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Abstract - Zero-Shot Learning (ZSL) is an emerging machine learning approach that enables the classification of images be-

longing to categories absent from the training data. By leveraging semantic information, ZSL facilitates classification with min-

imal or no training images. This paper presents a novel approach for ZSL employing a hierarchical framework, designed to 

enhance accuracy while significantly reducing complexity. The proposed framework employs a two -stage hierarchical classifi-

cation structure with primary and secondary classifiers specific to each stage of the hierarchy. A Convolutional Neural Network 

(CNN) works as the principal component of the primary classifier, which uses a deep hierarchical clustering technique to clas sify 

images into two larger categories (Subclass-0 and Subclass-1). The secondary classifier integrates fastText for semantic feature 

extraction and ResNet-50 for visual feature extraction, enabling the classification of unseen (zero -shot) images. The usefulness 

of the proposed approach is validated on three standard datasets, viz. SUN, AWA2, and CUB. According to experimental results, 

the hierarchical architecture achieves accuracy levels comparable to the best available methods while drastically reducing 

training complexity by almost 80%, training length by 25%, and testing time by 23%. The framework facilitates more effective 

learning by breaking the task up into smaller class subsets, which makes it ideal for large -scale ZSL applications. 

Keywords - Hierarchical deep clustering, Hierarchical framework, Image classification, Model complexity, Zero-shotlearning.

1. Introduction 
Traditional image classification methods have shown 

considerable success in several fields. Practical issues arise 

because these approaches mostly depend on having a sizable 

amount of labelled training data for every class. Furthermore, 

these models cannot handle unknown classes because they can 

only recognize the classes that they have been trained on. This 

restriction results from the difficulty in obtaining labelled 

data, which can be attributed to either the high cost of anno-

tating data or the lack of adequate data for certain categories. 

ZSL offers a key to these challenges by enabling the 

recognition of unlabelled data without prior training in those 

specific classes [1]. The ZSL model undergoes training using 

a predefined group of known classes and is subsequently eval-

uated on how effectively it can identify its ability to categorize 

unknown classes. To address the disparity between these 

known and unknown classes, ZSL relies on semantic descrip-

tions, such as attributes or natural language sentences, to cap-

ture the essential characteristics of each class. Throughout 

training, the model grasps the correlation between semantic 

attributes and visual characteristics extracted from the data. 

During prediction, the model maps unlabelled images to their 

semantic features and makes predictions grounded on the re-

semblance between the predicted and existing class features, 

often computed using Euclidean distance and cosine similar-

ity. ZSL is a versatile technique with broad applications, hold-

ing promise to significantly advance areas such as computer 

vision, natural language understanding, and human activity 

recognition [2]. With its ability to classify unseen data using 

semantic relationships, ZSL holds great promise for the future, 

making it a  crucial advancement in machine learning. 

Manually created attributes were used in early ZSL tech-

niques; however, these methods are not scalable and necessi-

tate subject expertise. Later research improved automation but 

still suffered from semantic noise and ambiguity by introduc-

ing semantic embeddings utilizing language models such as 

word2vec, GloVe, and fastText. By synthesizing visual attrib-

utes for invisible classes, generative models like Conditional 

Variational Autoencoders (CVAE), Conditional Autoencod-

ers (CAE), and Generative Adversarial Networks (GANs) car-

ried the discipline even farther, but at the expense of higher 

computational overhead and system complexity. Although 

classification performance has increased because of these de-

velopments, its usefulness in large-scale or time-sensitive en-

vironments is limited by the need for deep architecture and 
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lengthy training periods. Although recent research has high-

lighted the significance of optimizing computational effi-

ciency, the tradeoff between accuracy and resource utilization 

is not explicitly addressed by many ZSL systems. 

1.1. Major Challenges to be Addressed in ZSL 

1.1.1. Accuracy 

High classification accuracy for unknown classes is still a  

major challenge, particularly when the gap between visual and 

semantic representations is large or when data domains shift. 

1.1.2. Model Complexity 

Simplifying the model structure and having low compu-

tational requirements without compromising on strong perfor-

mance are crucial, especially for real-world deployment. 

1.1.3. Training Efficiency 

Improving the training process to be accelerated and to 

consume less data is vital, especially for large-scale deploy-

ments or systems with limited processing power. 

Scalability 

The ZSL techniques need to be scalable enough to accom-

modate a vast number of categories and should be effective 

while increasing the number of classes across diverse applica-

tion areas. To counter these challenges, this work presents a 

novel hierarchical ZSL method that splits the classification 

process into two steps: a lightweight CNN-based coarse clas-

sifier and then a fine-grained secondary classifier consisting 

of  ResNet-50 for visual features and semantic classification 

by utilizing fastText embeddings. The suggested method im-

proves inference speed and overall scalability by reducing the 

number of candidate classes per prediction. Results from ex-

periments on benchmark ZSL datasets SUN [3], AWA2 [4] 

and CUB [5], common ZSL datasets, show that the framework 

can strike a compromise between accuracy and efficiency, 

which qualifies it for practical use. 

2. Literature Review   

Classifying images is among the most demanding jobs in 

computer vision. ZSL is the task of identifying image catego-

ries that the model has never encountered during training. Re-

cently, there has been a lot of research interest in this field.  

Lampert et al. [6], in their 2009 study, laid the groundwork for 

ZSL by prposing a method which utilizes manually crafted at-

tributes as supplementary information for unknown cate-

goriesLampert has extended the concept of attribute-based 

zero-shot image classification, employing Direct Attribute 

Prediction (DAP) and Indirect Attribute Prediction (IAP) as 

probabilistic classifiers [7], where visual features were 

matched to attributes and then used for classification. Zeynep 

et al. [8] proposed Attribute Label Embedding (ALE) by em-

bedding attributes into a discriminative space, achieving better 

generalization and superior performance compared to DAP 

methods. Xuesong et al. [9] have proposed a method in which 

attribute labels participate in training deep neural networks 

and the deep neural network predicts attributes. Predicted at-

tributes are weighted using the Sparse Representation Coeffi-

cient (SRC) as each attribute contributes differently to ima ge 

recognition and improves accuracy.  

The methods of [6-9] rely on handcrafted attributes which 

are limited and expensive. To overcome the limitations of 

handcrafted attributes, several researchers have turned to au-

tomatic semantic embedding techniques. The DeViSE model 

was presented by Andrea et al. [10], who combined skip-gram 

language models for semantic representation with CNN mod-

els for visual feature extraction. This allowed models to infer 

semantic similarity even for unseen classes. Scaling up this 

approach to larger dictionaries and training on extensive text 

corpora can further enhance prediction quality. Khanam et al. 

