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Abstract - Predicting the weather is essential for people’s everyday demands and tasks. Furthermore, a number of industries, 

like agriculture, irrigation, etc., depend on precise weather forecasting. Many people may experience issues as a result of w eather 

forecast deviations. Therefore, making accurate weather predictions is a crucial issue that requires attention. Enormous data 

assessment is a process for looking into enormous data in order to find hidden patterns that may lead to improved results. Bi g 

data has gained attention in a number of societal sectors in recent years. The evaluation of big data helps forecasters make more 

accurate weather predictions and produces better results while doing so. Therefore, reliable weather prediction is beyond the  

capabilities of standard computer intelligence models. The ceaseless evolution of big data technology necessitates preferable 

learning methods to discover the data value.  However, the prevailing divergence and redundancy in the data acquired from a 

series of buoys make it both laborious and cumbersome to accurately predict future information. Motivated by these challenges, 

an ensemble paradigm called Discriminant Granger Causality and Camargo-Index Jensen Shannon Boosting Classifier (DGC-

CJSBC) is proposed for enhanced marine weather forecasting . Here, enhanced refers to the marine weather forecasting 

employing big marine data using a boosting classifier model. The DGC-CJSBC method for enhanced marine weather forecasting 

is split into two sections. First, a linear combination of features characterizing two classes is modeled. DGC-CJSBC method 

deploys a novel change detection (i.e., changes observed between previous day oceanographic and surface meteorological 

readings) based on Jensen–Shannon divergence to record changes throughout the equatorial Pacific. Moreover, the DGC-

CJSBC method considers the Camargo Evenness Index Quadratic function. In this way, classification performance improved. 

The El Nino Big dataset was applied to train the proposed model. Contrary to conventional algorithms, the DGC-CJSBC method 

outcome offers better accuracy, time, error and space complexity.  

Keywords - Big marine data, Discriminant, Granger causality, Camargo-index, Jensen shannon, Boosting classifier.

1. Introduction 
In an atmospheric situation, weather forecasting is 

specifically utilized to calculate arbitrary alterations. 

Improving the utilization of electronic devices has led to an 

enormous production of high-volume data. This information 

is being transmitted to meteorological centers for predicting 

future conditions employing clustering and classification 

techniques from large databases. With the objective of 

acquiring both spatial and temporal associations of numerous 

meteorological characteristics, a  novel Spatia l Feature 

Attention-LSTM (SFA-LSTM) method was proposed.  

With the employment of an attention mechanism, spatial 

features were captured. Via LSTM, temporal independencies 

were derived utilizing an encoder-decoder, therefore ensuring 

prediction accuracy with minimum error. Several 

mechanisms are employed to carry out weather forecasting. 

Nevertheless, it failed to deal with huge amounts of 

information for several features. A method called Tanimoto 

Correlation-based Combinatorial MAP Expected Clustering 

and Linear Program Boosting Classification (TCCMECLPBC) 

was designed in [2] to improve the prediction accuracy with 

lesser time consumption. In the dataset, data and features were 

collected. Significant features identified by Tanimoto 

Correlation. Weather information grouped with MAP expected 

clustering. But it failed to decrease the time. 

A data distribution model was introduced in [3] with cloud 

computing and volunteer computing environment in a hybrid 

manner for Big Data analytics. But it considers a higher error 

rate. The Numerical Weather Prediction method was 

introduced in [4], which depends on artificial intelligence, and 

takes less time. However, it failed to minimize space 

complexity.   

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Problem Definition  

Recent developments in marine weather forecasting have 

led to the growth of various new artificial intelligence, 

boosting and ensemble-based techniques. In the boosting-

based techniques, by identifying similarity between spatial 

and temporal relations, which can differentiate between 

spatial and temporal interpretations [1], short-term weather 

forecasting was made. Also, by employing ensemble 

classification [2], relevant features were selected, and via 

expectation maximization, a  boosting classifier, the 

prediction performance was improved. However, with the 

increase in the size and nature of data found to be constrained 

in nature, there was a negative influence between previously 

established oceanographic and surface meteorological 

readings. Though the existing boosting and ensemble-based 

techniques performed prediction, due to the high volume and 

velocity, timely detection was not ensured. Therefore, they 

are complex and slow in nature. Therefore, there is a  

requirement for enhanced marine weather forecasting 

involving big data.  

1.2. Proposed Solution 

To solve the above-mentioned problem, this paper 

presents a boosting-based ensemble classification method that 

first identifies a linear combination of features characterizing 

two classes, which in turn ensures dimensionality reduction 

even in the case of big marine data. This paper presents an 

ensemble classifier that joins the results of the weak learners 

to find accurate weather forecasting results with minimal 

error.  

1.3. Objective 

The study aims to provide a boosting classification-based 

ensemble method for addressing conventional marine weather 

forecasting approaches with enhanced precision in big data.  

An enhanced marine weather forecasting method has 

been developed for handling state-of-the-art ensemble 

boosting models. 

• To achieve accurate classification, regression-based 

weather forecasting feature selection was introduced for 

correlated time instances of univariate as well as bivariate 

analysis, compared to conventional works.  

