
International Journal of Engineering Trends and Technology Volume 73 Issue 8, 117-128, August 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I8P110 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

A Comparative Analysis of Deep Belief Networks:

Baseline and Optimized Architectures for Fine-Tuning

Raji. N1, S. Manohar2

1,2Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai, India .

1Corresponding Author : rn5525@srmist.edu.in

Received: 12 February 2025 Revised: 10 July 2025 Accepted: 21 July 2025 Published: 30 August 2025

Abstract - This study discusses the comprehensive analysis of Deep Belief Networks, which mainly focuses on compari ng

unoptimized and optimized architectures and comparing the performance on various datasets. Optimized DBN addresses some

of the limitations in this regard by using advanced techniques like adaptive learning rates, regularization strategies, spars ity,

and pruning to prevent problems like vanishing gradients, computational inefficiency, and sensitivity to hyperparameters.

Empirical results show that the optimized DBN has considerable performance improvements, with an accuracy of over 98%

against 92% for the unoptimized counterpart. All the metrics, including precision, recall, F1 -score, AUC, and log-loss, also

showed considerable gains. Evaluations across multiple datasets, including medical imaging and agricultural data, confirm the

robustness and generalization of the optimized DBN. Moreover, K-fold validation emphasizes the stability of these improvements

and demonstrates the optimized DBN’s strength in classification. This work further emphasizes the significance of optimization

in improving the performance of DBNs and provides a framework for developing efficient and scalable deep learning models.

Keywords - Deep Belief Networks (DBNs), Optimized architectures, Hyperparameter sensitivity, Regularization strategies, K -

fold validation.

1. Introduction
Deep learning has emerged as an innovative approach in

the development of artificial intelligence to revamp supervised

classification tasks for every domain. By the employment of

hierarchical architectures, the deep learning models could

learn feature representation automatically from raw data that

is much more complex. Deep learning has become

indispensable in several applications like image, Speech

recognition, medical diagnoses, and recognition that require

meaningful patterns from the extracted high-dimensional data

to accurately [1, 2]. Among all these deep architectures, Deep

Belief Networks (DBNs) are one of the architectures that take

a significant place as they possess the property to combine

both unsupervised and supervised learning. Stacked by RBMs,

or restricted Boltzmann machines, DBNs are proficient at

gaining knowledge of the hierarchical representations of

features via unsupervised pre-training followed by fine-tuning

with labeled data [3-5]. As such, dual-phase training makes

DBNs particularly successful in situations when labeled data

is rare or hard to come by. In addition, their architectural

structure is beneficial in capturing complex data patterns and

relationships, rendering them as a powerful model for difficult

classification tasks. Although these have their strengths,

several issues limit the efficiency and Scalability of DBNs.

They suffer from computational inefficiency, sensitivity to

hyperparameter settings, and difficulties in fine-tuning across

deep layers. Different optimization techniques have been

suggested to overcome such limitations, including adaptive

learning rates, regularization methods, and pruning strategies.

These techniques are applied to enhance fine-tuning, improve

generalization, reduce Overfitting, and lower computation

overheads, enabling robustness and suitability in real-world

applications [6-8]. The current research aims to provide an

overall comparative analysis between the baseline DBNs and

their optimized versions. While discussing the progress on

architectures, training methodologies, and impacts of

optimization techniques, it identifies the improvements in

computational complexity, learning efficiency, and

classification performance. The conclusions derived from this

comparison would guide the evolution of deeper, more

effective, and more data-driven knowledge models for

supervised classification tasks.

2. Background
2.1. Transition from Shallow to Deep Architectures

2.1.1. Shallow Networks

At the ANN at the nodal level, the simplistic McCulloch-

Pitts neural model was developed in 1943. consisted of a

deterministic binary activation function and a simple summing

unit [9]. The complexity increased with each repetition by the

successors. Gaussian, sigmoid, and linear functions were used

at the activation function level. The complex domain was now

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

118

included in the outputs previously limited to real values. In

order to simulate ionic exchanges, stochastic neurons and

spiking neurons replaced deterministic models. In order to

create more complex learning models, all of these additions

were made. Single-layered topologies, such as Aizerman’s

kernel perceptron (1964), the ADALINE network by Widrow

and Hoff (1960) [10], and Rosenblatt’s perceptron (1957)

[11], were the first to be implemented at the network level.

The XOR issue is a straightforward challenge of non-linear

binary classification that these architectures struggled to learn

and performed poorly. As a result, increasingly sophisticated

networks were introduced, beginning with the Kohonen

networks, sometimes known as self-organizing maps (SOM),

[12], (1986), Perceptron with many layers [13] Hopfield

networks that are self-recurrent (Rumelhart, 1986) [14]

(1986), Adaptive Resonance Theory (ART) networks (1980s)

[15], and several others that are regarded as architectures that

are shallow because of their many hidden layers.

Higher levels of intelligence were promised by successive

iterations, which gradually improved on the shortcomings of

their predecessors. This claim was made partially possible by

the hardware’s increased computing power and the creation of

quicker and more effective algorithms for learning and

training. Both (back propagation) supervised and

unsupervised algorithms that use feed-forward learning

mechanics were developed concurrently and improved

performance over a variety of particular tasks. However, the

combined impact of the innovation that focused on every facet

among these superficial networks was insufficient to catch a

person’s intellect fully, and the advancement of deeper

networks was slowed down by high computational

requirements. The following illustrates the shortcomings of

shallow networks.

Inability to Capture Complex Patterns

Shallow networks that are fewer in layers cannot really

depict complex, hierarchical data representations, such as

those involved in image recognition, natural language

processing, or speech recognition. They are usually able to

learn only linear or very simple non-linear functions that may

not be enough for datasets with high dimensionality and a

more structured nature.

Curse of Dimensionality

In order to achieve acceptable performance, the more

input features there are, the more neurons shallow networks

require, and they consume much more data; consequently, the

computational and memory demands grow exponentially. As

such, the approach results in inefficiency when working with

high-dimensional or large-scale data .

Poor Generalization on Non-linear Data

Shallow nets are not able to distinguish overlapping

features from non-linear datasets successfully and, therefore,

may overfit or generalize too poorly.

Limited Hierarchical Feature Extraction

The deep nets can simultaneously learn multiple abstract

layers, which are considered indispensable for interpreting

complex data representations. Since the feature hierarchies

(edges-to-shapes-to-objects in images) are pertinent in many

applications, shallower architectures are not quite fit for these

applications.

Lack of Robustness to Variations in Data

Shallow networks are too sensitive to noise and variations

within the input data, as their depth is not sufficient to learn

invariant features and, hence, may incur instability in

performance across diverse datasets or environments.

Vanishing Gradient Problem

While not as drastic as with deeper architectures, even

shallow networks with a few hundred layers will suffer from

an inability to propagate gradients during training under

certain activation functions effectively.