[11] have proposed the enhanced ZSL (EZSL) technique using 

ResNet-50, which exhibits higher accuracy and lower model 

loss than traditional CNN models. CNN and pre-trained CNN 

models are utilized to extract features, and subsequently em-

ployed to classify unknown images in methods. These tech-

niques can scale better by utilizing vast text corpora and re-

ducing manual labour. However, they may still suffer from 

noisy embeddings and semantic ambiguity, especially when 

utilizing unpolished word vectors. ZSL has been subjected to 

generative models including CVAE, CAE, and GANs in order 

further to enhance generalization and robustness [12–15]. 

These models transform the ZSL issue into a traditional super-

vised classification task by synthesizing visual characteristics 

for unseen classes using semantic attributes. 

While generative approaches often lead to higher accu-

racy, they also significantly increase system complexity, re-

quiring sophisticated designs and long training times. These 

features limit their use in large-scale or time-sensitive appli-

cations where efficiency and computational resources are cru-

cial. These complications worsen with increasing dataset size 

and class diversity, underscoring the necessity for models that 

strike a compromise between computational viability and ac-

curacy. Examining the space and temporal complexity of ZSL 

models, which are impacted by a variety of architectural and 

training factors, is crucial to resolving this issue. Lee et al. [16] 

showed that the number of layers, epochs, network depth, and 

optimizer selection all had an impact on CNN time complex-

ity. In a similar vein, Freire et al. [17] suggested a methodical 

assessment of computational complexity in digital signal pro-

cessing systems spanning neural network layers. The effects 

of factors including filter size, depth, number of filters, com-

pletely linked layers, and kernel size on runtime and perfor-

mance were further investigated by Shah et al. [18]. These in-

vestigations provide insightful information on how deep learn-

ing models behave computationally. 

The readers can refer to work on time and computational 

complexity of deep neural networks in [16-18]. Reducing 

training complexity without compromising performance has 

become a critical research goal, as many of the current ZSL 
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and image classification techniques become more complicated 

and resource-intensive as datasets expand. Investigating effec-

tive designs that can grow effectively while preserving com-

petitive accuracy is therefore essential. 

Key Observations from Literature Review :  

• Handcrafted Attributes 

• Generative Models: Accuracy vs. Complexity 

• Training and Testing Time 

• Scalability Issues 

Current work in Zero-Shot Learning (ZSL) identifies a 

number of challenges. Early techniques were largely based on 

manually designed attributes, which, although useful, are dif-

ficult to scale and involve a great deal of expert time. Although 

generative approaches like CVAE and GANs have been prom-

ising and can enhance accuracy through feature generation, 

they add system complexity, thus not being as appropriate for 

real-time or resource-constrained applications. In addition, 

numerous models incorporate deep architectures that lead to 

slow training and inference times, making them infeasible for 

deployment in time-sensitive scenarios. Another significant 

issue is scalability, with these models tending to fail in their 

ability to scale up well across large and varied datasets, high-

lighting the necessity of more efficient and robust ZSL meth-

odologies. 

To address these challenges, this research suggests a 

novel hierarchical ZSL framework to overcome the drawbacks 

noted in earlier works, including reliance on manually created 

characteristics, noisy semantic embeddings, and the high com-

plexity of generative techniques. The suggested approach re-

duces the number of classes per classifier and, as a result, min-

imizes model complexity by breaking down the classification 

process into two hierarchical steps, in contrast to conventional 

flat classification algorithms. The dataset is roughly divided 

into major subclasses using the primary classifier based on a 

lightweight CNN. A secondary classifier that uses fastText for 

semantic embedding and ResNet-50 for visual feature extrac-

tion handles each subclass, providing a good tradeoff between 

efficiency and performance. The system efficiently lowers 

training and inference complexity while preserving competi-

tive accuracy by fusing deep hierarchical clustering with se-

mantic guiding, which makes it appropriate for time-sensitive 

and large-scale ZSL applications. 

3. Hierarchical Deep Clustering 
A hierarchical approach for Zero-shot image classifica-

tion combines primary and secondary stages of classification. 

Various classes in a dataset are clustered into two subclasses, 

Subclass-0 and Subclass-1, using Hierarchical deep cluster-

ing. Classifying images in one of the two subclasses is the pri-

mary classification. Hierarchical deep clustering organizes 

similar classes into clusters, forming a multilevel structure, as 

shown in Figure 1 (b). Hierarchy level -0 represents broader 

classes, while the higher Hierarchy levels depict more specific 

subclasses. In this approach, deep features are extracted 

through a  CNN, and K-Means clustering groups classes based 

on the extracted features. 

 
(a) Conventional clustering 
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(b) Hierarchical deep clustering 

Fig. 1 Conventional v/s Hierarchical deep clustering 

 
(a) Conventional clustering 
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(b) Deep hierarchical clustering 

Fig. 2  Example of conventional v/s Hierarchical deep clustering on 8 classes of the SUN dataset 

Hierarchical Deep Clustering 

Step 1: 

Feature Extraction: Each image’s feature vector is extracted using a CNN. 

Step 2: 

K-Means Clustering: Feature vectors are clustered based on similarity. 

Step 3: 

Counting Images Assigned to Each Cluster: The number of images per class assigned to 

each cluster is computed. 

Step 4: 

Majority Voting: Each class is assigned to the cluster where most of its images belong. 

Step 5: 

Final Cluster Reassignment: All images of a class are reassigned to the majority cluster. 

In conventional methods, a single model is used to clas-

sify all test classes as shown in Figure 2 (a). This model is 

trained in all training classes simultaneously, requiring it to 

learn a wide range of features, which increases model com-

plexity and makes training more challenging. This also makes 

the model bulky, and the extracted features start overlapping 

each other. This results in a reduction in the accuracy of the 

model. Hierarchical deep clustering adopts a divide-and-con-

quer approach as used in the Fast Fourier Transform (FFT). 

