collectively, they process image 

datasets into numerically measurable, structured forms 

appropriate to machine learning models.  

The process_images_from_dataframe() function 

combines the functions into a single DataFrame per image, 

which forms a tabular training-ready dataset of high  

descriptive power for CNN models. In this way, the IAT 

system can effectively complete both the traditional image 

filtering and deep learning pipelines, which is particularly 

useful in such areas as caption classification or multimodal 

representation. 

4.4. Model Light and Deep CNN Design and Implementation 

The IAT_CNN_Hybrid class wraps the CNN 

architecture, which transforms the feature-rich data produced 

by Data_process_IAT. This hybrid model is flexible and 

capable of dealing with light as well as deep CNN models. The 

architecture starts with 2 Conv1D layers, which extract local 

temporal (1D) patterns on the structured feature vectors, 

which are helpful when the input features can be considered 

as a sequence. This is then followed by the pooling layers that 

diminish the dimensions and still retain the important data to 

make it computationally efficient. 

 
Fig. 3 Representing the overall flow diagram for the proposed IAT model with 9,  18, 36 layers 

In light layer criteria, fewer layers (Conv1D, 

MaxPooling1D, Flatten and a single Dense) are required for 

small or medium-sized datasets. On the contrary, the deep 

CNN version, presented here, consists of several Flatten and 

Dense(128) layers, and Dropout as a regularization solution. 

This is because the model is able to learn non-linear and 

complex relationships among the features of the filtered image 

due to the use of more than one dense block. The last Dense 

layer has sigmoid activation that makes it compatible with 

multiclass output. This architecture is strategically not prone 

to overfitting through a combination of convolutional and 

dense blocks, and is a good representation of structured 

numerical representations of images, which IAT filter-based 

representations are an excellent example of. Finally, the 

hybrid architecture enables an easy combination of deep 

learning inference and handcrafted filter features. 

4.5. Model Parameters 

The IAT_CNN_Hybrid model is trained on structured 

image features that are a combination of classical filter 

responses and statistical data , represented in Table 3. 

Grayscale transformations and mean intensities of multiple 

filters are used to obtain input features (X), and the labels (y) 

are one-hot encoded image categories. The 80/20 train and test 

data are divided, and the input is reshaped to (features, 1) 

format. The model is based on Conv1D layers (filters 32, 64) 

and five dense layers with 128 neurons each, with ReLU 

activation for the hidden layer and Sigmoid as the output 

activation. It is optimized using Adam, trained on 400 epochs 

and a batch size of 512, and a dropout rate of 0.25 is 

incorporated to prevent overfitting. This mixed configuration 

is efficient in acquiring both handcrafted image features and 

deep hierarchical patterns to robustly classify them. 

The overall settings of parameters in the IAT model are 

important in converting filtered and statistically enhanced 

image data to meaningful captions or classifications. In the 

proposed analysis, as mentioned in Figure 3, the flow model 

is indicated for parametric hyper-tuning cases. The first 

element comprises of the Input features, which are a 

combination of classical image filters (e.g. Canny, Sobel) as 

well as grayscale statistics (mean, std, median), which are 

Step 1: 

Input Data & Preprocessing 

- Grayscale Conversion 
-Filters (Canny, Sobel, etc.) 

-Statistical Features 

Step 2: 

Model Architecture Selection 
-Choose: 9, 18, or 36 Layers 

- Light vs. Deep CNN 

Step 3: 

Parameter Configuration 

- Conv1D Filters: 32, 64 

-Dense Layers: 1-5 (128 units) 
- Dropout: 0.25 

-Activation: ReLU, Sigmoid 

Step 4: 

Training Setup 

-Optimizer: Adam 

-Epochs: 400 
- Batch Size: 512 

-Loss: Binary/Categorical CE 

Step 5: 

Evaluation Metrics 
- Accuracy, Precision 

- Recall, F1 Score 

-BLEU Score (for captions) 
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robust descriptors custom filter design based on the Image 

Functionality. The Text encoding sequences with feature 

conversion are implicated with one-hot encoding labels 

(8091). The model is composed of Conv1D (32, 64 filters), 

dense (128), ReLU, Sigmoid a ctivation functions, Dropout 

(0.25) as a regularization mechanism, and trained on 400+ 

epochs and a batch size of 512 using Adam optimizer. These 

hyperparameters guarantee that the model does not overfit  and 

take into account complex feature interactions, which allows 

for high performance in light and deep CNN architectures. 

