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Abstract - A proposed design for 5G and below mobile communication systems is Cloud Radio Access Networks (C-RAN), which 

offers consumers seamless connectivity while meeting their constantly rising demands. Baseband Units (BBUs) and Remote 

Radio Heads (RRHs) make up the base station functionality in C-RAN. After that, cloud computing and virtualization techniques 

are used to centralize and virtualize the BBUs from multiple locations. The BBU pool is where all data processing and control  

are carried out, and RRHs are in charge of radio functionalities. Since one of the advanced network challenges is user mobility, 

particularly in high-density environments, an efficient user handover is necessary to maintain high Quality of Service (QoS) and 

minimize packet loss. Traditional handover mechanisms rely on fixed SINR thresholds to decide when to migrate users between 

RRHs. Such static methods may lead to suboptimal handovers, particularly in dynamic network environments. Therefore, this 

paper proposes and evaluates two intelligent user migration strategies-Fuzzy Logic and Deep Reinforcement Learning (DRL)-

to replace the static SINR-based approach. Both methods aim to improve the decision-making process for RRH selection during 

user migration. The fuzzy logic model uses expert-defined rules based on user velocity, distance, load, and SINR to make fast 

and interpretable decisions. In contrast, the DRL model learns an optimal migration policy through interaction with the 

environment using a multi-objective reward function. All three methods-traditional, fuzzy, and DRL-are implemented and tested 

in a Simu5G-based C-RAN environment. The results show that both AI-based methods significantly outperform the traditional 

approach. Notably, the DRL method achieves the highest performance gains, with a 46.4% increase in throughp ut, 66.7% 

reduction in handover failures, and 40% decrease in latency. These results highlight the advantages of integrating AI techniq ues 

for efficient and intelligent mobility management in next-generation wireless networks. 

Keywords - Cloud Radio Access Network, DRL, Fuzzy logic, RRH failure, Simu5G, User migration.

1. Introduction  
Exponential proliferation of mobile devices and Internet 

of Things (IoT) devices has evoked fierce demands 

for increased data rates, reduced delay, and superior Quality 

of Service (QoS) for mobile communication networks [1]. 

However, traditional cellular network architectures are 

increasingly unable to meet these demands, particularly as 

there is a  transition toward next-generation services such as 

6G [2]. High deployment costs, inter-cell interference from 

dense small-cell networks, and baseband processing 

complexity have further intensified these limitations [3]. To 

address these issues, Cloud Radio Access Network (C-RAN) 

has emerged as a promising architecture that centralizes 

baseband processing through cloud computing and 

virtualization [4, 5]. C-RAN decouples Baseband Units 

(BBUs) and Remote Radio Heads (RRHs), allowing flexible 

resource pooling and simplified RRH deployment. Despite 

these advantages, user mobility and frequent handovers 

among densely deployed RRHs remain major challenges in 

maintaining service quality and reducing signaling overhead. 

Traditional handover mechanisms are often based on static 

Signal-to-Interference-plus-Noise Ratio (SINR) thresholds, 

which fail to adapt to dynamic environments and result in 

inefficient user migration and increased handover failures [6-

12]. User mobility significantly impacts the Quality of Service 

(QoS) in dense cellular and cloud-based architectures like C-

RAN. According to [13], frequent handovers in high-mobility  

scenarios can lead to up to a 25% increase in handover failure 

rates and a 30–40% increase in signaling overhead, directly  

affecting network stability and user experience. Moreover, 

poor handover decisions under mobility can result in 

throughput degradation of up to 20% and increased latency 

and packet loss, especially when centralized BBUs are 

overloaded or RRHs are misallocated [14, 15]. These 

challenges underscore the critical need for intelligent and 

adaptive handover strategies that can dynamically adjust to 
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user behavior and network conditions. To fill this gap, this 

paper proposes two AI-driven user migration strategies-Fuzzy 

Logic and Deep Reinforcement Learning (DRL)-for 

optimizing handovers in C-RAN. The fuzzy logic model uses 

expert-defined rules to enable fast and interpretable decisions 

based on parameters like user velocity, distance, load, and 

SINR. In contrast, the DRL model learns optimal handover 

policies from environmental interaction using a multi-

objective reward function. This dual-approach enhances 

adaptability and decision accuracy and enables a comparative 

analysis of rule-based and learning-based handover strategies 

under identical simulation conditions. 

The main contributions are as follows: 

1. This work identifies and addresses the inefficiencies of 

traditional handover mechanisms in dense C-RAN 

environments. 

2. It develops a fuzzy logic-based user migration model that 

provides interpretable, low-complexity decisions. 

3. Designing a DRL-based handover mechanism with a 

multi-objective reward function to learn optimal user 

association policies. 

4. Finally, this work validates both models using the 

Simu5G simulation platform and demonstrates 

significant performance improvements over traditional 

SINR-based handover methods. 

