
International Journal of Engineering Trends and Technology Volume 73 Issue 7, 543-561, July 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I7P142 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

 Original Article

Hierarchical Framework to Reduce Zero-Shot Learning

Complexity

Shaista Khanam1, Poonam. N. Sonar2

1,2Department of Electronics & Telecommunication Engineering, RGIT, Andheri, Mumbai, India.
1Department of Electronics & Telecommunication Engineering, VCET, Vasai Road, India.

1Corresponding Author : shaista.khan@vcet.edu.in

Received: 27 February 2025 Revised: 07 July 2025 Accepted: 16 July 2025 Published: 30 July 2025

Abstract - Zero-Shot Learning (ZSL) is an emerging machine learning approach that enables the classification of images be-

longing to categories absent from the training data. By leveraging semantic information, ZSL facilitates classification with min-

imal or no training images. This paper presents a novel approach for ZSL employing a hierarchical framework, designed to

enhance accuracy while significantly reducing complexity. The proposed framework employs a two -stage hierarchical classifi-

cation structure with primary and secondary classifiers specific to each stage of the hierarchy. A Convolutional Neural Network

(CNN) works as the principal component of the primary classifier, which uses a deep hierarchical clustering technique to clas sify

images into two larger categories (Subclass-0 and Subclass-1). The secondary classifier integrates fastText for semantic feature

extraction and ResNet-50 for visual feature extraction, enabling the classification of unseen (zero -shot) images. The usefulness

of the proposed approach is validated on three standard datasets, viz. SUN, AWA2, and CUB. According to experimental results,

the hierarchical architecture achieves accuracy levels comparable to the best available methods while drastically reducing

training complexity by almost 80%, training length by 25%, and testing time by 23%. The framework facilitates more effective

learning by breaking the task up into smaller class subsets, which makes it ideal for large -scale ZSL applications.

Keywords - Hierarchical deep clustering, Hierarchical framework, Image classification, Model complexity, Zero-shotlearning.

1. Introduction
Traditional image classification methods have shown

considerable success in several fields. Practical issues arise

because these approaches mostly depend on having a sizable

amount of labelled training data for every class. Furthermore,

these models cannot handle unknown classes because they can

only recognize the classes that they have been trained on. This

restriction results from the difficulty in obtaining labelled

data, which can be attributed to either the high cost of anno-

tating data or the lack of adequate data for certain categories.

ZSL offers a key to these challenges by enabling the

recognition of unlabelled data without prior training in those

specific classes [1]. The ZSL model undergoes training using

a predefined group of known classes and is subsequently eval-

uated on how effectively it can identify its ability to categorize

unknown classes. To address the disparity between these

known and unknown classes, ZSL relies on semantic descrip-

tions, such as attributes or natural language sentences, to cap-

ture the essential characteristics of each class. Throughout

training, the model grasps the correlation between semantic

attributes and visual characteristics extracted from the data.

During prediction, the model maps unlabelled images to their

semantic features and makes predictions grounded on the re-

semblance between the predicted and existing class features,

often computed using Euclidean distance and cosine similar-

ity. ZSL is a versatile technique with broad applications, hold-

ing promise to significantly advance areas such as computer

vision, natural language understanding, and human activity

recognition [2]. With its ability to classify unseen data using

semantic relationships, ZSL holds great promise for the future,

making it a crucial advancement in machine learning.

Manually created attributes were used in early ZSL tech-

niques; however, these methods are not scalable and necessi-

tate subject expertise. Later research improved automation but

still suffered from semantic noise and ambiguity by introduc-

ing semantic embeddings utilizing language models such as

word2vec, GloVe, and fastText. By synthesizing visual attrib-

utes for invisible classes, generative models like Conditional

Variational Autoencoders (CVAE), Conditional Autoencod-

ers (CAE), and Generative Adversarial Networks (GANs) car-

ried the discipline even farther, but at the expense of higher

computational overhead and system complexity. Although

classification performance has increased because of these de-

velopments, its usefulness in large-scale or time-sensitive en-

vironments is limited by the need for deep architecture and

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shaista.khan@vcet.edu.in

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

544

lengthy training periods. Although recent research has high-

lighted the significance of optimizing computational effi-

ciency, the tradeoff between accuracy and resource utilization

is not explicitly addressed by many ZSL systems.

1.1. Major Challenges to be Addressed in ZSL

1.1.1. Accuracy

High classification accuracy for unknown classes is still a

major challenge, particularly when the gap between visual and

semantic representations is large or when data domains shift.

1.1.2. Model Complexity

Simplifying the model structure and having low compu-

tational requirements without compromising on strong perfor-

mance are crucial, especially for real-world deployment.

1.1.3. Training Efficiency

Improving the training process to be accelerated and to

consume less data is vital, especially for large-scale deploy-

ments or systems with limited processing power.

Scalability

The ZSL techniques need to be scalable enough to accom-

modate a vast number of categories and should be effective

while increasing the number of classes across diverse applica-

tion areas. To counter these challenges, this work presents a

novel hierarchical ZSL method that splits the classification

process into two steps: a lightweight CNN-based coarse clas-

sifier and then a fine-grained secondary classifier consisting

of ResNet-50 for visual features and semantic classification

by utilizing fastText embeddings. The suggested method im-

proves inference speed and overall scalability by reducing the

number of candidate classes per prediction. Results from ex-

periments on benchmark ZSL datasets SUN [3], AWA2 [4]

and CUB [5], common ZSL datasets, show that the framework

can strike a compromise between accuracy and efficiency,

which qualifies it for practical use.

2. Literature Review

Classifying images is among the most demanding jobs in

computer vision. ZSL is the task of identifying image catego-

ries that the model has never encountered during training. Re-

cently, there has been a lot of research interest in this field.

Lampert et al. [6], in their 2009 study, laid the groundwork for

ZSL by prposing a method which utilizes manually crafted at-

tributes as supplementary information for unknown cate-

goriesLampert has extended the concept of attribute-based

zero-shot image classification, employing Direct Attribute

Prediction (DAP) and Indirect Attribute Prediction (IAP) as

probabilistic classifiers [7], where visual features were

matched to attributes and then used for classification. Zeynep

et al. [8] proposed Attribute Label Embedding (ALE) by em-

bedding attributes into a discriminative space, achieving better

generalization and superior performance compared to DAP

methods. Xuesong et al. [9] have proposed a method in which

attribute labels participate in training deep neural networks

and the deep neural network predicts attributes. Predicted at-

tributes are weighted using the Sparse Representation Coeffi-

cient (SRC) as each attribute contributes differently to ima ge

recognition and improves accuracy.

The methods of [6-9] rely on handcrafted attributes which

are limited and expensive. To overcome the limitations of

handcrafted attributes, several researchers have turned to au-

tomatic semantic embedding techniques. The DeViSE model

was presented by Andrea et al. [10], who combined skip-gram

language models for semantic representation with CNN mod-

els for visual feature extraction. This allowed models to infer

semantic similarity even for unseen classes. Scaling up this

approach to larger dictionaries and training on extensive text

corpora can further enhance prediction quality. Khanam et al.

[11] have proposed the enhanced ZSL (EZSL) technique using

ResNet-50, which exhibits higher accuracy and lower model

loss than traditional CNN models. CNN and pre-trained CNN

models are utilized to extract features, and subsequently em-

ployed to classify unknown images in methods. These tech-

niques can scale better by utilizing vast text corpora and re-

ducing manual labour. However, they may still suffer from

noisy embeddings and semantic ambiguity, especially when

utilizing unpolished word vectors. ZSL has been subjected to

generative models including CVAE, CAE, and GANs in order

further to enhance generalization and robustness [12–15].