Initially, only two broad subclasses are used at hierarchy level 

0 for classification, which will make the model simple and 

yield higher accuracy. This is depicted as model 1in Figure 1 

(b). The hierarchy level-1 specialized model for subclassifica-

tion of these two classes is used. In the next hierarchy, level-2 

further subclasses are partitioned using specialized models fo-

cusing on the given subclasses that are depicted as models 

2,3,4,5,6,7 in Figure 1 (b). This reduces learning complexity 

and improves classification accuracy by focusing on fewer 



Shaista Khanam & Poonam. N. Sonar / IJETT, 73(7), 543-561, 2025 

 

548 

features at a  time. To validate the hypothesis, the experiments 

were conducted on a sample SUN dataset covering eight clas-

ses, as shown in Figure 2. 

3.1. Steps for Hierarchical Deep Clustering 

The proposed Hierarchical deep clustering consists of five 

steps. Each step is explained in the following brief section. 

3.1.1. Step 1: Feature Extraction 

Each image xi,jIn class, I is passed through a CNN to ex-

tract its feature representation ( fi,j) using Equation (1),  

fi,j = 𝐶𝑁𝑁( )xi ,j (1) 

i ∈ {1,……,C}  represents the class index.  

j ∈ {1,……, ni} represents the image index within class i.  

fi,j  ∈  ℝ𝑑   is the extracted d-dimensional feature vector 

for an image xi,j  . 

3.1.2. Step 2: K-Means Clustering 

Initialization 

Two cluster centroids {𝐶1,𝐶2
} represented by Equation 

(2) are randomly initialized,  

𝐶𝑘 𝜖 ℝ𝑑 , 𝐾 ∈ {1,2} (2) 

Represents the centroid of cluster k. 

Cluster Assignment 

Equation (3) assigns each feature vector to the closest 

cluster based on the Euclidean distance. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑓𝑖 ,𝑗) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘 ||𝑓𝑖 ,𝑗 − 𝑐𝑘||2 , 𝐾 ∈ {1,2} 

 (3)  

Where: 

||𝑓𝑖 ,𝑗 − 𝑐𝑘||2  It is the feature vector’s squared Euclidean 

distance from the cluster centroid. 

Centroid Update 

After assigning all feature vectors to clusters, the cen-

troids 𝑆𝑘 are updated as the mean of all assigned points given 

by Equation (4),  

𝑆𝑘 = { 𝑓𝑖 ,𝑗 | 𝑓𝑖 ,𝑗  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑐𝑘}  

𝐶𝑘 =  
1

|𝑆𝑘|
 ∑ 𝑓𝑖 ,𝑗         𝑓𝑖 ,𝑗 ∈ 𝑆𝑘

 (4) 

Where: 

• 𝑆𝑘 Is the set of feature vectors assigned to cluster k? 

• |𝑆𝑘| is the number of elements in 𝑆𝑘, 

• The new centroid 𝑐𝑘 It is the mean of all assigned feature 

vectors. 

The above steps (assignment and update) repeat itera-

tively until convergence, i.e., until the centroids do not change 

as given by Equation (5),  

 𝐶𝐾
(𝑡+1)

=  𝐶𝐾
(𝑡)

  (5)  

Where t represents the iteration number. 

3.1.3. Step 3: Counting Images Assigned to Each Cluster 

After convergence, the number of images from each class 

assigned to each cluster is counted by Equation (6),  

𝑁𝑖,𝑘 = { 𝑓𝑖 ,𝑗 | 𝑓𝑖 ,𝑗 ∈

𝑋𝑖  𝑎𝑛𝑑  𝑓𝑖 ,𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑  𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑐𝑘} (6) 

Where: 

• The total number of class i images allocated to the cluster 

𝑐𝑘 is denoted 𝑁𝑖 ,𝑘 

• 𝑋𝑖  It is the set of all images belonging to class i. 

3.1.4. Step 4: Majority Voting and Reassignment 

Majority Cluster Selection 

For each class i, the cluster that contains the majority of 

its images is determined by Equation (7),  

𝐶𝐾
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑁𝑖,𝑘   (7) 

Where: 

• 𝐶𝐾
∗ Is the cluster that has the most images from class i? 

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 finds the cluster index k with the highest 𝑁𝑖,𝑘  

3.1.5. Step 5:  Final Cluster Reassignment 

All images of the class 𝑖 are reassigned to the majority 

cluster by Equation (8),  

𝐹𝑖𝑛𝑎 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑓𝑖 ,𝑗) = 𝐶𝐾
∗, ∀𝑗 ∈ {1, … . 𝑛𝑖

} (8) 

Ensuring that all images from the same class belong to a 

single cluster. 

4. Methodology 
ZSL has gathered increasing attention, driven by humans’ 

remarkable ability to recognize and classify new visual classes 

they have never considered before. In the ZSL approach, a la-

belled dataset is employed to train a model on seen classes, 

with the primary objective being that the model can identify 

and classify new classes that they have never considered pre-

viously. ZSL significantly reduces annotation costs by lever-

aging existing knowledge. This study’s primary goal is to in-

crease the ZSL model’s performance while minimizing its 

computing complexity. Achieving higher accuracy in zero-
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shot image classification is crucial for its practical utility, and 

this research aims to propose a hierarchical framework that 

combines primary and secondary classification levels. The hi-

erarchical deep clustering method is proposed to create the hi-

erarchy level of classifier models to reduce complexity and 

enhance the classification. By utilizing a simplified CNN clas-

sifier model for primary classification and more advanced 

ResNet 50-based ZSL classifiers for secondary classification, 

the study aims to strike a balance between accuracy and com-

putational complexity. Through rigorous experimentation on 

benchmark datasets, viz. SUN, AWA2 and CUB, the proposed 

hierarchical framework is evaluated based on per-class accu-

racy, training and time complexity metrics, thereby providing 

insights into its effectiveness in improving ZSL performance 

and reducing computational burden.  

 

Fig. 3 Architecture of the proposed hierarchical framework for zero-
shot image classification 

4.1. Proposed Hierarchical Framework  

The proposed hierarchical framework is based on primary 

and secondary classification stages. The primary classification 

stage relies on a CNN-based classification model trained to 

categorize images into two broad subclasses, Subclass-0 and 

Subclass-1, as depicted in Figure 3. Subclass-0 and Subclass-

1 are created using hierarchical deep clustering till hierarchy 

level - 0. It is specifically trained on a subset of the dataset, 

contributing to the effectiveness of zero-shot classification.  