While previous research has applied fuzzy logic and 

reinforcement learning independently to handover and 

resource management, this work is novel in its comparative 

application of both techniques within the same C-RAN 

environment using a unified simulation framework. The fuzzy 

logic model provides a fast, interpretable baseline using 

expert-defined rules based on network parameters such as 

velocity, distance, load, and SINR. In contrast, the DRL model 

autonomously learns optimal handover policies through 

environmental interaction and a multi-objective reward 

structure. This side-by-side evaluation offers new insights into 

the trade-offs between explainability and adaptability in 

mobility management, which has not been comprehensively 

addressed in prior litera ture. The structure of the paper is as 

follows: Section 2 provides a review of relevant literature. 

Sections 3 and 4 outline the system assumptions and 

architectural framework. Sections 5 and 6 describe the 

proposed user migration models based on fuzzy logic and  

Deep Reinforcement Learning (DRL). Section 7 presents the 

performance evaluation, and Section 8 concludes the paper. 

2. Literature Review 

Handover parameter optimization has been extensively 

explored in the context of LTE and LTE-Advanced networks. 

Early efforts focused on tuning handover margins and Time-

To-Trigger (TTT) values to reduce ping-pong effects and 

handover failures. For instance, [16] introduced optimization 

techniques for LTE/LTE-A in-building systems, while [17] 

applied fuzzy logic to minimize the ping-pong effect. More 

advanced methods, such as weighted fuzzy self -optimization 

[18] and velocity-aware handover management [19], further 

enhanced decision-making based on user mobility. In dense 

small-cell deployments, [20] demonstrated how fuzzy logic 

could effectively reduce handover failure rates and improve 

network performance. As networks evolved toward higher 

complexity and user density, researchers turned to learning-

based approaches. In [21], a  Double Deep Reinforcement 

Learning (DDRL) model was used for intelligent handover 

decisions, integrating user trajectories and signal patterns. 

Meanwhile, [22] proposed an optimal user association 

strategy in uplink C-RAN to balance the load and minimize 

handovers, marking the transition toward centralized and 

cloud-managed mobility control. 

In SDN-based architectures, [23] explored handover 

management in ultra -dense networks, aiming to reduce 

latency through centralized decision-making. Reinforcement 

Learning (RL) strategies also gained traction; [13] proposed a 

smart handoff policy for mmWave heterogeneous networks, 

while [14] applied contextual bandit models to enhance 

decision-making under mobility. However, these models often 

lack the ability to incorporate real-time metrics such as RRH 

load and user speed, which are essential in the highly dynamic 

C-RAN environment. Fuzzy logic has continued to play a role 

in adaptive network decisions. For example, [24] introduced a 

fuzzy-based admission control scheme in federated Open 

RAN architectures to improve fairness and user experience.  

Similarly, [25] proposed a DRL-based model for 

intelligent network slicing in 5G, blending adaptability with  

long-term optimization. In the context of virtualized 

environments, [26] used fuzzy logic to manage overloaded 

cloud data center hosts, while [27] developed a multi-

objective DRL framework for reconfiguring VNFs in O-RAN 

to reduce operational delays. Other notable applications 

include [28], where fuzzy logic improved traffic load 

prediction for large-scale parallel systems, and [29], which  

surveyed 5G C-RAN design challenges and opportunities. In 

edge computing environments, [15] proposed a hierarchical 

fuzzy logic model for handover decisions, and [30] reviewed 

the latest tools and techniques in fuzzy systems for smart 

applications. Expanding on learning-based methods, Mao et 

al. [31] introduced a DRL approach for mobile-edge 

computing with energy harvesting, which demonstrated how 

adaptive models could optimize resource use while reducing 

latency-principles that closely align with the work on mobility 

management. In contrast, this work contributes in the 

following ways: 

• It targets the underexplored problem of intelligent RRH 

selection for user migration in C-RAN. 

• It integrates fuzzy logic and DRL methods, providing 

both a rule-based baseline and an adaptive learning 

mechanism. 
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• It designs a novel DRL reward function that balances 

throughput, latency, and handover failures, enabling 

multi-objective optimization. 

• It validates these models in a realistic Simu5G 

environment, unlike many prior studies that rely on 

analytical or simplified simulation setups. 

Overall, the proposed approach addresses critical 

limitations in previous works and establishes a practical 

framework for mobility management in next-generation C-

RAN deployments. 

3. System Model Assumption 
This section discusses the assumptions about RRH, BBU 

pool, user connection, and their initial association. Table 1 

lists the symbols and notations utilized in this investigation. 

Here, look at a  C-RAN design with m tiny RRHs spread out 

widely around the network. M and N can be used to represent 

the set of RRHs and users, where M = {1,2,...,m} and N = 

{1,2,...,n}. 