These models transform the ZSL issue into a traditional super-

vised classification task by synthesizing visual characteristics

for unseen classes using semantic attributes.

While generative approaches often lead to higher accu-

racy, they also significantly increase system complexity, re-

quiring sophisticated designs and long training times. These

features limit their use in large-scale or time-sensitive appli-

cations where efficiency and computational resources are cru-

cial. These complications worsen with increasing dataset size

and class diversity, underscoring the necessity for models that

strike a compromise between computational viability and ac-

curacy. Examining the space and temporal complexity of ZSL

models, which are impacted by a variety of architectural and

training factors, is crucial to resolving this issue. Lee et al. [16]

showed that the number of layers, epochs, network depth, and

optimizer selection all had an impact on CNN time complex-

ity. In a similar vein, Freire et al. [17] suggested a methodical

assessment of computational complexity in digital signal pro-

cessing systems spanning neural network layers. The effects

of factors including filter size, depth, number of filters, com-

pletely linked layers, and kernel size on runtime and perfor-

mance were further investigated by Shah et al. [18]. These in-

vestigations provide insightful information on how deep learn-

ing models behave computationally.

The readers can refer to work on time and computational

complexity of deep neural networks in [16-18]. Reducing

training complexity without compromising performance has

become a critical research goal, as many of the current ZSL

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

545

and image classification techniques become more complicated

and resource-intensive as datasets expand. Investigating effec-

tive designs that can grow effectively while preserving com-

petitive accuracy is therefore essential.

Key Observations from Literature Review :

• Handcrafted Attributes

• Generative Models: Accuracy vs. Complexity

• Training and Testing Time

• Scalability Issues

Current work in Zero-Shot Learning (ZSL) identifies a

number of challenges. Early techniques were largely based on

manually designed attributes, which, although useful, are dif-

ficult to scale and involve a great deal of expert time. Although

generative approaches like CVAE and GANs have been prom-

ising and can enhance accuracy through feature generation,

they add system complexity, thus not being as appropriate for

real-time or resource-constrained applications. In addition,

numerous models incorporate deep architectures that lead to

slow training and inference times, making them infeasible for

deployment in time-sensitive scenarios. Another significant

issue is scalability, with these models tending to fail in their

ability to scale up well across large and varied datasets, high-

lighting the necessity of more efficient and robust ZSL meth-

odologies.

To address these challenges, this research suggests a

novel hierarchical ZSL framework to overcome the drawbacks

noted in earlier works, including reliance on manually created

characteristics, noisy semantic embeddings, and the high com-

plexity of generative techniques. The suggested approach re-

duces the number of classes per classifier and, as a result, min-

imizes model complexity by breaking down the classification

process into two hierarchical steps, in contrast to conventional

flat classification algorithms. The dataset is roughly divided

into major subclasses using the primary classifier based on a

lightweight CNN. A secondary classifier that uses fastText for

semantic embedding and ResNet-50 for visual feature extrac-

tion handles each subclass, providing a good tradeoff between

efficiency and performance. The system efficiently lowers

training and inference complexity while preserving competi-

tive accuracy by fusing deep hierarchical clustering with se-

mantic guiding, which makes it appropriate for time-sensitive

and large-scale ZSL applications.

3. Hierarchical Deep Clustering
A hierarchical approach for Zero-shot image classifica-

tion combines primary and secondary stages of classification.

Various classes in a dataset are clustered into two subclasses,

Subclass-0 and Subclass-1, using Hierarchical deep cluster-

ing. Classifying images in one of the two subclasses is the pri-

mary classification. Hierarchical deep clustering organizes

similar classes into clusters, forming a multilevel structure, as

shown in Figure 1 (b). Hierarchy level -0 represents broader

classes, while the higher Hierarchy levels depict more specific

subclasses. In this approach, deep features are extracted

through a CNN, and K-Means clustering groups classes based

on the extracted features.

(a) Conventional clustering

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

546

(b) Hierarchical deep clustering

Fig. 1 Conventional v/s Hierarchical deep clustering

(a) Conventional clustering

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

547

(b) Deep hierarchical clustering

Fig. 2 Example of conventional v/s Hierarchical deep clustering on 8 classes of the SUN dataset

Hierarchical Deep Clustering

Step 1:

Feature Extraction: Each image’s feature vector is extracted using a CNN.

Step 2:

K-Means Clustering: Feature vectors are clustered based on similarity.

Step 3:

Counting Images Assigned to Each Cluster: The number of images per class assigned to

each cluster is computed.

Step 4:

Majority Voting: Each class is assigned to the cluster where most of its images belong.

Step 5:

Final Cluster Reassignment: All images of a class are reassigned to the majority cluster.

In conventional methods, a single model is used to clas-

sify all test classes as shown in Figure 2 (a). This model is

trained in all training classes simultaneously, requiring it to

learn a wide range of features, which increases model com-

plexity and makes training more challenging. This also makes

the model bulky, and the extracted features start overlapping

each other. This results in a reduction in the accuracy of the

model. Hierarchical deep clustering adopts a divide-and-con-

quer approach as used in the Fast Fourier Transform (FFT).

Initially, only two broad subclasses are used at hierarchy level

0 for classification, which will make the model simple and

yield higher accuracy. This is depicted as model 1in Figure 1

(b). The hierarchy level-1 specialized model for subclassifica-

tion of these two classes is used. In the next hierarchy, level-2

further subclasses are partitioned using specialized models fo-

cusing on the given subclasses that are depicted as models

2,3,4,5,6,7 in Figure 1 (b). This reduces learning complexity

and improves classification accuracy by focusing on fewer

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

548

features at a time. To validate the hypothesis, the experiments

were conducted on a sample SUN dataset covering eight clas-

ses, as shown in Figure 2.

3.1. Steps for Hierarchical Deep Clustering

The proposed Hierarchical deep clustering consists of five

steps. Each step is explained in the following brief section.

3.1.1. Step 1: Feature Extraction

Each image xi,jIn class, I is passed through a CNN to ex-

tract its feature representation (fi,j) using Equation (1),

fi,j = 𝐶𝑁𝑁()xi ,j (1)

i ∈ {1,……,C} represents the class index.

j ∈ {1,……, ni} represents the image index within class i.

fi,j ∈ ℝ𝑑 is the extracted d-dimensional feature vector

for an image xi,j .

3.1.2. Step 2: K-Means Clustering

Initialization

Two cluster centroids {𝐶1,𝐶2
} represented by Equation

(2) are randomly initialized,

𝐶𝑘 𝜖 ℝ𝑑 , 𝐾 ∈ {1,2} (2)

Represents the centroid of cluster k.

Cluster Assignment

Equation (3) assigns each feature vector to the closest

cluster based on the Euclidean distance.

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑓𝑖 ,𝑗) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘 ||𝑓𝑖 ,𝑗 − 𝑐𝑘||2 , 𝐾 ∈ {1,2}

 (3)

Where:

||𝑓𝑖 ,𝑗 − 𝑐𝑘||2 It is the feature vector’s squared Euclidean

distance from the cluster centroid.

