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Abstract - A substantial volume of data in the form of information is purposefully changing in this era of digital information. The 

volume of digital data is increasing rapidly every second due to the usage of the Internet through various gadgets for all our 

everyday activities. However, big data plays a substantial role in information retrieval, which helps in predicting future trends. 

Due to the characteristics of heterogeneity and huge size, processing and analysing the big data to ascertain useful insights is 

becoming a challenging task. The selection of quality criteria for processing always determines the quality of the outcomes. 

Using conventional data mining-based preprocessing techniques alone may not provide an effective result for big data , as it 

faces decisive challenges. Consequently, a suitable feature selection model is required to enhance the quality. This paper presents 

a framework for selecting an important feature subset that represents the entire dataset with increased quality. The model ut ilizes 

conjoint analysis with a minimum redundancy maximum relevance algorithm for selecting significant attributes and a q-gram-

based filtering approach for removing redundant and irrelevant instances. According to the analysis, the suggested model 

improves data quality and yields superior outcomes using fewer variables and instances. Compared to other big data models 

already in use, the model uses the Spark framework to produce better outcomes, holding a maximum speed-up rate of 89.50 and 

a maximum increased accuracy rate of 34.72%. 

Keywords - Big data, Conjoint analysis, Data quality, Dimensionality reduction, Feature selection. 

1. Introduction  
Advancements in data mining have reached a significant 

technical milestone that facilitates data -driven decision-

making across a range of industries. In a number of 

applications, including consumer preferences [1], healthcare 

disease diagnostics [2], educa tion [3], social media data [4], 

biometrics [5], e-commerce [6], and the financial industry [7], 

as well as forecasting future trends that are valuable and 

essential. Data are growing exponentially every second, owing 

to the rapid increase in the use of digital data through the 

Internet. This has led to the emergence of the big data age [8]. 

Unlike traditional techniques for information extraction, large 

data sets present a number of difficulties for knowledge 

extraction; therefore, standard data mining techniques may not 

be appropriate. The three main characteristics of big data are 

its tremendous velocity, large volume, and wide variety [9, 

10]. Machine Learning (ML) techniques are used to 

effectively extract information from such large amounts of 

data, as conventional data mining methods may not be suitable 

for these data types [11, 12]. Recently, big data has become a 

game changer in almost every industry, particularly when it 

comes to making important decisions [13]. Data analysts, 

statisticians, and experts often rely on various tools to organize 

and process historical data to forecast and make accurate 

decisions across various applications, data analysts, 

statisticians, and experts often rely on a variety of tools [14]. 

However, appropriately transforming, integrating, operating, 

and handling data when dealing with large volumes is 

undoubtedly challenging. Big data must be managed carefully 

because the information that can be gleaned from it is 

extremely useful for a number of applications. The accuracy 

of the generated information is significantly influenced by the 

quality of the input data that must be processed [15]. 

A primary challenge in big-data analysis is data 

acquisition. When processing substantial volumes of data, 

information is sourced from multiple origins, resulting in 

collected data manifesting in various formats depending on the 

underlying data sources. Dealing with such massive amounts 

of data presents a secondary challenge. Additionally, it is 

important to handle missing values effectively because the 

obtained data may not be comprehensive. The gathered data 

must be effectively integrated from many sources in an orderly 

manner. Redundancy is the primary issue in data integration. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The Internet may cause data to be stored in several locations, 

and the process of retrieving it may result in duplicates, 

thereby enlarging datasets [16]. In addition to these 

difficulties, the quality of data has a significant impact on the 

outcomes of knowledge extraction. Owing to the increasing 

Number of features, integrated big data tends to have higher 

dimensionality. In contrast, it may also include redundant and 

unnecessary information, because not all qualities are relevant 

to specific research [17]. Similarly, there will be a large 

number of instances, some of which may be irrelevant because 

they are outliers or duplicate occurrences [18].  

Therefore, a  crucial part of processing large amounts of 

data involves selecting significant features and appropriate 

instances. This generates understandable data that 

dramatically improves the model’s performance in a short 

amount of time. Nevertheless, a  number of difficulties arise 

when dealing with feature selection in large datasets, 

particularly regarding the nature of the features themselves 

and data from multiple sources. In contrast to regular datasets, 

big data often exhibits an inherent structure among its 

attributes. However, the existing feature selection techniques 

are limited to generic data types. Unlike conventional attribute 

values, many qualities are connected and associated. Another 

difficulty arises from multi-view sources, in which many 

instances represent different features that serve as pivot points 

within a high-dimensional space [19]. 

Recent research has focused on either feature selection or 

instance filtering alone, but there is a lack of comprehensive 

studies that address both feature and instance reduction in a 

scalable and effective way. Moreover, the inherent attribute 

structures and multisource complexity of big data exceed the 

capabilities of most existing techniques. Consequently, there 

is a critical need to develop a detailed model for improving 

data quality that uses scalable frameworks to simultaneously 

optimize both feature and instance selection for high-

dimensional large data. Given the numerous challenges 

associated with enhancing the quality of large datasets, a  

proper quality improvement model using appropriate 

algorithms is urgently needed [20]. 

As a result, this study proposes a strategy for enhancing 

data quality by choosing relevant instances and an important 

feature subset that defines the complete dataset. The model 

employs a q-gram-based filtering technique to select relevant 

instances and conjoint analysis using the minimal Redundancy 

Maximum Relevance (mRMR) method to determine the 

important feature subset. The model selects essential features 

and instances both horizontally and vertically, eliminating 

extraneous attributes and instances that reduce the learning 

algorithm’s performance. Numerous evaluations were 

conducted to demonstrate the effectiveness of the model in 

terms of accuracy and execution time. Using a distributed big 

data architecture, the proposed framework uniquely combines 

attribute selection and instance filtering compared with  

existing methods. The innovative part of this study is its two-

stage procedure, which addresses data quality concerns 

simultaneously in a horizontal (feature-wise) and vertical 

(instance-wise) manner. The analysis of the findings shows 

that the proposed model enhances the data quality and 

produces better results with a smaller set of variables and 

instances. When applied to data using the Spark framework, 

the model achieved its full potential in terms of speed and 

accuracy. 

The structure of the paper is as follows. Section 2 reviews 

the important models currently available in the literature 

related to the intended research. Section 3 describes the 

proposed strategy for improving the data quality that is 

suitable for large data. The preprocessing tasks that must be 

completed before using the algorithms are presented in 

Section 4. Section 5 describes the map phase, which applies 

the proposed conjoint analysis to attribute importance and 

CA-mRMR. Section 6 describes the reduced phase, which  

uses a q-gram filter to exclude irrelevant occurrences. Section 

7 presents an experimental analysis, and Section 8 presents the 

results. Section 9 discusses the theoretical and practical 

implications as well as cha llenges in data science and future 

work, and Section 10 offers the conclusion and final directions 

for the intended research. 

2. Related Works  
Recent research highlights that data quality is 

fundamental for efficient analytics and machine learning, 

especially in big data . According to a study [21] that offers a 

comprehensive overview of important data quality 

parameters, including completeness, consistency, timeliness, 

and accuracy, low-quality data might undermine downstream 

analysis even when algorithms are strong. Similarly, results 

have shown that data quality affects organizational decision-

making and model performance, highlighting how antecedents 

such as source dependability and preprocessing approaches 

influence data quality [22]. It was also noted that in data-

driven contexts, higher-quality data allows for more accurate, 

timely, and competitive insights, which in turn increases the 

strategic value of business intelligence tools [23]. Each of 

these studies adds weight to the growing body of evidence that 

preprocessing procedures should include data quality 

evaluation and improvement as a means to increase robustness 

and ensure meaningful results in high-dimensional 

applications. 

Researchers in the literature have produced several 

publications on dimensionality reduction and data quality 

enhancement. A conceptual framework for researching the 

connection between big data quality and knowledge 

management, which affects decision-making quality, was 

proposed to enable a thorough investigation [24]. Th is 

research demonstrates that management information systems 

rely heavily on high-quality big data for making essential 

decisions. According to [25], there are six ways to measure 
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data quality: comprehensiveness, uniqueness, timeliness, 

validity, precision, and consistency. To improve the quality of 

big data created for the telecommunications sector, a  paradigm 

based on process patterns was proposed [26].  

By eliminating unnecessary features, which increases 

accuracy, feature selection is regarded as one of the most 

focused approaches for enhancing data quality. A feature 

selection technique for text classification from big datasets 

was developed by combining ant colony optimisation with an 

artificial neural network [27]. With the k-Nearest Neighbour 

(KNN) algorithm at its core, a  hybrid feature selection model 

was suggested that works well in cloud settings. It employs 

the firefly distance metric in addition to the Euclidean distance 

metric to find the nearest neighbours [28, 29]. There has been 

research on the advantages and disadvantages of classical 

feature selection techniques as well as streaming feature 

selection models that are useful for decision-making in 

organisations [17]. A technique known as the Parallel, 

Forward–Backwards with Pruning (PFBP) model was 

proposed to find important features. To lower the 

communication cost, the model divides the data into rows and 

columns and efficiently uses a greedy search [30]. 

Ensemble-based mRMR (EmRMR) is a novel feature 

selection approach that was presented for reusing the 

dimensions in a big dataset [31]. In addition to verifying the 

highest relevance of the feature associated with the class 

attribute and the minimal redunda ncy with other candidate 

attributes, the model calculates the mutual information for 

selecting the significant attributes with higher values. A 

number of modifications were performed using this model as 

the foundation to enhance the system’s performance . To 

address the shortcomings of mRMR when used with massive 

data, an EmRMR model was created as an extension of the 

mRMR model that uses a variety of optimisation strategies at 

different phases [32]. This considerably decreased the 

conventional mRMR algorithm's computational complexity. 

Another variant, known as the MR-mRMR method, uses 

the mRMR algorithm inside the MapReduce architecture [33]. 

To find relevant features, this model, however, uses the 

RELIEF method rather than Mutual Information (MI) [34]. 

According to this approach, speed, accuracy, and simplicity  

are greatly improved by the smaller attribute set [35]. The 

elimination of outliers is crucial in addition to feature selection 

through dimensionality reduction. After a study on banking 

data, a  methodology was proposed to eliminate data 

inconsistencies and enhance the data quality [36]. A deep 

neural network model was used to make predictions in a data-

mining model proposed to identify noise and evaluate the data 

quality. Although the model's effectiveness was examined 

using banking data, the authors ensured the model's ability to 

work with data from other industries [37]. In addition to the 

KNN technique, four other reduction types were proposed and 

compared: heuristic-based data cleaning, rule aggregation, 

rule synthesis using q-gram-based filtering, and ensemble 

clustering [38]. The Number of features and instances was 

decreased using this technique based on their importance. 

To improve the performance of high-dimensional 

biological datasets, researchers have recently investigated 

hybrid feature selection methods. A hybrid strategy was 

suggested that combined Binary Portia Spider Optimization 

with the fastest mRMR (FmRMR) to improve convergence 

speed and classification accuracy [39]. A technique 

combining improved mRMR (ImRMR) with Binary 

Differential Evolution has been proposed for gene selection , 

balancing redundancy and importance in the chosen traits 

[40]. In clinical datasets, the ReliefF-mRMR method has 

demonstrated strong efficacy in identifying various diseases 

[41]. Despite their advantages, these techniques often suffer 

from limited generalizability across diverse datasets, high  

computational costs, and considerable need for parameter 

adjustment. These recent developments support the rationale 

behind the proposed CA-mRMR approach, which addresses 

these limitations by combining the complementary strengths 

of the classical and metaheuristic selection procedures. 

Owing to their robustness, interpretability, and ability to 

handle high-dimensional data, well-known ML algorithms 

such as the Support Vector Machine (SVM), Naïve Bayes 

(NB), KNN, Logistic Regression (LR), Random Forest (RF), 

and Decision Tree (DT) are frequently used in big data 

classification tasks. SVMs are particularly effective in 

complex, nonlinear classification scenarios, especially when 

applied to large-scale data such as clinical and gene expression 

datasets [42]. NB and KNN are commonly applied because of 

their simplicity and efficiency in managing large datasets, 

especially when model transparency is essential [43]. LR is 

appropriate for binary classification tasks because it provides 

probabilistic outputs along with solid baseline performance 

[44]. Ensemble methods such as RF and traditional DTs are 

widely used because of their ability to model feature 

interactions and reduce overfitting through bootstrap 

aggregation [45]. Many recent investigations in big data and 

related domains have relied on these models for validation and 

performance evaluation [40, 41]. 