It serves the purpose of broadly classifying images into 

either Subclass-0 or Subclass-1 subcategories. Subsequently, 

the secondary classification stage performs zero-shot image 

classification using the ZSL model trained using the ResNet-

50 architecture. Due to the use of a hierarchy of primary and 

secondary classifiers, a  limited number of classes are used to 

train each classifier model, leading to fewer feature learning, 

reducing the complexity of model learning and increasing ac-

curacy. 

4.1.1. Primary Classifier - CNN Classification Model 

The CNN classification model is a primary classifier that 

plays a fundamental role in achieving major classification 

within the proposed system. The proposed framework uses hi-

erarchy level 0  as it categorizes images into two distinct sub-

classes: Subclass-0 and Subclass-1. Focusing on the CNN 

classifier designed for the SUN dataset, as depicted in Figure 

4. (a), it encompasses key components like convolutional lay-

ers, batch normalization layers, max-pooling layers, and dense 

layers. In CNN architecture, the initial layer typically consists 

of a convolutional layer responsible for extracting diverse im-

age features through the application of filters. In contrast, a  

filter is also called a kernel or a feature detector [19]. Sliding 

the kernel over the image and calculating the sum of element-

wise products at each place is the process of convolution, 

which determines the dot product between the input image and 

a kernel. The pooling layer reduces the dimensionality of the 

network, while the fully connected layer follows it, connecting 

all neurons from the preceding layer. Extensive experimenta-

tion involving different combinations of layers with varying 

kernel sizes has been conducted to optimize the model. After 

careful refinement, the final configuration has been selected 

as shown in Figures 4 (a),  (b) and (c).  

4.1.2. Secondary Classifier - ZSL Model 

The ZSL model serves as a secondary classifier that cate-

gorizes the classes not encountered during training, e, zero-

shot classes. Figure 5. depicts the ZSL model, which is a com-

bination of a visual model and a language model. The visual 

model harnesses the power of a pre-trained ResNet-50 model, 

skillfully trained on a wide array of images. Likewise, the lan-

guage model is also a pre-trained entity, specifically tailored 

for the labels associated with images. In the visual semantic 

embedding space, the visual feature vectors produced by the 

visual model and the semantic feature vectors produced by the 

language model using word2vec are linearly mapped. Cosine 

loss is used to train the ZSL model. These visual and language 

models collaborate to accomplish zero-shot classification 

tasks. 

Image Data 

Hybrid Deep  

Clustering 

 

Primary Classifier (CNN) 

Secondary  

Classifier ZSL1 

Secondary  

Classifier ZSL2 

Top 5 Prediction Top 5 Prediction 

Sub-

Class-1 

Sub-

Class-0 
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(a) (b) (c) 

Fig. 4 Primary classifier - CNN classification model – (a) SUN dataset, (b) AWA2 dataset, and (c) CUB dataset 

 
Fig. 5 Secondary classifier - ZSL model
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Visual Model 
 Visual models play a crucial role in extracting visual fea-

tures through deep CNN. For this approach, the ResNet50 

model is selected to extract visual features from images after 

experimenting with various pre-trained models, such as 

AlexNet, VGG19, DenseNet, GoogleNet, and ResNet-50. 

Among these models, ResNet-50  emerges as the most suitable 

choice for the proposed method. Although experimentation 

was also conducted with ResNet-101, which yielded better re-

sults, it increased the complexity of the model compared to 

ResNet-50. The proposed approach aims to improve accuracy 

while reducing complexity. ResNet-50 strikes an optimal bal-

ance, offering sufficient accuracy with less computational 

overhead than the more complex ResNet-101. 

Utilizing the pre-trained ResNet-50  model on the 

ImageNet dataset enhances its capacity to grasp a wide array 

of high-level visual features. ResNet-50 represents a deep 

CNN architecture designed for extracting diverse features at 

low, medium, and high levels of features from images. While 

stacking layers in a deep network enhances accuracy, it intro-

duces challenges like vanishing and exploding gradients, 

causing slow convergence or oscillation. To address this, Res-

Net-50 employs skip connections, a  pivotal solution to miti-

gate vanishing gradient and exploding gradient issues. The 

ResNet-50  architecture, as shown in Figure 6, consists of sev-

eral convolutional layers, a  pooling layer, and a fully con-

nected layer comprising 50 layers [20]. These layers, includ-

ing convolutional and max-pooling operations, are instrumen-

tal in extracting intricate features from images. Notably, the 

hallmark of ResNet 50 lies in its skip connections, which stra-

tegically skip. 

Language Model 

Language models play a crucial role in transforming 

words into word vectors, and the Word2Vec method serves as 

a prominent approach for language modelling. This algorithm 

leverages a deep neural network model, trained on substantial 

text data, to recognize word similarity and predict semanti-

cally analogous words. To find word similarity for labels, the 

model converts each label into a fixed-length vector called an 

embedding vector. 

The fastText open-source library, developed by Face-

book’s AI Research (FAIR) lab, is used in the language model. 

FastText efficiently converts words into embedding vectors 

using the Word2Vec method based on textual data. The labels 

of classes are transformed into embedding vectors of 300 di-

mensions. The model exhibits versatility by generating feature 

vectors of 50, 100, 200, and 300 dimensions, with the experi-

ment opting for a 300-dimensional word vector to capture 

richer semantic information. This strategic choice recognizes 

that a higher-dimensional word vector provides more detailed 

information, enhancing the model’s capacity to understand 

and represent the nuances of language [21]. 

5. Evaluation Metrics  

The proposed hierarchical approach is evaluated based on 

floating-point operations (FLOPs), training complexity, and 

time complexity.  

5.1. FLOPs 

One important indicator for evaluating a model’s com-

plexity is its floating-point operations. These operations can 

include addition, subtraction, division, multiplication, or any 

other calculation involving a floating-point value. Different 

layers of convolutional neural networks perform different 

computational operations based on the type of layer. The fol-

lowing are the formulas for calculating FLOPs for different 

layers of a CNN. 
 

5.1.1. Convolutional Layer (CL) 

The input image is convolved with the kernel in the convo-

lutional layer. FLOPs for the convolutional layer [22] are cal-

culated using Equation (9), 

𝐹𝐿𝑂𝑃𝑠𝐶𝐿 = 2 × 𝑛 × 𝑘𝑒𝑟𝑛𝑒𝑙  𝑠ℎ𝑎𝑝𝑒 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠ℎ𝑎𝑝𝑒
 (9)   

 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑟𝑛𝑒𝑙  

𝐾𝑒𝑟𝑛𝑒𝑙 𝑠ℎ𝑎𝑝𝑒 = 𝑊 × 𝐻  

𝑊ℎ𝑒𝑟𝑒 𝑊 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 .  

