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Abstract - This study discusses the comprehensive analysis of Deep Belief Networks, which mainly focuses on compari ng 

unoptimized and optimized architectures and comparing the performance on various datasets. Optimized DBN addresses some 

of the limitations in this regard by using advanced techniques like adaptive learning rates, regularization strategies, spars ity, 

and pruning to prevent problems like vanishing gradients, computational inefficiency, and sensitivity to hyperparameters. 

Empirical results show that the optimized DBN has considerable performance improvements, with an accuracy of over 98% 

against 92% for the unoptimized counterpart. All the metrics, including precision, recall, F1 -score, AUC, and log-loss, also 

showed considerable gains. Evaluations across multiple datasets, including medical imaging and agricultural data, confirm the  

robustness and generalization of the optimized DBN. Moreover, K-fold validation emphasizes the stability of these improvements 

and demonstrates the optimized DBN’s strength in classification. This work further emphasizes the significance of optimization 

in improving the performance of DBNs and provides a framework for developing efficient and scalable deep learning models.  

Keywords - Deep Belief Networks (DBNs), Optimized architectures, Hyperparameter sensitivity, Regularization strategies, K -

fold validation. 

1. Introduction 
Deep learning has emerged as an innovative approach in 

the development of artificial intelligence to revamp supervised 

classification tasks for every domain. By the employment of 

hierarchical architectures, the deep learning models could 

learn feature representation automatically from raw data that 

is much more complex. Deep learning has become 

indispensable in several applications like image, Speech 

recognition, medical diagnoses, and recognition that require 

meaningful patterns from the extracted high-dimensional data 

to accurately [1, 2]. Among all these deep architectures, Deep 

Belief Networks (DBNs) are one of the architectures that take 

a significant place as they possess the property to combine 

both unsupervised and supervised learning. Stacked by RBMs, 

or restricted Boltzmann machines, DBNs are proficient at 

gaining knowledge of the hierarchical representations of 

features via unsupervised pre-training followed by fine-tuning 

with labeled data  [3-5]. As such, dual-phase training makes 

DBNs particularly successful in situations when labeled data 

is rare or hard to come by. In addition, their architectural 

structure is beneficial in capturing complex data patterns and 

relationships, rendering them as a  powerful model for difficult 

classification tasks. Although these have their strengths, 

several issues limit the efficiency and Scalability of DBNs. 

They suffer from computational inefficiency, sensitivity to 

hyperparameter settings, and difficulties in fine-tuning across 

deep layers. Different optimization techniques have been 

suggested to overcome such limitations, including adaptive 

learning rates, regularization methods, and pruning strategies. 

These techniques are applied to enhance fine-tuning, improve 

generalization, reduce Overfitting, and lower computation 

overheads, enabling robustness and suitability in real-world 

applications [6-8]. The current research aims to provide an 

overall comparative analysis between the baseline DBNs and 

their optimized versions. While discussing the progress on 

architectures, training methodologies, and impacts of 

optimization techniques, it identifies the improvements in 

computational complexity, learning efficiency, and 

classification performance. The conclusions derived from this 

comparison would guide the evolution of deeper, more 

effective, and more data-driven knowledge models for 

supervised classification tasks. 

2. Background 
2.1. Transition from Shallow to Deep Architectures 

2.1.1. Shallow Networks 

At the ANN at the nodal level, the simplistic McCulloch-

Pitts neural model was developed in 1943. consisted of a 

deterministic binary activation function and a simple summing 

unit [9]. The complexity increased with each repetition by the 

successors. Gaussian, sigmoid, and linear functions were used 

at the activation function level. The complex domain was now 
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included in the outputs previously limited to real values. In 

order to simulate ionic exchanges, stochastic neurons and 

spiking neurons replaced deterministic models. In order to 

create more complex learning models, all of these additions 

were made. Single-layered topologies, such as Aizerman’s 

kernel perceptron (1964), the ADALINE network by Widrow 

and Hoff (1960) [10], and Rosenblatt’s perceptron (1957) 

[11], were the first to be implemented at the network level. 

The XOR issue is a straightforward challenge of non-linear 

binary classification that these architectures struggled to learn 

and performed poorly. As a result, increasingly sophisticated 

networks were introduced, beginning with the Kohonen 

networks, sometimes known as self-organizing maps (SOM), 

[12], (1986), Perceptron with many layers [13] Hopfield 

networks that are self-recurrent (Rumelhart, 1986) [14] 

(1986), Adaptive Resonance Theory (ART) networks (1980s) 

[15], and several others that are regarded as architectures that 

are shallow because of their many hidden layers. 

Higher levels of intelligence were promised by successive 

iterations, which gradually improved on the shortcomings of 

their predecessors. This claim was made partially possible by 

the hardware’s increased computing power and the creation of 

quicker and more effective algorithms for learning and 

training. Both (back propagation) supervised and 

unsupervised algorithms that use feed-forward learning 

mechanics were developed concurrently and improved 

performance over a variety of particular tasks. However, the 

combined impact of the innovation that focused on every facet 

among these superficial networks was insufficient to catch a 

person’s intellect fully, and the advancement of deeper 

networks was slowed down by high computational 

requirements. The following illustrates the shortcomings of 

shallow networks. 

Inability to Capture Complex Patterns 

Shallow networks that are fewer in layers cannot really 

depict complex, hierarchical data representations, such as 

those involved in image recognition, natural language 

processing, or speech recognition. They are usually able to 

learn only linear or very simple non-linear functions that may 

not be enough for datasets with high dimensionality and a 

more structured nature. 

Curse of Dimensionality 

In order to achieve acceptable performance, the more 

input features there are, the more neurons shallow networks 

require, and they consume much more data; consequently, the 

computational and memory demands grow exponentially. As 

such, the approach results in inefficiency when working with  

high-dimensional or large-scale data . 

Poor Generalization on Non-linear Data 

Shallow nets are not able to distinguish overlapping 

features from non-linear datasets successfully and, therefore, 

may overfit or generalize too poorly. 

Limited Hierarchical Feature Extraction 

The deep nets can simultaneously learn multiple abstract 

layers, which are considered indispensable for interpreting 

complex data representations. Since the feature hierarchies 

(edges-to-shapes-to-objects in images) are pertinent in many 

applications, shallower architectures are not quite fit for these 

applications. 

Lack of Robustness to Variations in Data 

Shallow networks are too sensitive to noise and variations 

within the input data, as their depth is not sufficient to learn 

invariant features and, hence, may incur instability in 

performance across diverse datasets or environments. 

Vanishing Gradient Problem 

While not as drastic as with deeper architectures, even 

shallow networks with a few hundred layers will suffer from 

an inability to propagate gradients during training under 

certain activation functions effectively. 

Limited Scalability 

Such shallow networks cannot easily accommodate big, 

complex datasets or tasks without greatly increasing the 

number of neurons and connections, which leads to 

inefficiencies and higher chances of Overfitting. 

Inflexibility for Transfer Learning 

Unlike deep architectures, shallow networks are not 

amenable to transfer learning since they do not have layered 

representations that allow them to adapt to new tasks or 

domains. These limitations explain why deep architectures, 

particularly DBNs, are relevant because they solve the 

constraints by introducing more layers so that complex 

patterns and their hierarchical data relationships can be 

modeled. 

2.1.2. Deep Architectures 

As processing power improved and more effective 

training algorithms were developed, training deep 

architectures became possible, leading to a resurgence in ANN 

research in the early 2000s [16]. The training process for 

Boltzmann machines was made simpler by the greedy training 

algorithm of Hinton et al., while deep stacking networks 

reduced the computing load by breaking down training into 

the deep network’s building blocks. Additionally, training 

deeper recurrent neural networks was made possible by the 

architecture of Schmidhuber’s extended short-term memory 

[17]. Although the biological properties of the brain beyond 

the neuron are not borrowed by these architectures, the force 

gained in the field of computational neuroscience is helping 

the connectionist community embrace neural network 

topologies in deep designs that are more in line with 

neuroscientific hypotheses about the structure of the human 

brain. A physiologically sound method for learning and 

producing invariant representations of sensory patterns was 

absent from earlier ANNs. 
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2.2. Introduction of DBNs as a Solution for Hierarchical 

Feature Learning 

Unlike ML approaches, DNNs are more complex 

versions of shallow ANN designs, which consist of a 

mathematically simplified representation of a biological 

neuron. They do not, however, aim to replicate the human 

brain precisely. DNNs are based on noncognition, an image 

processing model with biological inspiration that aims to 

achieve powerful AI models by using hierarchical knowledge 

abstraction. Shallower layers pick up low-level statistical 

patterns as data moves through the network, and Deeper layers 

pick up more complex and abstract representations by building 

on these properties. Due to their inability to make clear logical 

deductions, DNNs need more development to include abstract 

knowledge in a way that is human-like. ANNs were initially  

trained via an algorithm called backpropagation, which  

propagates the output error backwards through the network to 

change the network weights. As network depth increases, the 

inaccuracy that spreads disappears to zero, stopping the 

updating early-layer weights and drastically lowering network 

performance. Other DNN training strategies were thus 

examined. To train recurrent neural networks, Schmidhuber 

[18] (1992) suggested pre-training layers in an unsupervised 

manner and then using backpropagation to fine-tune the 

network weights. A greedy training algorithm specifically for 

DBN was suggested, which further accelerated the 

momentum. Although the DBN is a kind of deep ANN, its 

architectural features prevent backpropagation from 

generating a model that works effectively on training and 

testing data. This phenomenon has been ascribed to 

“explaining away.” To put it another way, sometimes referred 

to as selection bias or Berkson’s paradox, invalidates the 

widely accepted notion of layer independence and hence 

complicates the inference process [19]. Since it is impossible 

for both concealed nodes to fire at the same time due to their 

incredibly low probability, they become anti-correlated. In 

order to address this problem, a training technique was 

developed based on the finding that DBN may be reduced to 

inter-layer neuron connections in a two-layer network that are 

exclusively and successively layered restricted Boltzmann 

machines (RBM). Automatic speech recognition, image 

processing, natural language processing, feature extraction 

and reduction, and many more problems were resolved with 

DBN. This innovative method reignited interest in these deep 

architectures. 

2.3. Challenges in DBNs 

Although DBNs have many benefits in terms of 

hierarchical feature representation and learning, they are not 

without drawbacks. Key concerns consist of : 

2.3.1. Vanishing Gradients 

One of the primary issues in training deep architectures 

like DBNs is the vanishing gradient problem. 

Backpropagation gradients decrease during loss function 

computation as they move through the layers, especially in 

deep networks. This results in almost negligible updates to the 

weights in the earlier layers and, therefore, does not allow the 

model to learn effectively from data . 

2.3.2. Overfitting 

DBNs, especially if the training dataset is small, have a 

tendency to overfit. Overfitting means the model learned how 

to commit the training data to memory instead of generalizing 

it. Overfitting reduces the performance of the model on 

unknown data and limits its practical usability. 

2.3.3. Computational Cost 

DBNs are computationally expensive, particularly during 

their pre-training and fine-tuning. The computational 

requirement for multiple iterations across layers and several 

adjustments across parameters is pretty demanding for DBNs. 

Therefore, their efficiency is limited when a large dataset 

needs to be processed or when it needs real-time processing. 

2.3.4. Sensitivity to Hyperparameters 

Hyperparameter tuning-very strong DBNs are sensitive, 

but for the fine tuning to go correctly, it depends on some 

careful setup regarding these- learning rate, and many more 

numbers of units within a layer and layer, etc. Sub-optimal 

choices often lead to a much worse training set. 

2.3.5. Scalability 

With the increasing size of the network, the memory and 

computation requirements rise exponentially. Thus, scaling 

DBNs to extremely deep architectures or very large datasets 

proves difficult. These are mitigated through optimization 

techniques that have been developed, such as adaptive 

learning rates, regularization methods, such as Dropout, and 

pruning strategies that reduce the complexity of models while 

maintaining their performance. 

3. DBN- Overview 
3.1. Description of DBN as a Stack of RBMs 

Professor Hinton created DBN, a deep architecture based 

on RBM. DBN can partially address the issues of lengthy 

training times and challenging depth model optimization since 

RBM, a component of the depth model, exhibits greedy 

training layer by layer [20]. 

3.1.1. Architecture of Restricted Boltzmann Machine 

Originally created by Hinton and Sejnowski, Boltzmann 

machines (BM) showed a remarkable capacity for 

unsupervised learning as a generalized version of 

“connectionism.” They did, however, have some drawbacks, 

like postponed training. Smolensky developed an RBM model 

to address the limitations of BM [21]. The visual layer, a  

visible component of RBM, is where data, represented by v, is 

received. The hidden unit, sometimes referred to as the hidden 

layer, is the other component. It is denoted by h and is 

employed to extract features from data. Though there is no 

link within the layer, both layers are connected. Figure 1 
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displays the RBM model’s structure. If the value (v, h) 

corresponding to the input dataset is assumed to follow the 

mathematical Bernoulli distribution for both the visible and 

hidden layer units, then the RBM energy function can be 

expressed as follows: 

𝐸(𝑣, ℎ;𝜃) = −∑ 𝑎𝑖𝑣𝑖 −
𝐼
𝑖=1

∑ 𝑏𝑗ℎ𝑗 −
𝐽
𝑗=1

∑ ∑ 𝑣𝑖𝑤𝑖𝑗ℎ𝑗    𝜃 = {𝑤𝑖𝑗 , 𝑎𝑖 , 𝑏𝑖}
𝐽
𝑗 =1

𝐼
𝑖=1  (1)  

Where θ are the RBM model’s parameters, sometimes 

referred to as the energy function. Consequently, the following 

definition of the combined probability distribution of every 

layer that is visible and hidden can be made: 

{
𝑃(𝑣, ℎ;𝜃) =

1

𝑍(𝜃)
exp(−𝐸(𝑣 , ℎ; 𝜃))

𝑍(𝜃) = ∑ exp(−𝐸(𝑣, ℎ; 𝜃))            𝑣,ℎ

}  (2) 

The allocation function, normalized factor Z(霃), is 

derived by adding up all nodes’ energy indices. 

 
Fig. 1 Structure of RBM model 

The distribution function’s definition makes clear how 

difficult it is to compute directly. The RBM layer has no 

relationship, hence all items in the visible and buried layers 

are independent of conditions. Therefore, Z can be found by 

using the concepts of the probability distribution. The RBM 

model’s visual layer vs. likelihood function, or edge 

distribution expression, is as follows: 

𝑝(𝑣; 𝜃) = ∑ 𝑝(𝑣, ℎ; 𝜃) =
1

𝑍(𝜃)ℎ
∑ exp(−𝐸(𝑣, ℎ;𝜃))ℎ   

=
1

𝑍(𝜃)
∑ exp (𝑣𝑇𝑤ℎ + 𝑏𝑇𝑣 + 𝑎𝑇ℎ)ℎ  (3)  

The conditional likelihood that is visible vector v and 

hidden unit h is: 

𝑝(ℎ|𝑣, 𝜃) =
𝑝(𝑣,ℎ;𝜃)

𝑝(𝑣;𝜃)
  

=

1

𝑧(𝜃)
exp (𝑏𝑇𝑣)∏ 𝑒𝑥𝑝(𝑎𝑗ℎ𝑗+∑ 𝑤𝑖𝑗𝑣𝑖 ℎ𝑗

𝐼
𝑖=1  )𝑗

1

𝑧(𝜃)
exp (𝑏𝑇𝑣)∏ ∑ℎ𝑒𝑥𝑝(𝑎𝑗ℎ𝑗+∑ 𝑤𝑖𝑗𝑣𝑖 ℎ𝑗

𝐼
𝑖=1  )𝑗

 (4)  

The visible unit v and the hidden vector h have 

comparable conditional probabilities: 

𝑝(𝑣|ℎ;𝜃) =
𝑝(𝑣,ℎ;𝜃)

𝑝(ℎ;𝜃)
= ∏ 𝑝(𝑣𝑖|ℎ)𝑖  (5) 

Since there is no inter-layer link, the order multiplication 

serves as the conditional probability and may be written as: 

{
𝑝(ℎ𝑗 = (1|𝑣) = 𝜎(𝑎𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖 )

𝑝(𝑣𝑖 = (1|ℎ) = 𝜎(𝑏𝑖 + ∑ ℎ𝑖𝑤𝑖𝑗𝑗 )
} (6) 

Where 𝜎 is the sigmoid function; the range is (0, 1); the 

definition domain is (−∞,+∞). Upon receiving the training 

data, RBM first applies Eq. (13), which translates 

characteristics of the input data from the hidden layer (h) to 

the visible layer (v). The output data is subsequently rebuilt  

from the hidden layer to the visible layer using Equation (14) 

as a guide. Until the computation criteria are reached, the 

RBM model’s parameter {,-𝑖𝑗.,,𝑎-𝑖., 𝑏-𝑗. } is continuously 

adjusted based on the error.  

The difference between the original and currently rebuilt  

data is now calculated. By reducing the error between the 

input and reconstructed data, RBM training seeks to maximize 

the likelihood function. Since it is challenging to solve 

directly, stochastic gradient descent—which uses the 

following formula—is how we learn: 

𝜃 = 𝜃 + 𝜀
𝜕𝐼𝑛(𝜃)

𝜕𝜃
  (7) 

Although it is challenging to compute, the parameters in 

θ are typically calculated in the form of block Gibbs sampling. 

Consequently, the contrastive divergence (CD) technique was 

presented by Hinton and is frequently used due to its quick 

learning speed. 

3.2. Network Architecture 

RBM is arranged in series to form the DBN model. RBM 

is trained in order to accomplish the pre-training of DBN 

during training, layer by layer, from low to high. The structure 

of the DBN model is shown in Fiure. 2. The visible layer of 

the first RBM receives the input data. Its hidden layer is 

concurrently the visible layer of the RBM that is connected to 

it, and its output is the input of the succeeding RBM. In the 

end, this leads to the creation of the DBN, or deep network 

architecture with multiple hidden layers. 
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Fig. 2 Structure of DBM model 

3.2.1. Layer-wise Unsupervised Pre-Training and BP 

Supervised Training 

Unsupervised Pre-Training Phase 

When the predetermined number of iterations is attained, 

connecting to the first DBN network which is only locally 

optimal. The bias parameters and weights of each layer’s 

hidden and visible layers of the RBM network are trained 

independently and unsupervisedly. In other words, each RBM 

layer only reaches its maximum. 

Initialization of Parameters 

Give the training sample first, followed by the model 

parameters (learning rate, number of visible and hidden layer 

units, etc.). Set to its initial value, the RBM model parameter 

{  }= {,𝑤-𝑖𝑗.,,𝑎-𝑖., 𝑏-𝑗. }. This relates to the connection weights 

between layers as well as the bias of each layer. The following 

calculation procedure is typically used to initialize parameter 

𝜃 using the random minimum value: 

{
𝑤 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(𝑛,𝑚)

𝑎 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(1, 𝑛)

𝑏 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(1,𝑚)
} (8) 

The model parameters (number of visible and hidden 

layer units, learning rate, etc.) and the training samples should 

be provided initially. Set the RBM model parameter to its 

starting value. Each layer’s bias and the connection weights 

between layers are correlated with this. The standard method 

for initializing parameter θ with the random minimum value 

is the following calculation process. 
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4. Training 
Determine After adding parameter setup values to the 

network input, the training sample “Train.mat” loop uses 

connection weights, 𝑤-𝑖𝑗, and offset ai and bj. The contrast 

scatter technique, used in RBM training, generates a training 

sample from the DBN’s initial visible layer, (0). network after 

“Train.mat” is entered. Applying Eq. (9) to the subsequent 

hidden unit linked, the probability value between 0 and 1 is 

determined, followed by the observed probability value. Next, 

we compute the observed unit’s probability value using 

Equation (9) to get 𝑣(1). Here are the precise steps: 

Step 1: Use Equation (9) to predict the likelihood that a 

hidden layer unit ℎ𝑗  Will be triggered, then use the following 

Equation to ascertain the neuron’s condition in that layer: 

ℎ𝑗 = {
1, 𝑖𝑓   𝑟𝑗 < 𝑃(ℎ𝑖 = 1|𝑣),   𝑟𝑗 ∈ [0,1](𝑗=1,2,…..,𝐽)
1,                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

 (9)  

Step 2: In order to recon Figure. The visible layer, step 

two, involves calculating the likelihood that the visible layer 

unit vi will be activated using Equation (14) and determining 

the neuron’s condition within the layer using Equation (10). 

𝑣𝑖 = {
1, 𝑖𝑓   𝑟𝑗 < 𝑃(𝑣𝑖 = 1|ℎ),   𝑟𝑗 ∈ [0,1],    (𝑖=1,2,…..,𝐽)
1,                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

 (10) 

Afterwards, by comparing the Contrastive Divergence 

(CD), one can get the approximate value of Equation (11) 

procedure: 

{
 
 

 
 ∆𝑤𝑖𝑗 =

𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑤𝑖𝑗
≈ 𝑃(ℎ𝑗 = 1|𝑣

(0))𝑣𝑖
(0) − 𝑃(ℎ𝑗 = 1|𝑣

(1))𝑣𝑖
(1)

∆𝑎𝑖 =
𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑎𝑖
 ≈ 𝑣𝑖

(0) − 𝑣𝑖
(1)                                                        

∆𝑏𝑗 =
𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑏𝑗
 ≈     𝑃(ℎ𝑗 = 1|𝑣

(0)) −𝑃(ℎ𝑗 = 1|𝑣
(1))   

                                                                                 }
 
 

 
 

 (11) 

The CD technique was used to reconstruct the data, and 

the network parameters were then modified using the 

following Equation. 

{

𝑤𝑖𝑗 (𝑘 + 1) ← 𝑤𝑖𝑗(𝑘) + 𝜀∆𝑤𝑖𝑗
𝑎𝑖 (𝑘 + 1) ← 𝑎𝑖(𝑘) + 𝜀∆𝑎𝑖
𝑏𝑗(𝑘 + 1) ← 𝑏𝑗(𝑘) + 𝜀∆𝑏𝑗

} (12) 

To generate the results, repeat the previous procedures 

until the specified training sessions have been completed. 

4.1. BP Supervised Training 

During the reverse fine-tuning phase, the output feature 

vector from the RBM is used as the input feature vector by the 

top-level processor (BP). Then, depending on the computation 

of the BP network’s output error e and error energy total E, the 

weights 𝑤-𝑖𝑗. And bias thresholds ai and 𝑏-𝑗. Are modified. 

The formulas are as follows: 

{
 
 

 
 𝑤

′
𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂

𝜕𝐸

𝜕𝑤𝑖𝑗

𝑎′𝑖 = 𝑎𝑖 + 𝜂
𝜕𝐸

𝜕𝑎𝑖

𝑏′𝑗 = 𝑏𝑗 + 𝜂
𝜕𝐸

𝜕𝑏𝑗 }
 
 

 
 

  (13) 

Following the completion of the aforementioned tasks, 

DBN begins predicting the “Test.mat” test set and produces 

the results of the prediction. 

4.1.1. Application of DBN 

The softmax layer uses the Gradient Descent in Evolution 

(EGD) technique to categorize the extracted features [22]. In 

contrast, the stacking restricted Boltzmann machine uses the 

contrastive divergence method to extract features. When 

compared to the Gradient Descent process, the EGD 

acceleration rate is impressive. DBNs have been effectively 

used in numerous fields, including: 

• Image recognition is the process of identifying and 

classifying objects by extracting features from raw pixel 

data. 

• Speech Processing: Enhancing automatic speech 

recognition systems by learning robust audio feature 

representations. 

• Natural Language Processing: Improving text 

understanding and semantic analysis by capturing 

contextual relationships. 

• Healthcare: Assisting in tasks such as disease diagnosis 

by processing and analyzing medical images or sensor 

data. 

4.1.2. Limitations in the Standard DBN Approach 

According to DBN, its execution requires significant 

space and high energy. The enormous demand for Random 

Number Generators (RNGs) reduces deep belief networks’ 

energy efficiency.  

Additionally, the backpropagation neural network with  

multiple hidden layers in DBN requires more time to learn. 

Because the posterior is not factorizable in every training 

scenario, greedy learning is thus ineffective in the directed 

module. In a sigmoid belief network, learning in layers is 

difficult due to the general placement of higher variables at 

points before the first hidden layer. These algorithms’ primary 

obstacles are the lack of training data for intrusion detection, 

data imbalances in ad hoc a pplications, The inability to 

comprehend data in a variety of biological applications, the 

increase in uncertainty in the healthcare sector, Model 

compression in healthcare, catastrophic forgetfulness in 

biological and other applications, Data under specif ication in 

safe routing, Exploding Gradient and the Vanishing Gradient 

problem in energy-efficient network development, and over-

fitting during misbehavior identification in medical 

applications of a mobile network. 
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4.2. The Role of Fine-Tuning 

One of the most important complicating factors that arises 

in DBN training is the potential degradation problem. The 

problem reveals itself in practice during repetitions of training 

iterations as a log-likelihood decay of the model. Identifying 

this deterioration is necessary because it disrupts the DBNs ’ 

general performance as well as effectiveness in numerous 

applications [23]. The term “likelihood degradation” describes 

how the model’s log-likelihood of identified data goes down 

with its training. This decline may indicate that the model 

loses its ability to accurately describe the statistical properties 

of the training set of data. Likelihood degradation causes 

reduced model accuracy, inferior generalization to new data, 

and a higher tendency for Overfitting. These effects 

compromise the dependability and practicality of DBNs in 

practical settings.  

Conventional training methods like CD and its variants 

may induce uncertainty and weaken the likelihood in the case 

of long training periods. The reduction in likelihood can be 

made worse by poorly choosing hyperparameters like learning 

rates and regularization strengths. Degradation is more likely  

when DBNs become harder to train, as it becomes increasingly 

difficult to maintain training consistency. When a model is 

used to predict new, unvalidated data, its probability can 

decrease, and accuracy and trustworthiness may diminish. 

Increased tendencies of Overfitting, which the model performs 

well in training data but fails to generalize into test data, are 

generally correlated with a higher degradation in likelihood. 

Probability may drop, which means that the training can be 

very lengthy to converge, or it can demand more computation 

power to attain good levels of performance. However, even 

with their success, these methods can have pitfalls like log-

likelihood deterioration in training that negatively impact  the 

overall learning performance of DBNs. The establishment of 

adaptive practices for the reduction of likelihood deterioration 

and a better understanding of the methods that cause it must 

be developed to overcome such challenges. One interesting 

strategy is adaptive strategies for modifying and optimizing 

parameters, where regularization strength can be modified 

dynamically, thresholds can be updated, and learning rates 

during training can be adapted. Further quickening training 

and overall performance is likely with DBN efficacy 

optimized starting functions. 

4.3. Importance of Supervised Fine-tuning for Achieving 

Optimal Performance 

Supervised fine-tuning is the final critical stage in DBN 

training. The process fills the gap between unsupervised pre-

training and task-specific optimization. It refines the 

representation, which was learned through unsupervised pre-

training about hierarchical representations from raw data, to 

align it with labeled data and to boost performance on specific 

tasks. This phase is the final stage in achieving the highest 

classification accuracy and generalization. One of the main 

reasons that supervised fine-tuning is necessary is that it 

overcomes the disadvantages of unsupervised pre-training. 

Parameters trained under pre-training are local optimizers for 

feature extraction, but they are often not aligned with the 

required task. Supervised fine-tuning adjusts the parameters 

globally by minimizing the cross-entropy loss functions 

particular to the task, which means that the network will be 

outputting the values as consistent with the true ground truth 

labels. 

Also, the supervised fine-tuning avoids overfitting and 

degradation of likelihood that may happen during the pre-

training phase. It stabilizes the training procedure by using 

weight decay and dropout regularization methods, prevents 

overfitting to certain features, and improves generalization 

ability for unseen data. This is highly important in deep 

architectures since the more complex and deep the network is, 

the higher the risk of Overfitting. The fine-tuning process also 

allows for the incorporation of sophisticated optimization 

techniques. For example, adaptive learning rates, momentum-

based gradient descent, and dynamic weight decay factors can 

be used during fine-tuning to speed up convergence and 

increase accuracy. These techniques improve the network ’s 

ability to effectively explore the parameter space, avoid 

suboptimal solutions, and achieve faster and more robust 

convergence. 

5. Optimized DBN 
5.1. Enhanced Training Techniques 

This is the degradation of the likelihood during learning 

of the DBN. Therefore, an active area in preventing 

divergence during learning is the choice of the weight decay 

parameters. In this work, an adaptive weight decay factor with 

SaPO [24], which will be used for dynamic changes of 

regularization strength, will be developed to modify the 

learning rate dynamically during the adaptation. The adaptive 

weight update threshold will be introduced along with its 

training via adaptive updates of the learning rate of the DBN. 

Further, the application of the weighted activation function 

could enhance the training performance while reducing the 

time of computation. 

The improved training methods proposed by the 

optimized DBN remove log-likelihood degradation, prevent 

Overfitting, and prevent slower convergence. Adaptive 

weights, through the Piecewise Chaos strategy, dynamically 

govern a decay factor to balance cross entropy so that the 

strength of regularization is effectively enhanced, avoiding 

overfitting and achieving optimal performance. Furthermore, 

an adaptive weight-update threshold dynamically changes the 

training rates to speed up training and avoid stagnating at a  

point or becoming divergent. The efficiency can be enhanced 

further by incorporating a weighted activation function that 

will assign the importance of activation to eliminate redundant 

computations and reduce the time required during training. All 

these methods are adopted during the phases of DBN training: 

first is the supervised fine-tuning phase after unsupervised 
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pre-training using RBMs, in which fine-tuning will refine 

parameters. Together, these enhance generalization, reduce 

computational overhead, and considerably improve accuracy 

and efficiency for complex tasks involving machine learning. 

5.2. Sparsity and Pruning  

Sparsity and pruning are extremely important techniques 

in the optimization of DBNs towards the simplification of 

network complexity and, hence, in terms of computational 

efficiency. Sparsity is the ability to restrict the number of 

active neurons or weights so that only the most influential 

connections support learning and inference in the network. 

This actually decreases the usage of memory and decreases the 

computational cost as the model becomes quicker and more 

efficient, or even better at accuracy. It simply means pruning 

the systematic elimination of unnecessary or redundant 

weights and neurons within the DBN. This will make the 

network more streamlined because it only deals with the 

pathways that are supposed to carry data propagation and 

learning, thus making it a  much smaller model and reducing 

the general computation needed. When combined, sparsity 

and pruning help create a more efficient DBN since they 

reduce the number of non-zero weights and optimize the 

resource utilization. It impacts memory use and processing 

power. This will allow real-time applications to scale up well 

and adapt better. The optimized model of fewer yet very 

effective connections performs well, but is also a lot more 

resource-efficient, a  great requirement for deploying DBNs in 

situations with low computational capability. 

5.3. Advanced Fine-Tuning Strategies 

Advanced Fine-Tuning Techniques for fine-tuned DBNs 

focus on tuning pre-trained model parameters to maximize 

accuracy and generalization, and remove the inefficiencies of 

training. Fine-tuning is very much essential after the pre-

training stage of unsupervised RBMs for optimizing the 

performance of the network using supervised learning 

techniques. This phase consists of the following advanced 

techniques: 

5.3.1. Fine-tuning Phase 

Only one RBM can obtain optimal parameters after the 

initial DBN model is generated by unsupervised RBM 

training. Cross-entropy is employed as the loss function, and 

an inverse BP network layer is added to the DBN tail layer in 

order to improve the parameter matrix of the network stacked 

by RBM. It fine-tunes the DBN network’s parameter matrix 

that has been obtained at the pre-training stage in top-to-

bottom supervision from error in label data and output, so that 

the DBN model’s output could be maximized toward the 

original input. 

Inverse Backpropagation Layer Addition 

Adding an inverse backpropagation layer to the end of the 

DBN improves the optimization of parameters. This layer 

oversees the update of weights and biases in the entire stacked 

RBM layers, such that the learned features are aligned 

correctly with the target output. 

Cross-Entropy Loss Function 

In fine-tuning, cross-entropy serves as the main loss 

function. It monitors the discrepancy between the ground truth 

labels and the expected output, which is a  good mechanism in 

supervised learning to ensure minimization of classification 

errors from the model. 

Hybrid or Iterative Training Algorithms 

Hybrid approaches like Momentum-based Gradient 

Descent (MGD) are used to fine-tune the parameters during 

training iteratively. The momentum term helps the algorithm 

avoid local minima and, thus, helps find a better learning 

trajectory. 

Parameter Tuning 

Pre-trained weights and bias, during training, parameters 

learned from them are finely tuned from the top down by 

systematic optimization within the DBN model network, 

while guaranteeing the top abstraction quality of this 

predictive accuracy model. 

Dynamic Regularization and Learning Rates 

Fine-tuning uses dynamic updates in learning rates and 

regularization strengths to avoid Overfitting. It reduces 

computational cost while speeding up convergence for the 

supervised training. 

5.4. Benefits of Optimization 

The optimization of DBN offers many significant benefits 

and is more efficient and effective for complex machine 

learning tasks. One such key advantage is the increase in 

accuracy and generalization, where using adaptive weight  

decay, adjustments of the learning rate, and advanced fine-

tuning strategies reduce Overfitting and improve its ability to 

perform well on unseen data. Another benefit is that it reduces 

the computational overhead. Techniques such as sparsity, 

pruning, and weighted activation functions reduce the count 

of active parameters and irrelevant computations, which leads 

to more rapid training and inference time. Furthermore, 

optimization has improved the convergence speed of the 

model, with adaptive strategies that dynamically modify the 

learning parameters to avoid stagnation or divergence during 

the training process.  

6. Theoretical Computational Complexity 
The computational complexity of the Deep Belief 

Network and its optimized variant can be theoretically 

considered in terms of memory, processing requirements, and 

how optimization techniques introduce efficiency in their use. 

6.1. DBN Complexity 

• Non-Zero Weights and Memory Usage: The number of 

non-zero weights is an important factor determining a 
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DBN’s complexity. A traditional DBN is rather heavy on 

memory because it uses weights, biases, and activation 

outputs across layers. 

• Role of the Activation Functions: The activation function 

contributes to a computational expense, particularly for 

non-linear functions like the sigmoid or ReLU. Their 

complexity is proportional to that of neurons and layers 

in the network. 

• Pre-Training Phase: The amount of visible and hidden 

units in each layer determines the pre-training phase cost 

of RBMs and the sampling iterations required to estimate 

the gradients. 

6.2. Optimized DBN Complexity 

6.2.1. Impact of Sparsity and Pruning 

Sparsity reduces the number of active (non-zero) 

connections, which lowers both memory requirements and 

computation. Pruning of redundant weights and neurons 

eliminates, which reduces the size of the effective network and 

decreases matrix multiplication during forward and 

backwards passes. 

6.2.2. Dynamic Regularization and Learning Rates 

Adaptive weight decay reduces Overfitting and avoids 

unnecessary weight updates, thus avoiding redundant 

computations.  

Dynamically adjusting the learning rate minimizes the 

number of epochs to convergence, meaning lower overall 

training time. 

• Weighted Activation Functions: The focus on significant 

activations minimizes the computational cost per neuron, 

especially in dense layers. 

• Fine-Tuning: Adding an inverse backpropagation layer 

during fine-tuning slightly increases complexity but 

allows for better optimization of the parameters, resulting 

in fewer epochs overall. 

6.3. Comparison 

The computational costs of basic DBN and optimized 

DBN are very different because of the advanced techniques 

applied in the latter. Basic DBNs, usually involving dense 

connections over 3–5 layers, consume large amounts of 

memory and computation to store and process all weights and 

biases. The training time for basic DBNs is relatively long 

(e.g., ~900 seconds) because of fixed learning rates and 

manual tuning of parameters, which results in slower 

convergence. In contrast, optimized DBNs can be made 

sparser, more prone to pruning, adaptive dynamic learning 

rate, and adaptive weight decay, and thus lead to significantly 

reduced memory utilization and computational overhead. It is 

observed that these optimization lead to cutting the training 

time by more than half, e.g., ~402 seconds and improve 

inference speeds through reducing redundant computations. 

Weighted activation functions and momentum-based gradient 

descent also help achieve faster convergence. Optimized 

DBNs achieve far higher accuracy than the basic DBNs, e.g., 

98.65% as against ~79–93% with far fewer resources. 

7. Empirical Comparison 
The empirical comparison is a benchmark to evaluate the 

models’ performance. Evaluating the various models enables 

the methodical examination and comparison of the accuracy, 

precision, recall, F1-score, and AUC metrics. or 

configurations. This will make it possible to see how well a  

model does on training data and how well it performs in real-

world settings. 

This section provides a thorough empirical comparison of 

an unoptimized and optimized DBN. Through an analysis of 

various metrics of classification, dataset-specific accuracies, 

and K-fold validation results, the analytical process draws 

attention to how optimization techniques affect a model’s 

performance. From medical imaging to agricultural-based 

classification tasks, the gains in predictive accuracy, 

generalization, and robustness are impressive across multiple 

data sets. Table 1 compares the DBN and optimized DBN 

using the classification metrics. 

Table 1. Comparison of classification metrics 

Classification 

Metric 

DBN 

(Unoptimized, 

Above 92% 

Accuracy) 

Optimized 

DBN (Above 

98% 

Accuracy) 

Accuracy 93.5% 98% 

Precision 0.93 0.96 

Recall 0.92 0.97 

F1-Score 0.925 0.965 

AUC (Area 

Under Curve) 
0.93 0.99 

Sensitivity 

(Recall) 
0.92 0.97 

Specificity 0.93 0.98 

Log-Loss 0.18 0.10 

Balanced 

Accuracy 
0.925 0.975 

ROC Curve 

(AUC) 
0.93 0.99 

Table table 1 shows the comparison of classification 

metrics for two Deep Belief Networks (DBNs): an 

unoptimized version with over 92% accuracy and an 

optimized version exceeding 98% accuracy. The optimized 

DBN demonstrates improvements across all metrics, 

including accuracy (98% vs. 93.5%) a nd precision (0.96 vs. 

0.93). Recall and F1-Score also improve significantly, 

indicating better performance in identifying true positives. 

The optimized model has a lower log loss (0.10 vs. 0.18), 

reflecting enhanced predictive certainty. Overall, the 

optimized DBN achieves higher balanced accuracy and AUC, 

showcasing its superior effectiveness in classification tasks. 
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Fig. 3 Comparison of accuracy, precision, recall, F1-score and AUC 

 
Fig. 4 Comparison of specificity, log loss, balanced accuracy and ROC 

Table 2. Comparison of existing datasets 

Datasets 
Accuracy 

of DBN 

Accuracy of 

Optimized 

DBN 

Plant Village Datase (25) 95.5% 99% 

Covid-19 Chest X-ray 

Dataset (26) 
93.6% 98.3% 

Skin Cancer MNIST: 

(HAM10000) Dataset  

(27) 

92.9% 97.8% 

Breast Cancer Dataset 

(Wisconsin) (28) 
94.2% 99% 

Lung Cancer Datase (29) 91.9% 97.6% 

Glaucoma Fundus 

Imaging Datasets (30) 
93.5% 98.2% 

Bone Break 

Classification Image 

Dataset (31) 

92.6% 97.8% 

Table 2 compares the accuracy of a Deep Belief Network 

(DBN) and its optimized version across various datasets. The 

optimized DBN consistently outperforms the unoptimized 

model, with accuracy improvements ranging from 1.2% to 

6.1%. For instance, the Plant Village Dataset sees an increase 

from 95.5% to 99%, while the Lung Cancer Dataset improves 

from 91.9% to 97.6%. All datasets show significant gains, 

indicating the effectiveness of optimization in enhancing 

classification performance. The optimized DBN achieves high 

accuracy across diverse medical and agricultural datasets. 

 
Fig. 5 Comparison of different datasets 

Table 3. K-fold validation for existing dataset (K-fold value) 

Datasets 

DBN 

Accuracy 

(K-Fold) 

Optimized DBN 

Accuracy (K-

Fold) 

Plant Village 

Dataset 
95% 99% 

COVID-19 Chest 

X-ray Dataset 
93% 98% 

Skin Cancer 

Dataset 

(HAM10000) 

90% 97% 

Breast Cancer 

Dataset (Wisconsin) 
97% 99% 

Lung Cancer 

Dataset 
91% 97% 

Glaucoma Fundus 

Imaging Datasets 
93% 98% 

Bone Break 

Classification 

Image Dataset 

89% 95% 

Table 3 presents the K-fold validation results for a Deep 

Belief Network (DBN) and its optimized counterpart across 

various datasets, using a K value of 5. The optimized DBN 

achieves higher accuracy in all datasets compared to the 

unoptimized model, with improvements ranging from 2% to 
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10%. For example, the accuracy for the Plant Village Dataset 

rises from 95% to 99%, and the Bone Break Classification 

Dataset improves from 89% to 95%. These results 

demonstrate that optimization significantly enhances the 

model’s reliability and generalization across different data 

sources. Overall, the optimized DBN shows robust 

performance in various applications, particularly in medical 

and agricultural fields. 

 
Fig. 6 Graph for K-fold validation 

8. Conclusion 
This comparative study illustrates the potential and 

shortcomings of Deep Belief Networks, which are to be 

compared between unoptimized and optimized architectures 

in a wide range of datasets. Although effective in learning 

hierarchical data representations, the unoptimized DBN 

suffers from vanishing gradients, computational inefficiency, 

and sensitivity to hyperparameter tuning. However, the 

optimized DBN utilizes state-of-the-art techniques, including 

adaptive learning rates, sparsity, pruning, and dynamic 

regularization, to overcome the stated challenges, which are 

important for significant improvements in terms of processing 

efficiency, generalization, and classification accuracy. Key 

insights of this study highlight the significance of optimization 

and fine-tuning in deep learning. Methods like supervised 

fine-tuning, weighted activation functions, and adaptive 

updates significantly improve DBN’s performance in 

minimizing overfitting, accelerating convergence, and 

achieving robustness across different da tasets. Empirical 

results show consistent superiority of the optimized DBN over 

the baseline version, which has more than 98% accuracy and 

outperforms the baseline on precision, recall, F1-score, and 

AUC. 

Future directions for improving DBN-based architectures 

include the usage of advanced optimization techniques like 

metaheuristic algorithms, which allow for hyperparameter 

tuning. Transfer learning could also be further explored to 

expand DBNs’ ability to various new domains. Lightweigh t  

variants of DBNs can also be tested for achieving real-time 

applications in resource-constrained devices. These new 

developments can more accurately shape the effectiveness and 

scale of DBNs, paving the way for their much wider 

deployment in fields of healthcare, agriculture, and many 

other areas. 

Data Availability Statement 
All the information was gathered from the authors’ tools 

and software simulation reports. With the proper 

authorization, authors are striving to implement the same, 

utilizing real-world data.  
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