3. Proposed Framework for Data Quality 

Improvement  
The overall design of the data quality improvement 

framework using conjoint analysis with minimum 

redundancy, maximum relevance, and q-gram-based filtering 

for big data is shown in Figure 1. This framework aims to 

provide quality data for effective processing, thereby 

producing accurate results specifically for big data. However, 

it is very difficult to find a single approach that can improve 

the quality of data by overcoming the challenges encountered 

by big data. The proposed framework has three phases in  

which the first phase focuses on data extraction and cleaning, 

the second is the map phase that implements Conjoint 



Sindhu S & Veni S / IJETT, 73(7), 423-442, 2025 

 

426 

Analysis with the Minimum Redundancy Maximum 

Relevance model (CA-mRMR), and the third is the reduce 

phase that implements the q-gram-based filtering approach for 

detecting redundant and irrelevant instances. Each phase and 

the corresponding algorithms used in the framework are 

explained in the following sections. 

 
Fig. 1 Overall design of the proposed data quality improvement framework 

4. Big Data Preprocessing Phase 
The performance of the mining or knowledge extraction 

system depends not only on the underlying logical model but 

also on the input data  quality given to the system [46]. 

Generally, to extract knowledge from given data, it is essential 

to prepare the raw data in a particular form that can be 

processed. Thus, the preprocessing phase of big data aims to 

extract the data related to a particular event and convert it to a 

suitable form for further processing. This phase is inevitable 

for big data because it incorporates enormous amounts of data 

from multiple sources. This phase includes data integration, 

cleaning, and transformation. 

4.1. Big Data Integration 

This process is the initial step, which deals with collecting 

data from various sources in various formats. Thus, combining 

the data extracted from various sources is necessary to form a 

unified data view. When it comes to big data, data integration 

is performed by first gathering information from social media 

platforms, the Internet of Things, and transactional data. 

Although it is extracted from various sources, the integration 

process results in a single target form. In the case of data 

warehouses, the Extraction, Transformation, and Loading 

(ETL process) is used to consolidate the data. With evolving 

technologies, the ETL process has evolved to be used with big 

data [47]. 

4.2. Data Cleansing 

This process aims to remove incomplete, irrelevant, and 

incorrect data from the datasets to ensure the quality of the 

data. This step is substantial, as the error and incomplete data 

lead the user to make immoral conclusions and decisions. In 

the case of business applications, poor data may lead to a loss 

of money, whereas in the most critical applications, such as 

medical data, poor decisions can lead to loss of life. Several 

methods exist for cleaning big data that vary from simple 

models, such as deduplication and irrelevant data removal, 

filling missing data, to complex ML models for parsing, 

mining association rules, and mining outliers [48]. Here, with  

a huge volume of data, if the Number of incomplete records is 

minimal, then the records can be filtered out. The other steps, 

removing redundant data and reducing the dimensions, were 

carried out in the next phases. 

4.3. Data Transformation 

Data transformation involves transforming data from one 

form to another for easy processing. In general, data from the 

source is mapped to the specified targeted form. This targeted 
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form can be used to obtain effective results. This can be 

achieved by scripting or using ETL tools. Although the 

method is substantial, it is time-consuming and a slow process 

requiring higher human resources, especially for unstructured 

data. Once the preprocessed big data has been retrieved, the 

map phase is used to select the important features that, through 

enhanced predictive power, represent the complete dataset. 

5. Map Phase using CAFS-mRMR 
The preprocessed data are normalized, and the 

normalized data are partitioned based on the Number of 

mappers. For each partition, the mapper applies a columnar 

transformation before applying enhanced conjoint analysis 

with the mRMR algorithm. However, in general, all ML 

algorithms are row-oriented or instance-oriented, in which  

they apply and evaluate the data in a row, which requires a 

higher cost for random access. Conversely, feature selection 

algorithms are processed in a columnar manner for efficiency, 

in which each column represents a specific instance with  

various attributes. Thus, the main aim of applying columnar 

transformation is to improve the overall performance of the 

process. The row-oriented and column-oriented 

representations of features in the contiguous memory location 

are presented in Figure 2, in which a) represents the row-

oriented representation with four records having three features 

each, and b) represents the columnar representation of the 

same data. 

Instance 1 Instance 2 Instance 3 Instance 4 

f11 f12 f13 f21 f22 f23 f31 f32 f33 f41 f42 f43 

a) Row Oriented Representation 

Feature 1 Feature 2 Feature 3 

f11 f21 f31 f41 f12 f22 f32 f42 f13 f23 f33 f43 

b) Columnar Oriented Representation 
  Fig. 2 Different feature representation 

For the transformed values, the data were then passed to 

the mapper, where the proposed conjoint analysis with the 

mRMR approach was applied. The result is a  subset of 

features that strongly represent the entire dataset, which helps 

in effective prediction. The worker nodes in the map phase 

apply the proposed CA-mRMR algorithm to the input 

partitions and provide the key-value pair as the output, which, 

in turn, serves as an input for the reduce phase. The result of 

the map phase is a set of significant features after applying the 

CA-mRMR algorithm, as given in Equation 1: 

𝐹𝑃𝑖 =< 𝑓𝑖1 , 𝑓𝑖2 , … . , 𝑓𝑖𝑛 > (1) 

Here, FPi represents the subset of features selected from 

partition i, and fin represents the binary value that is 1 for the 

selected feature and 0 for the non-selected features. 

To provide more clarity on the feature selection process, 

conjoint analysis and the CA-mRMR algorithm are explained 

in detail below. 

5.1. Conjoint Analysis for Attribute Significance 

The Number of representation features to be chosen from 

the complete collection can be determined by evaluating the 

attribute importance, and is then given as an input for the 

mRMR algorithm. Conjoint analysis aims to identify the 

importance of features based on which the model selects the 

substantial attributes in the given dataset [49]. In the proposed 

model, conjoint analysis was performed to identify and 

remove irrelevant attributes based on the attribute significance 

score, which is the approximate k-value that specifies the 

Number of relevant attributes to be selected for the mRMR 

model. This analysis identifies the significance of an attribute 

with respect to the total dataset by using the utility range or 

preference range. However, the computed attribute's 

significance always specifies the relative value concerning the 

other attributes, and thus, the sum of the utility values of all 

the attributes is always 1. 

Initially, the utility of each attribute value was calculated 

by determining the mean partworths of a particular attribute 

value. However, the partworths for the attribute at various 

levels can be estimated using various models, such as dummy 

variable regression or the LOGIT model. Upon identifying the 

part and attribute utility values, the utility range of a property 

can be determined by calculating the difference between its 

maximum and minimum utility values, as shown in Equation 

2. 

𝑅𝑛𝑔𝐴𝑡𝑡 𝑟𝑖
= 𝑚𝑎𝑥(𝑢𝑎𝑡𝑡𝑟𝑖

) − 𝑚𝑖𝑛(𝑢𝑎𝑡𝑡𝑟𝑖
)  (2) 

The relevance of an attribute can be calculated as the ratio 

of the utility range of that attribute to the overall utility range 

of all attributes, as shown in Equation 3. 

𝐴𝑡𝑡𝑟 _𝑆𝑖𝑛𝑔𝑖 =
𝑅𝑛𝑔_𝐴𝑡𝑡𝑟𝑖

∑ 𝑅𝑛𝑔_𝐴𝑡𝑡𝑟𝑖
𝑛
𝑖 =1

  (3) 

Attributes with very low scores were filtered based on the 

above significance score. The remaining attributes and their 

utility values are retained as inputs for the mRMR process. 

This step effectively reduces dimensionality while preserving 

the predictive relevance. 

5.2. CA-mRMR Model 

Generally, mRMR is a model used for feature selection in 

which the input is the set of records, and the output is the 

ranked attribute based on its significance. The features are 

ranked based on the relevance of the attribute to that of the 

class variable, thereby penalizing the redundancy between the 

attributes. Thus, it aims to maximize the dependency between 

the attribute and target variables and minimize the redundancy 

between the dependent variables. To compute the relevancy 
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between feature f and target class c, weighted mutual 

information is computed, in which the attribute significance 

obtained through conjoint analysis serves as the weights for 

the attributes. The formula for computing the weighted mutual 

information between attribute A and target class C is given in 

Equation 4: 

𝑤𝑀𝐼(𝐴, 𝐶) = ∑ ∑ 𝑤(𝑎)𝑝(𝑎, 𝑐)𝑙𝑜𝑔 (
𝑝(𝑎,𝑐)

𝑝(𝑎)𝑝(𝑐)
)𝑐𝜖𝐶𝑎𝜖𝐴 (4) 

Here, w(a) is the utility value of attribute a. The main aim 

is to maximize the attribute relevance of the target class and 

minimize the redundancy between the two attributes. These 

can be achieved using the maximization and minimization 

constraints given in Equations 5 and 6, respectively:  

𝑀𝑎𝑥 𝑅𝑒𝑙 (𝐴, 𝐶)  =
1

|𝐴|
∑ 𝑤𝑀𝐼(𝑎, 𝐶)    𝑎𝜖𝐴    (5) 

𝑀𝑖𝑛 𝑅𝑒𝑑 (𝐴)  =
1

|𝐴|
∑ 𝑤𝑀𝐼(𝑎𝑖 , 𝑎𝑗)𝑎𝑖 ,𝑎𝑗𝜖𝐴  (6) 

The CA-mRMR algorithm first selects the attribute with 

the highest relevance score. Then, in each iteration, the 

redundancy between the newly selected attribute and all the 

remaining candidates is calculated. The attribute that 

maximizes (relevance redunda ncy) was added to the final 

selected set. This process is repeated until k features 

(determined from conjoint analysis) are selected. 

In the case of the CA-mRMR algorithm, the relevance 

score for all attributes is computed using weighted mutual 

information and stored in memory. The feature with the 

highest relevance mutual information score compared to that 

of the target class variable was selected.  

Then, the selected attribute acts as a reference for 

computing redundancy, in which mutual information is 

computed with the selected attribute and that of each 

unselected attribute. The redundancy values were 

accumulated at each iteration. This process continues for all 

features selected using conjoint analysis. The algorithm for the 

proposed CA-mRMR algorithm is as follows. 

Input: a  set of features from the dataset D 

Output: Significantly selected features 

begin map_phase() 

final_set = (); candidate_deature={}; total_range_utility = 0;  

//Conjoint analysis  

for each feature f do 

     //Apply Logit model to find the part worths 

     partworths[f]=Logit();  

     //Attribute-value utility computation 

     for attribute value i from 1 to n do  

          utility_attri = avg(part_worthsi) 

     end for 

     range_attri(f) = (max(utility_attri)-  

     min(utility_attri)) 

     total_range_utility = total_range_utility +    

     range_attri(f) 

end for 

for each feature f do  

     //Significance score computation 

     sig_score(f) = range_attri(f) / total_range_utility 

     if sig_score(f) > threshold then 

        candidate_feature = candidate_feature ∪ f 

        //Number of features to be selected 

        nfeature=nfeature+1  

     end if 

end for 

//Feature selection with weighted mutual information 

for candidate_feature f in D do 

     relevance[f] = wMI(f, class); 

      accumulatedRed[f] = 0; 

end for 

selected = getMaxRelevance(relevance);  

final_set.add(selected); 

candidate_feature.remove(selected); 

while final_set.size() < nfetaure do 

     for feature f in candidate do 

          rel = relevance[f] //relevancy   

          //redundancy computation. 

          red = wMI(f, selected);  

          //Score with max. relevance & min.  

          redundancy 

          CA_mRMR = rel - red;  

          if CA_mRMR is max then 

                selected = f; 

          end if 

     end for 

     final_set.add(selected); 

     candidate_feature.remove(last_selected); 

end while 

end procedure 

To optimize the algorithm, the computed values were 

stored in the cache for further use. This minimized the Number 

of computations required. In addition, to minimize random 

memory access, columnar transformation was initially  

performed before applying the algorithm. These simple 

modifications significantly influence the performance of the 

model without altering the final results. It was also 

implemented in Apache Spark using MapReduce. The input 

data is split into partitions and set as inputs for the Hadoop 

Distributed File System (HDFS) worker nodes at the map 

phase. These worker nodes process the files and produce 

results in a key-value pair that contains the selected set of 

features. 