The fronthaul link connects each RRH to the BBU pool. 

The user-RRH association is managed by the BBU pool using 

the data that users provide at each time stamp. A circle with a 

radius of R can be used to represent the coverage area, and it 

is believed that all small RRHs have the same transmission 

range.  

Unfortunately, an RRH's capacity determines how many 

users it can support at any given time [32]. All the BBU data, 

including the BBU controller, is encompassed under the BBU 

pool. It gets updated frequently based on user reports from the 

respective RRHs. Position coordinates and coverage area 

of every RRH are also known to the controller.  

The BBU controller runs the association and 

handover decision algorithms and sends them to the 

RRHs. The association of user and RRH can be expressed 

through the association indicator σi, j, which means user i 

is associated with RRH j or not. 

𝜎𝑖,𝑗 = {1 𝑖𝑓 𝑢𝑠𝑒𝑟  𝑖 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ 𝑅𝑅𝐻  𝑗;  ∀𝑗 ∈ 𝑀
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

Based on proximity, the users will first be assigned to an 

RRH. In particular, the RRH nearest to the user will be linked 

to that user. The Euclidean distance formula can be used to 

determine the distance between RRH j and User i, represented 

by Di,j, as shown below: 

𝐷𝑖 ,𝑗 = √(𝑥 𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗 )2     (2) 

Upon entering the network, the user may get signals from 

several RRHs. Therefore, it is first linked to the RRH that is 

closest to the user. 

Table 1. List of symbols and notations 

Symbol Description 

m The quantity of RRH 

N The number of users 

(xi,yi) Location of user i 

M Group of RRH 

(xj,yj) Location of RRH j 

N Group of users 

σi, j An association between user i and RRH j 

Di, j The separation between RRH j and user i 

 
SNR that user i received from RRH j 

k Index of candidate RRH 

Ak Set of candidates RRH 

St State at time t 

at Action at time t 

Xi,j Set of association features 

rt Reward at time t 

Η The learning rate 

Γ The discount factor 

α Throughput weight 

β Handover Failures weight 

γ Latency weight 

 

4. Simulation of CRAN using the Simu5G 

Platform 
To create a C-RAN in the simulation platform Simu5G 

[33] and simulate user migration between RRHs and users, 

this work models the key components of a C-RAN 

architecture, including the User Equipment (UE), RRHs 

(gNodeBs), and the Central Unit (CU) or Baseband Unit 

(BBU). Since simu5G is a network simulator, it assumes MEC 

acts as a virtual BBU pool. The study is more focused on user 

migration from one RRH to another, considering the 

parameters affecting user migration rather than the resource 

utilization in the BBU. The following components are created 

for the simulation purpose:  

• User Equipment (UE): The mobile devices that will move 

across RRHs and generate data traffic.  

• gNodeBs (gNB): These represent the RRHs in the C-

RAN architecture, which handle the radio communication 

with UEs.  

• Core Network (CN): Manages the data plane and control 

plane functionalities.  

• Central Unit (MEC): The baseband processing unit, 

which can be centralized in the C-RAN, reducing the 

complexity at the RRHs.  

A simplified assumption about the C-RAN is shown in 

Figure 1. 
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Fig. 1 General structure of the proposed C-RAN 

5. Proposed User Migration Model Based on 

Fuzzy Logic 
To enhance user handover decisions in the Cloud-RAN 

environment, this study proposes a fuzzy logic-based user 

migration model that enables real-time, rule-based selection of 

the most suitable Remote Radio Head (RRH). Unlike static 

threshold-based methods that often result in unnecessary or 

delayed handovers, the fuzzy logic system considers multiple 

contextual factors simultaneously, offering a more adaptive 

and interpretable solution. The fuzzy inference system utilizes 

four key input variables that influence handover effectiveness: 

• Distance between the user and the RRH 

• User mobility speed (velocity) 

• Signal-to-Interference-plus-Noise Ratio (SINR) 

• Current load on the candidate RRH 

Each input is mapped to linguistic variables using 

predefined membership functions. For instance, distance is 

characterized as Close, Medium, or Far; velocity as Slow, 

Average, or Fast; SINR as Low, Medium, or High; and RRH 

load as Light, Moderate, or Heavy. These fuzzified inputs are 

then processed using a Mamdani-type fuzzy inference system. 

A rule base consisting of expert-defined IF–THEN statements 

is used to evaluate the suitability of candidate RRHs. An 

example rule is: 

“IF Distance is Close AND Velocity is Slow AND Load is 

Light AND SINR is High, THEN Suitability is Very High”. 

All matching rules are aggregated and evaluated using 

fuzzy implication and fuzzy aggregation techniques. The final 

suitability score for each RRH is then defuzzified using the 

centroid method to produce a crisp output. The RRH with the 

highest suitability score is selected as the target for user 

migration. 