Table 3. Representing the parameters and their values utilized in model 

design 
Parameter Value 

Input Features 

(X) 

Filter + Statistical Data  

(from DataFrame) 

Labels (y) One-hot encoded image_labels 

Train/Test Split 80% Train / 20% Test 

Input Shape (X_train.shape[1], 1) 

Number of 

Classes 
y.shape[1] 

Model Name IAT_CNN_Hybrid 

Optimizer Adam 

Loss Function 
Binary Cross Entropy, Categorical 

Cross Entropy 

Metrics Accuracy 

Epochs 400 

Batch Size 512 

Dropout Rate 0.25 

Conv1D Filters 32, 64 

Dense Layers 

(deep) 
Five Dense(128) layers 

Activation 

Functions 
ReLU (hidden), Sigmoid (output) 

4.6. Performance Metrics 

The overall performance of the design is effectively 

estimated based on the different scenarios of the data chosen 

and its preprocessing features. Currently, the proposed design  

opts for the binary label functionalities (as Sigmoid 

activations), indicating the label feature pattern utilized with 

the to_categorical method, also estimated with  

sparse_categorical cases. To provide such detailed metric 

analysis, the IAT is utilized with different criteria of the 

metrics chosen for classification and text pattern generation 

with the correct label. These two functionalities on the image 

caption entitle the overall design to provide the performance 

implicating on metric criteria as given below: 

For the classification criteria , the design opts for 

accuracy, precision, recall, and an F-1 score to evaluate the 

design's robustness and stability with new patterns. A cross-

validation score with the same metrics is also governed. 

1. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
 

2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
  

3. 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 

4. 𝐹1𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
 

Similarly, for the word count and exactness verification, 

the design utilized with BLUE score, defined as the Bilingua l 

Evaluation Understudy (BEU), is a  metric utilised to evaluate 

the quality of the machine-translated text with origina l 

(reference) text. This implies the comparison of the Correct 

pattern of the text generation with the IAT model, improving 

with N-gram precision, Gm (geometric mean), and Brevity 

Penalty scores to estimate the BLUE score. This affects the 

overall performance of the IAT model, indicating how the 

transformed text is verified with the original text. As a whole, 

the formulation for the BLUE score is represented with all the 

above criteria as mentioned below: 

𝐵𝐿𝐸𝑈𝑠𝑐𝑜𝑟𝑒 = 𝐵𝑃(�̂�; 𝑆) ∗ exp(∑ 𝑤𝑛𝑙𝑛𝑝𝑛 (�̂�; 𝑆)∞
𝑛 =1 )   

4.7. Training Phase & Testing Phase 

The training and testing phases are divided into two 

phases indicated within the layer architecture utilized to 

implement the test cases and training cases. In this 

experimental study, the overall training model is considered 

with Light CNN and Deep-CNN architectures to specifically  

impart the caption analysis and image transformation based on 

the IAT algorithm. Since the dataset utilized with Flicker 8k 

samples implored with 2k extra -labelling and captions 

addressing the new way of implicating the image captioning. 