 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆ℎ𝑎𝑝𝑒𝐶𝑉 = (𝑀 − 𝑊 + 1)(𝑁 − 𝐻 + 1)  

5.1.2. Fully Connected Layer 

Every node in the output layer is directly connected to 

every node in the layer above it in the fully connected layer. 

Equation (10) is used to determine FLOPs for fully linked lay-

ers, which are twice the product of the input layer (I) and out-

put layer (O) node counts. 
 

𝐹𝐿𝑂𝑃𝑠𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 = 2 ×   𝐼  ×  𝑂 (10)                                     

5.1.3. Pooling Layer 

The pooling layer reduces the dimensionality of the input 

layer. The FLOPs for the pooling layer are calculated by mul-

tiplying the height (H), width (W), and depth (D) of the pool-

ing layer. FLOPs for the pooling layer are given by Equation 

(11),   
 

𝐹𝐿𝑂𝑃𝑠𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 = 𝐻 ×   𝑊  ×  𝐷 (11)                                             

5.1.4. Batch Normalization Layer 

The batch normalization layer is used to normalize the 

outcome of the preceding layers. It enhances learning effi-

ciency and acts as a regularizer to prevent model overfitting. 

FLOPs for batch normalization are given by Equation (12), 

𝐹𝐿𝑂𝑃𝑠𝑏𝑎𝑡𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 =  𝐶×4×𝑜𝑢𝑡𝑝𝑢𝑡  𝑠ℎ𝑎𝑝𝑒
 (12)    

𝐶 is the number of channels in the convolution layer’s 

output 
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Fig. 6 ResNet-50 architecture [20] 

5.2. Training Complexity 

The training complexity (TC) is measured as the number of 

computations of the model during training. It relies on the 

number of FLOPs (F), the number of epochs (E), and the num-

ber of input images (I) for training the model. It is given by 

Equation (13), 

  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑇𝐶) = 𝐹 × 𝐸  × 𝐼 (13)                                                                     

The quantity of input images used during training affects 

a model’s training complexity. Consequently, the training 

complexity is greatly impacted by the dataset’s size. The 

model’s training complexity rises with dataset size since it 

must learn more features from the images. 

5.3. Time Complexity  

Training and testing durations both affect time complex-

ity. Testing time is the amount of time needed to use the 

trained model to evaluate a single image from the test dataset, 

whereas training time is the amount of time needed to fit the 

model to the training data. 

5.4. Per-Class Average Accuracy 

Per-class accuracy, also referred to as class-wise accu-

racy or class-specific accuracy, is a  performance metric uti-

lized for the evaluation of classification models, particularly 

in scenarios involving multi-class classification problems. 

Per-class Average Accuracy is calculated with Equation (14),  

𝑃𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ (

𝑌
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠

𝑐𝑙𝑎𝑠𝑠𝑖

𝑌
𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠𝑖
)

𝑁

𝑖=1

  (14)                    

The proportion of accurately predicted images to all of the 

images in each class is calculated. The average accuracy for 

each class in the dataset is then obtained by aggregating it for 

all N classes.  

6. Results and Discussion   
The hierarchical framework of ZSL is a novel approach 

to classifying unseen data by using a hierarchy of classifiers. 

It is implemented using a primary classifier (CNN classifier) 

to broadly classify unseen classes into Subclass-0 or Subclass-

1. Each subclass’s secondary classifier (ZSL Model) is used 

for zero-shot image classification. The hierarchical ZSL 

framework and the EZSL framework [11] are compared based 

on accuracy, training complexity, and training-testing time. 

The implementation and evaluation of results are performed 

on the SUN, AWA2  and CUB datasets. 

6.1. Dataset  

Three benchmark datasets are used to assess the efficacy 

of the suggested hierarchical framework: SUN, AWA2, and 

CUB. The SUN dataset consists of 14,340 scene images across 

645 Training classes, with 72 zero-shot test classes. 
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Table 1. The statistics of the three benchmark datasets were employed for the experiments 

Dataset Seen classes Unseen  classes Seen classes Unseen  classes 

 Benchmark split [27] Proposed approach split 

AWA2 40 10 18 10 

SUN 645 72 60 72 

CUB 150 50 101 50 

 

 
(a) Conventional clustering 

 
(b) Hierarchical deep clustering 

Fig. 7  Conventional v/s Hierarchical deep clustering – AWA2 dataset 
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The hierarchical approach significantly reduces the train-

ing set to just 60 classes while maintaining classification ef-

fectiveness. Similarly, the AWA2 dataset, which includes 

37,322 images of animals categorized into 50 classes (40 for 

training and 10 for zero-shot testing), undergoes a reduction 

in training classes from 40 to 18. There are 11,788 bird images 

from 200 species in the CUB dataset (150 for training and 50 

for testing). The approach narrows the training set from 150 

to 101 classes. The detailed Statistics of the Benchmark split with 

the proposed split are shown in  Table 1. This reduction ensures 

the training process is more efficient while preserving the nec-

essary semantic information for classification. The method 

chooses training classes according to how semantically simi-

lar they are to test classes in order to accomplish this reduc-

tion. The original training set and the test set are defined as 

𝐶𝑇 = {𝑇1, 𝑇2, … .𝑇40 }, and as 𝐶𝑆 = {𝑆1 ,𝑆2,… … … . 𝑆10} re-

spectively. For each test class 𝑆𝑗 a  similarity score 𝑆(𝑇𝑖 , 𝑆𝑗) is 

computed for all 𝑇𝑖  ∈ 𝐶𝑇 and 𝑆𝑗 ∈ 𝐶𝑆.  

Then the model is retained only on the top 10 most simi-

lar training classes for each test class, forming a refined sub-

set. 𝐶𝑇′ ⊆  𝐶𝑇 . Any training class that does not appear in the 

top 10 for any test class is discarded, resulting in a final fil-

tered set of training classes (e.g., 18 for AWA2). This selec-

tion process ensures that only the most semantically relevant 

training classes contribute to the learning process, reducing 

unnecessary complexity.  