Limited Scalability

Such shallow networks cannot easily accommodate big,

complex datasets or tasks without greatly increasing the

number of neurons and connections, which leads to

inefficiencies and higher chances of Overfitting.

Inflexibility for Transfer Learning

Unlike deep architectures, shallow networks are not

amenable to transfer learning since they do not have layered

representations that allow them to adapt to new tasks or

domains. These limitations explain why deep architectures,

particularly DBNs, are relevant because they solve the

constraints by introducing more layers so that complex

patterns and their hierarchical data relationships can be

modeled.

2.1.2. Deep Architectures

As processing power improved and more effective

training algorithms were developed, training deep

architectures became possible, leading to a resurgence in ANN

research in the early 2000s [16]. The training process for

Boltzmann machines was made simpler by the greedy training

algorithm of Hinton et al., while deep stacking networks

reduced the computing load by breaking down training into

the deep network’s building blocks. Additionally, training

deeper recurrent neural networks was made possible by the

architecture of Schmidhuber’s extended short-term memory

[17]. Although the biological properties of the brain beyond

the neuron are not borrowed by these architectures, the force

gained in the field of computational neuroscience is helping

the connectionist community embrace neural network

topologies in deep designs that are more in line with

neuroscientific hypotheses about the structure of the human

brain. A physiologically sound method for learning and

producing invariant representations of sensory patterns was

absent from earlier ANNs.

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

119

2.2. Introduction of DBNs as a Solution for Hierarchical

Feature Learning

Unlike ML approaches, DNNs are more complex

versions of shallow ANN designs, which consist of a

mathematically simplified representation of a biological

neuron. They do not, however, aim to replicate the human

brain precisely. DNNs are based on noncognition, an image

processing model with biological inspiration that aims to

achieve powerful AI models by using hierarchical knowledge

abstraction. Shallower layers pick up low-level statistical

patterns as data moves through the network, and Deeper layers

pick up more complex and abstract representations by building

on these properties. Due to their inability to make clear logical

deductions, DNNs need more development to include abstract

knowledge in a way that is human-like. ANNs were initially

trained via an algorithm called backpropagation, which

propagates the output error backwards through the network to

change the network weights. As network depth increases, the

inaccuracy that spreads disappears to zero, stopping the

updating early-layer weights and drastically lowering network

performance. Other DNN training strategies were thus

examined. To train recurrent neural networks, Schmidhuber

[18] (1992) suggested pre-training layers in an unsupervised

manner and then using backpropagation to fine-tune the

network weights. A greedy training algorithm specifically for

DBN was suggested, which further accelerated the

momentum. Although the DBN is a kind of deep ANN, its

architectural features prevent backpropagation from

generating a model that works effectively on training and

testing data. This phenomenon has been ascribed to

“explaining away.” To put it another way, sometimes referred

to as selection bias or Berkson’s paradox, invalidates the

widely accepted notion of layer independence and hence

complicates the inference process [19]. Since it is impossible

for both concealed nodes to fire at the same time due to their

incredibly low probability, they become anti-correlated. In

order to address this problem, a training technique was

developed based on the finding that DBN may be reduced to

inter-layer neuron connections in a two-layer network that are

exclusively and successively layered restricted Boltzmann

machines (RBM). Automatic speech recognition, image

processing, natural language processing, feature extraction

and reduction, and many more problems were resolved with

DBN. This innovative method reignited interest in these deep

architectures.

2.3. Challenges in DBNs

Although DBNs have many benefits in terms of

hierarchical feature representation and learning, they are not

without drawbacks. Key concerns consist of :

2.3.1. Vanishing Gradients

One of the primary issues in training deep architectures

like DBNs is the vanishing gradient problem.

Backpropagation gradients decrease during loss function

computation as they move through the layers, especially in

deep networks. This results in almost negligible updates to the

weights in the earlier layers and, therefore, does not allow the

model to learn effectively from data .

2.3.2. Overfitting

DBNs, especially if the training dataset is small, have a

tendency to overfit. Overfitting means the model learned how

to commit the training data to memory instead of generalizing

it. Overfitting reduces the performance of the model on

unknown data and limits its practical usability.

2.3.3. Computational Cost

DBNs are computationally expensive, particularly during

their pre-training and fine-tuning. The computational

requirement for multiple iterations across layers and several

adjustments across parameters is pretty demanding for DBNs.

Therefore, their efficiency is limited when a large dataset

needs to be processed or when it needs real-time processing.

2.3.4. Sensitivity to Hyperparameters

Hyperparameter tuning-very strong DBNs are sensitive,

but for the fine tuning to go correctly, it depends on some

careful setup regarding these- learning rate, and many more

numbers of units within a layer and layer, etc. Sub-optimal

choices often lead to a much worse training set.

2.3.5. Scalability

With the increasing size of the network, the memory and

computation requirements rise exponentially. Thus, scaling

DBNs to extremely deep architectures or very large datasets

proves difficult. These are mitigated through optimization

techniques that have been developed, such as adaptive

learning rates, regularization methods, such as Dropout, and

pruning strategies that reduce the complexity of models while

maintaining their performance.

3. DBN- Overview
3.1. Description of DBN as a Stack of RBMs

Professor Hinton created DBN, a deep architecture based

on RBM. DBN can partially address the issues of lengthy

training times and challenging depth model optimization since

RBM, a component of the depth model, exhibits greedy

training layer by layer [20].

3.1.1. Architecture of Restricted Boltzmann Machine

Originally created by Hinton and Sejnowski, Boltzmann

machines (BM) showed a remarkable capacity for

unsupervised learning as a generalized version of

“connectionism.” They did, however, have some drawbacks,

like postponed training. Smolensky developed an RBM model

to address the limitations of BM [21]. The visual layer, a

visible component of RBM, is where data, represented by v, is

received. The hidden unit, sometimes referred to as the hidden

layer, is the other component. It is denoted by h and is

employed to extract features from data. Though there is no

link within the layer, both layers are connected. Figure 1

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

120

displays the RBM model’s structure. If the value (v, h)

corresponding to the input dataset is assumed to follow the

mathematical Bernoulli distribution for both the visible and

hidden layer units, then the RBM energy function can be

expressed as follows:

𝐸(𝑣, ℎ;𝜃) = −∑ 𝑎𝑖𝑣𝑖 −
𝐼
𝑖=1

∑ 𝑏𝑗ℎ𝑗 −
𝐽
𝑗=1

∑ ∑ 𝑣𝑖𝑤𝑖𝑗ℎ𝑗 𝜃 = {𝑤𝑖𝑗 , 𝑎𝑖 , 𝑏𝑖}
𝐽
𝑗 =1

𝐼
𝑖=1 (1)

Where θ are the RBM model’s parameters, sometimes

referred to as the energy function. Consequently, the following

definition of the combined probability distribution of every

layer that is visible and hidden can be made:

{
𝑃(𝑣, ℎ;𝜃) =

1

𝑍(𝜃)
exp(−𝐸(𝑣 , ℎ; 𝜃))

𝑍(𝜃) = ∑ exp(−𝐸(𝑣, ℎ; 𝜃)) 𝑣,ℎ

} (2)

The allocation function, normalized factor Z(霃), is

derived by adding up all nodes’ energy indices.