Table 4. Representing the model summary of the 9-layer architecture 
Layer (type) Output Shape Param # 

iat_conv1d_layer1_1 (None, 20, 4) 0 

(IATConv1DLayer1)   

batch_normalization_1 (None, 20, 4) 16 

conv1d_1 (Conv1D) (None, 18, 16) 208 

max_pooling1d_1 

(MaxPooling1D) 
(None, 9, 16) 0 

dropout_1 (Dropout) (None, 9, 16) 0 

flatten_1 (Flatten) (None, 144) 0 

dense_1 (Dense) (None, 64) 9,280 

dropout_2 (Dropout) (None, 64) 0 

dense_2 (Dense) (None, 10) 650 

In this process, the design is adopted with multiple filter 

features from the 8k image samples converted as numerical 

form of the data and each text captions and labeling are 

represented within the data in Python Data-frame This data 

frame is used to generate a transformed model outcome, 

effectively highlighting the segmented filter weights by 

representing various filter weights as separate columns. Upon 

completion, a three-layer design emphasizes the transformed 

data frame, while performance metrics calculated from 1,600 

test cases are utilized to determine the optimal outcomes.  
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To design the overall scenario of the custom layer design  

with the IAT model, the proposed approach provides the 

design consideration with 9 a 9-layer architecture as 

mentioned in Table 4 with 10154 parameters utilized for the 

model classification analysis, implicating the overall 

performance of the design in two phases with and without 

optimization. The Similar criteria  are represented in Table 1 

and Table 6 for 18- and 36-layer summaries, imploring 

different changes with and without optimization elements.  

Table 5. Representing the model summary of the 18-layer architecture 
Layer (type) Output Shape Param # 

iat_conv1d_layer1_17 (None, 15, 2) 0 

(IATConv1DLayer1)   

batch_normalization_51 (None, 15, 2) 8 

max_pooling1d_114 

(MaxPooling1D) 
(None, 15, 2) 0 

iat_conv1d_layer1_18 (None, 15, 2) 0 

(IATConv1DLayer1)   

batch_normalization_52 (None, 15, 2) 8 

conv1d_78 (Conv1D) (None, 11, 32) 352 

batch_normalization_53 (None, 11, 32) 128 

max_pooling1d_115 

(MaxPooling1D) 
(None, 11, 32) 0 

dropout_103 (Dropout) (None, 11, 32) 0 

conv1d_79 (Conv1D) (None, 7, 32) 5,152 

batch_normalization_54 (None, 7, 32) 128 

max_pooling1d_116 

(MaxPooling1D) 
(None, 7, 32) 0 

dropout_104 (Dropout) (None, 7, 32) 0 

flatten_38 (Flatten) (None, 224) 0 

dense_130 (Dense) (None, 128) 28,800 

batch_normalization_55 (None, 128) 512 

dropout_105 (Dropout) (None, 128) 0 

dense_131 (Dense) (None, 64) 8,256 

dropout_106 (Dropout) (None, 64) 0 

dense_132 (Dense) (None, 8092) 525,980 

The entire architecture with stabilized 18-layer deep 

learning architecture (model1) with the Keras Sequential API  

on time-series or 1D structured data. The model is indicated 

with InputLayer, two custom layers, IATConv1DLayer1, 

which is designed with IAT functions based on the section 3.3 

algorithm utilized for filtering. Then the other layer's design is 

followed by BatchNormalization and lightweight  

MaxPooling1D operations with pool size 1 to assist in 

stabilizing training without loss of temporal resolution. The 

architecture next consists of two Conv1D layers of 32 filters 

and a 5 kernel size, all of which are followed by batch 

normalization, max pooling and Dropout. This pattern learns 

useful temporal characteristics and avoids overfitting with L2 

regularization and Dropout. Once the convolutional layers are 

passed, the model is converted to a 2D layer functionality with 

a  Flatten layer to transform the 3D data to 2D data to process 

it based on the dense layer utilized. The two dense layers have 

ReLU activation and L2 regularization (with greater 

regularization on the second dense layer), 128 and 64 units, 

respectively. These layers are followed by dropout layers in 

order to reduce overfitting further. Lastly, a  Dense output 

layer with SoftMax activation gives the probability of classes 

in multiclass classification. The model is compiled with Adam 

optimizer, but the learning rate is conservative (0.0005), and 

the compilation contains early stopping and learning rate 

reduction callbacks to adaptively control the training. This 

architecture focuses on making the model simple, regularized, 

and generalizable, and it is also lightweight and interpretable. 