𝜇(𝑧) = {

0            𝑖𝑓 𝑧 ≤ 𝑎 𝑜𝑟 𝑧 ≥ 𝑏
𝑧−𝑎

𝑚−𝑎
            𝑖𝑓 𝑎 < 𝑧 ≤ 𝑚

𝑏−𝑧

𝑏−𝑚
           𝑖𝑓 𝑚 < 𝑧 < 𝑏

 (3) 

 
Fig. 2 Fuzzy logic-based user migration process
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An upper bound b, a lower bound a, and a value m, where 

a < m < b, can be used to define the triangle membership 

function µ(z). A value between 0 and 1 is assigned to each 

element of input x. Using a trial-and-error method, the 

membership functions' core width and boundary regions are 

chosen. Since more crossing results in the frequent activation 

of numerous rules, it is important to carefully select the area 

where nearby linguistic variables meet. Conversely, less 

overlap reduces the smoothness and flexibility. The inputs and 

outputs of the fuzzy system are mapped using the Mamdani-

type inference method [16]. All potential connections between 

the four input values and one output value are included in the 

fuzzy rules set. Because each input contains three linguist ic 

variables, all possible combinations of the input variables 

result in a total of (43) = 64 rules. Equation (3) provides the 

corresponding degree of membership function for the 

linguistic input variables, shown in Figure 2. Algorithm 1 

shows the overall fuzzy logic-based User-RRH migration 

process. This approach provides a transparent and efficient 

decision-making mechanism that does not require training or 

historical data. It enables fast responses to dynamic network 

conditions and reduces the risk of unnecessary handovers by 

incorporating multiple parameters beyond signal strength 

alone.  

Algorithm 1. Fuzzy logic-based user migration procedure 

Step 1: 
Initialize the C-RAN network components in 

Simu5G. 

Step 2: 

For each user, collect real-time values of 

Distance to RRH, SINR, Velocity, and RRH 

Load. 

Step 3: 

Fuzzify the input variables using predefined 

membership functions (e.g., Close, Medium, 

Far). 

Step 4: 

Apply fuzzy inference rules (IF–THEN) to 

compute the Suitability score for each candidate 

RRH. 

Step 5: 
Aggregate all rule outputs and apply the 

Mamdani fuzzy inference method. 

Step 6: 

Defuzzify the aggregated fuzzy output using the 

centroid method to obtain a crisp Suitability 

score. 

Step 7: 
Select the RRH with the highest Suitability 

score for user migration. 

Step 8: 
Execute the handover and update the system 

state accordingly. 

Step 9: 
Repeat the process as users move within the 

network. 

 

6. Proposed User Migration Model Based on 

Deep Reinforcement Learning 
This section describes the deep reinforcement learning 

approach that was utilized for choosing the RRH for a user at 

handover, which was the desired user migration methodology 

for implementing a smarter handover to another RRH, without 

becoming the user-RRH mapping for a substantial period of 

time, thus conserving the total number of handovers. The 

trigger condition that was utilized for executing the handover 

can be expressed as:  

𝑆𝑒𝑟𝑣𝑖𝑛𝑔  𝑆𝑁𝑅 <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  − 𝐻𝑂𝑀  (4) 

To decrease ping-pong handover, a  margin for 

handover called HOM is integrated. It is not of concern 

for this work. It is assumed that it is zero for simplification. If 

the condition of Equation (4) holds for a  predetermined time 

called TTT, the event of handover happens for the 

conventional scheme of handover. The user device tracks the 

received SNR of the current serving RRH when a handover 

event is initiated. It will report a  measurement to the current 

serving RRH if, within the TTT time, the received SNR does 

not rise above the threshold SNR. 

After TTT, the user needs to select a valid RRH. 

According to SNR values that a  user gets from close RRHs, 

the BBU controller selects candidate RRHs for a  user when 

they announce the measurement to the BBU pool. Therefore, 

only the RRHs that are selected as candidate RRHs are 

considered for selecting the target RRH. Let Ak be the set of 

RRHs that are available,   

𝐴𝑘 (𝑡) = {𝑘 ∈  𝑀 |𝛿𝑖 ,𝑘(𝑡) > 𝛿𝑡ℎ } (5) 

Where k is the candidate RRHs' index', δth is the 

minimum SNR, which must be preserved for the user-

RRH link. δi,k is the received SNR by user i from RRH K, M 

is the RRH set. Our target is to assign user i to an RRH from 

set Ak. Therefore, the modeling of a design for an 

RRH selection under a Deep Reinforcement Learning (DRL) 

setup. In DRL algorithms, an agent gets trained through 

interacting with an environment. 