Centroid Update

After assigning all feature vectors to clusters, the cen-

troids 𝑆𝑘 are updated as the mean of all assigned points given

by Equation (4),

𝑆𝑘 = { 𝑓𝑖 ,𝑗 | 𝑓𝑖 ,𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑘}

𝐶𝑘 =
1

|𝑆𝑘|
 ∑ 𝑓𝑖 ,𝑗 𝑓𝑖 ,𝑗 ∈ 𝑆𝑘

 (4)

Where:

• 𝑆𝑘 Is the set of feature vectors assigned to cluster k?

• |𝑆𝑘| is the number of elements in 𝑆𝑘,

• The new centroid 𝑐𝑘 It is the mean of all assigned feature

vectors.

The above steps (assignment and update) repeat itera-

tively until convergence, i.e., until the centroids do not change

as given by Equation (5),

 𝐶𝐾
(𝑡+1)

= 𝐶𝐾
(𝑡)

 (5)

Where t represents the iteration number.

3.1.3. Step 3: Counting Images Assigned to Each Cluster

After convergence, the number of images from each class

assigned to each cluster is counted by Equation (6),

𝑁𝑖,𝑘 = { 𝑓𝑖 ,𝑗 | 𝑓𝑖 ,𝑗 ∈

𝑋𝑖 𝑎𝑛𝑑 𝑓𝑖 ,𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑘} (6)

Where:

• The total number of class i images allocated to the cluster

𝑐𝑘 is denoted 𝑁𝑖 ,𝑘

• 𝑋𝑖 It is the set of all images belonging to class i.

3.1.4. Step 4: Majority Voting and Reassignment

Majority Cluster Selection

For each class i, the cluster that contains the majority of

its images is determined by Equation (7),

𝐶𝐾
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑁𝑖,𝑘 (7)

Where:

• 𝐶𝐾
∗ Is the cluster that has the most images from class i?

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 finds the cluster index k with the highest 𝑁𝑖,𝑘

3.1.5. Step 5: Final Cluster Reassignment

All images of the class 𝑖 are reassigned to the majority

cluster by Equation (8),

𝐹𝑖𝑛𝑎 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑓𝑖 ,𝑗) = 𝐶𝐾
∗, ∀𝑗 ∈ {1, … . 𝑛𝑖

} (8)

Ensuring that all images from the same class belong to a

single cluster.

4. Methodology
ZSL has gathered increasing attention, driven by humans’

remarkable ability to recognize and classify new visual classes

they have never considered before. In the ZSL approach, a la-

belled dataset is employed to train a model on seen classes,

with the primary objective being that the model can identify

and classify new classes that they have never considered pre-

viously. ZSL significantly reduces annotation costs by lever-

aging existing knowledge. This study’s primary goal is to in-

crease the ZSL model’s performance while minimizing its

computing complexity. Achieving higher accuracy in zero-

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

549

shot image classification is crucial for its practical utility, and

this research aims to propose a hierarchical framework that

combines primary and secondary classification levels. The hi-

erarchical deep clustering method is proposed to create the hi-

erarchy level of classifier models to reduce complexity and

enhance the classification. By utilizing a simplified CNN clas-

sifier model for primary classification and more advanced

ResNet 50-based ZSL classifiers for secondary classification,

the study aims to strike a balance between accuracy and com-

putational complexity. Through rigorous experimentation on

benchmark datasets, viz. SUN, AWA2 and CUB, the proposed

hierarchical framework is evaluated based on per-class accu-

racy, training and time complexity metrics, thereby providing

insights into its effectiveness in improving ZSL performance

and reducing computational burden.

Fig. 3 Architecture of the proposed hierarchical framework for zero-
shot image classification

4.1. Proposed Hierarchical Framework

The proposed hierarchical framework is based on primary

and secondary classification stages. The primary classification

stage relies on a CNN-based classification model trained to

categorize images into two broad subclasses, Subclass-0 and

Subclass-1, as depicted in Figure 3. Subclass-0 and Subclass-

1 are created using hierarchical deep clustering till hierarchy

level - 0. It is specifically trained on a subset of the dataset,

contributing to the effectiveness of zero-shot classification.

It serves the purpose of broadly classifying images into

either Subclass-0 or Subclass-1 subcategories. Subsequently,

the secondary classification stage performs zero-shot image

classification using the ZSL model trained using the ResNet-

50 architecture. Due to the use of a hierarchy of primary and

secondary classifiers, a limited number of classes are used to

train each classifier model, leading to fewer feature learning,

reducing the complexity of model learning and increasing ac-

curacy.

4.1.1. Primary Classifier - CNN Classification Model

The CNN classification model is a primary classifier that

plays a fundamental role in achieving major classification

within the proposed system. The proposed framework uses hi-

erarchy level 0 as it categorizes images into two distinct sub-

classes: Subclass-0 and Subclass-1. Focusing on the CNN

classifier designed for the SUN dataset, as depicted in Figure

4. (a), it encompasses key components like convolutional lay-

ers, batch normalization layers, max-pooling layers, and dense

layers. In CNN architecture, the initial layer typically consists

of a convolutional layer responsible for extracting diverse im-

age features through the application of filters. In contrast, a

filter is also called a kernel or a feature detector [19]. Sliding

the kernel over the image and calculating the sum of element-

wise products at each place is the process of convolution,

which determines the dot product between the input image and

a kernel. The pooling layer reduces the dimensionality of the

network, while the fully connected layer follows it, connecting

all neurons from the preceding layer. Extensive experimenta-

tion involving different combinations of layers with varying

kernel sizes has been conducted to optimize the model. After

careful refinement, the final configuration has been selected

as shown in Figures 4 (a), (b) and (c).

4.1.2. Secondary Classifier - ZSL Model

The ZSL model serves as a secondary classifier that cate-

gorizes the classes not encountered during training, e, zero-

shot classes. Figure 5. depicts the ZSL model, which is a com-

bination of a visual model and a language model. The visual

model harnesses the power of a pre-trained ResNet-50 model,

skillfully trained on a wide array of images. Likewise, the lan-

guage model is also a pre-trained entity, specifically tailored

for the labels associated with images. In the visual semantic

embedding space, the visual feature vectors produced by the

visual model and the semantic feature vectors produced by the

language model using word2vec are linearly mapped. Cosine

loss is used to train the ZSL model. These visual and language

models collaborate to accomplish zero-shot classification

tasks.

Image Data

Hybrid Deep

Clustering

Primary Classifier (CNN)

Secondary

Classifier ZSL1

Secondary

Classifier ZSL2

Top 5 Prediction Top 5 Prediction

Sub-

Class-1

Sub-

Class-0

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

550

(a) (b) (c)

Fig. 4 Primary classifier - CNN classification model – (a) SUN dataset, (b) AWA2 dataset, and (c) CUB dataset

Fig. 5 Secondary classifier - ZSL model

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

551

Visual Model
 Visual models play a crucial role in extracting visual fea-

tures through deep CNN. For this approach, the ResNet50

model is selected to extract visual features from images after

experimenting with various pre-trained models, such as

AlexNet, VGG19, DenseNet, GoogleNet, and ResNet-50.

Among these models, ResNet-50 emerges as the most suitable

choice for the proposed method. Although experimentation

was also conducted with ResNet-101, which yielded better re-

sults, it increased the complexity of the model compared to

ResNet-50. The proposed approach aims to improve accuracy

while reducing complexity. ResNet-50 strikes an optimal bal-

ance, offering sufficient accuracy with less computational

overhead than the more complex ResNet-101.