Fig. 1 Structure of RBM model

The distribution function’s definition makes clear how

difficult it is to compute directly. The RBM layer has no

relationship, hence all items in the visible and buried layers

are independent of conditions. Therefore, Z can be found by

using the concepts of the probability distribution. The RBM

model’s visual layer vs. likelihood function, or edge

distribution expression, is as follows:

𝑝(𝑣; 𝜃) = ∑ 𝑝(𝑣, ℎ; 𝜃) =
1

𝑍(𝜃)ℎ
∑ exp(−𝐸(𝑣, ℎ;𝜃))ℎ

=
1

𝑍(𝜃)
∑ exp (𝑣𝑇𝑤ℎ + 𝑏𝑇𝑣 + 𝑎𝑇ℎ)ℎ (3)

The conditional likelihood that is visible vector v and

hidden unit h is:

𝑝(ℎ|𝑣, 𝜃) =
𝑝(𝑣,ℎ;𝜃)

𝑝(𝑣;𝜃)

=

1

𝑧(𝜃)
exp (𝑏𝑇𝑣)∏ 𝑒𝑥𝑝(𝑎𝑗ℎ𝑗+∑ 𝑤𝑖𝑗𝑣𝑖 ℎ𝑗

𝐼
𝑖=1)𝑗

1

𝑧(𝜃)
exp (𝑏𝑇𝑣)∏ ∑ℎ𝑒𝑥𝑝(𝑎𝑗ℎ𝑗+∑ 𝑤𝑖𝑗𝑣𝑖 ℎ𝑗

𝐼
𝑖=1)𝑗

 (4)

The visible unit v and the hidden vector h have

comparable conditional probabilities:

𝑝(𝑣|ℎ;𝜃) =
𝑝(𝑣,ℎ;𝜃)

𝑝(ℎ;𝜃)
= ∏ 𝑝(𝑣𝑖|ℎ)𝑖 (5)

Since there is no inter-layer link, the order multiplication

serves as the conditional probability and may be written as:

{
𝑝(ℎ𝑗 = (1|𝑣) = 𝜎(𝑎𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖)

𝑝(𝑣𝑖 = (1|ℎ) = 𝜎(𝑏𝑖 + ∑ ℎ𝑖𝑤𝑖𝑗𝑗)
} (6)

Where 𝜎 is the sigmoid function; the range is (0, 1); the

definition domain is (−∞,+∞). Upon receiving the training

data, RBM first applies Eq. (13), which translates

characteristics of the input data from the hidden layer (h) to

the visible layer (v). The output data is subsequently rebuilt

from the hidden layer to the visible layer using Equation (14)

as a guide. Until the computation criteria are reached, the

RBM model’s parameter {,-𝑖𝑗.,,𝑎-𝑖., 𝑏-𝑗. } is continuously

adjusted based on the error.

The difference between the original and currently rebuilt

data is now calculated. By reducing the error between the

input and reconstructed data, RBM training seeks to maximize

the likelihood function. Since it is challenging to solve

directly, stochastic gradient descent—which uses the

following formula—is how we learn:

𝜃 = 𝜃 + 𝜀
𝜕𝐼𝑛(𝜃)

𝜕𝜃
 (7)

Although it is challenging to compute, the parameters in

θ are typically calculated in the form of block Gibbs sampling.

Consequently, the contrastive divergence (CD) technique was

presented by Hinton and is frequently used due to its quick

learning speed.

3.2. Network Architecture

RBM is arranged in series to form the DBN model. RBM

is trained in order to accomplish the pre-training of DBN

during training, layer by layer, from low to high. The structure

of the DBN model is shown in Fiure. 2. The visible layer of

the first RBM receives the input data. Its hidden layer is

concurrently the visible layer of the RBM that is connected to

it, and its output is the input of the succeeding RBM. In the

end, this leads to the creation of the DBN, or deep network

architecture with multiple hidden layers.

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

121

Fig. 2 Structure of DBM model

3.2.1. Layer-wise Unsupervised Pre-Training and BP

Supervised Training

Unsupervised Pre-Training Phase

When the predetermined number of iterations is attained,

connecting to the first DBN network which is only locally

optimal. The bias parameters and weights of each layer’s

hidden and visible layers of the RBM network are trained

independently and unsupervisedly. In other words, each RBM

layer only reaches its maximum.

Initialization of Parameters

Give the training sample first, followed by the model

parameters (learning rate, number of visible and hidden layer

units, etc.). Set to its initial value, the RBM model parameter

{ }= {,𝑤-𝑖𝑗.,,𝑎-𝑖., 𝑏-𝑗. }. This relates to the connection weights

between layers as well as the bias of each layer. The following

calculation procedure is typically used to initialize parameter

𝜃 using the random minimum value:

{
𝑤 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(𝑛,𝑚)

𝑎 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(1, 𝑛)

𝑏 = 0.1 × 𝑟𝑎𝑛𝑑𝑛(1,𝑚)
} (8)

The model parameters (number of visible and hidden

layer units, learning rate, etc.) and the training samples should

be provided initially. Set the RBM model parameter to its

starting value. Each layer’s bias and the connection weights

between layers are correlated with this. The standard method

for initializing parameter θ with the random minimum value

is the following calculation process.

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

122

4. Training
Determine After adding parameter setup values to the

network input, the training sample “Train.mat” loop uses

connection weights, 𝑤-𝑖𝑗, and offset ai and bj. The contrast

scatter technique, used in RBM training, generates a training

sample from the DBN’s initial visible layer, (0). network after

“Train.mat” is entered. Applying Eq. (9) to the subsequent

hidden unit linked, the probability value between 0 and 1 is

determined, followed by the observed probability value. Next,

we compute the observed unit’s probability value using

Equation (9) to get 𝑣(1). Here are the precise steps:

Step 1: Use Equation (9) to predict the likelihood that a

hidden layer unit ℎ𝑗 Will be triggered, then use the following

Equation to ascertain the neuron’s condition in that layer:

ℎ𝑗 = {
1, 𝑖𝑓 𝑟𝑗 < 𝑃(ℎ𝑖 = 1|𝑣), 𝑟𝑗 ∈ [0,1](𝑗=1,2,…..,𝐽)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

 (9)

Step 2: In order to recon Figure. The visible layer, step

two, involves calculating the likelihood that the visible layer

unit vi will be activated using Equation (14) and determining

the neuron’s condition within the layer using Equation (10).