6. Reduce Phase using Q-Gram Filter 
The training dataset and output from the map phase were 

subsequently sent through the master node to the reduce phase, 

where the inputs were merged and sorted. These were then 
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further analysed to identify and eliminate redundant instances, 

resulting in a clean, reduced dataset. A data integration 

process was performed using the binary vector results from the 

different worker nodes to determine the important features. 

The averages of these binary vectors were calculated to 

identify the most significant features. Equation 7 provides the 

formula used to compute the average of the binary vectors 

obtained from the mapping phase. 

𝑆𝐴𝑖  =
1

𝑘
∑ 𝑓

𝑖𝑗𝑗 , ∀𝑗 = 1, 2, . . 𝑘  (7) 

Here, j indicates the Number of worker nodes in the map 

phase that varies from 1, 2, …, k, and i represents the Number 

of features in the datasets that range from 1, 2, …, n. Thus, the 

attributes with maximum values are selected. 

Because the inputs obtained from the mapper nodes are 

feature- or column-oriented, the input dataset partitions must 

be converted to instance-oriented or row-oriented, in which  

each row depicts an instance from the dataset. A row 

representation of the dataset with four instances and three 

attributes is shown in Figure 2. This step significantly  

increases the performance of the system because it reduces the 

unnecessary time required to perform a random search. 

6.1. Q-Gram-based Filtering Approach 

The training sets given to the map phase are also 

presented as inputs to the reduction phase. However, the 

dimensionally reduced dataset was used, in which the 

attributes that were not selected in the previous step were 

removed from the dataset for further processing. A Q-gram-

based filtering approach was used to eliminate irrelevant 

instances [38].  

Thus, all attribute values in each instance are 

concatenated to form a single string for which the Q-gram  

approach is applied to find duplicate records. Specifically, Q-

gram Alignment based on Suffix Arrays (QUASAR), a simple 

enhanced q-tuple filtering model that verifies the pattern 

match, is applied to the data to identify the redundancy [50].  

It identifies various occurrences of a specific q-pattern S 

by performing local approximate matches in the given data D. 

The algorithm applies edit distance, in which patterns S and di 

can have at most k values. It also uses a q-gram index to 

specify the Number of occurrences for each substring. The 

matched patterns are stored in a matching block and sent to 

the next phase for further analysis. The use of the q-gram and 

matching blocks reduces the overhead of the underlying 

system.  

The matched patterns are effectively analyzed, based on 

which the decision on irrelevant and redundant instances can 

be made. Thus, if pattern S has a complete match with the 

instances in database D, this implies that the instances are 

duplicates or redundant and can be removed. In addition, 

irrelevant instances that do not have any matches are 

considered outliers and are discarded, which also enhances the 

performance of the system. The conditions for relevancy, 

redundancy, and irrelevancy are given in Equation 8. 

𝑓𝑙𝑡𝑟(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = {
𝑠 = 𝑑𝑖 , 𝑖𝑓 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

 𝑠 ∩ 𝑑𝑖 = ∅, 𝑖𝑓 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

 𝑠 ∩ 𝑑𝑖 ≠ ∅, 𝑖𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
  (8) 

The algorithm for the proposed q-gram-based filtering is 

given below. 

Algorithm: Q-gram_filtering 

Input: set of partitions and features 

Output: Reduced dataset 

Begin reduce_phase() 

//Integration of results from mapper nodes.  

for each binary vector b do 

     //a ttribute value utility computation 

     for attribute value i from 1 to n do  

          selecti=selecti + <bi> 

     end for 

end for 

for each attribute i do selecti = selecti /b 

    if selecti is maximum, then  

          Select the attribute 

    end if 

end for 

//Q-gram-based filtering 

for each instance i in the dataset d do 

     patterni = concat(all_attibute values) 

end for 

for each patterni do 

     if patterni ==patternd then  

         patterni.remove() //Redundant instance 

     elseif no element in pattern i match patternd then 

         patterni.remove() //Irrelevant instance 

     elseif subset of patternd matches with subset of  

     patternd then 

         patterni.select() //Relevant instances 

    end if 

end for 

end procedure 

Figure 3 shows the overall workflow design of the 

proposed framework for enhancing the quality of big data . 

7. Experimental Analysis 
An evaluation of the proposed approach concerning the 

quality improvement of the data to be processed is discussed. 

The testing environment used for the proposed m -MRMR 

model and the outcomes acquired for different inputs were 

examined and compared with the existing models. 
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  Fig. 3 Workflow of the proposed quality improvement framework for big data  

7.1. Experiment Setup 

For performing the trials and to analyze the effectiveness 

of the proposed approach, a set of four nodes was used in the 

clustering step, with a single node as the master, whereas the 

remaining three nodes were identified as slaves. The system 

configuration and the configuration of the computing nodes 

are as follows: Intel Core i3 CPU processor, two cores per 

processor with 3.00 GHz, 64 GB RAM, and 1000 GB Hard 

Disk. The computer has the following software configuration: 

Open Source Apache Hadoop with Apache Spark and machine 

learning library (MLlib) version of 1.2.2, and HDFS with a 

block size of 128 MB. The master node manages the HDFS, 

controls, and coordinates with slave nodes.  It uses a 

MapReduce framework with a set of nodes at a  map phase and 

a single reduce phase, in which the input data is split into 

several partitions and then fed as input for the mapper nodes. 

Upon applying the CA-mRMR algorithm to the data in the 

mapper nodes, a  reduced set of instances is obtained as the 

output, which is then fed to the reduce phase for performing 

aggregation and Q-gram-based filtering. The final result of the 

reduce phase is the quality of the dataset after removing 

irrelevant and redundant attributes and instances. 

7.2. Datasets Used 

This study employed three frequently used datasets to 

analyse the efficacy of the feature selection algorithm for big 

data. The details of the dataset used for the proposed study, 

including the Number of instances and attributes, along with 

the source details, are presented in Table 1. The Epsilon  

dataset is a  part of LibSVM and has many attributes, while 

ECBDL14 is a  dataset that has many instances. The Susy 

dataset has a minimum number of 18 attributes and a 

maximum number of records and is available at the UCI 

repository. 

Table 1. Dataset used 

Dataset #Attr. #Inst. Source 

Epsilon 2000 400000 LibSVM 

Susy 18 5000000 UCI repository 

ECBDL14 631 7994298 
GECCO-2014 

International conference 

The original datasets were preprocessed to address 

missing values, outliers, and inconsistencies during collection  

to ensure data quality. According to the 3σ rule, outliers were 

defined as any result that did not fall within the interval (μ − 

3σ, μ + 3σ). Furthermore, both missing values and identified 

outliers were replaced with representative values from 

comparable cases by using the KNN imputation technique 

[40]. Duplicate records and unnecessary features were 

eliminated during the initial cleaning. To improve the 

classifier’s performance and interpretability, min–max 

normalization was used to bring all features onto a unified 

scale. 

By changing the dataset size (50 K, 100 K, and 200 K 

instances), a  sensitivity analysis was performed to assess the 

model's resilience and scalability. Using several classifiers 

and datasets, the effects of these differences on classification 

accuracy and execution time were examined. This allowed for 

better evaluation of the stability of the proposed CA-mRMR 

model across varying data volumes. The data quality was 
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maintained during the preprocessing and selection procedures, 

which included utility-based feature scoring and instance 

filtering. These methods reduce redundancy and improve 

overall information density. Ethical data management is a  

crucial element of research that utilizes high-dimensional 

information. Only publicly accessible and anonymised 

datasets were used in this study, ensuring that no personal 

information could be directly linked to any individual. All the 

data complied with the relevant licenses and terms of service. 

During processing and analyzis, privacy and confidentiality 

were carefully maintained. Feature selection and classification 

were consistently implemented to prevent bias and promote 

equity. To minimize overfitting, five-fold cross-validation 

was used to evaluate the final results, and all the reported 

metrics adhered to the established procedures. 

8. Results and Discussion 
8.1. Result for the Proposed Model 

This section provides various analyses based on 

experimental data. Initially, a  comprehensive study was 

conducted for the suggested model, utilizing the various 

datasets provided in Table 1. The classification accuracy of 

the quality-improved big data was evaluated using various 

standard classifiers such as SVM, NB, KNN, LR, RF, and DT 

with default parameters. The experiment was performed in 

batches by varying the size of the datasets, which refers to the 

Number of instances as 50 K, 100 K and 200 K. Table 2 

presents the findings detailing the classification accuracy as 

well as the duration required for training and testing the 

proposed model using the Epsilon dataset. 

Table 2. Results of the proposed model with the Epsilon dataset 

Classifiers Size 
Acc.  

(%) 

Train.  

(sec) 

Test.   

(sec) 

Total  

(sec) 

SVM 

50K 80.91 1.37 1.12 2.49 

100K 79.62 1.68 1.43 3.11 

200K 78.77 1.9 1.51 3.41 

NB 

50K 79.93 1.4 1.21 2.61 

100K 78.96 1.58 1.18 2.76 

200K 76.25 1.81 1.49 3.3 

KNN 

50K 80.75 1.27 1.05 2.32 

100K 79.11 1.41 1.19 2.6 

200K 77.95 1.66 1.4 3.06 

LR 

50K 78.64 1.16 0.93 2.09 

100K 77.23 1.4 1.16 2.56 

200K 75.65 1.59 1.23 2.82 

RF 

50K 81.99 1.68 1.4 3.08 

100K 80.72 2.05 1.76 3.81 

200K 79.94 2.36 1.89 4.25 

DT 

50K 81.66 1.46 1.23 2.69 

100K 80 1.58 1.34 2.92 

200K 78.88 1.84 1.56 3.4 

The average classification accuracies with varying 

instance counts of 50 K, 100 K, and 200 K using SVM, NB, 

KNN, LR, RF, and DT were 80%, 78%, 79%, 77%, 81%, and 

80%, respectively. The average time taken for both training 

and testing the model using SVM, NB, KNN, LR, RF, and DT 

is 3.00s, 2.89s, 2.66s, 2.49s, 3.71s, and 3.00s, respectively. 

From this analysis, it is evident that the accuracy and 

execution duration of the model are closely related to the 

dataset size. Notably, LR achieved the lowest accuracy with 

the shortest runtime, whereas RF achieved the highest 

accuracy with the longest computational time, highlighting the 

tradeoff between performance and time complexity. The 

results obtained by varying the size of the datasets with sample 

counts of 50 K, 100 K and 200 K for the suggested work on 

the Susy dataset using different classifiers, such as SVM, NB, 

and KNN, are shown in Table 3. The mean classification 

accuracy with 50 K, 100 K and 200 K instances using SVM, 

NB, KNN, LR, RF, and DT are 74.44%, 73.22%, 74.12%, 

71.86%, 75.56%, and 75.12%, respectively. Training and 

testing the model with SVM, NB, KNN, LR, RF, and DT 

required an average of 2.41, 2.29, 2.07, 1.93, 3.04 and 2.40 

seconds, respectively. 

Table 3. Results of the proposed model with the Susy dataset 

Classifiers Size 
Acc.  

(%) 

Train.  

(sec) 

Test.   

(sec) 

Total  

(sec) 

SVM 

50K 75.29 1.08 0.77 1.85 

100K 74.49 1.41 1.11 2.52 

200K 73.56 1.69 1.18 2.87 

NB 

50K 74.57 1.17 0.82 1.99 

100K 73.96 1.36 0.85 2.21 

200K 71.14 1.55 1.13 2.68 

KNN 

50K 75.77 1.03 0.74 1.77 

100K 73.91 1.21 0.8 2.01 

200K 72.69 1.39 1.03 2.42 

LR 

50K 73.02 0.89 0.56 1.45 

100K 72.17 1.17 0.86 2.03 

200K 70.39 1.4 0.9 2.3 

RF 

50K 76.37 1.37 1.05 2.42 

100K 75.59 1.68 1.39 3.07 

200K 74.73 2.08 1.56 3.64 

DT 

50K 76.67 1.2 0.91 2.11 

100K 74.78 1.36 0.97 2.33 

200K 73.6 1.58 1.19 2.77 
 

The results obtained by changing the size of the datasets 

with the Number of records as 50 K, 100 K and 200 K for the 

proposed quality improvement framework on the ECBDL14 

dataset using different classification algorithms, such as SVM, 

NB, and KNN, are shown in Table 4. 