Utilizing the pre-trained ResNet-50 model on the

ImageNet dataset enhances its capacity to grasp a wide array

of high-level visual features. ResNet-50 represents a deep

CNN architecture designed for extracting diverse features at

low, medium, and high levels of features from images. While

stacking layers in a deep network enhances accuracy, it intro-

duces challenges like vanishing and exploding gradients,

causing slow convergence or oscillation. To address this, Res-

Net-50 employs skip connections, a pivotal solution to miti-

gate vanishing gradient and exploding gradient issues. The

ResNet-50 architecture, as shown in Figure 6, consists of sev-

eral convolutional layers, a pooling layer, and a fully con-

nected layer comprising 50 layers [20]. These layers, includ-

ing convolutional and max-pooling operations, are instrumen-

tal in extracting intricate features from images. Notably, the

hallmark of ResNet 50 lies in its skip connections, which stra-

tegically skip.

Language Model

Language models play a crucial role in transforming

words into word vectors, and the Word2Vec method serves as

a prominent approach for language modelling. This algorithm

leverages a deep neural network model, trained on substantial

text data, to recognize word similarity and predict semanti-

cally analogous words. To find word similarity for labels, the

model converts each label into a fixed-length vector called an

embedding vector.

The fastText open-source library, developed by Face-

book’s AI Research (FAIR) lab, is used in the language model.

FastText efficiently converts words into embedding vectors

using the Word2Vec method based on textual data. The labels

of classes are transformed into embedding vectors of 300 di-

mensions. The model exhibits versatility by generating feature

vectors of 50, 100, 200, and 300 dimensions, with the experi-

ment opting for a 300-dimensional word vector to capture

richer semantic information. This strategic choice recognizes

that a higher-dimensional word vector provides more detailed

information, enhancing the model’s capacity to understand

and represent the nuances of language [21].

5. Evaluation Metrics

The proposed hierarchical approach is evaluated based on

floating-point operations (FLOPs), training complexity, and

time complexity.

5.1. FLOPs

One important indicator for evaluating a model’s com-

plexity is its floating-point operations. These operations can

include addition, subtraction, division, multiplication, or any

other calculation involving a floating-point value. Different

layers of convolutional neural networks perform different

computational operations based on the type of layer. The fol-

lowing are the formulas for calculating FLOPs for different

layers of a CNN.

5.1.1. Convolutional Layer (CL)

The input image is convolved with the kernel in the convo-

lutional layer. FLOPs for the convolutional layer [22] are cal-

culated using Equation (9),

𝐹𝐿𝑂𝑃𝑠𝐶𝐿 = 2 × 𝑛 × 𝑘𝑒𝑟𝑛𝑒𝑙  𝑠ℎ𝑎𝑝𝑒 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠ℎ𝑎𝑝𝑒
 (9)

 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙

𝐾𝑒𝑟𝑛𝑒𝑙 𝑠ℎ𝑎𝑝𝑒 = 𝑊 × 𝐻

𝑊ℎ𝑒𝑟𝑒 𝑊 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 .

 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆ℎ𝑎𝑝𝑒𝐶𝑉 = (𝑀 − 𝑊 + 1)(𝑁 − 𝐻 + 1)

5.1.2. Fully Connected Layer

Every node in the output layer is directly connected to

every node in the layer above it in the fully connected layer.

Equation (10) is used to determine FLOPs for fully linked lay-

ers, which are twice the product of the input layer (I) and out-

put layer (O) node counts.

𝐹𝐿𝑂𝑃𝑠𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 = 2 ×   𝐼  ×  𝑂 (10)

5.1.3. Pooling Layer

The pooling layer reduces the dimensionality of the input

layer. The FLOPs for the pooling layer are calculated by mul-

tiplying the height (H), width (W), and depth (D) of the pool-

ing layer. FLOPs for the pooling layer are given by Equation

(11),

𝐹𝐿𝑂𝑃𝑠𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 = 𝐻 ×   𝑊  ×  𝐷 (11)

5.1.4. Batch Normalization Layer

The batch normalization layer is used to normalize the

outcome of the preceding layers. It enhances learning effi-

ciency and acts as a regularizer to prevent model overfitting.

FLOPs for batch normalization are given by Equation (12),

𝐹𝐿𝑂𝑃𝑠𝑏𝑎𝑡𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 =  𝐶×4×𝑜𝑢𝑡𝑝𝑢𝑡  𝑠ℎ𝑎𝑝𝑒
 (12)

𝐶 is the number of channels in the convolution layer’s

output

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

552

Fig. 6 ResNet-50 architecture [20]

5.2. Training Complexity

The training complexity (TC) is measured as the number of

computations of the model during training. It relies on the

number of FLOPs (F), the number of epochs (E), and the num-

ber of input images (I) for training the model. It is given by

Equation (13),

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑇𝐶) = 𝐹 × 𝐸  × 𝐼 (13)

The quantity of input images used during training affects

a model’s training complexity. Consequently, the training

complexity is greatly impacted by the dataset’s size. The

model’s training complexity rises with dataset size since it

must learn more features from the images.

5.3. Time Complexity

Training and testing durations both affect time complex-

ity. Testing time is the amount of time needed to use the

trained model to evaluate a single image from the test dataset,

whereas training time is the amount of time needed to fit the

model to the training data.

5.4. Per-Class Average Accuracy

Per-class accuracy, also referred to as class-wise accu-

racy or class-specific accuracy, is a performance metric uti-

lized for the evaluation of classification models, particularly

in scenarios involving multi-class classification problems.

Per-class Average Accuracy is calculated with Equation (14),

𝑃𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ (

𝑌
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠

𝑐𝑙𝑎𝑠𝑠𝑖

𝑌
𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠𝑖
)

𝑁

𝑖=1

 (14)

The proportion of accurately predicted images to all of the

images in each class is calculated. The average accuracy for

each class in the dataset is then obtained by aggregating it for

all N classes.

6. Results and Discussion
The hierarchical framework of ZSL is a novel approach

to classifying unseen data by using a hierarchy of classifiers.

It is implemented using a primary classifier (CNN classifier)

to broadly classify unseen classes into Subclass-0 or Subclass-

1. Each subclass’s secondary classifier (ZSL Model) is used

for zero-shot image classification. The hierarchical ZSL

framework and the EZSL framework [11] are compared based

on accuracy, training complexity, and training-testing time.

The implementation and evaluation of results are performed

on the SUN, AWA2 and CUB datasets.

6.1. Dataset

Three benchmark datasets are used to assess the efficacy

of the suggested hierarchical framework: SUN, AWA2, and

CUB. The SUN dataset consists of 14,340 scene images across

645 Training classes, with 72 zero-shot test classes.

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

553

Table 1. The statistics of the three benchmark datasets were employed for the experiments

Dataset Seen classes Unseen classes Seen classes Unseen classes

 Benchmark split [27] Proposed approach split

AWA2 40 10 18 10

SUN 645 72 60 72

CUB 150 50 101 50

(a) Conventional clustering

(b) Hierarchical deep clustering

Fig. 7 Conventional v/s Hierarchical deep clustering – AWA2 dataset

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

554

The hierarchical approach significantly reduces the train-

ing set to just 60 classes while maintaining classification ef-

fectiveness. Similarly, the AWA2 dataset, which includes

37,322 images of animals categorized into 50 classes (40 for

training and 10 for zero-shot testing), undergoes a reduction

in training classes from 40 to 18. There are 11,788 bird images

from 200 species in the CUB dataset (150 for training and 50

for testing). The approach narrows the training set from 150

to 101 classes. The detailed Statistics of the Benchmark split with

the proposed split are shown in Table 1. This reduction ensures

the training process is more efficient while preserving the nec-

essary semantic information for classification. The method

chooses training classes according to how semantically simi-

lar they are to test classes in order to accomplish this reduc-

tion. The original training set and the test set are defined as

𝐶𝑇 = {𝑇1, 𝑇2, … .𝑇40 }, and as 𝐶𝑆 = {𝑆1 ,𝑆2,… … … . 𝑆10} re-

spectively. For each test class 𝑆𝑗 a similarity score 𝑆(𝑇𝑖 , 𝑆𝑗) is

computed for all 𝑇𝑖 ∈ 𝐶𝑇 and 𝑆𝑗 ∈ 𝐶𝑆.