𝑣𝑖 = {
1, 𝑖𝑓 𝑟𝑗 < 𝑃(𝑣𝑖 = 1|ℎ), 𝑟𝑗 ∈ [0,1], (𝑖=1,2,…..,𝐽)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

 (10)

Afterwards, by comparing the Contrastive Divergence

(CD), one can get the approximate value of Equation (11)

procedure:

{

 ∆𝑤𝑖𝑗 =

𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑤𝑖𝑗
≈ 𝑃(ℎ𝑗 = 1|𝑣

(0))𝑣𝑖
(0) − 𝑃(ℎ𝑗 = 1|𝑣

(1))𝑣𝑖
(1)

∆𝑎𝑖 =
𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑎𝑖
 ≈ 𝑣𝑖

(0) − 𝑣𝑖
(1)

∆𝑏𝑗 =
𝜕𝐼𝑛 𝐿(𝜃)

𝜕 𝑏𝑗
 ≈ 𝑃(ℎ𝑗 = 1|𝑣

(0)) −𝑃(ℎ𝑗 = 1|𝑣
(1))

 }

 (11)

The CD technique was used to reconstruct the data, and

the network parameters were then modified using the

following Equation.

{

𝑤𝑖𝑗 (𝑘 + 1) ← 𝑤𝑖𝑗(𝑘) + 𝜀∆𝑤𝑖𝑗
𝑎𝑖 (𝑘 + 1) ← 𝑎𝑖(𝑘) + 𝜀∆𝑎𝑖
𝑏𝑗(𝑘 + 1) ← 𝑏𝑗(𝑘) + 𝜀∆𝑏𝑗

} (12)

To generate the results, repeat the previous procedures

until the specified training sessions have been completed.

4.1. BP Supervised Training

During the reverse fine-tuning phase, the output feature

vector from the RBM is used as the input feature vector by the

top-level processor (BP). Then, depending on the computation

of the BP network’s output error e and error energy total E, the

weights 𝑤-𝑖𝑗. And bias thresholds ai and 𝑏-𝑗. Are modified.

The formulas are as follows:

{

 𝑤

′
𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂

𝜕𝐸

𝜕𝑤𝑖𝑗

𝑎′𝑖 = 𝑎𝑖 + 𝜂
𝜕𝐸

𝜕𝑎𝑖

𝑏′𝑗 = 𝑏𝑗 + 𝜂
𝜕𝐸

𝜕𝑏𝑗 }

 (13)

Following the completion of the aforementioned tasks,

DBN begins predicting the “Test.mat” test set and produces

the results of the prediction.

4.1.1. Application of DBN

The softmax layer uses the Gradient Descent in Evolution

(EGD) technique to categorize the extracted features [22]. In

contrast, the stacking restricted Boltzmann machine uses the

contrastive divergence method to extract features. When

compared to the Gradient Descent process, the EGD

acceleration rate is impressive. DBNs have been effectively

used in numerous fields, including:

• Image recognition is the process of identifying and

classifying objects by extracting features from raw pixel

data.

• Speech Processing: Enhancing automatic speech

recognition systems by learning robust audio feature

representations.

• Natural Language Processing: Improving text

understanding and semantic analysis by capturing

contextual relationships.

• Healthcare: Assisting in tasks such as disease diagnosis

by processing and analyzing medical images or sensor

data.

4.1.2. Limitations in the Standard DBN Approach

According to DBN, its execution requires significant

space and high energy. The enormous demand for Random

Number Generators (RNGs) reduces deep belief networks’

energy efficiency.

Additionally, the backpropagation neural network with

multiple hidden layers in DBN requires more time to learn.

Because the posterior is not factorizable in every training

scenario, greedy learning is thus ineffective in the directed

module. In a sigmoid belief network, learning in layers is

difficult due to the general placement of higher variables at

points before the first hidden layer. These algorithms’ primary

obstacles are the lack of training data for intrusion detection,

data imbalances in ad hoc a pplications, The inability to

comprehend data in a variety of biological applications, the

increase in uncertainty in the healthcare sector, Model

compression in healthcare, catastrophic forgetfulness in

biological and other applications, Data under specif ication in

safe routing, Exploding Gradient and the Vanishing Gradient

problem in energy-efficient network development, and over-

fitting during misbehavior identification in medical

applications of a mobile network.

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

123

4.2. The Role of Fine-Tuning

One of the most important complicating factors that arises

in DBN training is the potential degradation problem. The

problem reveals itself in practice during repetitions of training

iterations as a log-likelihood decay of the model. Identifying

this deterioration is necessary because it disrupts the DBNs ’

general performance as well as effectiveness in numerous

applications [23]. The term “likelihood degradation” describes

how the model’s log-likelihood of identified data goes down

with its training. This decline may indicate that the model

loses its ability to accurately describe the statistical properties

of the training set of data. Likelihood degradation causes

reduced model accuracy, inferior generalization to new data,

and a higher tendency for Overfitting. These effects

compromise the dependability and practicality of DBNs in

practical settings.

Conventional training methods like CD and its variants

may induce uncertainty and weaken the likelihood in the case

of long training periods. The reduction in likelihood can be

made worse by poorly choosing hyperparameters like learning

rates and regularization strengths. Degradation is more likely

when DBNs become harder to train, as it becomes increasingly

difficult to maintain training consistency. When a model is

used to predict new, unvalidated data, its probability can

decrease, and accuracy and trustworthiness may diminish.

Increased tendencies of Overfitting, which the model performs

well in training data but fails to generalize into test data, are

generally correlated with a higher degradation in likelihood.

Probability may drop, which means that the training can be

very lengthy to converge, or it can demand more computation

power to attain good levels of performance. However, even

with their success, these methods can have pitfalls like log-

likelihood deterioration in training that negatively impact the

overall learning performance of DBNs. The establishment of

adaptive practices for the reduction of likelihood deterioration

and a better understanding of the methods that cause it must

be developed to overcome such challenges. One interesting

strategy is adaptive strategies for modifying and optimizing

parameters, where regularization strength can be modified

dynamically, thresholds can be updated, and learning rates

during training can be adapted. Further quickening training

and overall performance is likely with DBN efficacy

optimized starting functions.

4.3. Importance of Supervised Fine-tuning for Achieving

Optimal Performance

Supervised fine-tuning is the final critical stage in DBN

training. The process fills the gap between unsupervised pre-

training and task-specific optimization. It refines the

representation, which was learned through unsupervised pre-

training about hierarchical representations from raw data, to

align it with labeled data and to boost performance on specific

tasks. This phase is the final stage in achieving the highest

classification accuracy and generalization. One of the main

reasons that supervised fine-tuning is necessary is that it

overcomes the disadvantages of unsupervised pre-training.

Parameters trained under pre-training are local optimizers for

feature extraction, but they are often not aligned with the

required task. Supervised fine-tuning adjusts the parameters

globally by minimizing the cross-entropy loss functions

particular to the task, which means that the network will be

outputting the values as consistent with the true ground truth

labels.