Table 4. Results of the proposed model with the ECBDL14 dataset 

Classifiers Size 
Acc. 

(%) 

Train. 

(sec) 

Test.  

(sec) 

Total 

(sec) 

SVM 

50K 85.01 1.18 1.02 2.2 

100K 83.73 1.49 1.33 2.82 

200K 82.98 1.71 1.41 3.12 
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NB 

50K 84.15 1.21 1.11 2.32 

100K 82.97 1.39 1.08 2.47 

200K 80.49 1.62 1.39 3.01 

KNN 

50K 84.94 1.08 0.95 2.03 

100K 83.27 1.22 1.09 2.31 

200K 82.00 1.47 1.3 2.77 

LR 

50K 82.49 1 0.85 1.85 

100K 81.21 1.26 1.09 2.35 

200K 80.46 1.43 1.14 2.57 

RF 

50K 86.09 1.47 1.3 2.77 

100K 84.83 1.84 1.67 3.51 

200K 84.15 2.03 1.74 3.77 

DT 

50K 85.84 1.25 1.12 2.37 

100K 84.14 1.37 1.26 2.63 

200K 82.91 1.66 1.41 3.07 
 

The mean accuracies with varying instance counts (50 K, 

100 K, and 200 K) using SVM, NB, KNN, LR, RF, and DT 

classifiers were 83.9%, 82.54%, 83.4%, 81.4%, 85%, and 

84.3%, respectively. As shown in these classifiers are 2.71s, 

2.6s, 2.37s, 2.26s, 3.35s, and 2.69s, respectively. The average 

values for the three datasets obtained using various standard 

classifiers are shown as a bar graph in Figure 4. The average 

classification accuracies across the six classifiers for each 

dataset were as follows: epsilon (M = 79.28%, Var = 1.77), 

Susy (M = 74.04%, Var = 1.77), and ECBDL14 (M = 83.43%, 

Var = 1.70). According to these descriptive statistics, 

ECBDL14, Epsilon, and Susy exhibited varying levels of 

average accuracy. The relatively small variances indicate 

consistent classifier performance within each dataset. A one-

way ANOVA was performed to determine whether the mean 

classification accuracy of the six classifiers varied 

significantly across the datasets. The analysis revealed a 

statistically significant difference (F = 75.93, p < 0.001) with  

the computed F-value exceeding the critical threshold (F_crit  

= 3.682). This result confirms that the type of dataset 

substantially affects the classification performance, 

highlighting the importance of evaluating the proposed CA-

mRMR model across diverse datasets to ensure robustness and 

generalizability. The average execution times for the proposed 

CA-mRMR-based feature selection method, evaluated across 

the epsilon, suspicious, and ECBDL14 datasets using the 

SVM, NB, KNN, LR, RF, and DT classifiers, are presented in 

Figure 5. 

 
Fig. 4 Execution time analysis for the proposed model 

 
Fig. 5 Execution time analysis for the proposed model
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A one-way ANOVA was performed to ascertain whether 

the mean execution times of the six classifiers differed 

significantly. The results showed a statistically significant 

difference in execution time (F = 5.18, p = 0.009). The null 

hypothesis was rejected because the computed F-value 

exceeded the critical value (F_crit = 3.11), indicating that the 

classifier type significantly affected the execution time. 

Descriptive statistics revealed that LR had the shortest average 

execution time (M = 2.22s), whereas RF had the longest (M = 

3.37s). These findings emphasize the importance of 

considering computational efficiency and accuracy when 

selecting a classifier. 

8.2. Comparison with State-of-the-Art Models 
A comparison has been made for the proposed CA-

mRMR algorithm, and the results are compared with other 

algorithms, such as the traditional mRMR [31], EmRMR [32], 

MR-mRMR [33], ImRMR [40], and FmRMR [39] algorithms.  

The analysis was performed by varying the selection 

criteria for 100, 150, and 200 feature sizes. The execution 

times of both the suggested and existing algorithms are 

assessed, and the time required to process the complete 

datasets, such as Epsilon, Susy, and ECBDL14, are presented 

in Table 5.  

Table 5. Execution time comparison by varying the number of attributes 

Dataset #Attr. Sel. CA-mRMR EmRMR MR-mRMR mRMR ImRMR FmRMR 

Epsilon 

100 1.05 1.84 1.03 7.49 2.13 1.93 

150 1.272 2.50 1.41 9.67 2.95 1.45 

200 1.69 2.51 1.72 12.45 3.09 2.17 

Susy 

5 0.41 1.20 0.57 8.9 2.29 1.27 

10 0.96 1.73 1.04 13.42 2.62 1.37 

15 1.05 2.44 1.12 17.85 2.14 1.69 

ECBDL14 

100 0.62 1.20 0.69 7.78 2.02 0.97 

150 0.71 1.21 0.84 12.11 1.80 0.89 

200 1.01 2.17 1.06 15.41 2.20 1.02 

The average time taken by the Epsilon dataset for the 

proposed model is 1.34s, whereas that of other models, such 

as MR-mRMR, mRMR, EmRMR, ImRMR, and FmRMR 

models, are 1.4s, 9.87s, 2.29s, 2.72s, and 1.85s, respectively. 

Similarly, the average time taken by the Sysu dataset for the 

proposed model is 0.74s, whereas for the other models, such 

as MR-mRMR, mRMR, EmRMR, ImRMR, and FmRMR 

models, it is 0.81s, 13.39s, 1.79s, 2.35s, and 1.44s, 

respectively. For the ECBDL14 dataset, the average time 

taken for CA-mRMR, MR-mRMR, mRMR, EmRMR, 

ImRMR and FmRMR models is 0.78s, 0.86s, 11.77s, 1.53s, 

2.01s and 0.96s, respectively. More specifically, the average 

time taken by various methods, including CA-mRMR, MR-

mRMR, ImRMR, FmRMR, EmRMR, and mRMR models for 

the three different datasets was 0.97s, 1.05s, 2.36s, 1.42s, 

1.87s and 11.68s, respectively. Thus, the time required for the 

proposed CA-mRMR algorithm is minimal compared with the 

traditional mRMR algorithm. Compared to other recent 

variants, such as MR-mRMR, EmRMR, ImRMR, and 

FmRMR, the CA-mRMR algorithm also shows lower or 

comparable execution times in most cases.  

Although some models, such as MR-mRMR or FmRMR, 

perform slightly better in isolated cases, the difference is 

minimal. It can be considered insignificant when weighed  

against the overall data quality and performance. The values 

provided in Table 5 are presented as a graph in Figure 6 to 

visualize the time differences clearly.

 
Fig. 6 Average execution time comparison for mRMR variations 
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The execution time and accuracy of the proposed model 

were compared with those of existing state-of-the-art models, 

such as mRMR, MR-mRMR, EmRMR, and ImRMR 

FmRMR. Various analyses were carried out by selecting 100 

attributes from the Epsilon and ECBDL14 datasets and ten 

attributes from the Sysu dataset with different classifiers, such 

as SVM, NB, KNN, LR, RF, and DT classifiers. The times 

required to execute the model are listed in Table 6. 

Table 6. Execution time comparison for mRMR variations with different classifiers 

Classifiers Datasets 
Various Feature Selection Methods 

mRMR MR-mRMR EmRMR ImRMR FmRMR CA-mRMR 

SVM 

Epsilon 44.00 11.00 10.90 13.53 15.29 9.23 

Susy 36.00 13.23 13.08 15.39 16.89 11.12 

ECBDL14 29.00 10.51 9.25 11.29 13.30 8.12 

NB 

Epsilon 224.00 54.00 28.74 31.02 31.80 27.00 

Susy 251.00 42.00 22.17 24.43 25.88 21.00 

ECBDL14 182.00 29.00 18.40 20.91 21.92 17.00 

KNN 

Epsilon 40.45 9.31 8.56 10.55 12.19 6.85 

Susy 32.10 11.92 10.16 12.79 13.55 8.71 

ECBDL14 25.91 8.76 6.77 8.69 9.67 5.84 

LR 

Epsilon 39.88 7.39 8.34 11.59 13.66 7.01 

Susy 31.88 10.12 10.69 13.03 15.46 9.03 

ECBDL14 24.88 7.02 6.84 9.21 12.13 5.13 

RF 

Epsilon 50.72 16.71 17.29 20.86 22.99 15.17 

Susy 42.68 19.19 19.35 21.93 24.26 16.30 

ECBDL14 35.72 15.90 15.80 18.13 21.00 13.53 

DT 

Epsilon 41.76 10.73 10.04 12.39 14.32 8.28 

Susy 33.32 12.84 11.81 15.27 15.83 9.83 

ECBDL14 27.23 9.78 8.28 10.49 11.87 6.84 

The speed-up rates of the proposed CA-mRMR model 

over the traditional mRMR algorithm (mRMR/CA-mRMR) 

with respect to the Epsilon, Susy, and ECBDL14 datasets 

using the SVM classifier were 4.77, 3.24, and 3.57, 

respectively. Compared with MR-mRMR (MR-mRMR/CA-

mRMR), the speed-up rates were 1.19, 1.19, and 1.29, 

respectively. When considering all the methods, the maximum 

speed-up rate using SVM was achieved by CA-mRMR over 

mRMR (4.77×). Similarly, for the NB classifier, the speed-up 

rates of CA-mRMR over mRMR are 8.30 (Epsilon), 11.95 

(Susy), and 10.71 (ECBDL14), and 2.00, 2.00, and 1.71 , 

respectively. When extended to other classifiers, such as 

KNN, LR, RF, and DT, CA-mRMR consistently demonstrates 

a lower execution time than other methods, including 

EmRMR, ImRMR, and FmRMR.  

While some models, such as EmRMR and ImRMR, 

occasionally show comparable performance, CA-mRMR 

provides the best overall tradeoff between execution time and 

selection quality. These results confirm that the CA-mRMR 

algorithm offers a consistently superior speed with minimal 

compromise, making it an efficient choice across different 

classifiers and datasets. 

The analysis of the classification accuracy with that of the 

SVM, NB, KNN, LR, RF, and DT classifiers for different 

datasets, such as Epsilon, Sysu, and ECBDL14, was 

performed by selecting 100 attributes from the Epsilon and 

ECBDL14 datasets and 10 from the Sysu datasets. The values 

obtained for the accuracy of the classifier using different 

mRMR variations are listed in Table 7. 

Table 7. Execution accuracy comparison for mRMR variations with different classifiers 

Classifiers Datasets 
Various Feature Selection Methods 

mRMR MR-mRMR EmRMR ImRMR FmRMR CA-mRMR 

SVM 

Epsilon 61.80 80.32 81.47 80.71 80.96 83.26 

Susy 69.14 78.69 79.78 79.01 79.21 86.89 

ECBDL14 71.77 83.40 82.56 83.50 83.72 85.87 

NB 

Epsilon 59.31 78.80 79.43 78.81 78.80 82.05 

Susy 67.82 78.00 77.91 78.13 78.51 85.08 

ECBDL14 69.53 81.41 79.62 81.28 81.78 85.07 

KNN 

Epsilon 60.42 81.22 81.07 80.79 81.25 84.59 

Susy 69.51 80.35 79.44 80.35 80.16 87.51 

ECBDL14 70.79 82.85 80.51 82.46 83.62 86.31 
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LR 

Epsilon 58.77 79.01 79.99 79.09 79.17 83.71 

Susy 67.76 77.94 78.11 78.59 77.88 85.62 

ECBDL14 69.23 81.06 78.60 80.71 81.65 84.43 

RF 

Epsilon 63.13 82.43 82.50 83.06 83.36 85.40 

Susy 70.34 80.40 81.53 80.75 81.26 89.27 

ECBDL14 73.73 85.42 83.90 85.32 85.25 88.45 

DT 

Epsilon 60.98 78.87 81.36 79.43 80.32 83.11 

Susy 68.88 77.63 79.58 78.16 78.25 87.26 

ECBDL14 71.03 82.11 81.87 82.94 82.85 85.96 

The increase in the accuracy rate of the proposed CA-

mRMR approach with that of the traditional mRMR algorithm 

for the Epsilon, Susy, and ECBDL14 datasets using the SVM 

classifier was 34.72%, 25.67%, and 20.76%, respectively, and 

the rate of increase with that of the MR-mRMR algorithm for 

the same datasets was 3.66%, 10.43%, and 2.96%, 

respectively. For the NB classifier, the increases with respect 

to mRMR are 22.74%, 17.26%, and 22.53%, and those with 

respect to MR-mRMR are 4.13%, 9.07%, and 4.49%, 

respectively. Similarly, the increases for KNN with mRMR 

are 24.17%, 25.85%, and 21.63%, and those with MR-mRMR 

are 4.14%, 8.91%, and 4.17%, respectively.  