This approach offers several advantages. By eliminating 

irrelevant training classes, the model complexity is reduced, 

leading to faster training and improved generalization. The 

computational complexity of classification is optimized from 

𝑂(𝑛. 40) instead of  𝑂(𝑛. 𝑘)where k is the reduced number of 

training classes (e.g., 18 for AWA2). Additionally, by focus-

ing solely on semantically similar classes, the model avoids 

overfitting to unrelated categories and learns more meaning-

ful distinctions. As a result, classification performance re-

mains effective while requiring fewer training resources. The 

novelty of this approach lies in its ability to successfully clas-

sify all test classes despite using a significantly reduced train-

ing set. By strategically filtering out less relevant classes, this 

method lowers training complexity and computational cost 

and enhances learning efficiency without compromising clas-

sification accuracy. After reducing the training classes based 

on semantic similarity, Hiera rchical deep clustering is applied 

to all reduced training classes to divide the reduced training 

classes into subclass-0 and subclass-1, as shown in Figure 

7(b). AWA2 dataset reduced training classes are shown in  

Figure 7(a), and  Hierarchy level – 0 is shown in Figure 7(b) 

for the AWA2 dataset.  

6.2. Results Analysis of  Training Complexity and Accuracy   

The proposed framework is tested on a laptop running 

Windows 11 with an AMD Ryzen 9 5900HX processor and 

an NVIDIA GeForce RTX 3060 GPU operating at 3.30 GHz 

with 16MB of RAM. The Adam optimizer and categorical 

cross-entropy loss function optimization are employed in the 

principal classifier model. ResNet-50, which has been pre-

trained on the ImageNet dataset, is used to create the second-

ary classifier visual model. The language model of the sec-

ondary classifier uses the fastText open-source library to gen-

erate embedding vectors and find word similarity. The sec-

ondary classifier is trained with the Adam optimizer and co-

sine loss function for optimization. Early stopping criteria are 

used for primary and secondary classifiers to prevent overfit-

ting.  

6.2.1. Training Complexity  

The number of FLOPs, epochs, and input images needed 

to train the model is used to assess training complexity. 

Table 2. FLOPs evaluation of the EZSL model 

Sr No. Layers of the EZSL Model FLOPs 

1. ResNet 50 Pretrained Model [23] 3.8 × 109  

2. Dense Layer - 1 18,35,008 

3. Dense Layer - 2 3,44,064 

4. Dense Layer - 3 2,30,400 

Total Number of FLOPs EZSL Model 3.802 × 𝟏𝟎𝟔 

Table 3. FLOPs evaluation of the primary classifier model for the SUN dataset 

Sr No. Layers of a CNN-based classifier model for the SUN dataset FLOPs 

1. Convolution layer – 1 7,096,896 

2. Batch Normalization Layer -1 1,577,088 

3. Convolution layer – 2 111,503,600 

4. Batch Normalization Layer - 2 3,097,600 

5. Max Pooling Layer -1 193,600 

6. Convolution layer – 3 107,495,424 

7. Batch Normalization Layer – 3 746,496 

8. Max Pooling Layer -2 93,312 

9. Convolution layer – 4 99,680,256 

10. Batch Normalization Layer – 4 692,224 
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11. Max Pooling Layer - 3 43,264 

12. Convolution layer – 5 84,934,656 

13. Batch Normalization Layer – 5 294,912 

14. Max Pooling Layer - 4 18,432 

15. Convolution layer – 6 58,982,400 

16. Batch Normalization Layer – 6 10,240 

17. Max Pooling Layer - 5 6400 

18. Flatten layer 0 

19. Drop-out layer 0 

20. Batch Normalization Layer – 7 1024 

21. Dense Layer - 1 204,800 

22. Drop-out layer 0 

23. Dense Layer - 2 64 

Total Number of FLOPs of the primary classifier model for the SUN dataset. 476.682 × 𝟏𝟎𝟔 

Table 4. FLOPs evaluation of the primary classifier model for the AWA2 dataset 

Sr No. Layers of a CNN-based classifier model for the AWA2 dataset FLOPs 

1. Convolution layer – 1 7,096,896 

2. Batch Normalization Layer -1 1,577,088 

3. Convolution layer – 2 111,503,600 

4. Batch Normalization Layer - 2 3,097,600 

5. Max Pooling Layer -1 193,600 

6. Convolution layer – 3 107,495,424 

7. Batch Normalization Layer – 3 746,496 

8. Max Pooling Layer -2 93,312 

9. Convolution layer – 4 99,680,256 

10. Batch Normalization Layer – 4 692,224 

11. Max Pooling Layer - 3 43,264 

12. Convolution layer – 5 84,934,656 

13. Batch Normalization Layer – 5 294,912 

14. Max Pooling Layer - 4 18,432 

15. Flatten layer 0 

16. Drop-out layer 0 

17. Dense Layer - 1 58,982,400 

18. Batch Normalization Layer – 6 1024 

19. Drop out layer 0 

20. Dense Layer - 2 64 

Total Number of FLOPs of the primary classifier model for the AWA2 dataset 417.774× 𝟏𝟎𝟔 

Table 5. FLOPs evaluation of the primary classifier model for the CUB dataset 

Sr No. Layers of a CNN-based classifier model for the CUB dataset FLOPs 

1. Convolution layer – 1 7,096,896 

2. Batch Normalization Layer -1 1,577,088 

3. Convolution layer – 2 111,503,600 

4. Batch Normalization Layer - 2 3,097,600 

5. Max Pooling Layer -1 193,600 

6. Convolution layer – 3 107,495,424 

7. Batch Normalization Layer – 3 746,496 

8. Max Pooling Layer -2 93,312 

9. Convolution layer – 4 99,680,256 

10. Batch Normalization Layer – 4 692,224 

11. Max Pooling Layer - 3 43,264 

12. Convolution layer – 5 84,934,656 

13. Batch Normalization Layer – 5 294,912 

14. Max Pooling Layer - 4 18,432 
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15. Convolution layer – 6 58,982,400 

16. Batch Normalization Layer – 6 10,240 

17. Max Pooling Layer - 5 6400 

18. Convolution layer – 7 21,233,664 

19. Batch Normalization Layer – 7 18,432 

20. Flatten layer 0 

21. Drop out layer 0 

22. Dense Layer - 1 589,824 

23. Drop out layer 0 

24. Dense Layer - 2 64 

Total Number of FLOPs of the primary classifier model for the CUB dataset. 497.934 × 𝟏𝟎𝟔 

Table 6. Training complexity evaluation of the EZSL Model 

Framework Dataset Number of FLOPs Number of epochs Number of input images 
Training Complexity - 

(number of computations ) 