At each instant of action t ∈ T, the agent sees a state st ∈ 

S, performs an action at ∈ A, then moves to a new state st+1 

∈ S and gets a reward rt as feedback. The reward is a 

value equivalent to the problem objective, and maximizing 

total reward is the agent's task. Modelling the handover 

problem from an MDPC, the RL agent gets trained for the 

optimal decision of user handovers. [34].  

• State (s): A vector containing the current SINR of the UE, 

velocity, its distance from available RRHs, and the traffic 

load on each RRH.  

st = [SINRUE, Velocity UE, distanceRRH1, distance 

RRH2..., load RRH1, load RRH2…]  

• Action (a): The decision to either remain connected to the 

current RRH or migrate to a different RRH.  

a t ∈ {stay, migrate to RRH1, migrate toRRH2...} 
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• Reward (r): The reward function is designed to maximize 

throughput and minimize handover failures and latency. 

The reward is positive for successful handovers that 

improve throughput and negative for handover failures.  

This paper introduced a weighted reward that balances 

throughput, latency, and handover failures, which means 

a weighted multi-objective, while standard DRL usually 

targets a single objective; this paper uses 

rt =α x Throughput − β x Handover Failures − γ x Latency

 (6) 

The DRL agent uses the Q-learning algorithm to update 

its policy based on the reward received after each handover 

decision. The Q-value for state-action pairs is updated using 

the following equation:  

Q (st, at) = Q (st, at) + η [ rt + Γ *max (Q (st+1, a t+1)) – Q 

(st, at)] (7) 

Where η is the learning rate and Γ is the discount factor.  

Algorithm 2 shows the overall DRL-based User-RRH 

selection procedure, while Figure 3 shows a flowchart of the 

traditional-based versus DRL-based User migration and RRH 

selection procedure.  

Algorithms 2. DRL-based user migration procedure 

Step 1: 

Initialize the C-RAN Network in Simu5G function initialize_CRAN_network():  

initialize Baseband Unit (BBU) 

initialize multiple Remote Radio Heads (RRHs) 

initialize User Equipment (UEs) with mobility models, connect RRHs to BBU via high-speed backhaul 

Set up the SINR-based handover mechanism for comparison.  

Step 2: 

Simulate User Migration and Data Collection function simulate_user_migration():  

For each UE in the network: 

       Assign a linear/random mobility model (UE moves between RRH coverage areas), generate data traffic (e.g., 

UDP application) 

      record SINR, throughput, handover events, and latency at each step  

 store the collected data (e.g., SINR, distance to RRHs, traffic load) for each UE  

Step 3: 

Define the Deep Reinforcement Learning (DRL) Model  

function define_DRL_model():  

    state = [SINR of UE, velocity, distance to nearest RRHs, traffic load on each RRH]  

    actions = [stay connected to current RRH, migrate to another RRH]  

Step 4: 

Define the reward function  

function calculate_reward (throughput, handover_failure, latency) 

reward = α * throughput - β * handover_failure - γ * latency  

return reward  

initialize the Q-table or neural network to approximate Q-values  

set hyperparameters (learning rate η, discount factor Γ)  

Step 5: 

Train the DRL Agent function train_DRL_agent():  

For each episode (simulation run): 

    initialize state (current SINR, velocity, distances to RRHs, load)  

     while UE moves across RRH boundaries: 

                Choose action (stay or migrate) using epsilon-greedy policy  

            Execute the action (handover if needed) 

                 observe new state (updated SINR, RRH load)  

             calculate reward based on current throughput, handover success, and latency  

               update Q-values using Bellman equation: 

                      Q(s, a) = Q(s, a) + η [r + Γ * max(Q(s', a ')) - Q(s, a)]  

               update state to new state (s ← s')  

    end episode  

    save the trained model  

Step 6: 

Plug in Trained DRL Model for Handover Decision Making function deploy_trained_DRL_model():  

      For each UE in the network: 

         Observe current state (SINR, velocity, distances, traffic load) 

              Use a trained DRL model to predict the optimal handover decision and execute action (stay or handover 

to new RRH) 

              Continue simulation and record performance metrics.  
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Step 7: 

Performance Comparison function compare_performance ():  

initialize two scenarios: 

- Traditional-based handover mechanism 

- DRL-based handover mechanism (trained model)  

for both scenarios: run the simulation for multiple UEs migrating between RRHs, collect metrics: throughput, 

handover failures, latency  

// Compare Results and calculate performance improvements:  

throughput_improvement = (DRL_throughput - traditional_throughput) / traditional_throughput  

handover_failure_reduction = (traditional_failures - DRL_failures) / traditional_failures  

latency_reduction = (traditional_latency - DRL_latency) / traditional_latency output  

 
Fig. 3 Flowchart of the traditional-based versus DRL-based user migration

Select the RRH with the highest SNIR 

Initialize user equipment, RRH 
and MEC 

Check User to RRH 
connection method 

Apply the reinforcement learning method by collecting the State (s) which is a vector 
containing the current SINR of the UE, velocity of the UE, its distance from available 

RRHs, and the traffic load on each RRH. 

Calculate the Action (a) which gives the decision to either remain connected to the 
current RRH or migrate to a different RRH. 

Obtain the Reward (r) where the reward function is designed to maximize throughput 

and minimize handover failures and latency as shown below: 
r=a x Throughput - ẞ x Handover Failures - γ x Latency 

Update the policy based on the reward received after each handover decision. The RL 

agent uses the Q-learning algorithm. The Q-value for state-action pairs is updated using 
the following equation: 

Q(St , at) = Q (s t , at)+η [rt + ℾ *max (Q (s t+1, at+1)) - Q (s t, at)] 

Build the Q-table to be used to predict the optimal handover decision  

Run the simulation for multiple UEs migrating between RRHS collect metrics: 
throughput, handover failures, latency to compare between the two methods  

Traditional Method 

DRL based Method 
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7. Performance Evaluation and Results 
This section evaluates the proposed DRL-based user 

migration model for users' association with RRH. It compares 

the suggested scheme with the conventional SINR-based 

handover and fuzzy logic models to assess its performance.  

7.1. Simulation Environment  

This work examines a C-RAN environment with a 

specific number of tiny RRHs dispersed at random across a 

1000(m) x 1000(m) square area. The default value for the 

number of RRHs is 10. RRH has its transmitted power set at 

40 dBm. With a modified random walk, it is assumed that the 

user can only navigate through the straight paths. There are 50 

users by default. The DRL model implemented in this study 

was based on the Deep Q-Network (DQN) algorithm. Training 

was conducted using TensorFlow with a learning rate of 

0.001, discount factor (gamma) of 0.95, batch size of 64, and 

a replay memory size of 10,000. The agent was trained over 

1,000 episodes, each consisting of 100 time steps. The reward 

function was multi-objective, incorporating handover success, 

latency minimization, throughput improvement, and a penalty 

for unnecessary handovers. The state representation included 

user velocity, SINR, RRH load, and distance to nearby RRHs. 

Table 2 illustrates the simulation parameters, and the 

simulation scenario is shown in Figure 4. The data set 

generated during the simulation is used to train the DRL agent. 

The agent is trained offline, where it learns the optimal 

handover policy by exploring different state-action 

combinations and receiving feedback based on the reward 

function.  

Table 2. System model parameters 

Parameters Values 

Size of network area  (1000 x 1000) m 

Hyber-parameter for DRL 

algorithm 

learning rate η=0.001 

discount factor Γ=0.9 

RRH transmit power 40 dBm 

User capacity of RRH 10 

RRH coverage range 150 m 

Parameter for reward functions 

in the DRL algorithm 

α =0.4 

β =0.3 

γ =0.3 

 
Fig. 4 The simulation scenario of the proposed model in Simu5G 

7.2.  Evaluated Results and Discussions 

The performance of the proposed scheme is evaluated by 

calculating the following metrics: 

• SINR: Signal-to-Interference-plus-Noise Ratio for each 

UE.  

• Throughput: The data transmission rate achieved by each 

UE.  

• Handover Events: The number of handovers initiated for 

each UE.  

• Latency: End-to-end packet delay for each UE.  

In the baseline simulation, handovers are triggered based 

on static SINR thresholds. This method leads to unnecessary 

handovers in some scenarios and delayed handovers in others, 

reducing the overall network performance. Therefore, this 

paper proposed a reinforcement learning-based handover 

mechanism that the network dynamically adapts to real-time 

conditions, such as user mobility, SINR, and RRH load. The 

DRL agent is trained to optimize handover decisions, 

significantly improving the performance of the network as 

shown in Figure 5, which presents a holistic performance 

comparison among the three user migration strategies: Static 

SINR-Based Handover (Traditional Method), Fuzzy Logic -

Based User Migration and Deep Reinforcement Learning 

(DRL)-Based Migration. This figure integrates performance 

metrics-likely including throughput, handover failure rate, and 

latency to visualize how each method behaves under identical 

network conditions. Static SINR-based handover is simple but 

inflexible. It fails to adapt to real-time variations in user 

movement or network load, resulting in frequent, unnecessary, 

or poorly timed handovers. Fuzzy logic introduces 

intelligence via human-defined rules, improving decision 

accuracy without requiring training. However, its adaptability 

is limited to the quality of its rule set. DRL outperforms both 

by learning from interaction, optimizing not just single metrics 

but the overall network experience (throughput, reliability, 

latency) via a multi-objective reward function. 
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Fig. 5 An overall comparison between static, fuzzy logic and DRL-based migration models 

7.3. Performance Comparison 

A more detailed comparison of various performance 

metrics between the SINR-based and DRL-based handover 

mechanisms is provided below.  

7.3.1. Throughput Comparison  

The throughput, a  key indicator of network efficiency, is 

significantly improved in the DRL-based model.  

The DRL agent makes decisions that optimize resource 

allocation and handover timing, reducing the chances of 

network congestion or bottlenecks. Figure 6 illustrates the 

throughput calculation from traditional or static handover-

based, fuzzy logic, and DRL or dynamic handover-based.  

Figure 7 shows that the DRL-based handover mechanism 

increases the average throughput by 46.4%, and the maximum 

throughput achieved is also significantly higher compared to 

the SINR-based approach. 

This demonstrates the efficiency of DRL in dynamically 

adapting to real-time network conditions.  

 
Fig. 6 Throughput calculation over two hours for the three migration models
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Fig. 7 Average throughput measurement for the three models

7.3.2. Handover Failures  

Handover failures occur when a user is handed over to a 

new RRH, but the connection is lost or degraded, leading to 

poor performance. The DRL-based model significantly 

reduces handover failures, as shown in Figure 8.  

Figure 9 shows that the DRL-based handover reduces the 

failure rate by 66.7%. This is due to the DRL model's ability 

to predict the optimal timing for handovers, avoiding 

unnecessary transitions between RRHs.  

 
Fig. 8 Handover failures calculation for the three models for two hours 

 
Fig. 9 Average handover failure rate for the three models
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7.3.3. Latency Comparison  

Latency, the delay experienced in data transmission, is a  

critical factor affecting users' Quality of Service (QoS). In the 

DRL-based model, handover decisions are optimized to 

reduce end-to-end delays. Figure 10 shows the latency for the 

three models: static, fuzzy logic and DRL-based user 

migration models.  

Figure 11 shows that the DRL-based handover reduces 

latency by 40% on average, with lower maximum latency 

values as well.  

This improvement is primarily due to more efficient 

handover timing and reduced packet losses during handover 

transitions.  

 
Fig. 10 Latency calculation for the three models for two hours 

 
Fig. 11 Average handover failure rate for the three models

7.3.4. Impact of User Mobility  

The performance of the handover mechanism was also 

evaluated for varying user mobility speeds. As shown in 

Figure 12, the DRL-based handover model performs 

consistently well even under higher user mobility conditions 

with a much lower rate of handover failures as user speed 

increases.  

7.4. Trade-Off between Throughput and Latency 

Figure 13 visualizes the trade-off relationship between 

throughput and latency in the context of user migration for the 

DR-based model in a Cloud Radio Access Network (C-RAN) 

environment. As expected, the figure shows an inverse 

correlation between throughput and latency. Higher 

throughput typically coincides with lower latency in the DRL-

based model, highlighting the efficiency of intelligen t  

handover decisions. The DRL-based approach achieves 

significantly better throughput with lower latency than the 

traditional model. This trade-off graph reinforces the multi-

objective optimization approach taken in the DRL model's 

reward function, where both throughput and latency are 

balanced via weighted contributions (α, β, γ). The figure also 

visually confirms the practical performance gain of using DRL 

in real-time mobility management over static, threshold-based 

policies. It demonstrates that the DRL-based handover 

mechanism achieves a favorable trade-off between high  

throughput and low latency, unlike the traditional method, 

which struggles to maintain both simultaneously. This 

validates the superiority of AI-driven user migration strategies 

in future-ready C-RAN deployments. 
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Fig. 12 Average handover failure rate for the three models by changing user mobility speed 

 
Fig. 13 Trade-off between throughput and latency 

7.5. Impact of RRH Failure on Network Performance  

This section focuses on evaluating how the proposed 

Deep Reinforcement Learning (DRL)-based handover 

mechanism performs in the presence of RRH (Remote Radio 

Head) failures. Figure 14 illustrates how the throughput 

changes over time in both the static SINR-based and DRL-

based handover models when RRH failures occur. The DRL-

based model maintains a higher throughput, even in the 

presence of RRH failures; in contrast, the static model exhibits 

significant drops in throughput following a failure. 

 
Fig. 14 Impact of RRH failure on throughput 

Figure 15 compares the latency response of both 

handover schemes when RRH failures disrupt the network. 

DRL-based handover consistently keeps latency lower and 

more stable, showing quick adaptation to new RRH 

associations after a failure. The static method experiences 

latency spikes, especially immediately after RRH disruptions.  

Finally, Figure 16 focuses on how handover failures 

accumulate in both models when RRHs fail during operation. 

The static method suffers from a sharp increase in handover 

failures when RRHs become unavailable, due to rigid, 

threshold-based handover logic. In contrast, the DRL-based 

method significantly reduces failure rate growth, even under 

RRH disruptions. 

 
Fig. 15 Impact of RRH failure on latency 

 
Fig. 16 Impact of RRH failure on handover failure rate 
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7.6. Summary of Performance Improvements  

Table 3 shows that using the DRL-based handover 

mechanism results in significant improvements across key 

performance metrics when compared to the Fuzzy-logic and 

traditional SINR-based approach. The results clearly 

demonstrate the advantages of integrating AI-based decision-

making into C-RAN systems. Throughput Improvement by 

46.4%, the DRL-based method optimises resource allocation 

and handover timing, leading to more stable connections, 

handover failure reduction by 66.7% since traditional SINR-

based handovers lead to premature or unnecessary migrations, 

causing increased failure rates, while the DRL-based approach 

learns from past handover experiences, selecting only optimal 

RRHs for user association. Finally, latency reduction by 40% 

because the traditional handover model leads to delays in 

decision-making, increasing end-to-end latency, while the 

DRL-based approach predicts the best migration times, 

reducing handover-induced delays. The result from the 

proposed model shows the superiority of DRL-based 

handover mechanisms over traditional SINR-based 

approaches, proving that AI-driven solutions can 

revolutionize handover management in next-generation 

networks. 

Table 3. An overall improvement rate with DRL-based and fuzzy logic 
handover method 

Metric 

Improvement 

with Fuzzy-based 

Handover 

Method 

Improvement 

with DRL-based 

Handover 

Method 

Throughput 

Improvement 

(%) 

21.6% 46.4% 

Handover 

Failure 

Reduction (%) 

40% 66.7% 

Latency 

Reduction (%) 
24% 40% 

The DRL-based model is the most effective in optimizing 

user migration decisions in C-RAN, offering substantial 

improvements in throughput, handover reliability, and 

latency. Fuzzy logic serves as a lightweight yet beneficial 

alternative to static approaches, while static SINR-based 

methods are clearly less adaptable to the complexities of 

modern mobile networks. 

8. Conclusion  
This study demonstrates the effectiveness of using 

reinforcement learning to optimize handover decisions in 

Cloud Radio Access Networks (C-RAN). By simulating a C-

RAN in Simu5G, data on user migrations between RRHs was 

collected, and this data was used to train a DRL agent. By 

leveraging a multi-objective reward function and a context-

aware state representation, the proposed DRL model 

dynamically learns optimal migration decisions that 

significantly enhance network performance in terms of 

throughput, latency, and handover reliability. Extensive 

simulation results demonstrated that the DRL-based approach 

achieves a 46.4% increase in throughput, 66.7% reduction in 

handover failures, and 40% decrease in latency compared to 

the static method. Furthermore, the model proved to be 

resilient to RRH failures, adapting quickly to disruptions and 

maintaining stable service quality-something static methods 

failed to achieve. Unlike existing works that typically apply 

DRL or rule-based methods in isolation, this study presents a 

comparative framework that evaluates both fuzzy logic and 

DRL approaches side by side, highlighting their strengths and 

limitations under identical simulation conditions. This novel 

comparative perspective provides deeper insights into the 

trade-offs between interpretability and adaptability in mobility 

management. Moreover, the DRL model’s ability to learn 

from real-time network feedback and adapt to changing user 

behavior positions it as a practical solution for real-world 

deployment. It is especially well-suited for integration into 

software-defined networks and Open RAN (O-RAN) 

environments, where centralized control and automation are 

key. By minimizing manual configuration and enabling 

autonomous decision-making, the DRL approach enhances 

network scalability, fault tolerance, and user experience in 

dynamic and heterogeneous wireless scenarios. This work 

provides a foundation for future research into scalable, 

intelligent mobility management in next-generation 6G 

wireless networks. However, several limitations must be 

acknowledged. The simulation relied on synthetic user 

mobility patterns and idealized channel models, which may 

not capture all real-world variances such as unpredictable 

interference, hardware constraints, or diverse service 

demands. The current setup also focuses on single-user 

mobility and fixed RRH layouts, which may limit its 

generalizability to large-scale or multi-tenant networks. 

Future research could expand this framework by 

incorporating real mobility traces, exploring multi-user 

scenarios, and integrating energy consumption, cost-

efficiency, and Quality of Service metrics into the reward 

structure. Additionally, deploying the models in physical 

testbeds or leveraging federated learning may enhance 

scalability and applicability to real-world 5G and 6G network 

environments. As C-RAN and AI-based mobility management 

become more integrated into communication infrastructures, 

user privacy and data protection must be prioritized. When 

trained on real user data, DRL models may raise concerns 

regarding the collection and handling of sensitive mobility or 

behavioral patterns. Ensuring compliance with data protection 

regulations (such as GDPR) and implementing anonymization 

techniques are essential for ethical deployment. Moreover, 

large-scale C-RAN systems could inadvertently widen the 

digital divide if access to intelligent infrastructure is limited to 

urban or well-funded areas. Future implementations should 

aim to balance technological advancement with inclusivity, 

transparency, and accountability. 
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