For LR, the rate of increase in accuracy with respect to 

mRMR was 24.94%, 26.31%, and 22.01%, and MR-mRMR 

was 5.95%, 9.83%, and 4.16%, respectively. In the case of RF, 

the improvements with mRMR were 22.27%, 26.91%, and 

19.72%, and those with MR-mRMR were 2.97%, 8.87%, and 

3.54%, respectively. Finally, the increases in accuracy for the 

DT classifier with mRMR were 22.13%, 26.68%, and 20.98%, 

and those with MR-mRMR were 4.24%, 12.39%, and 3.85%, 

respectively. Thus, the proposed CA-mRMR model 

consistently outperformed both mRMR and MR-mRMR 

across all classifiers and datasets. 

The tradeoff between accuracy and execution time across 

various feature selection algorithms is evident from the 

experimental data. Although techniques such as EmRMR and 

ImRMR may offer competitive accuracy, CA-mRMR 

consistently requires a shorter execution time. The proposed 

CA-mRMR method reliably delivers the lowest execution 

time and highest classification accuracy across all classifiers 

and datasets.  

Compared to mRMR (SVM, Epsilon), CA-mRMR 

achieves a notable accuracy improvement of up to 34.72%, 

along with a maximum speed-up of 4.77×. This balance 

demonstrates that the model can offer superior predictive 

performance without compromising computational efficiency, 

making it well-suited for real-time or large-scale applications 

where both accuracy and speed are critical. 

8.3. Comparison of Methods with Biomarker Datasets 

Another comparison was made between the proposed 

CA-mRMR algorithm and the EmRMR [32] and traditional 

mRMR [31] algorithms and conventional feature selection 

methods with other biomarker datasets such as lung, NCI, 

Colon, Leukemia , Lymphoma, DLBCL and Gastric. A 

complete list of these datasets is available at GitHub 

(https://github.com/xwdshiwo/BioFSDatasets_and_code). 

 Table 8 displays the execution time calculated using the 

SVM classifier for both the proposed and existing methods 

using five-fold cross-validation. The table displays the 

datasets, including the Number of attributes and instances, 

along with the execution times for the different models. 

Table 8. Execution time comparison for biomarker datasets 

Datasets #Attr. #Inst. mRMR EmRMR CA-mRMR 

Lung 73 326 23.27 0.06 0.26 

NCI 60 9173 39.71 2.02 1.93 

Colon 62 2000 40.24 0.37 1.45 

Leukaemia  72 7129 43.54 1.51 1.62 

Lymphoma 45 4026 41.81 0.95 0.82 

DLBCL 77 7129 48.56 1.67 1.73 

Gastric 65 22,645 70.31 3.47 4.01 
 

The speed-up rates of the proposed CA-mRMR model 

over the traditional mRMR algorithm (mRMR/CA-mRMR) 

using the SVM classifier for the Lung, NCI, Colon, Leukemia, 

Lymphoma, DLBCL, and Gastric datasets were 89.50, 20.58, 

27.75, 26.88, 50.99, 28.06, and 17.54, respectively. In 

comparison, the speed-up rates of the EmRMR algorithm 

(EmRMR/CA-mRMR) for the same datasets were 0.23, 1.05, 

0.43, 0.93, 1.16, 0.97, and 0.87, respectively.  

Among all datasets, the maximum speed-up with respect 

to mRMR is observed for the Lung dataset (89.50×), while the 

highest improvement over EmRMR is seen for the NCI dataset 

(1.05×). These results indicate that CA-mRMR achieves 

substantial reductions in execution time compared to 

conventional methods, particularly when compared to 

mRMR, while maintaining or exceeding the performance 

efficiency of faster variants, such as EmRMR. The values 

presented in Table 8 are shown as a graph in Figure 7 to 

understand the time variations easily. From the experimental 

analysis, it is clear that the proposed model has the minimum 

execution time in many cases and yet has the best performance 

in terms of accuracy compared to many other existing models 

used for the study.
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Fig. 7 Execution time comparison for different datasets 

Moreover, using five biomarker datasets (colon, 

leukemia, lymphoma, DLBCL, and gastric), the efficacy of the 

suggested CA-mRMR feature selection method was compared 

with ten traditional and state-of-the-art methods: Lasso, 

Random Forest (RF), Logistic Regression (LR), Ridge, 

Correlation Coefficient (Corr), Decision Tree (DT), Mutual 

Information Coefficient (MIC), t-test, Stability Selection  

(Stab), and ImRMR. Accuracy, precision, recall, and F1-score 

were the four main performance metrics used for the 

evaluation, with SVM serving as the base classifier. SVMs 

were consistently used across all approaches to ensure 

impartial and unbiased evaluation, and the final performance 

indicator was the average classification accuracy derived from 

a five-fold cross-validation. This technique allows for uniform 

evaluation across datasets by ensuring robustness and 

reducing the possibility of overfitting. The results were 

compared with several classical feature-selection algorithms 

reported by Yu et a l. (2024) [40]. To facilitate meaningful 

comparisons, the Number of selected features for each 

approach was kept constant.  

In addition, the proposed approach showed little  

difference in performance across datasets, demonstrating its 

statistical dependability and generalizability across varying 

dataset sizes and feature distributions. Table 9 summarizes the 

accuracy, precision, recall, and F1-score results. 

Table 9. Comparison with traditional feature selection methods 

Datasets Lasso RF LR Ridge Corr DT MIC t-test Stab ImRMR Proposed 

Accuracy Values 

Colon 0.92 0.95 0.91 0.92 0.93 0.92 0.91 0.84 0.93 0.93 0.92 

Leukemia  0.89 0.92 0.92 0.91 0.93 0.92 0.88 0.82 0.91 0.96 0.96 

Lymphoma 0.99 0.97 0.97 0.95 0.95 0.96 0.9 0.87 0.99 1 0.99 

DLBCL 0.94 0.94 0.94 0.96 0.94 0.96 0.91 0.89 0.94 0.97 0.98 

Gastric 0.91 0.93 0.92 0.82 0.9 0.92 0.86 0.86 0.93 0.94 0.95 

Precision values 

Colon 0.86 0.87 0.96 0.92 0.92 0.92 0.96 0.92 0.78 0.93 0.94 

Leukemia  0.93 0.93 1.00 0.93 0.93 0.93 0.93 0.67 0.66 0.94 0.95 

Lymphoma 0.98 0.97 0.84 0.99 0.98 0.96 0.96 0.96 0.71 1.00 0.99 

DLBCL 0.88 0.88 0.96 0.96 0.86 0.82 0.96 0.88 0.69 0.98 0.98 

Gastric 0.77 0.77 0.93 0.93 0.97 0.97 0.97 0.93 0.67 0.96 0.96 

Recall Values 

Colon 0.93 0.90 1.00 0.88 0.93 0.93 0.93 0.93 0.90 0.95 0.94 

Leukemia  0.92 0.92 0.72 0.96 0.96 0.92 1.00 0.60 0.74 0.94 0.96 

Lymphoma 0.96 0.96 0.87 0.91 0.91 0.91 0.96 0.91 0.86 1.00 0.99 

DLBCL 0.80 0.80 0.80 1.00 0.95 0.95 1.00 0.85 0.86 0.96 0.97 

Gastric 0.98 0.97 0.89 0.93 0.93 0.89 0.86 0.89 0.83 0.96 0.97 

F-measure 

Colon 0.89 0.89 0.98 0.90 0.92 0.92 0.94 0.92 0.84 0.94 0.94 

Leukemia  0.93 0.93 0.84 0.95 0.95 0.92 0.97 0.63 0.70 0.94 0.95 

Lymphoma 0.97 0.97 0.86 0.95 0.94 0.93 0.96 0.93 0.77 1.00 0.99 
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DLBCL 0.84 0.84 0.87 0.98 0.90 0.88 0.98 0.87 0.77 0.97 0.97 

Gastric 0.86 0.86 0.91 0.93 0.95 0.93 0.91 0.91 0.74 0.96 0.96 
 

Across all datasets, the proposed CA-mRMR approach 

consistently produced robust and stable accuracy. It showed 

competitive performance for lymphoma (0.99), leukemia 

(0.96), and colon cancer (0.92), either matching or slightly  

trailing the best methods. While Ridge attained good accuracy 

for DLBCL (0.96) and RF for Colon (0.95), their performance 

lacked consistency across datasets. Methods such as DT and 

MIC demonstrated moderate to good accuracy in isolated 

cases but showed variability. In contrast, CA-mRMR proved 

resilient to changes in the data structure and illustrated 

adaptability to high-dimensional gene expression datasets. 

In addition, CA-mRMR was among the top performers in 

terms of precision. It reached near-maximum values for 

gastric cancer (0.96), leukemia (0.95), colon cancer (0.94), 

and lymphoma (0.99). Although LR achieved perfect 

precision (1.00) for leukemia, its low recall (0.72) indicated a 

tendency to misclassify true positives. Similarly, MIC 

displayed high precision on Colon (0.96), but this was not 

reflected in the recall or F1-score. CA-mRMR’s ability to 

sustain high precision across datasets points to lower false 

positive rates and greater reliability in real-world  

classifications. 

The recall values further validated the generalization 

capacity of the CA-mRMR. It consistently reported high 

values, including 0.94 for Colon, 0.96 for Leukaemia, 0.99 for 

Lymphoma, 0.97 for DLBCL, and 0.97 for Gastric, which  

either matched or exceeded those of other techniques. 

Although MIC achieved perfect recall (1.00) for DLBCL, it 

was offset by lower precision, weakening its overall 

classification quality. CA-mRMR demonstrated the ability to 

avoid the precision-recall tradeoff, which is a common issue 

in high-dimensional classification tasks. 

The F1-score, which balances precision and recall, 

confirmed CA-mRMR's overall classification strength. It 

yielded high and consistent F1-scores across all datasets: 0.94 

for Colon, 0.95 for Leukaemia, 0.99 for Lymphoma, 0.97 for 

DLBCL, and 0.96 for Gastric. While traditional methods such 

as Ridge and RF produced competitive F1-scores on 

individual datasets, they failed to maintain performance 

consistency across all evaluation metrics. This highlights the 

limitations of classical techniques when applied to various 

biomarker data. The average performance of these ten 

methods was evaluated across various datasets, and the results 

are presented in Figure 8. The proposed CA-mRMR method 

outperformed all the classical approaches, achieving the 

highest accuracy (96.0%), precision (97.0%), recall (96.5%), 

and F-measure (95.5%). Although ImRMR and RF performed 

comparably, their metrics were slightly lower and less 

consistent, demonstrating the superior overall performance 

and balance of CA-mRMR across all the evaluation 

parameters.

 
Fig. 8 Performance comparison of different feature selection models  

In addition to comparing the results with the conventional 

feature selection models, a  comparative analysis was 

performed with other hybrid models that employed biomarker 

datasets.  