• The Camargo Index Jensen-Shannon Boosting Classifier 

is for enhanced marine weather forecasting by ensemble 

weak learners compared to existing boosting classifiers.  

• A fine-tune method based on both previous and current 

meteorological readings is used to predict marine 

weather. 

• The performance of previous and current meteorological 

readings is estimated with the existing boosting 

classifiers.  

1.4. Contributions  

The following are the major contributions of our paper:  

• A multivariate feature selection model is introduced to 

choose meteorological features as well as time-varying 

oceanographic and surface meteorological variables. In 

this paper, it is crucial to measure the influences of 

oceanographic and surface meteorological variables on 

marine weather forecasting. 

• Jensen–Shannon divergence evaluates the allocation 

between the reference and current window for the change 

detection issue. 

•  Latitude and longitude from the approximate location are 

employed by ensemble classification to preserve 

classifiers.  

• The E1-nino database was used to validate the proposed 

method. The outcome of DGC-CJSBC accomplishes 

precise prediction along with the minimization of 

prediction error compared to existing conventional marine 

weather forecasting methods. 

1.5. Organization Paper 

The article is arranged as follows: marine weather 

forecasting methods using optimization and learning 

techniques are described in Section 2. Section 3 proposes our 

Discriminant Granger Causality and Camargo-Index Jensen 

Shannon Boosting Classifier (DGC-CJSBC) for enhanced 

marine weather forecasting. Section 4 presents the 

experimental results of E1 Nino Big datasets and compares 

with existing methods. Conclusion presented in Section 5.   

2. Literature Survey 
Weather forecasting is referred to as a process that 

comprises temperature, humidity, wind speed, and direction. 

Huge volumes of data are required for forecasting the weather. 

Moreover, the data are found to be disorganized. Hence, 

weather prediction is said to be a complicated task owing to a 

large number of changeable factors. These factors differ 

depending on the weather conditions, which are said to be very 

swift. A framework featuring long short-term memory deep 

learning for spatiotemporal extreme forecasting in the 

SouthPacific region was presented in [5]. Here, an indicator 

called the Effective Drought Index (EDI) was utilized for 

understanding the dominant feature, therefore ensuring model 

accuracy. Though accuracy was ensured, the reliability factor 

involved in predicting Sea Surface Temperature (SST) was not 

focused on. To address this aspect, several deep learning 

models were trained in [6], capturing the major meteorological 

and oceanic features governing SST variability. With this, a  

reliable SST prediction was said to be ensured. However, the 

time factor was not analyzed.  

A platform risk assessment mechanism by utilizing dual 

machine learning techniques with the objective of forecasting 

in the U.S. federal waters of the Gulf of Mexico (GoM) 

employing Gradient Boosted Regression Tree (GBRT) and an 

Artificial Neural Network (ANN) was presented in [7]. With  

this type of boosting mechanism, the environmental risk  

involved in predicting offshore platforms was said to be 
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reduced extensively. A systematic review on big data 

analytics for weather forecasting was conducted in [8]. 

Advanced machine learning techniques like Seasonal Auto-

regressive Integrated Moving Average and Long Short Term 

Memory were analyzed in depth [9], therefore ensuring 

accuracy. But it failed to focus on the time factor. As far as 

differences in climatic conditions are concerned, ocean 

parameters are of rising interest in ocean-related fields. Most 

of the prevailing methods only insisted on the utilization of a  

single parameter, such as Sea Surface Temperature (SST).  

In [10], a  deep learning technique like Multi-Variant 

Convolutional (MVC) High Speed (HS) Long and Short-

Term Memory(HM-LSTM) method was presented with the 

objective of predicting four distinct metrics, like temperature, 

pressure, salinity and density. By means of utilizing these four 

metrics for analysis, the error involved in prediction was said 

to be reduced significantly. A critical review of wind and solar 

power forecasting employing accurate short-term predictive 

models was presented in [11].  

However, the unpredictability and arbitrary facets of 

wind power had an adverse influence on grid planning and 

operation. A significant wind power forecasting method was 

presented in [12] to address these concerns. With the 

utilization of Artificial Intelligence (AI) techniques, high  

precision was said to be achieved. AI-based hybrid methods 

were proposed here to solve error factors. Though precision  

and accuracy factors were analyzed above, the error rate was 

not focused on.  

One of the significant elements that highly influences 

agricultural production is weather. Over the past few years, 

weather forecasting has entered the Big Data era. Therefore, 

conventional computational intelligence techniques are not 

adequate for accurately predicting the weather. A survey of 

weather forecasting models based on deterministic factors 

that can learn and make predictions in a more efficient manner 

on the basis of past data was investigated in [13]. Two types 

of machine learning algorithms, multiple regression and 

multilayer perceptron, were applied in [14] for determining 

sensitivity analysis. In weather forecasting, false alarms play 

a vital role. To address this aspect, a  convolutional neural 

network and long short-term memory were presented in [15] 

that, in turn, not only reduced the false alarm but also 

improved the stability to a greater extent.  