Then the model is retained only on the top 10 most simi-

lar training classes for each test class, forming a refined sub-

set. 𝐶𝑇′ ⊆ 𝐶𝑇 . Any training class that does not appear in the

top 10 for any test class is discarded, resulting in a final fil-

tered set of training classes (e.g., 18 for AWA2). This selec-

tion process ensures that only the most semantically relevant

training classes contribute to the learning process, reducing

unnecessary complexity.

This approach offers several advantages. By eliminating

irrelevant training classes, the model complexity is reduced,

leading to faster training and improved generalization. The

computational complexity of classification is optimized from

𝑂(𝑛. 40) instead of 𝑂(𝑛. 𝑘)where k is the reduced number of

training classes (e.g., 18 for AWA2). Additionally, by focus-

ing solely on semantically similar classes, the model avoids

overfitting to unrelated categories and learns more meaning-

ful distinctions. As a result, classification performance re-

mains effective while requiring fewer training resources. The

novelty of this approach lies in its ability to successfully clas-

sify all test classes despite using a significantly reduced train-

ing set. By strategically filtering out less relevant classes, this

method lowers training complexity and computational cost

and enhances learning efficiency without compromising clas-

sification accuracy. After reducing the training classes based

on semantic similarity, Hiera rchical deep clustering is applied

to all reduced training classes to divide the reduced training

classes into subclass-0 and subclass-1, as shown in Figure

7(b). AWA2 dataset reduced training classes are shown in

Figure 7(a), and Hierarchy level – 0 is shown in Figure 7(b)

for the AWA2 dataset.

6.2. Results Analysis of Training Complexity and Accuracy

The proposed framework is tested on a laptop running

Windows 11 with an AMD Ryzen 9 5900HX processor and

an NVIDIA GeForce RTX 3060 GPU operating at 3.30 GHz

with 16MB of RAM. The Adam optimizer and categorical

cross-entropy loss function optimization are employed in the

principal classifier model. ResNet-50, which has been pre-

trained on the ImageNet dataset, is used to create the second-

ary classifier visual model. The language model of the sec-

ondary classifier uses the fastText open-source library to gen-

erate embedding vectors and find word similarity. The sec-

ondary classifier is trained with the Adam optimizer and co-

sine loss function for optimization. Early stopping criteria are

used for primary and secondary classifiers to prevent overfit-

ting.

6.2.1. Training Complexity

The number of FLOPs, epochs, and input images needed

to train the model is used to assess training complexity.

Table 2. FLOPs evaluation of the EZSL model

Sr No. Layers of the EZSL Model FLOPs

1. ResNet 50 Pretrained Model [23] 3.8 × 109

2. Dense Layer - 1 18,35,008

3. Dense Layer - 2 3,44,064

4. Dense Layer - 3 2,30,400

Total Number of FLOPs EZSL Model 3.802 × 𝟏𝟎𝟔

Table 3. FLOPs evaluation of the primary classifier model for the SUN dataset

Sr No. Layers of a CNN-based classifier model for the SUN dataset FLOPs

1. Convolution layer – 1 7,096,896

2. Batch Normalization Layer -1 1,577,088

3. Convolution layer – 2 111,503,600

4. Batch Normalization Layer - 2 3,097,600

5. Max Pooling Layer -1 193,600

6. Convolution layer – 3 107,495,424

7. Batch Normalization Layer – 3 746,496

8. Max Pooling Layer -2 93,312

9. Convolution layer – 4 99,680,256

10. Batch Normalization Layer – 4 692,224

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

555

11. Max Pooling Layer - 3 43,264

12. Convolution layer – 5 84,934,656

13. Batch Normalization Layer – 5 294,912

14. Max Pooling Layer - 4 18,432

15. Convolution layer – 6 58,982,400

16. Batch Normalization Layer – 6 10,240

17. Max Pooling Layer - 5 6400

18. Flatten layer 0

19. Drop-out layer 0

20. Batch Normalization Layer – 7 1024

21. Dense Layer - 1 204,800

22. Drop-out layer 0

23. Dense Layer - 2 64

Total Number of FLOPs of the primary classifier model for the SUN dataset. 476.682 × 𝟏𝟎𝟔

Table 4. FLOPs evaluation of the primary classifier model for the AWA2 dataset

Sr No. Layers of a CNN-based classifier model for the AWA2 dataset FLOPs

1. Convolution layer – 1 7,096,896

2. Batch Normalization Layer -1 1,577,088

3. Convolution layer – 2 111,503,600

4. Batch Normalization Layer - 2 3,097,600

5. Max Pooling Layer -1 193,600

6. Convolution layer – 3 107,495,424

7. Batch Normalization Layer – 3 746,496

8. Max Pooling Layer -2 93,312

9. Convolution layer – 4 99,680,256

10. Batch Normalization Layer – 4 692,224

11. Max Pooling Layer - 3 43,264

12. Convolution layer – 5 84,934,656

13. Batch Normalization Layer – 5 294,912

14. Max Pooling Layer - 4 18,432

15. Flatten layer 0

16. Drop-out layer 0

17. Dense Layer - 1 58,982,400

18. Batch Normalization Layer – 6 1024

19. Drop out layer 0

20. Dense Layer - 2 64

Total Number of FLOPs of the primary classifier model for the AWA2 dataset 417.774× 𝟏𝟎𝟔

Table 5. FLOPs evaluation of the primary classifier model for the CUB dataset

Sr No. Layers of a CNN-based classifier model for the CUB dataset FLOPs

1. Convolution layer – 1 7,096,896

2. Batch Normalization Layer -1 1,577,088

3. Convolution layer – 2 111,503,600

4. Batch Normalization Layer - 2 3,097,600

5. Max Pooling Layer -1 193,600

6. Convolution layer – 3 107,495,424

7. Batch Normalization Layer – 3 746,496

8. Max Pooling Layer -2 93,312

9. Convolution layer – 4 99,680,256

10. Batch Normalization Layer – 4 692,224

11. Max Pooling Layer - 3 43,264

12. Convolution layer – 5 84,934,656

13. Batch Normalization Layer – 5 294,912

14. Max Pooling Layer - 4 18,432

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

556

15. Convolution layer – 6 58,982,400

16. Batch Normalization Layer – 6 10,240

17. Max Pooling Layer - 5 6400

18. Convolution layer – 7 21,233,664

19. Batch Normalization Layer – 7 18,432

20. Flatten layer 0

21. Drop out layer 0

22. Dense Layer - 1 589,824

23. Drop out layer 0

24. Dense Layer - 2 64

Total Number of FLOPs of the primary classifier model for the CUB dataset. 497.934 × 𝟏𝟎𝟔

Table 6. Training complexity evaluation of the EZSL Model

Framework Dataset Number of FLOPs Number of epochs Number of input images
Training Complexity -

(number of computations)

EZSL Model

SUN 3.802 × 109 19 11735 84.771× 𝟏𝟎𝟏𝟑

AWA2 3.802 × 109 15 24270 138.411× 𝟏𝟎𝟏𝟑

CUB 3.802 × 109 80 6,060 184.224× 𝟏𝟎𝟏𝟑

Table 7. Training complexity evaluation of the hierarchical framework model for the SUN dataset

To calculate training complexity, FLOPs for the layers of

the EZSL model and the CNN-based Primary classifier model

for the SUN, AWA2 and CUB datasets are calculated using

equations (9) to (12) and shown in Tables 2, 3, and 4. FLOPs

calculated in Table 2, Table 3, Table 4 and Table 5 are used in

evaluating the training complexity of the EZSL Model and the

Proposed Hierarchical framework. Training complexity evalu-

ation of the EZSL Model for SUN, AWA2 and CUB datasets

is shown in Table 6. The training complexity of the individual

model is calculated using Equation(13).