Also, the supervised fine-tuning avoids overfitting and

degradation of likelihood that may happen during the pre-

training phase. It stabilizes the training procedure by using

weight decay and dropout regularization methods, prevents

overfitting to certain features, and improves generalization

ability for unseen data. This is highly important in deep

architectures since the more complex and deep the network is,

the higher the risk of Overfitting. The fine-tuning process also

allows for the incorporation of sophisticated optimization

techniques. For example, adaptive learning rates, momentum-

based gradient descent, and dynamic weight decay factors can

be used during fine-tuning to speed up convergence and

increase accuracy. These techniques improve the network ’s

ability to effectively explore the parameter space, avoid

suboptimal solutions, and achieve faster and more robust

convergence.

5. Optimized DBN
5.1. Enhanced Training Techniques

This is the degradation of the likelihood during learning

of the DBN. Therefore, an active area in preventing

divergence during learning is the choice of the weight decay

parameters. In this work, an adaptive weight decay factor with

SaPO [24], which will be used for dynamic changes of

regularization strength, will be developed to modify the

learning rate dynamically during the adaptation. The adaptive

weight update threshold will be introduced along with its

training via adaptive updates of the learning rate of the DBN.

Further, the application of the weighted activation function

could enhance the training performance while reducing the

time of computation.

The improved training methods proposed by the

optimized DBN remove log-likelihood degradation, prevent

Overfitting, and prevent slower convergence. Adaptive

weights, through the Piecewise Chaos strategy, dynamically

govern a decay factor to balance cross entropy so that the

strength of regularization is effectively enhanced, avoiding

overfitting and achieving optimal performance. Furthermore,

an adaptive weight-update threshold dynamically changes the

training rates to speed up training and avoid stagnating at a

point or becoming divergent. The efficiency can be enhanced

further by incorporating a weighted activation function that

will assign the importance of activation to eliminate redundant

computations and reduce the time required during training. All

these methods are adopted during the phases of DBN training:

first is the supervised fine-tuning phase after unsupervised

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

124

pre-training using RBMs, in which fine-tuning will refine

parameters. Together, these enhance generalization, reduce

computational overhead, and considerably improve accuracy

and efficiency for complex tasks involving machine learning.

5.2. Sparsity and Pruning

Sparsity and pruning are extremely important techniques

in the optimization of DBNs towards the simplification of

network complexity and, hence, in terms of computational

efficiency. Sparsity is the ability to restrict the number of

active neurons or weights so that only the most influential

connections support learning and inference in the network.

This actually decreases the usage of memory and decreases the

computational cost as the model becomes quicker and more

efficient, or even better at accuracy. It simply means pruning

the systematic elimination of unnecessary or redundant

weights and neurons within the DBN. This will make the

network more streamlined because it only deals with the

pathways that are supposed to carry data propagation and

learning, thus making it a much smaller model and reducing

the general computation needed. When combined, sparsity

and pruning help create a more efficient DBN since they

reduce the number of non-zero weights and optimize the

resource utilization. It impacts memory use and processing

power. This will allow real-time applications to scale up well

and adapt better. The optimized model of fewer yet very

effective connections performs well, but is also a lot more

resource-efficient, a great requirement for deploying DBNs in

situations with low computational capability.

5.3. Advanced Fine-Tuning Strategies

Advanced Fine-Tuning Techniques for fine-tuned DBNs

focus on tuning pre-trained model parameters to maximize

accuracy and generalization, and remove the inefficiencies of

training. Fine-tuning is very much essential after the pre-

training stage of unsupervised RBMs for optimizing the

performance of the network using supervised learning

techniques. This phase consists of the following advanced

techniques:

5.3.1. Fine-tuning Phase

Only one RBM can obtain optimal parameters after the

initial DBN model is generated by unsupervised RBM

training. Cross-entropy is employed as the loss function, and

an inverse BP network layer is added to the DBN tail layer in

order to improve the parameter matrix of the network stacked

by RBM. It fine-tunes the DBN network’s parameter matrix

that has been obtained at the pre-training stage in top-to-

bottom supervision from error in label data and output, so that

the DBN model’s output could be maximized toward the

original input.

Inverse Backpropagation Layer Addition

Adding an inverse backpropagation layer to the end of the

DBN improves the optimization of parameters. This layer

oversees the update of weights and biases in the entire stacked

RBM layers, such that the learned features are aligned

correctly with the target output.

Cross-Entropy Loss Function

In fine-tuning, cross-entropy serves as the main loss

function. It monitors the discrepancy between the ground truth

labels and the expected output, which is a good mechanism in

supervised learning to ensure minimization of classification

errors from the model.

Hybrid or Iterative Training Algorithms

Hybrid approaches like Momentum-based Gradient

Descent (MGD) are used to fine-tune the parameters during

training iteratively. The momentum term helps the algorithm

avoid local minima and, thus, helps find a better learning

trajectory.

Parameter Tuning

Pre-trained weights and bias, during training, parameters

learned from them are finely tuned from the top down by

systematic optimization within the DBN model network,

while guaranteeing the top abstraction quality of this

predictive accuracy model.

Dynamic Regularization and Learning Rates

Fine-tuning uses dynamic updates in learning rates and

regularization strengths to avoid Overfitting. It reduces

computational cost while speeding up convergence for the

supervised training.

5.4. Benefits of Optimization

The optimization of DBN offers many significant benefits

and is more efficient and effective for complex machine

learning tasks. One such key advantage is the increase in

accuracy and generalization, where using adaptive weight

decay, adjustments of the learning rate, and advanced fine-

tuning strategies reduce Overfitting and improve its ability to

perform well on unseen data. Another benefit is that it reduces

the computational overhead. Techniques such as sparsity,

pruning, and weighted activation functions reduce the count

of active parameters and irrelevant computations, which leads

to more rapid training and inference time. Furthermore,

optimization has improved the convergence speed of the

model, with adaptive strategies that dynamically modify the

learning parameters to avoid stagnation or divergence during

the training process.

6. Theoretical Computational Complexity
The computational complexity of the Deep Belief

Network and its optimized variant can be theoretically

considered in terms of memory, processing requirements, and

how optimization techniques introduce efficiency in their use.

6.1. DBN Complexity

• Non-Zero Weights and Memory Usage: The number of

non-zero weights is an important factor determining a

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

125

DBN’s complexity. A traditional DBN is rather heavy on

memory because it uses weights, biases, and activation

outputs across layers.

• Role of the Activation Functions: The activation function

contributes to a computational expense, particularly for

non-linear functions like the sigmoid or ReLU. Their

complexity is proportional to that of neurons and layers

in the network.

• Pre-Training Phase: The amount of visible and hidden

units in each layer determines the pre-training phase cost

of RBMs and the sampling iterations required to estimate

the gradients.

6.2. Optimized DBN Complexity

6.2.1. Impact of Sparsity and Pruning

Sparsity reduces the number of active (non-zero)

connections, which lowers both memory requirements and

computation. Pruning of redundant weights and neurons

eliminates, which reduces the size of the effective network and

decreases matrix multiplication during forward and

backwards passes.

6.2.2. Dynamic Regularization and Learning Rates

Adaptive weight decay reduces Overfitting and avoids

unnecessary weight updates, thus avoiding redundant

computations.