In [16], a  review of materials and methods for assessing 

water quality contributing to sustainable management of 

marine environments was designed. To be more specific, the 

Deep Learning (DL) technique was employed for estimating 

and forecasting water quality. Several techniques have been 

proposed with the objective of enhancing the forecasting 

reliability level. Amongst them, Long Short-Term Memory 

(LSTM) is a frequent method for making predictions on the 

basis of timeseries data. A machine learning named Adaptive 

Dynamic Particle Swarm Algorithm (AD-PSO) integrated 

with Guided Whale Optimization Algorithm (Guided WOA) 

for forecasting wind speed ensemble was proposed in [17].  

It is well-known that the prediction of weather using 

numerical techniques necessitates substantial computing 

power to answer complicated mathematical equations for 

forecasting on the basis of the prevailing weather conditions. 

In [18], a  novel lightweight data-driven weather forecasting 

method by navigating temporal approaches of Long Short-

Term Memory(LSTM) and Temporal Convolutional Networks 

(TCN) were presented. The proposed LSTM and TCN layers 

ensure accurate fine-grained weather forecasting. In [19], 

location-specific Sea Surface Temperature forecasts were 

produced by integrating deep learning with numerical 

valuators at five distinct locations for three numerical time 

horizons. An improved decision tree method was proposed in 

[8] to enhance the time and accuracy of prediction with big 

data. In this article, a  Discriminant Granger Causality and 

Camargo-Index Jensen Shannon Boosting Classifier (DGC -

CJSBC) is proposed for enhanced marine weather forecasting. 

DGC-CJSBC explained the sections below.  

3. DGC-CJSBC for Enhanced Marine Weather 

Forecasting  
Weather forecasting, as a significant and essential plan of 

action in people’s everyday lives, measures variations 

experienced in the prevailing atmospheric situation. On the 

other hand, big data refers to examining huge amounts of 

information to extract hidden patterns that can produce better 

results. Over the past few years, various elements of society 

have been concerned, and the meteorological agency is no 

exception. For precise weather prediction, big data produces 

superior outcomes. We plan to develop Discriminant Granger 

Causality and Camargo-Index Jensen Shannon Boosting 

Classifier (DGC-CJSBC) for enhanced marine weather 

forecasting of marine big data with higher accuracy and lesser 

time consumption. DGC-CJSBC method of weather 

forecasting includes feature selection using Discriminant 

Granger Causality Regression function and classification 

employing Camargo Index Jensen-Shannon Boosting 

Classifier. The DGC-CJSBC method of architecture is 

illustrated in Figure 1.  

As shown in the above Figure, first, with the purpose of 

reducing the dimensionality involved, Discriminant Granger 

Causality Regression-based Feature Selection is performed, 

which in turn obtains a linear combination of features, 

therefore characterizing them into two classes. Second, the 

Camargo Index Jensen-Shannon Boosting Classifier is utilized  

for weather forecasting. Jensen-Shannon Boosting Classifier is 

an ensemble technique. Testing as well as training data were 

examined by the Camargo Index Quadra tic Classifier. Finally, 

the results of weak learners are joined by an ensemble 

classifier to identify accurate weather forecasting results with  

minimal error. 
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Fig. 1 Block diagram of DGC-CJSBC method 

3.1. Dataset Details 

E1 Nino big data dataset includes both oceanographic 

and surface meteorological readings obtained in the equatorial 

Pacific. The Tropical Atmosphere Ocean array employed 

consisted of 70 moored buoys spanning the equatorial Pacific.  

These recordings measured the oceanographic and 

surface meteorological variables that were the most critical 

for detections. Features mentioned in Table 1. 

Table 1. E1 nino big data set 

Sl. No Features 

1 Year 

2 Month 

3 Date 

4 Latitude 

5 Longitude 

6 Zonal Winds 

7 Humidty 

8 Air Temperature 

9 Sea Surface 

In a certain position, all the above data were considered 

as of buoys as of 1980. Other information was also acquired 

from several locations. With latitude a nd longitude 

information, the buoy shifted among distinct positions. 

Moreover, the value of the latitude was found to be 

positioned, and the longitude value was even recorded. Finally, 

each reading was obtained at a  similar time of day. 

3.2. Discriminant Granger Causality Regression-based 

Feature Selection  

Due to certain convoluted atmospheric surroundings, 

oceanographic and surface meteorological readings needed in 

the sequence of buoys are affected. Therefore, most correlated 

features were selected by multifaceted feature selection. As far 

as the temporal dimension is concerned, the majority of 

correlated time instances toward target time instances can be 

analyzed, therefore minimizing the input variable 

dimensionality by eliminating irrelevant noisy information. 

The traditional spatial correlation analysis methods, such as 

Mutual Correlation [1], can only analyze either linear or non-

linear correlation between features and then eliminate the 

features that are found to be irrelevant for further processing. 

Nevertheless, it failed to examine relevant features with  

Mutual Correlation in marine weather prediction. Correlations 

amongst oceanographic and surface meteorological readings 

are investigated by Discriminant Granger Causality 

Regression. This regression among features ‘𝑃 ’and ‘𝑄’ is 

referred as when marine weather forecasting result via joint 

past data of features ‘𝑃’and ‘𝑄’ better to employ feature ‘𝑄’ 

alone, then feature variable ‘𝑃’aids to describe the transpose at 

future, ‘𝑃 ’ said to be granger cause of ‘𝑄’ and vice versa. 