Table 6. Representing the model summary of the 36-layer architecture 
Layer (type) Output Shape Param # 

iat_conv1d_layer1_19 (None, 15, 2) 0 

(IATConv1DLayer1)   

batch_normalization_56 (None, 15, 2) 8 

max_pooling1d_117 (None, 15, 2) 0 

iat_conv1d_layer1_20 (None, 15, 2) 0 

(IATConv1DLayer1)   

batch_normalization_57 (None, 15, 2) 8 

conv1d_80 (None, 15, 32) 96 

batch_normalization_58 (None, 15, 32) 128 

max_pooling1d_118 (None, 15, 32) 0 

dropout_107 (None, 15, 32) 0 

conv1d_81 (None, 15, 32) 1,056 

batch_normalization_59 (None, 15, 32) 128 

max_pooling1d_119 (None, 15, 32) 0 

dropout_108 (None, 15, 32) 0 

conv1d_82 (None, 15, 32) 1,056 

batch_normalization_60 (None, 15, 32) 128 

max_pooling1d_120 (None, 15, 32) 0 

dropout_109 (None, 15, 32) 0 

conv1d_83 (None, 15, 32) 1,056 

batch_normalization_61 (None, 15, 32) 128 

max_pooling1d_121 (None, 15, 32) 0 

dropout_110 (None, 15, 32) 0 

conv1d_84 (None, 15, 32) 1,056 

batch_normalization_62 (None, 15, 32) 128 

max_pooling1d_122 (None, 15, 32) 0 

dropout_111 (None, 15, 32) 0 

conv1d_85 (None, 15, 32) 1,056 

batch_normalization_63 (None, 15, 32) 128 

max_pooling1d_123 (None, 15, 32) 0 

dropout_112 (None, 15, 32) 0 

conv1d_86 (None, 15, 32) 1,056 

batch_normalization_64 (None, 15, 32) 128 

max_pooling1d_124 (None, 15, 32) 0 

dropout_113 (None, 15, 32) 0 

conv1d_87 (None, 15, 32) 1,056 

batch_normalization_65 (None, 15, 32) 128 

max_pooling1d_125 (None, 15, 32) 0 

dropout_114 (None, 15, 32) 0 

flatten_39 (None, 480) 0 
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dense_133 (None, 128) 61,568 

batch_normalization_66 (None, 128) 512 

dropout_115 (None, 128) 0 

dense_134 (None, 8092) 1,043,868 

The 36-layer architecture in Table 6 represents the design 

of a deep learning model with the Keras Sequential API. The 

model begins with an input layer that is custom-designed 

based on the shape of training data , and then there are two 

custom layers (IATConv1DLayer1) with a combination of 

batch normalization and pooling. These layers are intended to 

do filtering and transforms, which utilizes th adding filter 

feature extraction at the start of the network. For-loop criteria 

are utilized to add 8 convolutional blocks, and each block 

contains a Conv1D layer (employing 32 filters with a kernel 

size of 1), batch normalization, max pooling, and Dropout. 

The overall hierarchical feature extraction is employed to 

reduce the overfitting and achieve stable training. 

 
Fig. 4 Representing the overall plot for the accuracy and loss graph for the 9-layer design 

In the next phase of the model architecture, the flatten 

layer is utilized to the output of the convolutional blocks and 

passes it to a dense (fully connected) layer with 128 units and 

then to batch normalization and Dropout. Lastly, a  Dense 

output layer with a SoftMax activation is used to provide 

probabilities of classes in case of multiclass classification 

(num_classes). The compilation of the model is done with the 

Adam optimizer and learning rate set to 0.0005 and sparse 

categorical crossentropy as the loss function (appropriate to 

integer-encoded labels). The EarlyStopping and 

ReduceLROnPlateau are implemented to accelerate the 

training process by stopping when the validation accuracy 

stops improving, and to automatically reduce the learning rate 

when the learning stops improving, respectively. 

To encapsulate the overall training and testing process of 

the 9-18-36 layer architecture, the proposed model employs 

multiple conditions of transformation on the filters with  

accuracy and loss plots starting from 0 to reaching 99.99 

percent of accuracy. A similar observation for Figure 5 is 

observed, which depicts the changes in the L1 and L2 

regularization parameters utilized for the proposed model. The 

values from the L1 and L2 are 0.001 and 0.01, with the alpha 

variant value based on the early stopping criteria applied to all 

the model architecture and the changes are represented with a 

learning rate of 10−5criteria. The design without 

regularization suffers from slight overfitting criteria from 

epochs 20 to 300, while from 300 to 400 the training and 

testing match with values observed from 99.9 to 99.995. 

Consequently, the loss characteristics were also effected with 

a slight increase in validation loss from training loss.  While 

after the L1 and L2 regularization factors with dropout factors 

values increased, the overall overfitting is negligible, in both 

the loss and accuracy in Figure 5. A similar architecture with  

18 layers is designed and has been affected with larger 

overfitting loss compared to the 36-layer architecture and 9-

layer architecture, implicating the different changes observed 

without the usage of the early stopping criteria and dropout 

layers and the same values of L1 and L2 are utilized to affect 

the overfitting criteria. The 18-layer architecture will be 

effective after 600 epochs, reaching both training and testing 

accuracies matched, as the overall loss for both training and 

testing is represented.  Since the epochs are defined with the 

iteration criteria utilized to govern the overall design  

robustness and stability of the model architectures, the overall 

increase and decrease can affect the performance and stability 

of the model. To optimize the solution, the proposed approach 

indicates fewer epochs to perform with early stopping and 

reduce the plateau criteria , improving the best performance. 

The optimized performance is observed with figures and 

Figure 8 with hyper-tuned cases on the 36-layer architecture, 

indicating the proposed approach with Deep-IAT-CNN 

architecture is optimized and has optimal performance 

compared to all the layer types effectively, as indicated with 

Figure 9(a) and (b), which are compared without optimized 

cases of the model performance. 
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Fig. 5 Representing the overall plot for the accuracy and loss graph for the 9-layer design, L1 and L2 optimized 

 
Fig. 6 Representing the overall plot for the accuracy and loss graph for the 18-layer design 

 
Fig. 7 Representing the accuracy and loss graphs for the 36-layer design, L1 and L2 optimized 
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Fig. 8 Representing the modified 36 layers with Low L1 and L2 terms within the layers for regularizations

 

 
Fig. 9(a) and (b) Representing the comparison of all layer architectures 9-18 and 36 with loss and accuracy  plots
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4.7.1. Test Cases 

This section calculates the test cases in three stages, 

utilizing the light and deep model designs previously 

discussed in Section 5. The best prediction implementation 

highlights the various components of the IAT-designed 

preprocessing filter.  

Each test case accumulates filter weights based on 12–25 

different functional features on each image, which indicate a 

specific sentence labeling model. The test factors showcased 

a total of 1600 samples of test cases, which were utilized to 

verify the different patterns observed when applied to the IAT 

filter. 

  

  

Fig. 10(a)- (d). Representing the overall test cases for the 50 samples randomly

Figure 10(a)-(d) estimates all the types of multiple 

changes on the label identification of the predicted models 

utilized to generate the test samples for each type of label 

associated with the captions and their corresponding images. 

The 50 random test cases that accurately predict the correct 

sequence of the captions indicate a  BLEU score of 100%. 

4.7.2. Tabulations 

Table 7 demonstrates that the IAT-DCNN (18) and IAT-

DCNN (36) models significantly outperform standard 

architectures when using the Flickr8k dataset. These models 

outperform traditional models like Convolutional Neural 

Networks (CNN) and Long Short-Term Memory networks 

(LSTM), which have limitations in collecting complex aspects 

of pictures and their captions. On the other hand, the IAT-

DCNN models exhibit remarkable performance, obtaining a 

flawless training accuracy of one hundred percent and a 

testing accuracy of ninety-seven percent. The accuracy and 

recall metrics of the models provide evidence that they are 

able to create correct captions and extract picture information 

that is relevant to the purpose. When compared to more 

complex architectures like Inception-Net and Res-Net, IAT-

DCNN models show a big improvement in performance, with 

a testing accuracy of 99%. This is a noteworthy achievement. 

This innovation in image captioning sets a new standard for 

future research. It also paves the way for new opportunities for 

practical applications in areas such as accessibility, content 

development, and automated image annotation. 
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4.8. Capturing the Future: IAT-DCNN vs SOA 

4.8.1. Integrated Approach on IAT Filtering with Feature 

Extraction and Enhancement with Image Filter Approach 

Customization 

The proposed models make use of a custom 

IATConv1DLayer1 layer that is based on the Image-Aware 

Transformation (IAT) algorithm that serves as a fixed filter 

prior to the learnable layers. This architecture considerably 

improves the model in extracting structured semantic features 

of image-caption pairs at the early stages of the network. The 

IAT layer allows effective representation learning by 

transforming raw image and caption data into numerical 

vectors with the help of a DataFrame-based representation. 

The hybrid approach is a combination of conventional signal 

processing and deep learning, which makes the model more 

context-sensitive and efficient in the generation of captions. 

4.8.2. Regularized and Optimal Design Parameters 

Three different architectures were tested: 9-layer, 18-

layer, and 36-layer, each one with Conv1D, 

BatchNormalization, MaxPooling, and Dropout layers. The 

18-layer model specifically trades depth and performance, 

with kernel sizes of 1 to 5 and 32 filters per Conv1D layer. 

Regularization methods are employed in a strategic manner to 

prevent overfitting, e.g. L1/L2 penalties (0.001 and 0.01) and 

Dropout (0.1-0.2). The architecture is efficient and stable 

because training control mechanisms such as EarlyStopping 

and ReduceLROnPlateau make the learning adaptive and 

avoid the degradation of the model. 

4.8.3. Unrivalled Performance and Robust Architecture 

The IAT-based models outperform state-of-the-art 

models such as ResNet, InceptionNet, and LSTM in terms of 

all metrics: up to 100 percent training accuracy and 99 percent 

test accuracy with high F1-scores (0.998). The hierarchical 

feature extraction is further improved by the 36-layer deep-

IAT-DCNN. The models record outstanding performance in 

the Flickr8k dataset (2000 additional labeled data), which  

shows robustness and the potential effect in practical tasks, 

such as image captioning, accessibility tools, and automatic 

tagging. 

 
Table 7. Representing the overall performance metrics with flicker-8k data for existing and proposed algorithms 

Algorithms with Flicker 8k Dataset Accuracy (Training) Accuracy (Testing) Precision Recall F1-score 

CNN [12] 0.599 0.348 0.33 0.37 0.385 

LSTM [7] 0.6935 0.4632 0.496 0.415 0.458 

ENSEMBLE (CNN) [5] 0.3564 0.3325 0.3556 0.3412 0.3618 

ENSEMBLE-RNN 0.5436 0.5618 0.5814 0.5634 0.5534 

TexT-CAPS [10] 0.8636 0.8896 0.8785 0.8974 0.8934 

DEEP-CNN [11] 0.8835 0.8958 0.8574 0.9034 0.8735 

INCEPTION-NET [17] 91.34 0.9256 0.9734 0.9278 0.912 

RESNET-50 [21] 0.9324 0.9452 0.934 0.943 0.9345 

RESNET-101 [22] 0.9324 0.9452 0.934 0.943 0.9345 

PROPOSED IAT-LCNN 0.9978 0.9899 0.9856 0.9745 0.9837 

PROPOSED IAT-DCNN (18) 100 0.99 0.9978 0.998 0.998 

PROPOSED IAT-DCNN (36) 98.7 0.983 0.981 0.986 0.98 

5. Conclusion 
The IAT-OAT-DCNN model represents a significant 

contribution towards the area of image captioning and 

labelling systems, with 99 percent correctness across all the 

tested criteria on the Flickr8k dataset. The proposed solution 

is based on the addition of a novel Image Augmentation 

Transformer (IAT) in a Deep Convolutional Neural Network 

(DCNN) model, thereby increasing the learning capacity of 

the model with the aid of intelligent datasets transformation 

and application of segmented filters. Those three layers 

enhance the robustness, stability, precision, and accuracy of 

caption generation. 

Consequently, the proposed model showcases that it 

surpasses state-of-the-art architectures, including ResNet and 

Inception-Net, which means that the model can be utilized as 

the new benchmark in vision-language tasks. The numeric 

changes that the IAT mechanism serves to bring to the table 

decrease the feature extraction, making sure that both the local 

and global image features are well captured. Such changes 

result in the optimal weight distributions that contribute to the 

significant improvement of the model performance. 

Moreover, the proposed work experiment and analysis 

increase the plausibility and validity of the architecture 

proposed. The stable values of 99% in the recall, F1 and 

precision measures show that it can generate semantically 

sound and contextually apt captions in multiple images. This 

demonstrates its potential use in similar tasks like object 

detection, visual question answering and automated image 

indexing. 

To conclude, the offered IAT-OAT-DCNN solution is not 

only more accurate but also stable and scalable. It has an 

effective and flexible design that provides the potential as a 

basis for further advancements in photo captioning and 

multimodal AI systems. The study emphasizes the worth of 

including advanced data manipulation methods and deep 
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learning models to boost visual-lingual interpretation. The 

potential scope of the IAT-DCNN model will be extended in 

future studies, as its usage would be extended to different and 

larger-scale datasets, i.e., MSCOCO, VISUAL GENOME and 

Conceptual Captions. The model can demonstrate the ability 

to scale, flexibility of vocabulary and generalization in the 

real-world image context. 

The other prospective course is the introduction of 

attention mechanisms with the use of transformers or Vision 

Transformers (ViT), which will serve to improve the model's 

capability to pay attention to the relevant parts of the image in 

the process of caption generation. Optimization with the 

proposed architecture can be applied to real-time captioning 

systems, allowing their positioning in assistive technologies, 

including tools to help the visually impaired. 

Moreover, making the model multilingual so that it 

generates captions in real-time will be inclusive and accelerate 

its applicability in various linguistic groups. Lastly, increasing 

the interpretability of the models, such as using Grad-CAM or 

SHAP, will contribute to transparent AI design and allow the 

audience to be informed about the reasoning behind creating 

captions based on images. 

5.1. Ethical Considerations 

The ethical usage of the Flickr8k dataset does not contain 

personally identifiable information in images to publish 

images without permission, since the data is publicly  

available. Although the datasets are open to the public domain, 

privacy and licensing agreements should be observed. Also , 

the issue of possible bias in the content of the images and 

language should be noted because those who train the models 

based on it can continue the spread of stereotypes. To counter 

this, the future implementation will involve fairness tests and 

diversifying training data. Last but not least, responsible 

deployment is very essential; there must be no surveillance or 

profiling on the application, and the application must follow 

ethical AI guidelines. To ensure accountability and trust of the 

population, the data usage should be clear, and the model 

decisions should be transparent. 

5.2. Scope 

With regard to the conclusion, the proposed work is 

inclined to include the Flicker-30k dataset, which consists of 

30,000 samples and the COCO dataset, which consists of 

16,000 samples, to improve caption generation and validation. 

Within this model design, activity labels will be integrated into 

the design because there will be a broad array of annotated 

images. A custom dataset based on 10k real-time medical 

images with user-designed labelling and captions is used and 

will be developed, where at least four captions per image are 

used to enhance adaptability and verifiability to the IAT 

model. 

To implement the new trends and novelties in design 

architectures, the proposed model with an encoder-decoder 

model with the transfer learning method based on Light and 

Deep CNN will be created, but the issue of image processing, 

as it concerns caption recognition, will be broadened. Also, 

the current version of the proposed IAT model is not 

concerned about the nature of noise and the techniques that 

would be correlated to creating more visually relevant image 

captions that apply to a wider scope of images. In the future, 

the next step is to reduce the effects of noise to increase the 

accuracy of captioning. 
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