EZSL Model 

SUN 3.802 × 109  19 11735 84.771× 𝟏𝟎𝟏𝟑  

AWA2 3.802 × 109  15 24270 138.411× 𝟏𝟎𝟏𝟑  

CUB 3.802 × 109  80 6,060 184.224× 𝟏𝟎𝟏𝟑  

Table 7. Training complexity evaluation of the hierarchical framework model for the SUN dataset 

 

To calculate training complexity, FLOPs for the layers of 

the EZSL model and the CNN-based Primary classifier model 

for the SUN, AWA2 and CUB datasets are calculated using 

equations (9) to (12) and shown in Tables 2, 3, and 4. FLOPs 

calculated in Table 2, Table 3, Table 4 and Table 5 are used in 

evaluating the training complexity of the EZSL Model and the 

Proposed Hierarchical framework. Training complexity evalu-

ation of the EZSL Model for SUN, AWA2 and CUB datasets 

is shown in Table 6. The training complexity of the individual 

model is calculated using Equation(13). 

Tables 7, 8 and 9 show the training complexity evaluation 

of the hierarchical framework for the SUN, AWA2 and CUB 

datasets. The hierarchical framework model consists of three 

models: the primary classifier model, the Subclass-0 model 

and the Subclass-1 model. The total training complexity of all 

the models determines the training complexity of the hierar-

chical framework model. The number of input images, a  cru-

cial hyperparameter, significantly influences the training com-

plexity of a model. According to Table 6, the EZSL model for 

the SUN dataset is trained on 11,735 images. In contrast, the 

Hierarchical framework model, as shown in Table 7, is trained 

on a total of 4,160 images (the sum of 2,715, 991, and 454 

images), a  reduced number of images due to the hierarchy 

structure. Whereas the EZSL model is trained on a larger da-

taset compared to the Hierarchical framework model. There-

fore, the number of computations, i.e. the training complexity, 

is higher for the EZSL model. The performance analysis of the 

proposed hierarchical strategy in terms of training complexity 

in comparison to the EZSL approach is shown in Table 10. 

The findings show that the hierarchical model’s training com-

plexity was reduced by an average of about 80%. The key rea-

son for the improvement in training complexity is the reduced 

number of computations while training the model.  

As the number of training classes is decreased, fewer 

computations are required because of the hierarchical struc-

ture. Tables 11 and 12 present the performance analysis of the 

proposed framework based on training and testing time. The 

hierarchical framework demonstrates a 25% improvement in 

training time compared to the EZSL framework. Despite in-

volving three models for training, the hierarchical framework 

achieves lower training time due to its structured learning pro-

cess. Additionally, the hierarchical structure reduces testing 

time, making the system faster for classification. Overall, the 

time complexity of the proposed framework is improved by 

approximately 23%. While hierarchy increases the number of 

models for training, it simultaneously reduces complexity by 

training models on subclasses. 

6.2.2. Accuracy 

The results of the proposed framework in Figures 8, 9, 

and 10 illustrate the top 5 predictions for the SUN, AWA2, 

and CUB datasets, respectively. A detailed zero-shot image 

classification report of the proposed hierarchical framework 

model for the AWA2 dataset is shown in Table 13. The accu-

racy, recall, and F1-score metrics provide insightful infor-

mation about the model’s performance for every class score. 

Framework Models 
Number  

of FLOPs 

Number 

of epochs 

Number of 

input images 

Training Complexity- 

(number of computations ) 

The proposed Hierar-

chical  Framework  

model – SUN dataset 

Primary classifier Model 476.682× 106  18 2715 2.329× 1013  

Subclass-0 model 3.802× 109  25 991 9.419× 1013  

Subclass-1 model 3.802× 109  23 454 3.970× 1013  

Total Training Complexity of Hierarchical Framework Model for the SUN Dataset 15.718× 𝟏𝟎𝟏𝟑  
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Table 8. Training complexities evaluation of  the hierarchical Framework model for the AWA2 dataset 

Table 9. Training complexities evaluation of  the hierarchical framework model for the CUB dataset 

Table 10. Performance analysis of the proposed hierarchical framework based on training complexity  

Table 11. Performance analysis of the proposed hierarchical framework based on training time   

Table 12. Performance analysis of the proposed hierarchical framework based on testing time   

Framework Models 
Number of 

FLOPs 

Number of 

epochs 

Number of  

input images 

Training Complexity - 

(number of  

computations ) 

The proposed Hierarchical   

Framework   

model – AWA2 dataset 

Primary classifier Model 417.774 × 106  66 9767 26.930 × 1013  

Sub class-1 model 3.802 ×109  11 3278 1.371 × 1013  

Sub class-2 model 3.802 × 109  10 6408 2.436 × 1013  

Total Training Complexity of  Hierarchical  Framework  Model for the  AWA2 Dataset 30.737 × 𝟏𝟎𝟏𝟑  

Framework Models 
Number of 

FLOPs 

Number  

of epochs 

Number of  

input images 

Training Complexity - 

(number of  

computations ) 

The proposed Hierarchical   

Framework   

model – CUB dataset 

Primary classifier Model 497.934 × 106  100 6060 30.175× 1013  

Sub class-1 model 3.802 ×109  11 3278 1.371 × 1013  

Sub class-2 model 3.802 × 109  10 6408 2.436 × 1013  

Total Training Complexity of  Hierarchical Framework Model for the  CUB Dataset 33.982 × 𝟏𝟎𝟏𝟑  

Sr.No Dataset Training Complexity –EZSL  Framework 
Training Complexity – 

Hierarchical  Framework 

Reduction in Training 

Complexity (%) 

1. SUN 84.771×1013  15.718×𝟏𝟎𝟏𝟑  81.46 

2. AwA2 138.411×1013  30.737 × 𝟏𝟎𝟏𝟑  77.79 

3. CUB 184.224× 1013  33.982 × 𝟏𝟎𝟏𝟑  81.55 

Average  Reduction in Training Complexity 80.26 

Sr.No Dataset 
Training Time (Seconds) 

–EZSL  Framework 

Training Time (Seconds) – Hierar-

chical  Framework 

Reduction in Training 

Time (%) 

1. SUN 809 656 18.91 

2. AwA2 2854 1953 31.56 

3. CUB 2356 1717 27.12 

Average Reduction in Training Time 25.86 

Sr.No Dataset 
Testing Time –EZSL 

Framework 

Testing Time – Hierarchical  

Framework 

Reduction in Testing Time 

(%) 