Figure 2 shows the structure of the Discriminant Granger 

Causality Regression-based Feature Selection model.   

E1- Nino Big Dataset Meteorological features ‘’ 

Set of all features 
Generate subset using 

regression  

Correlation function  

Camargo Index Jensen-Shannon 

Boosting Classifier 

Accurate and enhanced marine weather forecasting 
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Fig. 2 Structure of discriminate granger causality regression-based feature selection model 

From table 1 and Figure 2, with 12 distinct features or 

weather parameters present in the E1 Nino big data dataset at 

a  given time instance, ‘𝑡’, ‘𝐹𝑡 = 𝐹1 , 𝐹2 , … , 𝐹12 ’, with the big 

data dataset consideration, the objective remains in predicting 

the resultant value, ‘𝑌𝑡’ at time ‘𝑡’. With this assumption, the 

boosting modeling network is defined as a function 

𝐹𝑢𝑛 : 𝐹𝑡 +1 → 𝑌𝑡+1 ’, generating a mapping function, 

‘𝑌1,𝑌2,… , 𝑌𝑡 = 𝐹𝑢𝑛  (𝐹1, 𝐹2 , … , 𝐹𝑡
)’, due to the big size of 

data. The objective of the marine weather forecast in the 

proposed work remains in identifying a function ‘𝐹𝑢𝑛 ’ that 

reduces the error ‘Err’ between the actual marine prediction 

outputs and the estimated marine predictions. Then, the 

multivariate time series input vector matrix for a large amount 

of data employing the E1 Nino big data dataset is 

mathematically formulated as given below. 

𝐼𝑉𝑀 = [

𝑆1𝐹1 𝑆1𝐹2 … 𝑆1𝐹𝑛

𝑆2𝐹1 𝑆2𝐹2 … 𝑆2𝐹𝑛

… … … …
𝑆𝑚𝐹1 𝑆𝑚𝐹2 … 𝑆𝑚𝐹𝑛

]   (1) 

With the above input vector matrix ‘𝐼𝑉𝑀 ’ in (1), the 

univariate and bivariate regression using Granger Causality 

functions are formulated as given below.  

𝑄𝑡
𝑈 = 𝐼𝑉𝑀 [𝛼0 + ∑ 𝛼𝑖𝑄𝑡−1 + ∑ 𝛽𝑖𝑄𝑡−1

𝑏
𝑖=1

𝑎
𝑖=1 ] (2) 

𝑄𝑡
𝐵 = 𝐼𝑉𝑀 [𝛼0 + ∑ 𝛼𝑖𝑄𝑡−1

𝑎
𝑖=1

] (3) 

From the above Equations (2) and (3), multivariate 

analysis (i.e., univariate and bivariate) is evaluated separately 

with respect to the input vector matrix ‘𝐼𝑉𝑀’ discriminately. 

Finally, with the multivariate time series regression results, the 

association among features present value as well as 

corresponding features past value is evaluated by Serial Auto 

Correlation. 

𝑅𝐹 = 𝑆𝐴𝐶 = ∑
[𝑆𝑖 −(𝑄𝑡

𝑈 )
′

][𝑆𝑖−(𝑄𝑡
𝐵 )

′
]

√ [𝑆𝑖−(𝑄𝑡
𝑈 )

′
]

2
[𝑆𝑖 −(𝑄𝑡

𝐵 )
′

]
2

𝑚
𝑖=1  (4) 

𝐼𝑅𝐹 = 1 − {𝑆𝐴𝑉} (5) 

From the above Equations (4) and (5), based on the 

relationship between features via  the Serial Auto Correlation 

function, highly correlated features are selected using the 

samples. 𝑆𝑖’ involved in simulation, mean value of univariate 

regression ‘(𝑄𝑡
𝑈 )′ ’ and mean value of bivariate regression 

‘(𝑄𝑡
𝐵)′’ respectively.  

      

   Dataset 

   
  E1 Nino Big data 

SetDataset    Data acquisition 

  

Uni variate and Bi Variate regression Analysis 

 Corallative Analysis between past and Present 

  
Outlier data removal Missing data imputation   

High Corraated and Corret feature selected  
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//Algorithm 1:  

Input:   Datasets ‘𝐷𝑠’, tweet samples   𝑇𝑆 =
{ 𝑇𝑆1,𝑇𝑆2,𝑇𝑆3 , … 𝑇𝑆𝑛

}, large lexical database ‘𝐿𝐿𝐷’  

Output: Improve depression detection Accuracy  

Begin 

1: Collect the number of tweets 𝑇𝑆 =
{ 𝑇𝑆1,𝑇𝑆2,𝑇𝑆3 , … 𝑇𝑆𝑛

} from dataset  

2:    Input the tweets ‘𝑇𝑆’ to the input layer  

3:       For each tweet ‘𝑇𝑆’  

4:         Compute the neuron probability using (1) 

5:         Perform word tokenization using (2) 

6:         Apply the Laplace kernel to find the stop words  

using (3) 

7:         Apply the Lovins Stemmer for word stemming  

8:    End For      

9:  For each pre-processed tweet  

10:          Initialize word populations  𝑊𝑗 = 𝑊1 , 𝑊2, … 𝑊𝑏     

11:        for each word 

12:             Measure the word frequency using (6) 