Dynamically adjusting the learning rate minimizes the

number of epochs to convergence, meaning lower overall

training time.

• Weighted Activation Functions: The focus on significant

activations minimizes the computational cost per neuron,

especially in dense layers.

• Fine-Tuning: Adding an inverse backpropagation layer

during fine-tuning slightly increases complexity but

allows for better optimization of the parameters, resulting

in fewer epochs overall.

6.3. Comparison

The computational costs of basic DBN and optimized

DBN are very different because of the advanced techniques

applied in the latter. Basic DBNs, usually involving dense

connections over 3–5 layers, consume large amounts of

memory and computation to store and process all weights and

biases. The training time for basic DBNs is relatively long

(e.g., ~900 seconds) because of fixed learning rates and

manual tuning of parameters, which results in slower

convergence. In contrast, optimized DBNs can be made

sparser, more prone to pruning, adaptive dynamic learning

rate, and adaptive weight decay, and thus lead to significantly

reduced memory utilization and computational overhead. It is

observed that these optimization lead to cutting the training

time by more than half, e.g., ~402 seconds and improve

inference speeds through reducing redundant computations.

Weighted activation functions and momentum-based gradient

descent also help achieve faster convergence. Optimized

DBNs achieve far higher accuracy than the basic DBNs, e.g.,

98.65% as against ~79–93% with far fewer resources.

7. Empirical Comparison
The empirical comparison is a benchmark to evaluate the

models’ performance. Evaluating the various models enables

the methodical examination and comparison of the accuracy,

precision, recall, F1-score, and AUC metrics. or

configurations. This will make it possible to see how well a

model does on training data and how well it performs in real-

world settings.

This section provides a thorough empirical comparison of

an unoptimized and optimized DBN. Through an analysis of

various metrics of classification, dataset-specific accuracies,

and K-fold validation results, the analytical process draws

attention to how optimization techniques affect a model’s

performance. From medical imaging to agricultural-based

classification tasks, the gains in predictive accuracy,

generalization, and robustness are impressive across multiple

data sets. Table 1 compares the DBN and optimized DBN

using the classification metrics.

Table 1. Comparison of classification metrics

Classification

Metric

DBN

(Unoptimized,

Above 92%

Accuracy)

Optimized

DBN (Above

98%

Accuracy)

Accuracy 93.5% 98%

Precision 0.93 0.96

Recall 0.92 0.97

F1-Score 0.925 0.965

AUC (Area

Under Curve)
0.93 0.99

Sensitivity

(Recall)
0.92 0.97

Specificity 0.93 0.98

Log-Loss 0.18 0.10

Balanced

Accuracy
0.925 0.975

ROC Curve

(AUC)
0.93 0.99

Table table 1 shows the comparison of classification

metrics for two Deep Belief Networks (DBNs): an

unoptimized version with over 92% accuracy and an

optimized version exceeding 98% accuracy. The optimized

DBN demonstrates improvements across all metrics,

including accuracy (98% vs. 93.5%) a nd precision (0.96 vs.

0.93). Recall and F1-Score also improve significantly,

indicating better performance in identifying true positives.

The optimized model has a lower log loss (0.10 vs. 0.18),

reflecting enhanced predictive certainty. Overall, the

optimized DBN achieves higher balanced accuracy and AUC,

showcasing its superior effectiveness in classification tasks.

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

126

Fig. 3 Comparison of accuracy, precision, recall, F1-score and AUC

Fig. 4 Comparison of specificity, log loss, balanced accuracy and ROC

Table 2. Comparison of existing datasets

Datasets
Accuracy

of DBN

Accuracy of

Optimized

DBN

Plant Village Datase (25) 95.5% 99%

Covid-19 Chest X-ray

Dataset (26)
93.6% 98.3%

Skin Cancer MNIST:

(HAM10000) Dataset

(27)

92.9% 97.8%

Breast Cancer Dataset

(Wisconsin) (28)
94.2% 99%

Lung Cancer Datase (29) 91.9% 97.6%

Glaucoma Fundus

Imaging Datasets (30)
93.5% 98.2%

Bone Break

Classification Image

Dataset (31)

92.6% 97.8%

Table 2 compares the accuracy of a Deep Belief Network

(DBN) and its optimized version across various datasets. The

optimized DBN consistently outperforms the unoptimized

model, with accuracy improvements ranging from 1.2% to

6.1%. For instance, the Plant Village Dataset sees an increase

from 95.5% to 99%, while the Lung Cancer Dataset improves

from 91.9% to 97.6%. All datasets show significant gains,

indicating the effectiveness of optimization in enhancing

classification performance. The optimized DBN achieves high

accuracy across diverse medical and agricultural datasets.

Fig. 5 Comparison of different datasets

Table 3. K-fold validation for existing dataset (K-fold value)

Datasets

DBN

Accuracy

(K-Fold)

Optimized DBN

Accuracy (K-

Fold)

Plant Village

Dataset
95% 99%

COVID-19 Chest

X-ray Dataset
93% 98%

Skin Cancer

Dataset

(HAM10000)

90% 97%

Breast Cancer

Dataset (Wisconsin)
97% 99%

Lung Cancer

Dataset
91% 97%

Glaucoma Fundus

Imaging Datasets
93% 98%

Bone Break

Classification

Image Dataset

89% 95%

Table 3 presents the K-fold validation results for a Deep

Belief Network (DBN) and its optimized counterpart across

various datasets, using a K value of 5. The optimized DBN

achieves higher accuracy in all datasets compared to the

unoptimized model, with improvements ranging from 2% to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Precision Recall F1-Score AUC

P
e
rf

o
rm

a
n

c
e
 M

e
tr

ic
s

DBN Optimized DBN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Specificity Log-Loss Balanced

Accuracy

ROC

P
e
rf

o
rm

a
n

c
e
 M

e
tr

ic
s

DBN Optimized DBN
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
c
c
u

ra
c
y

Datasets

DBN Optimized DBN

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

127

10%. For example, the accuracy for the Plant Village Dataset

rises from 95% to 99%, and the Bone Break Classification

Dataset improves from 89% to 95%. These results

demonstrate that optimization significantly enhances the

model’s reliability and generalization across different data

sources. Overall, the optimized DBN shows robust

performance in various applications, particularly in medical

and agricultural fields.

Fig. 6 Graph for K-fold validation

8. Conclusion
This comparative study illustrates the potential and

shortcomings of Deep Belief Networks, which are to be

compared between unoptimized and optimized architectures

in a wide range of datasets. Although effective in learning

hierarchical data representations, the unoptimized DBN

suffers from vanishing gradients, computational inefficiency,

and sensitivity to hyperparameter tuning. However, the

optimized DBN utilizes state-of-the-art techniques, including

adaptive learning rates, sparsity, pruning, and dynamic

regularization, to overcome the stated challenges, which are

important for significant improvements in terms of processing

efficiency, generalization, and classification accuracy. Key

insights of this study highlight the significance of optimization

and fine-tuning in deep learning. Methods like supervised

fine-tuning, weighted activation functions, and adaptive

updates significantly improve DBN’s performance in

minimizing overfitting, accelerating convergence, and

achieving robustness across different da tasets. Empirical

results show consistent superiority of the optimized DBN over

the baseline version, which has more than 98% accuracy and

outperforms the baseline on precision, recall, F1-score, and

AUC.