Tables 7, 8 and 9 show the training complexity evaluation

of the hierarchical framework for the SUN, AWA2 and CUB

datasets. The hierarchical framework model consists of three

models: the primary classifier model, the Subclass-0 model

and the Subclass-1 model. The total training complexity of all

the models determines the training complexity of the hierar-

chical framework model. The number of input images, a cru-

cial hyperparameter, significantly influences the training com-

plexity of a model. According to Table 6, the EZSL model for

the SUN dataset is trained on 11,735 images. In contrast, the

Hierarchical framework model, as shown in Table 7, is trained

on a total of 4,160 images (the sum of 2,715, 991, and 454

images), a reduced number of images due to the hierarchy

structure. Whereas the EZSL model is trained on a larger da-

taset compared to the Hierarchical framework model. There-

fore, the number of computations, i.e. the training complexity,

is higher for the EZSL model. The performance analysis of the

proposed hierarchical strategy in terms of training complexity

in comparison to the EZSL approach is shown in Table 10.

The findings show that the hierarchical model’s training com-

plexity was reduced by an average of about 80%. The key rea-

son for the improvement in training complexity is the reduced

number of computations while training the model.

As the number of training classes is decreased, fewer

computations are required because of the hierarchical struc-

ture. Tables 11 and 12 present the performance analysis of the

proposed framework based on training and testing time. The

hierarchical framework demonstrates a 25% improvement in

training time compared to the EZSL framework. Despite in-

volving three models for training, the hierarchical framework

achieves lower training time due to its structured learning pro-

cess. Additionally, the hierarchical structure reduces testing

time, making the system faster for classification. Overall, the

time complexity of the proposed framework is improved by

approximately 23%. While hierarchy increases the number of

models for training, it simultaneously reduces complexity by

training models on subclasses.

6.2.2. Accuracy

The results of the proposed framework in Figures 8, 9,

and 10 illustrate the top 5 predictions for the SUN, AWA2,

and CUB datasets, respectively. A detailed zero-shot image

classification report of the proposed hierarchical framework

model for the AWA2 dataset is shown in Table 13. The accu-

racy, recall, and F1-score metrics provide insightful infor-

mation about the model’s performance for every class score.

Framework Models
Number

of FLOPs

Number

of epochs

Number of

input images

Training Complexity-

(number of computations)

The proposed Hierar-

chical Framework

model – SUN dataset

Primary classifier Model 476.682× 106 18 2715 2.329× 1013

Subclass-0 model 3.802× 109 25 991 9.419× 1013

Subclass-1 model 3.802× 109 23 454 3.970× 1013

Total Training Complexity of Hierarchical Framework Model for the SUN Dataset 15.718× 𝟏𝟎𝟏𝟑

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

557

Table 8. Training complexities evaluation of the hierarchical Framework model for the AWA2 dataset

Table 9. Training complexities evaluation of the hierarchical framework model for the CUB dataset

Table 10. Performance analysis of the proposed hierarchical framework based on training complexity

Table 11. Performance analysis of the proposed hierarchical framework based on training time

Table 12. Performance analysis of the proposed hierarchical framework based on testing time

Framework Models
Number of

FLOPs

Number of

epochs

Number of

input images

Training Complexity -

(number of

computations)

The proposed Hierarchical

Framework

model – AWA2 dataset

Primary classifier Model 417.774 × 106 66 9767 26.930 × 1013

Sub class-1 model 3.802 ×109 11 3278 1.371 × 1013

Sub class-2 model 3.802 × 109 10 6408 2.436 × 1013

Total Training Complexity of Hierarchical Framework Model for the AWA2 Dataset 30.737 × 𝟏𝟎𝟏𝟑

Framework Models
Number of

FLOPs

Number

of epochs

Number of

input images

Training Complexity -

(number of

computations)

The proposed Hierarchical

Framework

model – CUB dataset

Primary classifier Model 497.934 × 106 100 6060 30.175× 1013

Sub class-1 model 3.802 ×109 11 3278 1.371 × 1013

Sub class-2 model 3.802 × 109 10 6408 2.436 × 1013

Total Training Complexity of Hierarchical Framework Model for the CUB Dataset 33.982 × 𝟏𝟎𝟏𝟑

Sr.No Dataset Training Complexity –EZSL Framework
Training Complexity –

Hierarchical Framework

Reduction in Training

Complexity (%)

1. SUN 84.771×1013 15.718×𝟏𝟎𝟏𝟑 81.46

2. AwA2 138.411×1013 30.737 × 𝟏𝟎𝟏𝟑 77.79

3. CUB 184.224× 1013 33.982 × 𝟏𝟎𝟏𝟑 81.55

Average Reduction in Training Complexity 80.26

Sr.No Dataset
Training Time (Seconds)

–EZSL Framework

Training Time (Seconds) – Hierar-

chical Framework

Reduction in Training

Time (%)

1. SUN 809 656 18.91

2. AwA2 2854 1953 31.56

3. CUB 2356 1717 27.12

Average Reduction in Training Time 25.86

Sr.No Dataset
Testing Time –EZSL

Framework

Testing Time – Hierarchical

Framework

Reduction in Testing Time

(%)

1. SUN 0.260 0.224 13.84

2. AwA2 0.391 0.297 24.04

3. CUB 0.356 0.245 31.17

Average Reduction in Testing Time 23.02

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

558

Actual Label: Farm Actual Label: Forest

Top 5 Predicted labels: field, meadow, garden, fields, farm, back-garden Top 5 Predicted labels: Forest, Meadow, Treeline, Forestry, Woodlot

Fig. 8 Results hierarchical framework - SUN dataset

Actual Label: Raccoon Actual Label: Leopard

Top 5 Predicted labels: Raccoon, Bobcat, Bobcats, Cat, Housecat Top 5 Predicted labels: Leopard, Tiger, BobCat, Tigers, Tigress

Fig. 9 Results hierarchical framework – AWA2 dataset

Actual Label: Laysan_Albatross Actual Label: Parakeet_Auklet

Top 5 Predicted labels: Laysan_Albatross, Pied_billed_Grebe,
Palm_Warbler, Ivory_Gull, Red_eyed_Vireo

Top 5 Predicted labels: Parakeet_Auklet, Rhinoceros_Auklet,
White_breasted_Kingfisher, Scott_Oriole, Red_eyed_Vireo

Fig. 10 Results hierarchical framework – CUB dataset

Table 13. Zero-shot image classification report of the proposed hierarchical framework for the AWA2 dataset

Class. No Class Name Precision Recall F1-score Support

0. Chimpanzee 0.64 0.73 0.68 728

1. Giant_panda 0.56 0.38 0.45 874

2. Hippopotamus 0.59 0.62 0.60 684

3. Humpback_whale 0.70 0.98 0.81 709

4. Leopard 0.63 0.62 0.63 720

5. Persian_cat 0.68 0.90 0.78 747

6. Pig 0.39 0.25 0.30 713

7. Raccoon 0.55 0.67 0.60 512

8. Rat 0.44 0.80 0.57 310

9. Seal 0.54 0.27 0.36 988

 Accuracy 0.59 6985

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

559

Table 14. Performance analysis of the proposed hierarchical framework based on per-class accuracy

Sr.No Dataset
Per-class Accuracy –

EZSL Framework

Per-class Accuracy - Hierarchical

Framework

Improvement in Per-class

Accuracy (%)

1. SUN 39.5 50.6 28.10

2. AwA2 44.7 59.9 34.00

3. CUB 43.2 52.93 22.52

Average Improvement in Per-class Accuracy 28.21

Table 15. Comparison of the performance of the proposed framework with other existing approaches using per-class accuracy

Sr No. Approach SUN AWA2 CUB

1 EZSL [11] 39.5 44.7 43.2

2 SAE [24] 40.3 54.1 33.3

3 DAP [7] 39.9 46.1 40.0

4 DeViSE [10] 56.5 59.7 52.0

5 ESZSL [25] 54.5 58.6 53.9

6 LATEM [26] 55.3 55.8 49.3

7 JG-ZSL [13] 60.3 69.4 52.1

8 HFM [15] 53.8 65.5 69.5

9 SYNC [28] 56.3 46.6 55.6
 Proposed Hierarchical Framework for Zero-Shot Image Classification 50.6 59.9 52.9

Additionally, Persian_cat (class 5) has a strong F1-score,

recall, and precision. Pigs (class 6) score lower than other clas-

ses in terms of precision, recall, and F1. The overall accuracy

is 59.9% for the AWA2 dataset. Table 14 presents the im-

provement in per-class accuracy achieved by the proposed hi-

erarchical framework for these datasets.

The results indicate an average improvement of 28% com-

pared to the EZSL framework in Table 14. The Hierarchical

framework is compared with other existing approaches in Ta-

ble 15. The proposed hierarchical model can classify all zero-

shot classes with better accuracy, even though it was trained on

a smaller dataset. This improvement is due to the use of a hier-

archy of primary and secondary classifiers. By training these

classifiers on fewer classes, the model needs to learn fewer fea-

tures, which reduces the likelihood of misclassification and

thus increases accuracy.

Comparing existing methods to the proposed framework,

the DAP [7] and JG-ZSL [13] methods use manually crafted

attributes as visual features, while SYNC [28] employs colour

histograms, SIFT, and PHOG as shallow visual features. These

visual features are provided with the dataset. In contrast, the

proposed framework uses a deep CNN, specifically the Res-

Net-50 model, for visual feature extraction. ResNet-50 model

extracts diverse high-level features from the images, thereby

eliminating the need for handcrafted features. However, the

HFM [15] and JG-ZSL [13] methods achieve better accuracy

than the proposed hierarchical framework. The HFM approach

utilizes two variational autoencoders, while the JG-ZSL ap-

proach employs a generative adversarial network. Both varia-

tional autoencoders [15] and generative adversarial networks

[13] are computationally more complex, as variational autoen-

coder uses encoder and decoder networks, and generative ad-

versarial networks use a generator and a discriminator. Our

proposed hierarchical framework, on the other hand, provides

optimal accuracy with reduced computational complexity.

7. Conclusion
The ZSL model gets complicated and slow when there are

many classes. The proposed novel hierarchical framework that

uses a dissimation technique is offered to overcome this prob-

lem. This hierarchical framework employs less complex but

more accurate classifiers at each level of the hierarchy, similar

to the Fast Fourier Transform (FFT) approach. The quantitative

analysis on three benchmark datasets (AWA2, SUN, CUB)

shows that our proposed framework reduces training complex-

ity by 80.26%, training time by 25.86% and testing time by

23.02% without compromising the accuracy of ZSL.

This paper primarily contributes a hierarchical framework

and hierarchical deep clustering, which hold the potential to

significantly increase the use of ZSL by providing an excellent

tradeoff between complexity and accuracy. The proposed hier-

archical framework uses a CNN-based primary classifier and

ResNet 50, along with the fastText language model, to form a

secondary classifier that introduces a two-stage hierarchy. The

benefits of this framework hold promise for future applications,

especially as datasets (number of classes) continue to grow in

size and complexity. Future iterations could also explore a mul-

tilevel hierarchy to enhance performance further.

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

560

References
[1] Xiaohong Sun, Jinan Gu, and Hongying Sun, “Research Progress of Zero-Shot Learning,” Applied Intelligence, vol. 51, no. 6, pp. 3600-

3614, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Wei Wang et al., “A Survey of Zero-Shot Learning: Settings, Methods, and Applications,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 10, no. 2, pp. 1-37, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[3] Genevieve Patterson, Xu Chen, and James Hays, Sun Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes,

SUN Attribute Dataset, 2011. [Online]. Available: https://cs.brown.edu/~gmpatter/sunattributes.html

[4] Animals with Attributes 2: A Free Dataset for Attribute-Based Classification and Zero-Shot Learning, Institute of Science and Technology

Austria (ISTA), 2016. [Online]. Available :https://cvml.ista.ac.at/AwA2/

[5] Catherine Wah et al., “The Caltech-Ucsd Birds-200-2011 Dataset,” California Institute of Technology, 2011. [Google Scholar] [Publisher

Link]

[6] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling, “Learning to Detect Unseen Object Classes BY Between-Class Attribute

Transfer,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 951-958, 2009. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling, “Attribute-Based Classification for Zero-Shot Visual Object Categoriza-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453-465, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Zeynep Akata et al., “Label-Embedding for Image Classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

38, no. 7, pp. 1425-1438, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Xuesong Wang et al., “Zero-Shot Learning Based on Deep Weighted Attribute Prediction,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 50, no. 8, pp. 2948-2957, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Andrea Frome et al., “Devise: A Deep Visual-Semantic Embedding Model,” Advances in Neural Information Processing Systems (NIPS

2013), vol. 26, pp. 2121-2129, 2013. [Google Scholar] [Publisher Link]

[11] Ansari Shaista Khanam, and Poonam. N. Sonar, “Enhanced Zero-shot Learning using Deep Neural Network ResNet50,” 2023 4th Inter-

national Conference for Emerging Technology (INCET), Belgaum, India, 2023, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[12] Yongqin Xian et al., “Feature Generating Networks for Zero-Shot Learning,” 2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, Salt Lake City, UT, USA, pp. 5542-5551, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Minwan Zhang et al., “Zero-Shot Learning with Joint Generative Adversarial Networks,” Electronics, vol. 12, no. 10, pp. 1-18, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Varun Khare et al., “A Generative Framework for ZSL with Adversarial Domain Adaptation,” 2020 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV), Snowmass, CO, USA, pp. 3090-3099, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Fadi Al Machot, Mohib Ullah, and Habib Ullah, “HFM: A Hybrid Feature Model Based on Conditional Auto Encoders for Zero-Shot