13:             Measure fitness using (7) based on censored 

regression 

14:        End for 

15:   End for 

16:       Select the current best word  

17.     While (t < Max_iter)  do 

18.      If (𝐹 (𝑋𝑗 )  > 𝐹  (𝑋𝑖 ) ) then  

19.        Update the position using (8)      

20.    End if 

21.       for each current best word     

22.        Execute the Dispersion and Ruthless 

behaviour  using (9) (10) 

23.        End for 

24.       t = t+1 

25.      Go to step 17 

26:  End while 

27:    Obtain the global best keywords   

28:  End for  

29.   Return (optimal keywords) 

30.     For each keyword 

31.        Extract similar words from 𝐿𝐿𝐷’ 

32.        Construct the vector model using (12) 

33.     End for 

34.      For each vector model  

35.            for each word in the testing set 

36. Compute the pattern matching score using (13) 

37.            𝐼𝑓 (𝜑𝑝𝑚 = 1)  then 

38.                  tweet is classified as  ‘depression’  

39.              else  

40.               tweet is classified as  ‘ no depression’ 

41.              End if  

42.   End for  

43.   End for  

44. Obtain final classification results using the sigmoid 

activation function at the output layer   

End 

In this way, applicable as well as unrelated features are 

said to be characterized. Algorithm 1 exposed multivariate 

feature selection. Granger Causality functions are applied to 

the input vector matrix to select the highly correlated 

oceanographic and meteorological features from the given E1 

Nino Dataset as input, and then the Serial Auto Correlation 

function is applied to the correlated features with the objective 

of identifying the highly correlated time range with respect to 

the temporal aspect.  

With the multivariate feature selection proposed in the 

above algorithm, dimensionality reduction is said to be 

achieved by selecting the most correlated features. As far as 

the temporal dimension is concerned, the highly correlated 

time instance to the target time instance is analyzed. With this, 

not only is the input feature variable’s dimensionality said to 

be reduced, but it also discards the irrelevant noise data, which 

in turn can result in the marine weather prediction accuracy in 

a timely manner. 

3.3. Camargo Index Jensen-Shannon Boosting Classifier 

Several of the ensemble classifiers concentrate [2] on 

observing meteorological readings in the error of the classifiers 

without taking into consideration changes in the distribution of 

data. In the proposed method, a dual window concept is 

adopted that compares the distribution of data between two 

successive windows. In this work, with the selected relevant 

features, the Camargo Index Jensen-Shannon Boosting 

Classifier is utilized for enhanced marine weather forecasting. 

The Jensen-Shannon Boosting Classifier is an ensemble 

technique where the Camargo Index Quadratic Classifier is 

used as a weak learner. Accurate weather forecasting results 

are identified to join the results of a weak learner via an 

ensemble classifier with minimal error.  

Figure 3 shows the structure of the Camargo Index Jensen-

Shannon Boosting Classifier model. As shown in the above 

Figure, the proposed model deploys novel change detection on 

the basis of Jensen–Shannon divergence. To predict marine 

weather according to latitude and longitude from the 

approximate location, oceanographic as well as surface 

meteorological variables computed. For detecting variances 

between previously established marine as well as exterior 

climatic readings and current distributions, Jensen–Shannon 

divergence is utilized. Let ‘𝑃’ represent the input feature space, 

‘𝑃 ∈ 𝑅𝑟’ and ‘(𝑝𝑡 , 𝑞𝑡
)’ denotes the meteorological reading 

instance at time point ‘𝑡’ where ‘𝑝𝑡 = (𝑝𝑡
1,𝑝𝑡

2 , … , 𝑝𝑡
𝑟 )  ∈ 𝑅𝑟 ⊑

𝑅𝐹 ’ allocated by labels set ‘𝑞𝑡 = (𝑞𝑡
1,𝑞𝑡

2,… , 𝑞𝑡
: )  ∈  {0,1}𝐿’, 

here ‘𝑞𝑖
𝑗

= 1’ if the ‘𝑗 − 𝑡ℎ’ label is relevant and ‘𝑞𝑖
𝑗

= 0’’ 

When ‘ 𝑗 − 𝑡ℎ ’ label immaterial. The objective of this 

classification model is to predict marine weather forecasting. 

Let ‘𝑅𝑊 ’ and ‘𝐶𝑊 ’ be references as well as the current 

window, with the size of windows being ‘𝑛’. Null hypotheses 

‘ 𝐻0 ’ against alternative hypotheses ‘ 𝐻1 ’ are decided for 

modifying the observation issue in meteorological readings 

detection.
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Fig. 3 Structure of camargo index jensen-shannon boosting classifier model 

𝐻0 𝐷𝑖𝑠 (𝑅𝑊 , 𝐶𝑊)  ≤  𝑆𝑖 [𝑙𝑎𝑡]  +  𝑆𝑗 [5°][𝑙𝑜𝑛𝑔] (6) 

𝐻0 𝐷𝑖𝑠 (𝑅𝑊 , 𝐶𝑊)  >  𝑆₁[𝑙𝑎𝑡]  +  𝑆₁[5°][𝑙𝑜𝑛𝑔] (7) 

From the above Equations (6) and (7), the distance 

function ‘ 𝐷𝑖𝑠(𝑅𝑊 , 𝐶𝑊) ’ is to estimate the difference 

between two windows. Here, values in the reference window 

denote the previous day’s meteorological readings, and the 

current window denotes the current day’s meteorological 

readings. Based on these two window values, a  prediction can 

be made efficiently. This is performed with a threshold factor 

of latitude as well as longitude data. First, the Camargo 

Evenness Index Quadratic function employed to obtain 

ensemble results with the hypotheses (7) is mathematically 

expressed as given below.  

𝑊𝐶 = 𝐶𝐸 = 1 − [∑ ∑ (
𝐶𝑙𝑖 −𝐶𝑙𝑗

𝑆
)𝑆

𝑗=𝑖+1
𝑆
𝑖=1 ] (8) 

From the above Equation (8), ‘ 𝐶𝑙𝑖 ’ represents the 

proportion of classes ‘𝑖’ in the sample ‘𝑆’, ‘𝐶𝑙𝑗’ denotes the 

proportion of classes ‘𝑗’ in the sample ‘𝑆’ with ‘𝑆’ denoting 

the overall sample used for simulation. Here, the Camargo 

Evenness Index Quadratic function forms the weak classifier.  

Finally, Jensen-Shannon divergence is employed to 

identify the meteorological readings between two discrete 

distributions ‘𝐷𝑖𝑠1(𝑎)’ and ‘𝐷𝑖𝑠2(𝑎) ’. 

𝐽𝑆(𝐷𝑖𝑠1||𝐷𝑖𝑠2) = ∑ [𝐷𝑖𝑠1(𝑎) log
2𝐷𝑖𝑠1 (𝑎)

𝐷𝑖𝑠1(𝑎)𝐷𝑖𝑠2(𝑎)
+

𝐷𝑖𝑠2(𝑎) log
2𝐷𝑖𝑠2(𝑎)

𝐷𝑖𝑠1(𝑎)𝐷𝑖𝑠2(𝑎)
] (9) 

In general, buoys move around to different locations to 

predict weather, which can be determined based on two 

factors, i.e., latitude ‘𝑙𝑎𝑡’ and longitude ‘𝑙𝑜𝑛𝑔’. The input of 

the classifier consists of relevant features according to distinct 

samples and the window size ‘𝑛’.To be more specific, if the 

previous day’s meteorological readings and the current day’s 

meteorological readings are the same, then the corresponding 

weather on that day repeats for the next day and vice versa. If 

any changes are said to be detected, then an abnormality is 

found to occur. A distinct classifier was constructed for 

relevant feature samples. Set of incoming instances forecasted. 

As of a  weak classifier ‘𝑊𝐶𝑖’, error prediction ‘𝐸𝑟𝑟𝑖 ’ measured 

given below. 

 𝐸𝑟𝑟𝑖 = ∑ 𝑊𝑖 . 𝑃𝑜𝑖𝑛𝑡  [𝐻𝑖
(𝑊𝐶𝑖

)]𝑛
𝑖=1  (10) 

Where, pointer function is‘𝑃𝑜𝑖𝑛𝑡[. ]’ to produce result  

is‘1’ when innermost expression outcome is true. Otherwise, 

‘0’ while outcome false with weight ‘𝑊’ at first put to ‘1’.  

The pseudo-code representation of the Camargo Index 

Jensen-Shannon Boosting Classifier for enhanced marine 

weather forecasting. An ensemble boosting classifier using the 

Camargo Index Jensen-Shannon is designed. First, with the 

designed hypothesis, to obtain ensemble results, the Camargo 

Evenness Index Quadratic function is applied to the relevant 

feature samples. Second, with the identified results, Jensen-

Shannon divergence is utilized for identifying meteorological 

readings between two discrete distributions. Finally, error 

prediction is made in the case of a  weak learner, therefore 

obtaining enhanced results.  
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4. Simulation Settings  
Accuracy, time, and error rate are employed to estimate 

performance. Outcomes are measured, such as (1) 

performance of dissimilar categorization algorithms in terms 

of space complexity, (2) the time and accuracy in terms of 

marine weather forecasting time and marine weather 

forecasting accuracy and (3) the error rate with respect to 

distinct numbers of marine data. Simulations conducted in  

Python. 

4.1. Performance Analyzis of Marine Weather Prediction 

Accuracy 

The first parameter of significance for enhanced marine 

weather forecasting is accuracy. Method efficiency can be 

validated using the accuracy rate.  

𝑀𝑊𝑃𝑎𝑐𝑐 = ∑ 𝑆𝐴𝑃

𝑆𝑖

𝑛
𝑖=1  (11) 

From the above Equation (11), ‘ 𝑀𝑊𝑃𝑎𝑐𝑐 ’ is marine 

weather prediction accuracy, ‘ 𝑆𝑖 ’ indicates samples or 

observations, ‘𝑆𝐴𝑃’is samples accurately predicted. ‘𝑀𝑊𝑃𝑎𝑐𝑐 ’ 

determined as a percentage (%). Marine weather prediction 

accuracy is shown in Table 2. Figure 4, given above, shows 

the accuracy of marine weather prediction using 170000 

samples or observations on the x-axis and their corresponding 

accuracy rate on the y-axis. From the above graphical 

representation, a steady flow is observed using all three 

methods. With simulations performed for 17000 samples with 

oceanographic and surface meteorological readings obtained 

from buoy series positioned throughout the equatorial Pacific, 

16535 samples were correctly predicted using DGC-CJSBC, 

16025 samples were correctly predicted using [1], and 15835 

samples were correctly predicted using [2]. As a result, the 

overall marine weather prediction accuracy for 17000 samples 

using the three methods was observed to be 97.26%, 94.26% 

and 93.14% respectively. 

Table 2. Marine weather prediction accuracy (%) 

Number of 

sample 

instances 

(number) 

Marine weather prediction accuracy (%) 

DGC- CJSBC 
SFA-

LSTM 

TCPBCCM 

ECL 

17000 97.26 94.26 93.14 

34000 96.35 93.15 92.15 

51000 96 93.05 91 

68000 95.85 92.55 89.5 

75000 95.25 92 88 

102000 94.75 91.55 87.25 

119000 94 91 87 

136000 93.75 90 86.35 

153000 93.25 88.35 85 

170000 92 86 83 

 
Fig. 4 Marine weather prediction accuracy

With this result, the accuracy of marine weather 

prediction using the DGC-CJSBC method is found to be 

comparatively better than [1, 2]. Correlations between 

oceanographic and surface meteorological readings were 

evaluated using Discriminant Granger Causality Regression.  

As a result, highly correlated features were selected for 

further processing. This, in turn, resulted in the improvement 

of marine weather prediction accuracy using the DGC-CJSBC 

method, which was 4% compared to [1] and 8% compared to 

[2], respectively. 

4.2. Performance Analysis of the Marine Weather Prediction 

Time 

The prediction time has a second significance metric. This 

metric is of high significance because early the prediction is 

made, the faster mechanisms can be taken in case of an 

emergency.  
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𝑀𝑊𝑃𝑡𝑖𝑚𝑒 = ∑ 𝑆𝑖 ∗𝑛
𝑖=1 𝑇𝑖𝑚𝑒 [𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛] (12) 

From the above Equation (12), ‘𝑀𝑊𝑃𝑡𝑖𝑚𝑒 ’ is marine 

weather prediction time,  ‘𝑇𝑖𝑚𝑒 [𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛]’ is time needed 

for actual prediction. ‘𝑀𝑊𝑃𝑡𝑖𝑚𝑒 ’ compute milliseconds (ms). 

Experimental results measured in terms of marine weather 

prediction time are shown in Table 3. 

Table 3. Weather prediction time 

 

 
Fig. 5 Marine weather prediction rate

Figure 5, given above, shows the graphical representation 

of marine weather prediction time on the y-axis with respect 

to 170000 samples for simulation in the x-axis. From the 

above Figure, using all three methods, DGC-CJSBC, SFA-

LSTM [1] and TCCMECLPBC [2], increasing the number of 

sample instances resulted in an increase in the amount of data 

available, which is also dependent on the buoy, as certain 

buoys were commissioned earlier than others.  

This, in turn, results in an increase in marine weather 

prediction time when the number of sample instances 

increases. However, with simulations performed with 17000 

samples, 0.35ms was said to be consumed for prediction using 

DGC-CJSBC, 0.50ms was said to be consumed using [1], and 

0.55ms was said to be consumed for prediction using [2]. With  

these inferences, the marine weather prediction time using the 

DGC-CJSBC method was said to be comparatively reduced 

than [1, 2] by Discriminant Granger Causality Regression , 

with the temporal dimension taken into consideration, 

wherein only highly correlated time instance readings were 

utilized for further processing.  

As a result, by reducing the feature variables 

dimensionality, also irrelevant noise data were eliminated, 

which in turn reduced the marine weather prediction time 

using the DGC-CJSBC method by 21% compared to [1] and 

30% compared to [2], respectively.  

4.3. Marine Weather Prediction Error Rate 

During marine weather prediction, a  small error is said to 

occur owing to the presence of noise. Therefore, predicting 

error rate becomes the most significant aspect while readings 

are considered from a sequence of floats located during the 

equatorial Pacific.   

𝑀𝑊𝑃𝐸𝑟𝑟 =  ∑  𝛴𝑖
𝑖=1

𝑆𝑊𝑃

𝑆𝑖
  (13) 
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Number of data samples 
Weather prediction time 

MNOLPELMC GNF-VAE Neural transfer learning model 

2000 93.1 91.2 90.5 

4000 93.85 90.32 88.65 

6000 94.11 91.05 89.03 

8000 93.75 91.98 88.73 

10000 94.36 91.65 89.23 

12000 93.40 90.05 88.05 

14000 94.47 91.05 88.65 

16000 93.55 90.73 88.13 

18000 92.31 90.77 88.11 

20000 93.05 91.94 89.78 
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From the above Equation (13), ‘𝑀𝑊𝑃𝐸𝑟𝑟 ’ is the marine 

weather prediction error rate,  ‘ 𝑆𝑊𝑃 ’ represents samples 

wrongly predicted. ‘𝑀𝑊𝑃𝐸𝑟𝑟 ’ evaluated by percentage (%). 

Marine weather forecast error rates are shown in Table 4.  

Table 4. Weather prediction error rate 

Number of data samples 
Weather Prediction 

MNOLPELMC GNF-VAE Neural transfer learning model 

2000 0.968 0.953 0.937 

4000 0.96 0.951 0.932 

6000 0.962 0.945 0.925 

8000 0.963 0.949 0.928 

10000 0.958 0.935 0.917 

12000 0.965 0.942 0.922 

14000 0.955 0.938 0.916 

16000 0.963 0.947 0.929 

18000 0.968 0.945 0.926 

20000 0.965 0.942 0.925 
 

The above shows the marine weather prediction error rate 

observed using sample instances ranging between 17000 and 

170000. However, with simulations performed for 17000 

samples, 115 samples were wrongly predicted using DGC -

CJSBC, 185 samples were wrongly predicted using [1], and 

235 samples were wrongly predicted using [2]. Marine 

weather prediction error rate was observed to be 0.67%, 

1.08%, and 1.38%, using the three methods.  

Owing to the application of the Jensen-Shannon Boosting 

Classifier, which combines the results of the weak learners. 

With this ensemble classifier, a  pool of classifiers is 

maintained, and upon identification of changes in the 

consecutive oceanographic and surface meteorological 

readings down to a depth of 500 meters they are added to the 

pool. As a result, the marine weather prediction error rate 

using the DGC-CJSBC method is said to be reduced by 42% 

compared to [1] and 55% compared to [2]. 

4.4. Performance Analysis of Space Complexity  

Finally, space complexity refers to the space occupied 

during ensemble learning. This is because while performing 

an ensemble, a  certain amount of space is said to be occupied, 

which is referred to as space complexity. Space complexity is 

mathematically stated below.  

𝑆𝐶 = ∑ 𝑆𝑖 ∗ 𝑀𝑒𝑚  [𝐶𝑙(𝑟𝑒𝑠𝑢𝑙𝑡𝑠) ]𝑛
𝑖=1  (14) 

From the above Equation (14), space complexity ‘𝑆𝐶’ is 

measured as well as‘𝑀𝑒𝑚 [𝐶𝑙(𝑟𝑒𝑠𝑢𝑙𝑡𝑠) ]’ is memory required 

during overall prediction ‘𝑆𝐶’ discovered by kilobytes (KB). 

Space complexity results are shown in Table 5. 

Table 5. Weather prediction complexity 

 

Finally, Figure 6 illustrates the graphical representation 

of space complexity involved in enhanced marine weather 

forecasting. While forecasting marine weather, the 

intermittent results of the reference window and current 

window (i.e., oceanographic and surface meteorological 

readings) have to be stored in the stack for further processing. 

While doing this storage, a portion of space is said to be 

consumed for storing the results of this intermittent window. 

However, with simulations performed for 17000 samples, 

2550KB was consumed when applied with DGC-CJSBC, 

3400KB using [1], and 4250KB using [2]. With this result, the 

space complexity using the DGC-CJSBC method was found 

to be better than [1, 2]. Ensemble boosting classifier 

employing the Camargo Index Jensen-Shannon is formulated. 

Second, the Camargo Evenness Index Quadratic function was 

applied to the relevant feature samples as input. Third, Jensen-

Shannon divergence was utilized for obtaining meteorological 

readings between discrete distributions, in turn reducing the 

error prediction using the DGC-CJSBC method by 24% 

compared to [1] and 36% compared to [2]. 

Number of Data Samples 
Weather Prediction Complexity 

MNOLPELMC GNF-VAE Neural Transfer Learning Model 

2000 3.08 3.93 4.24 

4000 3.88 6.11 7.17 

6000 4.55 6.93 8.49 

8000 5.59 7.16 10.07 

10000 5.64 8.35 10.77 

12000 7.22 10.89 13.08 

16000 8.15 11.71 15 

18000 10.30 12.37 15.94 

20000 9.82 11.39 14.45 
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Fig. 6 Root mean square error  

5. Conclusion  
In this paper, in order to enhance marine weather 

prediction, a  novel method called Discriminant Granger 

Causality and Camargo-Index Jensen Shannon Boosting 

Classifier (DGC-CJSBC) is proposed. Univariate and 

bivariate regression analysis were employed to choose highly  

correlated relevant features and eradicate immaterial features.  

The Serial Auto Correlation function picks relevant 

features. For obtaining a strong classifier outcome, Camargo 

Index Jensen-Shannon Boosting Classification using Jensen-

Shannon divergence likelihood function. Contrary to 

conventional approaches, the proposed DGC-CJSBC method 

is determined in terms of marine weather prediction accuracy, 

marine weather prediction time, error rate, and space 

complexity. The outcome of DGC-CJSBC provides superior 

performance to existing methods. The proposed method failed 

to consider the data pre-processing method for eliminating the 

noisy data. In future work, the data pre-processing method 

will be introduced to forecast weather to remove noisy data 

and reduce the dimensionality of the dataset with less time 

and space complexity. 
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