1. SUN 0.260 0.224 13.84 

2. AwA2 0.391 0.297 24.04 

3. CUB 0.356 0.245 31.17 

Average  Reduction in Testing Time 23.02 
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Actual Label: Farm Actual Label: Forest 

Top 5 Predicted labels: field, meadow, garden, fields, farm, back-garden Top 5 Predicted labels: Forest, Meadow, Treeline, Forestry, Woodlot 

Fig. 8 Results hierarchical framework - SUN dataset 
 

  
Actual Label: Raccoon Actual Label: Leopard 

Top 5 Predicted labels: Raccoon, Bobcat, Bobcats, Cat, Housecat Top 5 Predicted labels: Leopard, Tiger,  BobCat, Tigers, Tigress 

Fig. 9 Results hierarchical framework – AWA2 dataset 

  
Actual Label: Laysan_Albatross Actual Label: Parakeet_Auklet 

Top 5 Predicted labels: Laysan_Albatross, Pied_billed_Grebe, 
Palm_Warbler, Ivory_Gull, Red_eyed_Vireo 

Top 5 Predicted labels: Parakeet_Auklet,  Rhinoceros_Auklet, 
White_breasted_Kingfisher, Scott_Oriole, Red_eyed_Vireo 

Fig. 10 Results hierarchical framework – CUB dataset 

Table 13. Zero-shot image classification report of the proposed hierarchical framework for the AWA2 dataset 

Class. No Class Name Precision Recall F1-score Support 

0. Chimpanzee 0.64 0.73 0.68 728 

1. Giant_panda  0.56 0.38 0.45 874 

2. Hippopotamus 0.59 0.62 0.60 684 

3. Humpback_whale 0.70 0.98 0.81 709 

4. Leopard 0.63 0.62 0.63 720 

5. Persian_cat 0.68 0.90 0.78 747 

6. Pig 0.39 0.25 0.30 713 

7. Raccoon 0.55 0.67 0.60 512 

8. Rat 0.44 0.80 0.57 310 

9. Seal 0.54 0.27 0.36 988 

 Accuracy 0.59 6985 
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Table 14. Performance analysis of the proposed hierarchical framework based on per-class accuracy   

Sr.No Dataset 
Per-class Accuracy – 

EZSL Framework 

Per-class Accuracy - Hierarchical  

Framework 

Improvement in Per-class          

Accuracy  (%) 

1. SUN 39.5 50.6 28.10 

2. AwA2 44.7                       59.9 34.00 

3. CUB 43.2                       52.93 22.52 

Average Improvement in Per-class Accuracy 28.21 

 
Table 15. Comparison of the performance of the proposed framework with other existing approaches using per-class accuracy 

Sr No. Approach SUN AWA2 CUB 

1 EZSL  [11] 39.5 44.7 43.2 

2 SAE [24] 40.3 54.1 33.3 

3 DAP [7] 39.9 46.1 40.0 

4 DeViSE [10] 56.5 59.7 52.0 

5 ESZSL [25] 54.5 58.6 53.9 

6 LATEM [26] 55.3 55.8 49.3 

7 JG-ZSL [13] 60.3 69.4 52.1 

8 HFM [15] 53.8 65.5 69.5 

9 SYNC  [28] 56.3 46.6 55.6 
 Proposed Hierarchical Framework for Zero-Shot Image Classification 50.6 59.9 52.9 

Additionally, Persian_cat (class 5) has a strong F1-score, 

recall, and precision. Pigs (class 6) score lower than other clas-

ses in terms of precision, recall, and F1. The overall accuracy 

is  59.9% for the AWA2 dataset. Table 14 presents the im-

provement in per-class accuracy achieved by the proposed hi-

erarchical framework for these datasets. 

The results indicate an average improvement of 28% com-

pared to the EZSL framework in Table 14. The Hierarchical 

framework is compared with other existing approaches in Ta-

ble 15. The proposed hierarchical model can classify all zero-

shot classes with better accuracy, even though it was trained on 

a smaller dataset. This improvement is due to the use of a hier-

archy of primary and secondary classifiers. By training these 

classifiers on fewer classes, the model needs to learn fewer fea-

tures, which reduces the likelihood of misclassification and 

thus increases accuracy. 

Comparing existing methods to the proposed framework, 

the DAP [7] and JG-ZSL [13] methods use manually crafted 

attributes as visual features, while SYNC [28] employs colour 

histograms, SIFT, and PHOG as shallow visual features. These 

visual features are provided with the dataset. In contrast, the 

proposed framework uses a deep CNN, specifically the Res-

Net-50 model, for visual feature extraction. ResNet-50 model 

extracts diverse high-level features from the images, thereby 

eliminating the need for handcrafted features. However, the 

HFM [15] and JG-ZSL [13] methods achieve better accuracy 

than the proposed hierarchical framework. The HFM approach 

utilizes two variational autoencoders, while the JG-ZSL ap-

proach employs a generative adversarial network. Both varia-

tional autoencoders [15] and generative adversarial networks 

[13] are computationally more complex, as variational autoen-

coder uses encoder and decoder networks, and generative ad-

versarial networks use a generator and a discriminator. Our 

proposed hierarchical framework, on the other hand, provides 

optimal accuracy with reduced computational complexity.  

7. Conclusion  
The ZSL model gets complicated and slow when there are 

many classes. The proposed novel hierarchical framework that 

uses a dissimation technique is offered to overcome this prob-

lem. This hierarchical framework employs less complex but 

more accurate classifiers at each level of the hierarchy, similar 

to the Fast Fourier Transform (FFT) approach. The quantitative 

analysis on three benchmark datasets (AWA2, SUN, CUB) 

shows that our proposed framework reduces training complex-

ity by 80.26%, training time by 25.86% and testing time by 

23.02% without compromising the accuracy of ZSL.  

This paper primarily contributes a hierarchical framework 

and hierarchical deep clustering, which hold the potential to 

significantly increase the use of ZSL by providing an excellent 

tradeoff between complexity and accuracy. The proposed hier-

archical framework uses a CNN-based primary classifier and 

ResNet 50, along with the fastText language model, to form a 

secondary classifier that introduces a two-stage hierarchy. The 

benefits of this framework hold promise for future applications, 

especially as datasets (number of classes) continue to grow in 

size and complexity. Future iterations could also explore a mul-

tilevel hierarchy to enhance performance further. 
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