Learning,” Journal of Imaging, vol. 8, no. 6, pp. 1-12, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Rich Lee, and Ing-Yi Chen, “The Time Complexity Analysis of Neural Network Model Configurations,” 2020 International Conference

on Mathematics and Computers in Science and Engineering (MACISE), Madrid, Spain, pp. 178-183, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[17] Pedro Freire et al., “Computational Complexity Evaluation of Neural Network Applications in Signal Processing,” arXiv Preprint, pp. 1-

25, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Bhoomi Shah, and Hetal Bhavsar, “Time Complexity in Deep Learning Models,” Procedia Computer Science, vol. 215, pp. 202-210,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi, “Understanding of a Convolutional Neural Network,” 2017 International

Conference on Engineering and Technology (ICET), Antalya, Turkey, pp. 1-6, 2017. [CrossRef] [Publisher Link]

[20] Sheldon Mascarenhas, and Mukul Agarwal, “A Comparison between VGG16, VGG19 and ResNet50 Architecture Frameworks for Image

Classification,” 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications

(CENTCON), Bengaluru, India, pp. 96-99, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Armand Joulin et al., “Bag of Tricks for Efficient Text Classification,” Proceedings of the 15th Conference of the European Chapter of

the Association for Computational Linguistic, Valencia, Spain, vol. 2, pp. 427-431, 2017. [Google Scholar] [Publisher Link]

[22] Lecture 41: Space and Computational Complexity in DNN, Deep Learning For Visual Computing - IITKGP, YouTube, 2018. [Online]

Available at: https://www.youtube.com/@deeplearningforvisualcompu3823

[23] Kaiming He et al., “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, USA, pp. 770-778, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[24] Elyor Kodirov, Tao Xiang, and Shaogang Gong, “Semantic Autoencoder for Zero-Shot Learning,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 4447-4456, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s10489-020-02075-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+progress+of+zero-shot+learning&btnG=
https://link.springer.com/article/10.1007/s10489-020-02075-7
https://doi.org/10.1145/3293318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Zero-Shot+Learning%3A+Settings%2C+Methods%2C+and+Applications&btnG=
https://dl.acm.org/doi/10.1145/3293318
https://cs.brown.edu/~gmpatter/sunattributes.html
https://cvml.ista.ac.at/AwA2/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Catherine+Wah%2C+The+Caltech-Ucsd+Birds-200-2011+Dataset&btnG=
https://authors.library.caltech.edu/records/cvm3y-5hh21
https://authors.library.caltech.edu/records/cvm3y-5hh21
https://doi.org/10.1109/CVPR.2009.5206594
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+to+detect+unseen+object+classes+by+between-class+attribute+transfer%E2%80%99&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+to+detect+unseen+object+classes+by+between-class+attribute+transfer%E2%80%99&btnG=
https://ieeexplore.ieee.org/document/5206594
https://doi.org/10.1109/TPAMI.2013.140
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Attribute-based+classification+for+zero-shot+visual+object+categorization%E2%80%99&btnG=
https://ieeexplore.ieee.org/document/6571196
https://doi.org/10.1109/TPAMI.2015.2487986
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Label-embedding+for+image+classification&btnG=
https://ieeexplore.ieee.org/document/7293699
https://doi.org/10.1109/TSMC.2018.2837670
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zero-Shot+Learning+Based+on+Deep+Weighted+Attribute+Prediction&btnG=
https://ieeexplore.ieee.org/document/8385127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Devise%3A+A+deep+visual-semantic+embedding+model.&btnG=
https://proceedings.neurips.cc/paper/2013/hash/7cce53cf90577442771720a370c3c723-Abstract.html
https://doi.org/10.1109/INCET57972.2023.10170025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Zero-shot+Learning+using+Deep+Neural+Network+ResNet50&btnG=
https://ieeexplore.ieee.org/document/10170025
https://ieeexplore.ieee.org/document/10170025
https://ieeexplore.ieee.org/xpl/conhome/8576498/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8576498/proceeding
https://doi.org/10.1109/CVPR.2018.00581
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+Generating+Networks+for+Zero-Shot+Learning&btnG=
https://ieeexplore.ieee.org/document/8578679
https://doi.org/10.3390/electronics12102308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zero-Shot+Learning+with+Joint+Generative+Adversarial+Networks.&btnG=
https://www.mdpi.com/2079-9292/12/10/2308
https://doi.org/10.1109/WACV45572.2020.9093348
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Generative+Framework+for+ZSL+with+Adversarial+Domain+Adaptation&btnG=
https://ieeexplore.ieee.org/document/9093348
https://doi.org/10.3390/jimaging8060171
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hfm%3A+A+hybrid+feature+model+based+on+conditional+auto+encoders+for+zero-shot+learning&btnG=
https://www.mdpi.com/2313-433X/8/6/171
https://doi.org/10.1109/MACISE49704.2020.00039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Time+Complexity+Analysis+of+Neural+Network+Model+Configurations&btnG=
https://ieeexplore.ieee.org/document/9195618
https://doi.org/10.48550/arXiv.2206.12191
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computational+Complexity+Evaluation+of+Neural+Network+Applications+in+Signal+Processing&btnG=
https://arxiv.org/abs/2206.12191
https://doi.org/10.1016/j.procs.2022.12.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Time+complexity+in+deep+learning+models&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050922020944?via%3Dihub
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://ieeexplore.ieee.org/document/8308186
https://doi.org/10.1109/CENTCON52345.2021.9687944
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparison+between+VGG16%2C+VGG19+and+Resnet50+Architecture+Frameworks+for+Image+Classification&btnG=
https://ieeexplore.ieee.org/document/9687944
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bag+of+Tricks+for+Efficient+Text+Classification&btnG=
https://aclanthology.org/E17-2068/
https://doi.org/10.1109/CVPR.2016.90
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+residual+learning+for+image+recognition&btnG=
link:%20https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.1109/CVPR.2017.473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semantic+Autoencoder+for+Zero-Shot+Learning&btnG=
https://ieeexplore.ieee.org/document/8099956

Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025

561

[25] Bernardino Romera-Paredes, and Philip Torr, “An Embarrassingly Simple Approach to Zero-Shot Learning,” Proceedings of the 32nd

International Conference on Machine Learning, PMLR, vol. 37, pp. 2152-2161, 2015. [Google Scholar] [Publisher Link]

[26] Yongqin Xian et al., “Latent Embeddings for Zero-Shot Classification,” 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), Las Vegas, NV, USA, pp. 69-77, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[27] Yongqin Xian et al., “Zero-Shot Learning-A Comprehensive Evaluation of the Good, the Bad and the Ugly,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 41, no. 9, pp. 2251-2265, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[28] Soravit Changpinyo et al., “Synthesized Classifiers for Zero-Shot Learning,” 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, USA, pp. 5327-5336, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Embarrassingly+Simple+Approach+to+Zero-Shot+Learning&btnG=
https://proceedings.mlr.press/v37/romera-paredes15.html
https://doi.org/10.1109/CVPR.2016.15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Latent+Embeddings+for+Zero-Shot+Classification&btnG=
https://ieeexplore.ieee.org/document/7780384
https://doi.org/10.1109/TPAMI.2018.2857768
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zero-Shot+Learning+-+A+Comprehensive+Evaluation+of+the+Good%2C+the+Bad+and+the+Ugly&btnG=
https://ieeexplore.ieee.org/document/8413121
https://doi.org/10.1109/CVPR.2016.575
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Synthesized++classifiers+for+zero-shot+learning&btnG=
https://ieeexplore.ieee.org/document/7780944