Future directions for improving DBN-based architectures

include the usage of advanced optimization techniques like

metaheuristic algorithms, which allow for hyperparameter

tuning. Transfer learning could also be further explored to

expand DBNs’ ability to various new domains. Lightweigh t

variants of DBNs can also be tested for achieving real-time

applications in resource-constrained devices. These new

developments can more accurately shape the effectiveness and

scale of DBNs, paving the way for their much wider

deployment in fields of healthcare, agriculture, and many

other areas.

Data Availability Statement
All the information was gathered from the authors’ tools

and software simulation reports. With the proper

authorization, authors are striving to implement the same,

utilizing real-world data.

Reference
[1] Bijaya Kumar Sethi et al., “Long Short-Term Memory-Deep Belief Network based Gene Expression Data Analysis for Prostate Cancer

Detection and Classification,” IEEE Access, vol. 12, pp. 1508-1524, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[2] Mehmet Ali Balcı et al., “A Series-Based Deep Learning Approach to Lung Nodule Image Classification,” Cancers, vol. 15, no. 3, pp. 1-

14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Nivaashini Mathappan, Suganya Elavarasan, and Sountharrajan Sehar, “Hybrid Intelligent Intrusion Detection System for Multiple Wi-Fi

Attacks in Wireless Networks using Stacked Restricted Boltzmann Machine and Deep Belief Networks,” Concurrency and Computation:

Practice and Experience, vol. 35, no. 23, pp. 1-27, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Junhai Luo et al., “Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture using a

Fusion of Multi-Modal Physiological Signals,” Entropy, vol. 24, no. 5, pp. 1-29, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[5] Rini Smita Thakur et al., “Nature-Inspired DBN based Optimization Techniques for Image De-noising,” Intelligent Systems with

Applications, vol.18, pp. 1-13, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Vanlalruata Hnamte et al., “A Novel Two-Stage Deep Learning Model for Network Intrusion Detection: LSTM-AE,” IEEE Access, vol.

11, pp. 37131 - 37148, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Shijie Ren, and Feng Zhou, “Semi-Supervised Classification for PolSAR Data with Multi-Scale Evolving Weighted Graph Convolutional

Network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 2911-2927, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Sreenivasan Ramasamy Ramamurthy et al., “STAR-Lite: A Light-Weight Scalable Self-Taught Learning Framework for Older Adults’

Activity Recognition,” Pervasive and Mobile Computing, vol. 87, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
DBN Optimized DBN

https://doi.org/10.1109/ACCESS.2023.3346925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory-Deep+Belief+Network+based+Gene+Expression+Data+Analysis+for+Prostate+Cancer+Detection+and+Classification&btnG=
https://ieeexplore.ieee.org/document/10373858
https://doi.org/10.3390/cancers15030843
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+series-based+deep+learning+approach+to+lung+nodule+image+classification&btnG=
https://www.mdpi.com/2072-6694/15/3/843
https://doi.org/10.1002/cpe.7769
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+intelligent+intrusion+detection+system+for+multiple+Wi%E2%80%90Fi+attacks+in+wireless+networks+using+stacked+restricted+Boltzmann+machine+and+deep+belief+networks&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/cpe.7769
https://doi.org/10.3390/e24050577
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semi-supervised+cross-subject+emotion+recognition+based+on+stacked+denoising+autoencoder+architecture+using+a+fusion+of+multi-modal+physiological+signals&btnG=
https://www.mdpi.com/1099-4300/24/5/577
https://doi.org/10.1016/j.iswa.2023.200211
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nature-Inspired+DBN+based+Optimization+Techniques+for+Image+De-noising&btnG=
https://www.sciencedirect.com/science/article/pii/S2667305323000364?via%3Dihub
https://doi.org/10.1109/ACCESS.2023.3266979
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+two-stage+deep+learning+model+for+network+intrusion+detection%3A+LSTM-AE&btnG=
https://ieeexplore.ieee.org/document/10101759
https://doi.org/10.1109/JSTARS.2021.3061418
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semi-supervised+classification+for+PolSAR+data+with+multi-scale+evolving+weighted+graph+convolutional+network&btnG=
https://ieeexplore.ieee.org/document/9361751
https://doi.org/10.1016/j.pmcj.2022.101698
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=STAR-Lite%3A+A+light-weight+scalable+self-taught+learning+framework+for+older+adults%E2%80%99+activity+recognition&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119222001110?via%3Dihub

Raji. N & S. Manohar / IJETT, 73(8), 117-128, 2025

128

[9] Luis Irastorza-Valera et al., “An Agent-Based Model to Reproduce the Boolean Logic Behaviour of Neuronal Self-Organised

Communities through Pulse Delay Modulation and Generation of Logic Gates,” Biomimetics, vol. 9, no. 2, pp. 1-18, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[10] M.R. Ezilarasan, J. Britto Pari, and Man-Fai Leung, “Reconfigurable Architecture for Noise Cancellation in Acoustic Environment Using

Single Multiply Accumulate Adaline Filter,” Electronics, vol. 12, no. 4, pp. 1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Denis Kleyko et al., “Perceptron Theory can Predict the Accuracy of Neural Networks,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 35, no. 7, pp. 9885-9899, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Vita Santa Barletta et al., “A Kohonen SOM Architecture for Intrusion Detection on In-Vehicle Communication Networks,” Applied

Sciences, vol.10, no.15, pp. 1-27, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Meha Desai, and Manan Shah, “An Anatomization on Breast Cancer Detection and Diagnosis Employing Multi-Layer Perceptron Neural

Network (MLP) and Convolutional Neural Network (CNN),” Clinical eHealth, vol. 4, pp. 1-11, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Boyan Li et al., “Efficient Deep Spiking Multilayer Perceptrons with Multiplication-Free Inference,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 36, no. 4, pp. 7542-7554, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Siyu Lu et al., “An Improved Algorithm of Drift Compensation for Olfactory Sensors,” Applied Sciences, vol. 12, no. 19, pp. 1-13, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[16] Joshua O. Ighalo, Adewale George Adeniyi, and Gonçalo Marques, “Application of Artificial Neural Networks in Predicting Biomass

Higher Heating Value: An Early Appraisal,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp.