Table 10 presents a comparison analysis that compares 

the Number of selected features and classification accuracy for 

a range of biomarker datasets using the traditional, hybrid, and 

suggested CA-mRMR models. 
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Table 10. Comparison with hybrid models 

Datasets Methods Acc. Features 

Lung 

Peng et al. (2005) [31] 78.32 15 

Saravanan et al. (2022) [32] 89.36 32 

Proposed 95.85 24 

NCI 

Peng et al. (2005) [31] 72.13 13 

Saravanan et al. (2022) [32] 88.63 23 

Proposed 92.77 18 

Colon 

Gao et al. (2017) [51] 90.32 3 

Sun et al. (2018) [52] 84.30 5 

Lu et al. (2017) [53] 89.09 19 

Wang et al. (2017) [54] 85.70 11 

Lin et al. (2019) [55] 84.00 3 

Yu et al. (2024) [40] 93.33 4 

Peng et al. (2005) [31] 75.69 14 

Saravanan et al. (2022) [32] 90.36 19 

Proposed 94.56 19 

Leukemia  

Aziz et al. (2017) [56] 98.68 12 

Tumuluru et al., (2017) [57] 94.59 - 

Sun et al. (2018) [52] 92.73 3 

Lu et al. (2017) [53] 97.62 7 

Wang et al. (2017) [54] 96.10 8.3 

Lin et al. (2019) [55] 95.20 9 

Yu et al. (2024) [40] 97.23 6 

Peng et al. (2005) [31] 88.76 14 

Saravanan et al. (2022) [32] 93.46 29 

Proposed 97.11 21 

Lymphoma 

Vanitha et al. (2015) [58] 90.90 4 

Yu et al. (2024) [40] 97.77 5 

Peng et al. (2005) [31] 86.59 13 

Saravanan et al. (2022) [32] 94.78 18 

Proposed 98.11 16 

DLBCL 

Peng et al. (2005) [31] 83.57 16 

Saravanan et al. (2022) [32] 95.16 29 

Proposed 98.19 18 

Gastric 

Peng et al. (2005) [31] 80.71 13 

Saravanan et al. (2022) [32] 93.69 20 

Proposed 97.15 17 

The results clearly show that the proposed method 

performed better in terms of feature reduction and 

classification accuracy. In particular, CA-mRMR 

outperformed Peng et al. (78.32% with 15 features) and 

Saravanan et al. (89.36% with 32 features) in the lung dataset, 

achieving an accuracy of 95.85% with 24 features. Similarly , 

the proposed approach outperformed Saravanan et al. 

(88.63%) and Peng et al. (72.13%) on the NCI dataset, 

achieving 92.77% accuracy with 18 features. 

The suggested strategy accurately used a few features 

while demonstrating a solid balance on high-dimensional 

datasets, such as leukemia and colon cancer. It produced 

results comparable to those of Yu et al. (93.33%, four features) 

and Aziz et al. (98.68%, 12 features), achieving 94.56% 

accuracy with 19 features in the colon dataset and 97.11% 

accuracy with 21 features in leukemia. With 16 features, CA-

mRMR achieved 98.11% in the lymphoma dataset, which is 

among the highest recorded accuracies. The DLBCL and 

Gastric datasets exhibited comparable patterns. Therefore, the 

CA-mRMR approach proved its efficacy in managing high-

dimensional biomarker data by exhibiting exceptional 

classification accuracy while preserving a small feature set. Its 

reliable performance on many datasets attests to its efficiency, 

generalizability, and usefulness in real-world big-data 

applications, especially in the biomedical field. 

The proposed CA-mRMR consistently outperformed or 

matched the classical methods across all key evaluation 

metrics. Its robustness, efficiency, and generalizability in 

feature selection underscore its suitability for biomarker data 

classification tasks, offering both theoretical value and 

practical impact. These findings significantly strengthen the 

contribution of this study and support its relevance to real-

world bioinformatic applications. 

9. Research Implications  
9.1. Theoretical and Practical Implications 

According to the experimental and result analyses, the 

proposed CA-mRMR feature selection technique showed 

consistent performance with a variety of classifiers, including 

SVM, NB, KNN, LR, RF, and DT, on both large-scale and 

biomarker datasets. The method’s domain adaptability and 

classifier independence underscore its potential for wider 

applications in fields such as natural language processing, 

cybersecurity threat identification, financial forecasting, and 

environmental modelling. The resilience and sca lability of the 

method are confirmed by the consistent feature count decrease 

across classifiers without compromising the classification 

quality. 

There are numerous real-world biomedical and data-

intensive applications in which the proposed CA-mRMR 

feature selection method is highly beneficial. CA-mRMR can 

improve the accuracy of disease classification models by 

identifying the most pertinent biomarkers using high-

dimensional gene expression data. This facilitates early 

diagnosis and individualized treatment planning by enabling 

more accurate detection of diseases, including cancer subtypes 

(such as leukemia and lymphoma). The use of CA-mRMR 

extends beyond the medical field to drug discovery, where the 

prediction of drug-target interactions depends on the selection 

of pertinent molecular descriptors from enormous chemical 

datasets. This technique improves model interpretability in 

bioinformatics by removing redundant or noisy features, 

which helps in pathway analysis and gene function prediction. 

In real-time data analysis in sensor networks and the 

Internet of Things, where dimensionality reduction is essential 

for rapid decision making, CA-mRMR is especially 

appropriate owing to its stability across various classifiers and 

datasets. Moreover, it is useful for other real-time applications 
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where accuracy and speed are essential, such as fraud 

detection, financial risk analysis, and cybersecurity 

monitoring, owing to its reliable performance and minimal 

processing overhead. These uses demonstrate the method's 

versatility and applicability to fields that demand effective 

handling of high-dimensional data, thereby enhancing its 

usefulness in both scholarly and real-time practical 

applications. 

9.2. Challenges and Future Work 

Although the proposed CA-mRMR approach has shown 

progress, a  number of more general issues in data science still 

need to be addressed. Managing extremely large and high-

dimensional datasets, particularly those produced in real-time 

or streaming environments, is a  major challenge. Effective, 

flexible, and scalable feature selection methods are required to 

ensure prompt and precise decision-making in these 

situations. 

Another major issue is ensuring the model results are 

transparent and interpretable, particularly in sensitive fields 

like healthcare and finance. Although CA-mRMR offers a 

condensed and relevant subset of features, building 

confidence and actionable knowledge requires additional 

Integration with Explainable AI (XAI) techniques. Another 

difficulty is the increasing complexity of data, such as 

multimodal data, which consists of text, pictures, and sensor 

inputs. Future studies must concentrate on creating unified 

frameworks that can handle various types of data  while 

preserving computing efficiency and performance. 

Furthermore, ethical issues, including privacy protection, 

equity, and data bias, are becoming increasingly significant. It 

will be essential for ethical data science approaches to include 

privacy-preserving techniques, such as differential privacy or 

federated learning, as well as fairness-aware feature selection. 

Finally, there are major issues regarding generalizability and 

repeatability. Standardized benchmarking across diverse 

datasets, workloads, and contexts is necessary to validate the 

suggested models and techniques consistently. In addition to 

improving the applicability of feature selection algorithms, 

such as CA-mRMR, addressing these issues will help create 

data science solutions that are reliable, moral, and prepared for 

the future. 

Future studies should focus on applying CA-mRMR to 

multimodal datasets, such as multi-omics or sensor fusion 

data, expanding its use for unsupervised and semi-supervised 

learning tasks, and incorporating it into deep learning 

pipelines for improved feature interpretability. Comparative 

research incorporating distributed or federated learning 

contexts may potentially assess the effectiveness of CA-

mRMRs in settings with limited resources and privacy. Such 

investigations would further demonstrate the generalizability 

and practical applicability of the proposed approach in real-

world, high-dimensional data contexts. 

10. Conclusion 
A framework for quality enhancement was presented in 

this research to choose a meaningful feature subset that 

represents the complete dataset to enhance the quality of large 

datasets. By eliminating redundant and irrelevant attributes, 

the suggested conjoint analysis with the minimum 

Redundancy Maximum Relevance (mRMR) approach was 

used in the map phase to identify the most important attributes.  

In the reduce phase, the q-gram-based filtering approach 

is used to identify pertinent instances by eliminating 

redundant and irrelevant instances from the big data. The 

dataset is partitioned using the Apache Spark environment to 

increase the effectiveness of the proposed model. The 

performance of the proposed framework was experimentally 

examined using three datasets and evaluated across different 

models currently in use. According to research, the suggested  

model improves the quality of large data by reducing the 

Number of features and instances while maintaining 

classification accuracy and reducing execution time. The 

model outperformed other existing models, with speed-up 

rates ranging from 4.77 to 1.19. In addition, compared to the 

other models used for comparison, the accuracy percentage 

increased from 34.72% to 3.66%. The proposed CA-mRMR 

approach has certain drawbacks despite its excellent 

performance across a variety of datasets and classifiers. High-

dimensional datasets are the major focus of experimental 

assessment, which may restrict direct application to other 

domains, such as text or images, without further adaptation. 

Furthermore, depending on task-specific constraints, dynamic 

feature selection may be necessary in real-world  

circumstances, even though the Number of chosen features is 

kept constant for a fair comparison. Moreover, only the 

accuracy and execution time were considered when assessing 

the performance of the proposed model. Future studies should 

use other deep evaluations to validate its efficiency further. 

The approach was further verified using a variety of 

classifiers, including SVM, NB, KNN, LR, RF, and DT, on 

the large-scale and heterogeneous datasets Epsilon, Susy, and 

ECBDL14 to improve external validity. Compared to mRMR, 

MR-mRMR, EmRMR, ImRMR, and FmRMR, CA-mRMR 

consistently produced smaller feature subset sizes across all 

classifiers, indicating effectiveness and generalizability in 

crucial fields such as medicine. This cross-domain validation 

demonstrates the broader applicability of the method and 

strengthens its resilience across a range of data distributions 

and classification scenarios. Integration with deep learning 

pipelines and adaptive feature selection techniques that 

dynamically respond to dataset properties will be the subject 

of future research. Assessing external validation on real-time 

datasets is also necessary to evaluate generalization and 

scalability. Future research will examine the proposed 

framework using a wider variety of datasets and propose a 

classification method that is more appropriate for large 

datasets. 



Sindhu S & Veni S / IJETT, 73(7), 423-442, 2025 

 

440 

References 
[1] Hamed Ghorban Tanhaei et al., “Predictive Analytics in Customer Behavior: Anticipating Trends and Preferences,” Results in Control 

and Optimization, vol. 17, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Arunraj Gopalsamy, and B. Radha, “Feature Selection Using Multiple Ranks with Majority Vote-Based Relative Aggregate Scoring Model 

for Parkinson Dataset,” Proceedings of International Conference on Data Science and Applications: ICDSA 2021, vol. 2, pp. 1-19, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[3] Khaledun Nahar et al., “Mining Educational Data to Predict Students Performance: A Comparative Study of Data Mining 

Techniques,” Education and Information Technologies, vol. 26, no. 5, pp. 6051-6067, 2021. [CrossRef] [Google Scholar] [Publisher Link]  

[4] C.V. Swetha, Sibi Shaji, and B. Meenakshi Sundaram, “Feature Selection Using Chi-Squared Feature-Class Association Model for Fake 

Profile Detection in Online Social Networks,” International Conference on Advanced Computing and Intelligent Technologies, Imphal, 

India, pp. 259-276, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Saravanan Arumugam, “An Effective Hybrid Encryption Model Using Biometric Key for Ensuring Data Security,” International Arab 

Journal Information Technology, vol. 20, no. 5, pp. 796-807, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Zhiying Fan, “E-Commerce Data Mining Analysis Based on User Preferences and Association Rules,” Scalable Computing: Practice and 

Experience, vol. 25, no. 3, pp. 1765-1772, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Sonika Gupta, and Sushil Kumar Mehta, “Data Mining-Based Financial Statement Fraud Detection: Systematic Literature Review and 

Meta-Analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-Fraudulent Companies,” Global Business 

Review, vol. 25, no. 5, pp. 1290-1313, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[8] K. Vani, and S.P. Swornambiga, “Adaptive Intrusion Detection Framework for Enhanced Cloud Security in Fog and Edge Computing 

Environments,” International Journal of Advanced Technology and Engineering Exploration, vol. 11, no. 121, pp. 1613-1640, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[9] Liuchao Jin et al., “Big Data, Machine Learning, and Digital Twin Assisted Additive Manufacturing: A Review,” Materials & Design, 

vol. 244, pp. 1-53, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Stephen Kaisler et al., “Big Data: Issues and Challenges Moving Forward,” 2013 46th Hawaii International Conference on System 

Sciences, Wailea, HI, USA, pp. 995-1004, 2013. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Mallikarjuna Paramesha, Nitin Liladhar Rane, and Jayesh Rane, “Big Data Analytics, Artificial Intelligence, Machine Learning, Internet 

of Things, and Blockchain for Enhanced Business Intelligence,” Partners Universal Multidisciplinary Research Journal (PUMRJ), vol. 

2, no. 3, pp. 110-133, 2024. [CrossRef] [Google Scholar] [Publisher Link]  

[12] Mirza Golam Kibria et al., “Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks,” 

IEEE Access, vol. 6, pp. 32328-32338, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Nikolaos Stylos, and Jeremy Zwiegelaar, Big Data as a Game Changer: How does it Shape Business Intelligence within a Tourism and 

Hospitality Industry Context?, Big Data and Innovation in Tourism, Travel, and Hospitality, Springer, Singapore, pp. 163-181, 2019. 

[CrossRef] [Google Scholar] [Publisher Link] 

[14] Dirk Hölscher et al., “A Big Data Quality Preprocessing and Domain Analysis Provisioner Framework Using Cloud Infrastructures,” 

ALLDATA 2018: The 4th International Conference on Big Data, Small Data, Linked Data and Open Data, Athens, Greece, pp. 53-58, 

2018. [Google Scholar] [Publisher Link] 

[15] Ikbal Taleb, and Mohamed Adel Serhani, “Big Data Pre-Processing: Closing the Data Quality Enforcement Loop,” 2017 IEEE 

International Congress on Big Data (BigData Congress), Honolulu, HI, USA, pp. 498-501, 2017. [CrossRef] [Google Scholar] [Publisher 

Link]  

[16] Katherine Rucinski et al., “Challenges and Opportunities in Big Data Science to Address Health Inequities and Focus the HIV 

Response,” Current HIV/AIDS Reports, vol. 21, no. 4, pp. 208-219, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Noura AlNuaimi et al., “Streaming Feature Selection Algorithms for Big Data: A Survey,” Applied Computing and Informatics, vol. 18, 

no. 1/2, pp. 113-135, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Haowen Guan et al., “SLOF: Identify Density-Based Local Outliers in Big Data,” 2015 12th Web Information System and Application 

Conference (WISA), Jinan, China, pp. 61-66, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Jundong Li, and Huan Liu, “Challenges of Feature Selection for Big Data Analytics,” IEEE Intelligent Systems, vol. 32, no. 2, pp. 9-15, 

2017. [CrossRef] [Google Scholar] [Publisher Link] 

[20] N.N. Misra et al., “IoT, Big Data and Artificial Intelligence in Agriculture and Food Industry,” IEEE Internet of Things Journal, vol. 9, 

no. 9, pp. 6305-6324, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Fakhitah Ridzuan, and Wan Mohd Nazmee Wan Zainon, “A Review on Data Quality Dimensions for Big Data,” Procedia Computer 

Science, vol. 234, pp. 341-348, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Jingran Wang et al., “Overview of Data Quality: Examining the Dimensions, Antecedents, and Impacts of Data Quality,” Journal of the 

Knowledge Economy, vol. 15, no. 1, pp. 1159-1178, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1016/j.rico.2024.100462
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predictive+Analytics+in+Customer+Behavior%3A+Anticipating+Trends+and+Preferences&btnG=
https://www.sciencedirect.com/science/article/pii/S2666720724000924?via%3Dihub
https://doi.org/10.1007/978-981-16-5348-3_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Selection+Using+Multiple+Ranks+with+Majority+Vote-Based+Relative+Aggregate+Scoring+Model+for+Parkinson+Dataset&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-5348-3_1
https://doi.org/10.1007/s10639-021-10575-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mining+Educational+Data+to+Predict+Students+Performance%3A+A+Comparative+Study+of+Data+Mining+Techniques&btnG=
https://link.springer.com/article/10.1007/s10639-021-10575-3
https://doi.org/10.1007/978-981-97-1961-7_17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Selection+Using+Chi-Squared+Feature-Class+Association+Model+for+Fake+Profile+Detection+in+Online+Social+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-981-97-1961-7_17
https://doi.org/10.34028/iajit/20/5/12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+Hybrid+Encryption+Model+Using+Biometric+Key+for+Ensuring+Data+Security&btnG=
https://www.iajit.org/paper/4874/An-Effective-Hybrid-Encryption-Model-using-Biometric-Key-for-Ensuring-Data-Security
https://doi.org/10.12694/scpe.v25i3.2682
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E-Commerce+Data+Mining+Analysis+Based+on+User+Preferences+and+Association+Rules&btnG=
https://scpe.org/index.php/scpe/article/view/2682
https://doi.org/10.1177/0972150920984857
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Mining-Based+Financial+Statement+Fraud+Detection%3A+Systematic+Literature+Review+and+Meta-Analysis+to+Estimate+Data+Sample+Mapping+of+Fraudulent+Companies+Against+Non-Fraudulent+Companies&btnG=
https://journals.sagepub.com/doi/10.1177/0972150920984857
http://dx.doi.org/10.19101/IJATEE.2024.111100395
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+Intrusion+Detection+Framework+for+Enhanced+Cloud+Security+in+Fog+and+Edge+Computing+Environments&btnG=
https://accentsjournals.org/paperinfo.php?journalPaperId=1732
https://doi.org/10.1016/j.matdes.2024.113086
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data%2C+Machine+Learning%2C+And+Digital+Twin+Assisted+Additive+Manufacturing%3A+A+Review&btnG=
https://www.sciencedirect.com/science/article/pii/S026412752400460X?via%3Dihub
https://doi.org/10.1109/HICSS.2013.645
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data%3A+Issues+and+Challenges+Moving+Forward&btnG=
https://ieeexplore.ieee.org/document/6479953
https://doi.org/10.5281/zenodo.12827323
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Analytics%2C+Artificial+Intelligence%2C+Machine+Learning%2C+Internet+of+Things%2C+and+Blockchain+for+Enhanced+Business+Intelligence&btnG=
https://pumrj.com/index.php/research/article/view/14
https://doi.org/10.1109/ACCESS.2018.2837692
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Analytics%2C+Machine+Learning%2C+and+Artificial+Intelligence+in+Next-Generation+Wireless+Networks&btnG=
https://ieeexplore.ieee.org/document/8360430
https://doi.org/10.1007/978-981-13-6339-9_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+as+a+Game+Changer%3A+How+Does+It+Shape+Business+Intelligence+Within+a+Tourism+and+Hospitality+Industry+Context%3F&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-6339-9_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Big+Data+Quality+Preprocessing+and+Domain+Analysis+Provisioner+Framework+Using+Cloud+Infrastructures&btnG=
https://www.iaria.org/conferences2018/ProgramALLDATA18.html
https://doi.org/10.1109/BigDataCongress.2017.73
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Pre-Processing%3A+Closing+the+Data+Quality+Enforcement+Loop&btnG=
https://ieeexplore.ieee.org/document/8029366
https://ieeexplore.ieee.org/document/8029366
https://doi.org/10.1007/s11904-024-00702-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+and+Opportunities+in+Big+Data+Science+to+Address+Health+Inequities+and+Focus+the+HIV+Response&btnG=
https://link.springer.com/article/10.1007/s11904-024-00702-3
https://doi.org/10.1016/j.aci.2019.01.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Streaming+Feature+Selection+Algorithms+for+Big+Data%3A+A+Survey&btnG=
https://www.emerald.com/insight/content/doi/10.1016/j.aci.2019.01.001/full/html
https://doi.org/10.1109/WISA.2015.40
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SLOF%3A+Identify+Density-Based+Local+Outliers+in+Big+Data&btnG=
https://ieeexplore.ieee.org/document/7396608
https://doi.org/10.1109/MIS.2017.38
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Challenges+of+Feature+Selection+for+Big+Data+Analytics&btnG=
https://ieeexplore.ieee.org/document/7887649
https://doi.org/10.1109/JIOT.2020.2998584
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Iot%2C+Big+Data+and+Artificial+Intelligence+in+Agriculture+and+Food+Industry&btnG=
https://ieeexplore.ieee.org/document/9103523
https://doi.org/10.1016/j.procs.2024.03.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+Data+Quality+Dimensions+for+Big+Data&btnG=
https://www.sciencedirect.com/science/article/pii/S187705092400365X?via%3Dihub
https://doi.org/10.1007/s13132-022-01096-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Overview+of+Data+Quality%3A+Examining+the+Dimensions%2C+Antecedents%2C+and+Impacts+of+Data+Quality&btnG=
https://link.springer.com/article/10.1007/s13132-022-01096-6


Sindhu S & Veni S / IJETT, 73(7), 423-442, 2025 

 

441 

[23] Adebunmi Okechukwu Adewusi et al., “Business Intelligence in the Era of Big Data: A Review of Analytical Tools and Competitive 

Advantage,” Computer Science & IT Research Journal, vol. 5, no. 2, pp. 415-431, 2024. [CrossRef] [Google Scholar] [Publisher Link]   

[24] Yazeed Alkatheeri et al., “The Mediation Effect of Management Information Systems on the Relationship between Big Data Quality and 

Decision making Quality,” Test Engineering and Management, pp. 12065-12074, 2020. [Google Scholar]  

[25] Anandhi Ramasamy, and Soumitra Chowdhury, “Big Data Quality Dimensions: A Systematic Literature Review,” JISTEM-Journal of 

Information Systems and Technology Management, vol. 17, pp. 1-13, 2020. [CrossRef] [Google Scholar] [Publisher Link]   

[26] Agung Wahyudi, George Kuk, and Marijn Janssen, “A Process Pattern Model for Tackling and Improving Big Data Quality,” Information 

Systems Frontiers, vol. 20, no. 3, pp. 457-69, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[27] R. Joseph Manoj, M.D. Anto Praveena, and K. Vijayakumar, “An ACO-ANN Based Feature Selection Algorithm for Big Data,” Cluster 

Computing, vol. 22, no. 2, pp. 3953-3960, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[28] Noha Shehab, Mahmoud Badawy, and H. Arafat Ali, “Toward Feature Selection in Big Data Preprocessing Based on Hybrid Cloud-Based 

Model,” The Journal of Supercomputing, vol. 78, no. 3, pp. 3226-3265, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[29] Ibrahim M. El-Hasnony et al., “Improved Feature Selection Model for Big Data Analytics,” IEEE Access, vol. 8, pp. 66989-67004, 2020. 

[CrossRef] [Google Scholar] [Publisher Link] 

[30] Ioannis Tsamardinos et al., “A Greedy Feature Selection Algorithm for Big Data of High Dimensionality,” Machine Learning, vol. 108, 

no. 2, pp. 149-202, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[31] Hanchuan Peng, Fuhui Long, and C. Ding, “Feature Selection based on Mutual Information Criteria of Max-Dependency, Max-Relevance, 

and Min-Redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226-1238, 2005. [CrossRef] 

[Google Scholar] [Publisher Link] 

[32] A. Saravanan, C. Stanly Felix, and M. Umarani, “Maximum Relevancy and Minimum Redundancy Based Ensemble Feature Selection 

Model for Effective Classification,” Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022, Singapore, pp. 

131-146. 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[33] Blessy Trencia Lincy S.S., and Suresh Kumar Nagarajan, “MR-mRMR Feature Selection Approach with an Incremental Classifier Model 

in Big data,” International Journal of Pharmaceutical Research, vol. 10, no. 4, pp. 365- 379, 2018. [Google Scholar] [Publisher Link] 

[34] Blessy Trencia Lincy S.S., and Suresh Kumar Nagarajan, “An Enhanced Pre-Processing Model for Big Data Processing: A Quality 

Framework,” 2017 International Conference on Innovations in Green Energy and Healthcare Technologies , Coimbatore, India, pp. 1-7, 

2017. [CrossRef] [Google Scholar] [Publisher Link] 

[35] Thee Zin Win, and Nang Saing Moon Kham, “Mutual Information-Based Feature Selection Approach to Reduce High Dimension of Big 

Data,” MLMI '18: Proceedings of the International Conference on Machine Learning and Machine Intelligence, Ha Noi Viet Nam, pp. 3-

7, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[36] Vinaya Keskar, Jyoti Yadav, and Ajay Kumar, “Perspective of Anomaly Detection in Big Data for Data Quality Improvement,” Materials  

Today: Proceedings, vol. 51, pp. 532-537, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[37] Ka Yee Wong, and Raymond K. Wong, “Big Data Quality Prediction Informed by Banking Regulation,” International Journal of Data 

Science and Analytics, vol. 12, no. 2, pp. 147-164, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[38] Sarwar Kamal et al., “A MapReduce Approach to Diminish Imbalance Parameters for Big Deoxyribonucleic Acid Dataset,” Computer 

Methods and Programs in Biomedicine, vol. 131, pp. 191-206, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Bibhuprasad Sahu et al., “Novel Hybrid Feature Selection using Binary Portia Spider Optimization Algorithm and Fast mRMR,” 

Bioengineering, vol. 12, no. 3, pp. 1-26, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[40] Kun Yu et al., “A Hybrid Feature-Selection Method Based on mRMR and Binary Differential Evolution for Gene Selection,” Processes, 

vol. 12, no. 2, pp. 1-21, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[41] Ziqiang Ye et al., “Identification of OSAHS Patients based on ReliefF-mRMR Feature Selection,” Physical and Engineering Sciences in 

Medicine, vol. 47, no. 1, pp. 99-108, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[42] Kuraganty Phani Rama Krishna, and Ramakrishna Thirumuru, “A Balanced Intrusion Detection System for Wireless Sensor Networks in 

a Big Data Environment using CNN-SVM Model,” Informatics and Automation, vol. 22, no. 6, pp. 1296-1322, 2023. [CrossRef] [Google 

Scholar] [Publisher Link] 

[43] Osama Mohareb Khaled et al., “Evaluating Machine Learning Models for Predictive Analytics of Liver Disease Detection using 

Healthcare Big Data,” International Journal of Electrical and Computer Engineering (IJECE), vol. 15, no. 1, pp. 1162-1174, 2025. 

[CrossRef] [Google Scholar] [Publisher Link] 

[44] Jintong Yang, Yiling Guo, and Xinling Cai, “Wildlife Development Prediction Based on Big Data and Bayesian Logistic Regression,” 

2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII), Melbourne, Australia, pp. 419-423, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[45] Hitham Al-Manaseer et al., A Novel Big Data Classification Technique for Healthcare Application using Support Vector Machine, 

Random Forest and J48, Classification Applications with Deep Learning and Machine Learning Technologies, pp. 205-215, 2022. 

[CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.51594/csitrj.v5i2.791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Business+Intelligence+in+the+Era+of+Big+Data%3A+A+Review+of+Analytical+Tools+and+Competitive+Advantage&btnG=
https://fepbl.com/index.php/csitrj/article/view/791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Mediation+Effect+of+Management+Information+Systems+on+the+Relationship+between+Big+Data+Quality+and+Decision+making+Quality&btnG=
https://doi.org/10.4301/S1807-1775202017003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Quality+Dimensions%3A+A+Systematic+Literature+Review&btnG=
https://jistem.tecsi.org/index.php/jistem/article/view/3126
https://doi.org/10.1007/s10796-017-9822-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Process+Pattern+Model+for+Tackling+and+Improving+Big+Data+Quality&btnG=
https://link.springer.com/article/10.1007/s10796-017-9822-7
https://doi.org/10.1007/s10586-018-2550-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+ACO-ANN+Based+Feature+Selection+Algorithm+for+Big+Data&btnG=
https://link.springer.com/article/10.1007/s10586-018-2550-z
https://doi.org/10.1007/s11227-021-03970-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+Feature+Selection+in+Big+Data+Preprocessing+Based+on+Hybrid+Cloud-Based+Model&btnG=
https://link.springer.com/article/10.1007/s11227-021-03970-7
https://doi.org/10.1109/ACCESS.2020.2986232
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Feature+Selection+Model+for+Big+Data+Analytics&btnG=
https://ieeexplore.ieee.org/document/9058715
https://doi.org/10.1007/s10994-018-5748-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Greedy+Feature+Selection+Algorithm+for+Big+Data+of+High+Dimensionality&btnG=
https://link.springer.com/article/10.1007/s10994-018-5748-7
https://doi.org/10.1109/TPAMI.2005.159
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+based+on+mutual+information+criteria+of+max-dependency%2C+max-relevance%2C+and+min-redundancy&btnG=
https://ieeexplore.ieee.org/abstract/document/1453511
https://doi.org/10.1007/978-981-19-2980-9_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maximum+Relevancy+and+Minimum+Redundancy+Based+Ensemble+Feature+Selection+Model+for+Effective+Classification&btnG=
https://link.springer.com/chapter/10.1007/978-981-19-2980-9_11'
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MR-mRMR+Feature+Selection+Approach+with+an+Incremental+Classifier+Model+in+Big+data&btnG=
http://www.ijpronline.com/ViewArticleDetail.aspx?ID=7099
https://ieeexplore.ieee.org/abstract/document/8094109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+pre-processing+model+for+big+data+processing%3A+A+quality+framework&btnG=
https://ieeexplore.ieee.org/abstract/document/8094109
https://doi.org/10.1145/3278312.3278316
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mutual+information-based+feature+selection+approach+to+reduce+high+dimension+of+big+data&btnG=
https://dl.acm.org/doi/abs/10.1145/3278312.3278316
https://doi.org/10.1016/j.matpr.2021.05.597
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perspective+of+anomaly+detection+in+big+data+for+data+quality+improvement&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214785321042243
https://doi.org/10.1007/s41060-021-00257-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+quality+prediction+informed+by+banking+regulation&btnG=
https://link.springer.com/article/10.1007/s41060-021-00257-1
https://doi.org/10.1016/j.cmpb.2016.04.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+MapReduce+approach+to+diminish+imbalance+parameters+for+big+deoxyribonucleic+acid+dataset&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169260715304119'
https://doi.org/10.3390/bioengineering12030291
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+Hybrid+Feature+Selection+using+Binary+Portia+Spider+Optimization+Algorithm+and+Fast+mRMR&btnG=
https://www.mdpi.com/2306-5354/12/3/291
https://doi.org/10.3390/pr12020313
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hybrid+Feature-Selection+Method+Based+on+mRMR+and+Binary+Differential+Evolution+for+Gene+Selection&btnG=
https://www.mdpi.com/2227-9717/12/2/313
https://doi.org/10.1007/s13246-023-01345-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identification+of+OSAHS+patients+based+on+ReliefF-mRMR+feature+selection&btnG=
https://link.springer.com/article/10.1007/s13246-023-01345-1
https://doi.org/10.15622/ia.22.6.2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+balanced+intrusion+detection+system+for+wireless+sensor+networks+in+a+big+data+environment+using+CNN-SVM+model&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+balanced+intrusion+detection+system+for+wireless+sensor+networks+in+a+big+data+environment+using+CNN-SVM+model&btnG=
https://ia.spcras.ru/index.php/sp/article/view/15843
http://doi.org/10.11591/ijece.v15i1.pp1162-1174
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+machine+learning+models+for+predictive+analytics+of+liver+disease+detection+using+healthcare+big+data&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/35813
https://doi.org/10.1109/ICMIII62623.2024.00082
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wildlife+Development+Prediction+Based+on+Big+Data+and+Bayesian+Logistic+Regression&btnG=
https://ieeexplore.ieee.org/abstract/document/10660055
https://doi.org/10.1007/978-3-031-17576-3_9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+big+data+classification+technique+for+healthcare+application+using+support+vector+machine%2C+random+forest+and+J48&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-17576-3_9#citeas


Sindhu S & Veni S / IJETT, 73(7), 423-442, 2025 

 

442 

[46] Salvador García et al., “Big Data Preprocessing: Methods and Prospects,” Big Data Analytics, vol. 1, no. 1, pp. 1-22, 2016. [CrossRef] 

[Google Scholar] [Publisher Link] 

[47] Keith D. Foote, Big Data Integration 101: The What, Why and How, Dataversity, 2019. [Online]. Available: 

https://www.dataversity.net/big-data-integration-101-the-what-why-and-how/  

[48] Fakhitah Ridzuan, and Wan Mohd Nazmee Wan Zainon, “A Review on Data Cleansing Methods for Big Data,” Procedia Computer 

Science, vol. 161, pp. 731-738, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[49] Sebastián Maldonado, Ricardo Montoya, and Julio López, “Embedded Heterogeneous Feature Selection for Conjoint Analysis: A SVM 

Approach using L1 Penalty,” Applied Intelligence, vol. 46, no. 4, pp. 775-787, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[50] Stefan Burkhardt et al., “Q-Gram Based Database Searching using a Suffix Array (QUASAR),” RECOMB '99: Proceedings of the Third 

Annual International Conference on Computational Molecular Biology, Lyon, France, pp. 77-83, 1999. [CrossRef] [Google Scholar] 

[Publisher Link] 

[51] Lingyun Gao et al., “Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification,” 

Genomics, Proteomics & Bioinformatics, vol. 15, no. 6, pp. 389-395, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[52] Lin Sun et al., “Joint Neighborhood Entropy-Based Gene Selection Method with Fisher Score for Tumor Classification,” Applied 

Intelligence, vol. 49, no. 4, pp. 1245-1259, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[53] Lu Huijuan et al., “A Hybrid Feature Selection Algorithm for Gene Expression Data Classification,” Neurocomputing, vol. 256, pp. 56-

62, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[54] Aiguo Wang et al., “Wrapper-Based Gene Selection with Markov Blanket,” Computers in Biology and Medicine, vol. 81, pp. 11-23, 2017. 

[CrossRef] [Google Scholar] [Publisher Link] 

[55] Lin Sun et al., “Feature Selection Using Neighborhood Entropy-Based Uncertainty Measures for Gene Expression Data Classification,” 

Information Sciences, vol. 502, pp. 18-41, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[56] Rabia Aziz, C.K. Verma, and Namita Srivastava, “A Novel Approach for Dimension Reduction of Microarray,” Computational Biology 

and Chemistry, vol. 71, pp. 161-169, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[57] Praveen Tumuluru, and Bhramaramba Ravi, “GOA-Based DBN: Grasshopper Optimization Algorithm-Based Deep Belief Neural 

Networks for Cancer Classification,” International Journal of Applied Engineering Research, vol. 12, no. 24, pp. 14218-14231, 2017. 

[Google Scholar] [Publisher Link] 

[58] C. Devi Arockia Vanitha, D. Devaraj, and M. Venkatesulu, “Gene Expression Data Classification Using Support Vector Machine and 

Mutual Information-Based Gene Selection,” Procedia Computer Science, vol. 47, pp. 13-21, 2015. [CrossRef] [Google Scholar] [Publisher 

Link] 

https://doi.org/10.1186/s41044-016-0014-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+preprocessing%3A+methods+and+prospects&btnG=
https://link.springer.com/article/10.1186/s41044-016-0014-0
https://doi.org/10.1016/j.procs.2019.11.177
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+data+cleansing+methods+for+big+data&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050919318885
https://doi.org/10.1007/s10489-016-0852-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Embedded+heterogeneous+feature+selection+for+conjoint+analysis%3A+A+SVM+approach+using+L1+penalty&btnG=
https://link.springer.com/article/10.1007/s10489-016-0852-5
https://doi.org/10.1145/299432.299460
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Q-gram+based+database+searching+using+a+suffix+array+%28QUASAR%29&btnG=
https://dl.acm.org/doi/abs/10.1145/299432.299460
https://doi.org/10.1016/j.gpb.2017.08.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+Method+Based+on+Information+Gain+and+Support+Vector+Machine+for+Gene+Selection+in+Cancer+Classification&btnG=
https://academic.oup.com/gpb/article/15/6/389/7224974
https://doi.org/10.1007/s10489-018-1320-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Joint+Neighborhood+Entropy-Based+Gene+Selection+Method+with+Fisher+Score+for+Tumor+Classification&btnG=
https://link.springer.com/article/10.1007/s10489-018-1320-1
https://doi.org/10.1016/j.neucom.2016.07.080
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hybrid+Feature+Selection+Algorithm+for+Gene+Expression+Data+Classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231217304150
https://doi.org/10.1016/j.compbiomed.2016.12.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wrapper-Based+Gene+Selection+with+Markov+Blanket&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S001048251630316X
https://doi.org/10.1016/j.ins.2019.05.072
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Selection+Using+Neighborhood+Entropy-Based+Uncertainty+Measures+for+Gene+Expression+Data+Classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S002002551930489X
https://doi.org/10.1016/j.compbiolchem.2017.10.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Approach+for+Dimension+Reduction+of+Microarray&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S147692711630411X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GOA-Based+DBN%3A+Grasshopper+Optimization+Algorithm-Based+Deep+Belief+Neural+Networks+for+Cancer+Classification&btnG=
https://www.ripublication.com/Volume/ijaerv12n24.htm
https://doi.org/10.1016/j.procs.2015.03.178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gene+Expression+Data+Classification+Using+Support+Vector+Machine+and+Mutual+Information-Based+Gene+Selection&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050915004469
https://www.sciencedirect.com/science/article/pii/S1877050915004469