15117-15124, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[17] Wael Deabes, Alaa Sheta, and Malik Braik, “ECT-LSTM-RNN: An Electrical Capacitance Tomography Model-Based Long Short-Term

Memory Recurrent Neural Networks for Conductive Materials,” IEEE Access, vol. 9, pp. 76325-76339, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Roos Sophia de Freitas Dam et al., “Prediction of Fluids Volume Fraction and Barium Sulfate Scale in a Multiphase System Using Gamma

Radiation and Deep Neural Network,” Applied Radiation and Isotopes, vol. 201, pp. 1-14, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[19] Luigi Tesio et al., “Interpreting Results from Rasch Analysis 2. Advanced Model Applications and the Data-Model Fit Assessment,”

Disability and Rehabilitation, vol. 46, no. 3, pp. 604-617, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Neha Ahlawat, and D. Franklin Vinod, “Clipped RBM and DBN Based Mechanism for Optimal Classification of Brain Cancer,” ICT with

Intelligent Applications, Singapore: Springer Nature, vol. 1, pp. 295-304, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Deliang Yu, and Huibo Zhang, “Fault Diagnosis Method for Submersible Reciprocating Pumping Unit Based on Deep Belief Network,”

IEEE Access, vol. 8, pp. 109940-109948, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Diego Marin-Santos et al., “Automatic Detection of Crohn Disease in Wireless Capsule Endoscopic Images Using a Deep Convolutional

Neural Network,” Applied Intelligence, vol. 53, no. 10, pp. 12632-12646, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] Aiguo Chen et al., “An Efficient Network Behavior Anomaly Detection Using a Hybrid DBN-LSTM Network,” computers & security,

vol. 114, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[24] Benyamin Abdollahzadeh et al., “Puma Optimizer (PO): A Novel Metaheuristic Optimization Algorithm and its Application in Mach ine

Learning,” Cluster Computing, vol. 27, pp. 5235-5283, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[25] Tairu Oluwafemi Emmanuel, PlantVillage Dataset, Kaggle, 2018. [Online]. Available:

https://www.kaggle.com/datasets/emmarex/plantdisease

[26] Prashant Patel, Chest X-ray (Covid-19 & Pneumonia), Kaggle, 2019. [Online]. Available:

https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia

[27] K Scott Mader, Skin Cancer MNIST: HAM10000, Kaggle, 2018. [Online]. Available: https://www.kaggle.com/datasets/kmader/skin -

cancer-mnist-ham10000

[28] UCI Machine Learning and 1 collaborator, Breast Cancer Wisconsin (Diagnostic) Data Set, Kaggle, 2016. [Online]. Available:

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

[29] Mysar Ahmad Bhat, Lung Cancer, Kaggle, 2021. [Online]. Available: https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer

[30] Arnav Jain, Glaucoma Fundus Imaging Datasets, Kaggle, 2021. [Online]. Available:

https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets

[31] Parisa Karimi Darabi, Bone Break Classification Image Dataset, Kaggle, 2025. [Online]. Available:

https://www.kaggle.com/datasets/pkdarabi/bone-break-classification-image-dataset

https://doi.org/10.3390/biomimetics9020101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Agent-Based+Model+to+Reproduce+the+Boolean+Logic+Behaviour+of+Neuronal+Self-Organised+Communities+through+Pulse+Delay+Modulation+and+Generation+of+Logic+Gates&btnG=
https://www.mdpi.com/2313-7673/9/2/101
https://doi.org/10.3390/electronics12040810
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reconfigurable+Architecture+for+Noise+Cancellation+in+Acoustic+Environment+Using+Single+Multiply+Accumulate+Adaline+Filter&btnG=
https://www.mdpi.com/2079-9292/12/4/810
https://doi.org/10.1109/TNNLS.2023.3237381
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Perceptron+Theory+can+Predict+the+Accuracy+of+Neural+Networks&btnG=
https://ieeexplore.ieee.org/document/10036478
https://doi.org/10.3390/app10155062
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Kohonen+SOM+architecture+for+intrusion+detection+on+in-vehicle+communication+networks&btnG=
https://www.mdpi.com/2076-3417/10/15/5062
https://doi.org/10.1016/j.ceh.2020.11.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+anatomization+on+breast+cancer+detection+and+diagnosis+employing+multi-layer+perceptron+neural+network+%28MLP%29+and+Convolutional+neural+network+%28CNN%29&btnG=
https://www.sciencedirect.com/science/article/pii/S2588914120300125?via%3Dihub
https://doi.org/10.1109/TNNLS.2024.3394837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Deep+Spiking+Multilayer+Perceptrons+With+Multiplication-Free+Inference&btnG=
https://ieeexplore.ieee.org/document/10535518
https://doi.org/10.3390/app12199529
https://scholar.google.com/scholar?q=An+improved+algorithm+of+drift+compensation+for+olfactory+sensors&hl=en&as_sdt=0,5
https://www.mdpi.com/2076-3417/12/19/9529
https://doi.org/10.1080/15567036.2020.1809567
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+artificial+neural+networks+in+predicting+biomass+higher+heating+value%3A+an+early+appraisal&btnG=
https://www.tandfonline.com/doi/full/10.1080/15567036.2020.1809567
https://doi.org/10.1109/ACCESS.2021.3079447
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ECT-LSTM-RNN%3A+An+electrical+capacitance+tomography+model-based+long+short-term+memory+recurrent+neural+networks+for+conductive+materials&btnG=
https://ieeexplore.ieee.org/document/9429218
https://doi.org/10.1016/j.apradiso.2023.111021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+fluids+volume+fraction+and+barium+sulfate+scale+in+a+multiphase+system+using+gamma+radiation+and+deep+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0969804323003743?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0969804323003743?via%3Dihub
https://doi.org/10.1080/09638288.2023.2169772
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interpreting+results+from+Rasch+analysis+2.+Advanced+model+applications+and+the+data-model+fit+assessment&btnG=
https://www.tandfonline.com/doi/full/10.1080/09638288.2023.2169772
https://doi.org/10.1007/978-981-19-3571-8_29
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clipped+RBM+and+DBN+Based+Mechanism+for+Optimal+Classification+of+Brain+Cancer&btnG=
https://link.springer.com/chapter/10.1007/978-981-19-3571-8_29
https://doi.org/10.1109/ACCESS.2020.3002376
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+diagnosis+method+for+submersible+reciprocating+pumping+unit+based+on+deep+belief+network&btnG=
https://ieeexplore.ieee.org/document/9116984
https://doi.org/10.1007/s10489-022-04146-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+detection+of+crohn+disease+in+wireless+capsule+endoscopic+images+using+a+deep+convolutional+neural+network&btnG=
https://link.springer.com/article/10.1007/s10489-022-04146-3
https://doi.org/10.1016/j.cose.2021.102600
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+network+behavior+anomaly+detection+using+a+hybrid+DBN-LSTM+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404821004235?via%3Dihub
https://doi.org/10.1007/s10586-023-04221-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Puma+optimizer+%28PO%29%3A+A+novel+metaheuristic+optimization+algorithm+and+its+application+in+machine+learning&btnG=
https://link.springer.com/article/10.1007/s10586-023-04221-5
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer

