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Abstract - Globally, nowadays, air pollution remains a major menace in terms of both environmental a nd public health; as such, 

accurate monitoring and forecasting the quality of air are essential for mitigating its deleterious impact. The Air Quality Index 

(AQI) is used to detect the quality of air and its hazardous effects on human health. This paper tries to formulate a forecasting 

mechanism for AQI by measuring the rate of the major issues causing air pollutants such as PM2.5, PM10, O3, CO, SO2, NO2, 

Pb(lead), and NH3. Hence, this paper formulates a model that combines both Convolutional Neural Networks (CNNs) along 

with Transformers and an enhanced Attention Mechanism to improve the prediction accuracy. CNNs are intended for effective 

feature extraction and capturing spatial patterns in air quality data, while the transformer model captures the sequential 

dependencies, allowing for accurate predictions over time. This proposed hybrid model addresses the limitations of age -old time-

series models like ARIMA and LSTM, which often struggle to analyze the complex spatial-temporal air quality relationship. The 

proposed model was trained using the same historical air quality data provided by the Government of India (GoI) for training 

and validation, with real-time deployment with live sensor data. Also, the use of cloud computing ensures efficient handling of 

live data streams, enabling real-time data processing, prediction, and updates. This allows for quick , scalable and reliable 

predictions on large, diverse datasets, timely public health alerts, and supports proactive environmental management.  

Keywords - Air Quality Forecasting, Attention mechanism, Transformer, CNN, Cloud computing. 

1. Introduction 
It is an inevitable fact that air pollution is one of the major 

environmental hazards affecting global health. With 

increasing urbanization and industrialization, accurate 

forecasting of air quality has become imperative for 

governments and other organizations to manage and track the 

pollution levels effectively. The Air Quality Index (AQI) is 

used to categorize air pollution levels of different pollutants 

based on several attributes and provide recommendations to 

the public. This paper proposes the integration of Attention 

Mechanisms, Transformers, and Convolutional Neural 

Networks (CNNs) for more accurate AQI predictions.  

Traditional forecasting models such as ARIMA, Support 

Vector Machines (SVM), and Long Short-Term Memory 

(LSTM) networks have limitations, including difficulty 

handling long-range dependencies and the need for feature 

engineering. Transformers, with their self-attention 

mechanisms, and CNNs, with their ability to capture spatial 

patterns, provide an excellent solution for these issues. By 

combining these two methods, this work aims to capture both 

spatial and temporal dependencies in air quality data, 

significantly improving forecasting accuracy. 

However, models such as ARIMA and LSTM have some 

limitations when dealing with complex air quality data. 

ARIMA often shows difficulty in capturing non-linear 

relationships. Despite the capability of LSTM in learning 

time-based patterns, it sometimes struggles with long-term  

dependencies as well as spatial intricacies. On top of this, there 

was a notable lack of integrated approaches that leverage 

extended deep learning techniques with real-time data 

processing with the support of cloud infrastructure. So, this 

study aims to fill this gap by formulating a hybrid approach 

that utilizes the spatial learning ability of Convolutional 

Neural Networks, the Transformer’s temporal modelling 

strength, and the option of cloud computing for scalability.  

Moreover, the integration of the proposed system with 

AWS cloud services ensures scalable computation and real-

time data ingestion and prompts AQI forecasting across 

diverse geographic regions. Hence, it is evident that this newly 

proposed end-to-end architecture is the first to holistically 

combine deep learning algorithms, attention mechanisms, and 

cloud computing for dynamic AQI monitoring by surpassing 

the limitations of existing standalone models. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dianageorge-cse@dsu.edu.in
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2. Literature Survey 
Research related to the quality of air and its forecasting 

has evolved through several modelling approaches, stretching 

from traditional statistical models to the advanced state-of-

the-art deep learning frameworks. This section presents the 

major contributions to ARIMA-based, LSTM-based, 

Transformer-based, hybrid, and cloud-enabled real-time 

models. 

2.1. ARIMA-Based Models 

The ARIMA is one of the earliest statistical tools 

employed for time-series forecasting in environmental studies 

due to its efficiency in modelling short-term linear trends in 

pollutant concentration. Nonetheless, its ability to capture 

non-linear and rapidly changing patterns remains a question. 

To exemplify, studies like that of X. Yuan et al. [1] used 

ARIMA with decomposition and other filtering methods to 

enhance prediction accuracy. Despite improvements, ARIMA 

alone is not capable of dealing with multi-dimensional and 

fluctuating air quality data. 

2.2. LSTM-Based Models 

To overcome ARIMA’s limitations in handling temporal 

non-linearity, Long Short-Term Memory (LSTM) networks 

have been introduced extensively. These models are well-

suited for capturing sequential patterns and temporal 

dependencies in pollution data. Z. Zhou [2] demonstrated how 

a Bayesian variant of LSTM could predict PM2.5 levels with  

high accuracy while offering interpretability. Similarly , 

Preethi et al. [3] incorporated Bi-LSTM into an IoT-enabled 

framework, allowing for real-time predictions. Even though it 

is powerful, LSTM models tend to require substantial training 

data and sometimes fail to capture long-range dependencies in 

highly unstable environments. 

2.3. Transformer-Based Models 

Transformer models, initially formulated for language 

processing, have shown significant relevance in time-series 

forecasting due to their self-attention mechanisms. Unlike 

LSTM, Transformers are better at obtaining long-term  

dependencies without relying on recurrence. Q. Guo et al. [4] 

proposed a Transformer-based AQI predictor, Air Former, 

that outperformed several traditional models across extensive 

datasets. In addition, Wu J et al. [5] presented a framework 

incorporating interpretability and uncertainty estimation, 

which is crucial for policy-level decisions. However, these 

models tend to focus more on temporal aspects and often miss 

spatial context, which is also vital in air quality analysis. 

2.4. Hybrid Models 

In present times, many hybrid models achieve better 

results than relying on a single technique due to the 

contribution of the advantages of every single unit. It 

ultimately integrates statistical and neural components, which 

have shown superior accuracy in forecasting. Yanrong Ma et al. 

[6] used a combination of SARIMA and LSTM, optimized via 

the Sparrow Search Algorithm, to capture both trend and noise 

in AQI patterns. Dong Z et al. [7] took a broader approach by 

combining decomposition, optimization, and machine 

learning elements into a unified hybrid system. While such 

models improve predictive strength, they can be 

computationally intensive and sometimes lack portability for 

real-time applications. 

2.5. Real-Time and Cloud-Based Forecasting 

Due to the increasing demand for responsive air quality 

systems, integrating machine learning with cloud and IoT 

technologies has become essential. Preethi et al. [3] 

demonstrated how a Bi-LSTM-based model embedded in an 

IoT system could offer prompt AQI forecasts. Further 

innovations like those by S. Veera Manikandan et al. [8] have 

explored IoT-based frameworks leveraging fog computing for 

real-time pollutant analysis at the edge. In another effort, N. 

Nilesh et al. [9] curated a large-scale real-time AQI dataset for 

machine learning model training. These real-time systems are 

promising, yet they face challenges in terms of data 

consistency, sensor calibration, and generalizability across 

different regions. 

3. Methodology 
The methodology outlines the step-by-step procedures for 

the development of a  hybrid model for predicting air quality 

index (AQI) using CNN with Transformer’s Self-Attention 

Mechanisms. The key steps in the process are explained in 

detail in the following sessions. 

3.1. Data Set Collection  

The first step is to gather the air quality data from real-

time sensors and historical datasets. These datasets typically 

contain pollutant rates of PM2.5, PM10, SO2, O3, CO, NO2, 

Pb, and NH3, along with the parameters values that affect the 

pollutant values. The Parameters that has taken into account 

for the implementation of this model are Temperature, 

Minimum Temperature (Tm), Moisture Content (PP), 

Visibility Value (VV), Humidity(H), Wind Rate(V), 

Maximum Wind Rate (VM) timestamps, Maximum 

Temperature (TM),  and other metadata like geographic 

location from government sensors, environmental monitoring 

systems. 

Table 1. Attribute list considered for this model training 

Attribute Details 

Source of the 

Data  

Government of India (GoI) Air 

Quality Data  

Features 
PM2.5, PM10, O3, CO, NO2, SO2, 

Pb, NH3 

Data Size 
X observations  

(e.g., number of records) 

Sensor 

Locations 
Various locations in India  
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Fig. 1 Workflow of the proposed model 

3.2. Data Pre-Processing 

This is an essential step before applying the model to 

ensure the data is clean, normalized, and well-represented. 

3.2.1. Normalization 

Normalization ensures that each pollutant feature is 

scaled between the range of 0 and 1. This can be ensured 

through Min-Max normalization. Given a raw pollutant value 

𝑥𝑟𝑎𝑤, the normalized value 𝑥𝑛𝑜𝑟𝑚, is calculated as: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑟𝑎𝑤 −𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
  (1) 

Where, 

• 𝑥𝑟𝑎𝑤 is the raw pollutant value. 

• 𝑥𝑚𝑖𝑛  is the minimum and 𝑥𝑚𝑎𝑥 is the maximum value of 

the feature of the dataset. 

• 𝑥𝑛𝑜𝑟𝑚 is the normalized value of the pollutant. 

3.2.2. Handle Data Missing 

To handle the missing data in the dataset, the model 

utilizes the advantages of the moving average method. For a 

pollutant 𝑥 𝑖 at time step i, the imputed value  𝑋(𝑖𝑚𝑝𝑢𝑡𝑒𝑑 )𝑖  is 

computed as the average of the previous k and next k 

neighbouring values: 

𝑋(𝑖𝑚𝑝𝑢𝑡𝑒𝑑 )𝑖 =
1

2𝑘+1
∑ 𝑥𝑗

𝑖+𝑘

𝑗=𝑖−𝑘
 (2) 

Where, 

• 𝑥𝑗 is termed as the observed pollutant values at 

neighbouring time steps, 

• K is known as the window size, typically set to 3 or 5 

based on the dataset. 

3.2.3. Feature Engineering (For Temporal Features) 

In this step, temporal features like time of day, day of the 

week, and the month of the year need to be captured to find 

the periodicity of air quality data. 

• Time of a  Day (Hour): Extracting the hour from the 

timestamp T using 

Hour(T) = T mod 24 (3) 

Where, Hour(T) is the hour of the day, ranging from 0 to 

23. 

• Day of the Week: Extracting the day of the week from the 

timestamp using 

DayOfWeek(T) = [
T

24 ⨯ 7
] (4) 

Where, DayOfWeek(T) is an integer from 0 (Sunday) to 

6 (Saturday)  

• Month of a  Year: Extracting the month of the year using 

Month(𝑇) = [
T

24⨯30
] + 1  (5) 

Where, Month(𝑇)  is an integer from 1 (January) to 12 

(December). 

These features help the model capture the seasonal and 

periodic patterns of the air quality data. 

Data Collection 

Data pre-processing 

Spatial feature Extraction 

Temporal Dependency 

Modelling 

AQI Pollutant Prediction 

Real Time Data 

Streaming 

Model Deployment 

Model Training 

Sensor Data Pre-

processing 

Feed To Model 
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3.3. Spatial Feature Extraction By CNN 

Spatial pattern features from the air quality data  extracted 

by the CNN are happened in this phase. Hence, given an input 

feature matrix 𝑥 𝑖𝑛𝑝𝑢𝑡,  representing the air quality data, where 

each feature corresponds to a pollutant at a  specific location, 

the CNN model applies convolutional filters 𝑊 to capture 

spatial features. 

𝑌𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑛𝑣2𝐷 (𝑥 𝑖𝑛𝑝𝑢𝑡,𝑊, 𝑏) (6) 

Where, 

• 𝑥 𝑖𝑛𝑝𝑢𝑡, is the raw input feature matrix, 

• 𝑊 is the convolutional kernel (filter), 

• 𝑏 is the bias term, 

• 𝑌𝐹𝑒𝑎𝑡𝑢𝑟𝑒 is the output feature map from the convolution. 

 
Fig 2. Architecture of CNN-feature extraction 

After convolution, a non-linear activation function 

(ReLU) is applied: 

𝑌𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ReLU(𝑌𝐹𝑒𝑎𝑡𝑢𝑟𝑒) (7) 

The feature map generated by the CNN captures spatial 

patterns in the air quality data, which are then passed to the 

Transformer for temporal modelling. 

3.4. Transformer for Temporal Sequence Modelling 

Once spatial features are extracted, the role of the 

transformer will come into play for capturing temporal 

dependencies from the pollutant value. The input to the 

Transformer is the feature map. 𝑌𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  from the CNN. The 

input to the Transformer is transformed using an embedding 

layer: 

 𝑋(𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟)𝑖𝑛𝑝𝑢𝑡 = 𝑌𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. 𝑊𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (8) 

Where, 

• 𝑊𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔  is the embedding matrix that maps the spatial 

features into a higher-dimensional space. 

The Transformer model employs self-attention to model 

long-range dependencies between different time steps. The 

self-attention mechanism calculates attention scores as:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) =
𝑄𝐾𝑇

√𝑑𝑘
 (9) 

Where, 

• Q is the query, K is termed the key and V  is mentioned 

as the value matrices. 

• 𝑑𝑘 is the key vector dimension. 

 
Fig 3. Transformer’s attention mechanism 

The output of it is a  weighted sum of the value vectors: 

𝑌𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ∑ (α𝑡 . 𝑌𝑡
)𝑇

𝑡=1  (10) 

Where, 

• α𝑡  is the attention weight at time t 

• 𝑌𝑡 is the predicted output at time t 

This attention mechanism allows the model to focus on 

relevant time steps and improve prediction accuracy. 

3.5. Model Training 

The model is trained and evaluated by the Mean Squared 

Error (MSE) loss function that minimizes the difference (if  

any) between predicted and actual AQI by considering the 

following hyperparameter values. 

  ℒ𝑀𝑆𝐸 =
1

N
∑ (Y𝑝𝑟𝑒𝑑 ,𝑖 − 𝑌𝑡𝑟𝑢𝑒,𝑖)

𝑁

𝑖=1
2  (11) 

Here, 

• Y𝑝𝑟𝑒𝑑 ,𝑖 is termed as the predicted value at the time step 𝑖, 

• 𝑌𝑡𝑟𝑢𝑒,𝑖 is known for the actual value at the time step 𝑖, 

• N is the total number of time steps. 

Table 2 will provide a clear insight into various 

hyperparameter values for the best accuracy of the proposed 

model. 
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Table 2. Hyperparameter values need to be set for the model 

Hyperparameter Magnitude 

Optimizer Adam gradient descent optimizer 

Batch Size 32 

Learning Rate 0.001 

Epochs 50 

Dropout Rate 0.3 

3.6. Performance Evaluation 

The adaptation of the model is assessed using several key 

metrics, namely: 

• Root Mean Squared Error (RMSE) 

 𝑅𝑀𝑆𝐸 = √
1

N
∑ (Y𝑝𝑟𝑒𝑑 ,𝑖 − 𝑌𝑡𝑟𝑢𝑒,𝑖)

𝑁

𝑖=1
2  (12) 

• Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

N
   ∑ |Y𝑝𝑟𝑒𝑑 ,𝑖 − 𝑌𝑡𝑟𝑢𝑒,𝑖|

𝑁

𝑖=1
  (13) 

These metrics provide a clear picture of how accurately 

the model predicts AQI values. 

3.7. Model Deployment in the Cloud 

The model that has been trained using the static historical 

data is then deployed and hosted in the cloud platform, i.e., on 

AWS, and now the web service can accept the sensor real-time 

data and is able to make accurate predictions based on it. 

3.8. Real-Time Data Processing 

Once the model is deployed to the cloud, it will stream 

live sensor data. For easy analysis, the whole process from 

here onwards is broken down into numerous Stages. 

3.8.1. Data Ingestion using AWS Kinesis 

The live air related data from various air quality sensors 

like pollutant values (e.g., PM2.5, PM10, CO, NO2, SO2, 

etc.), sensor metadata (such as Sensor ID, Location, 

Timestamp), and environmental parameters (Temperature(T), 

Maximum Temperature (TM), Minimum Temperature (Tm), 

Humidity(H), Moisture Content (PP), Visibility Value (VV), 

Wind Rate(V), Maximum Wind Rate (VM)), used to send to 

the cloud through AWS Kinesis pipelining. This AWS Kinesis 

plays the role of a  real-time data ingestion platform, providing 

high-throughput and low-latency data transfer to the cloud 

environment. 

3.8.2. Data Pre-processing, Feature Engineering and 

Normalization 
    After obtaining the data, it needs to undergo a cleaning and 

pre-processing stage for the exact prediction of air quality by 

the deployed model. It involves handling missing or corrupted 

data, outlier detection, and ensuring the data format is 

consistent. Then, Feature Engineering and Data normalization 

should be done respectively on the processed data by 

automating the Cloud services such as AWS Lambda , because 

it enables serverless computing, allowing for scalability and 

low operational overhead. Feature engineering targets to 

enhance the input data for the prediction model by deriving 

additional features from the raw data, such as temporal 

features as well as aggregating pollutant data from different 

sensors based on geographical proximity to create meaningful 

inputs for the model, However, Normalization is a pivot step 

as it standardizes the pollutants’ values and ensure they are on 

a comparable scale before feeding them into the model for 

prediction. 

3.9. AQI Prediction 

After processing, the data is pipelined to the Transformer 

model and attention mechanism, and the model generates the 

final AQI prediction. This is typically done by aggregating the 

contributions from different pollutants, as AQI is a composite 

index. As per the Government of India, AQI is categorized 

into various ranges based on the value of several listed 

pollutants. Such values are formulated and shown in the table 

below. 

As such, AQI is calculated by combining pollutant 

concentrations and applying a set of weights: 

𝐴𝑄𝐼 = ∑ (w𝑖 .𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑖
)𝑛

𝑖=1  (14) 

Where, 

• w𝑖  is the weight for pollutant i, 

• 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖  is the concentration of pollutant i, 

• n is the number of pollutants considered. 

4. Results Analyses and Discussion 
4.1. Results and Comparative Analysis 

To validate the performance, it is required to compare the 

obtained result against several other baseline models, like 

ARIMA, LSTM, RF, and SVM, for better clarity and 

confirmation of the superior performance. First, the model was 

evaluated based on several key error metrics as mentioned in 

Table 3. These metrics ultimately provide a comprehensive 

understanding of prediction accuracy, model generalization, 

and consistency. 

Table 3. Performance evaluation and comparison of various models 

based on AQI prediction 

Model 
RMSE 

(µg/m³) 

MAE 

(µg/m³) 

R² Score 

(%) 

ARIMA 24.51 18.84 72.23 

LSTM 17.78 12.42 85.11 

Random Forest 15.65 11.07 87.04 

Support Vector 

Machine (SVM) 
19.29 13.83 77.56 

Proposed Hybrid 

CNN + Transformer 
8.32 6.88 95.37 
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Fig. 4 RMSE Trends over Forecast Days 

The results clearly demonstrate that the proposed hybrid 

model undoubtedly reduces prediction errors and achieves the 

highest R² score among the contemporaries, indicating a 

strong correlation between actual and predicted AQI values. 

4.2. Temporal Error Trend Analysis 

To further evaluate the model’s robustness, the RMSE 

and MAE values were calculated over a weekly prediction 

interval. The graph below clearly illustrates the fluctuations in 

RMSE across a 14-day forecast window using different 

models. 

As compared to the baseline models, the proposed hybrid 

model upheld a steadily low RMSE over time, meaning better 

stability as well as generalization capability. In contrast, 

traditional models like ARIMA showed higher variance, 

especially when pollutant levels were highly dynamic . 

4.3. Performance Analysis Based on Region 

The model was tested with the datasets collected from 

urban, suburban, and rural environments. The results had 

shown slightly better performance.  

 
Fig. 5 AQI prediction performance across different geographic zones 

4.4. Comparison Discussion 

It is evidently proven that the proposed model 

outperforms the existing conventional methods due to the 

complementary strengths of individual components. Models 

like ARIMA are effective only in capturing linear patterns but 

fail in dealing with intrinsic non-linear relationships in air 

quality data. While LSTM networks are capable of modelling 

temporal dependencies, they show low performance with  

long-range sequences and lack spatial awareness. 

However, the Convolutional Neural Network (CNN) 

component in the proposed model captures spatial variations 

of pollutant concentrations across different regions. This 

allows the system to learn localized air quality patterns more 

effectively. In addition to that, the Transformer network, with 

an enhanced self-attention mechanism, drives long-range 

temporal dependencies far better than LSTM, enabling the 

model to consider pollutant behaviour across extended time 

periods. 

Also, a key game-changer of the proposed model is the 

deployment to the cloud platform for real-time prediction by 

allowing continuous ingestion of live sensor data, scalable 

processing, and immediate AQI prediction and alert 

generation. It significantly improves the model’s practical 

usability for environmental monitoring and public health 

response awareness. 

4.5. Limitations and Future Work 

Even though the proposed model depicts superior 

performance in forecasting AQI, certain limitations still exist, 

like its accuracy heavily relies on the quality and availability 

of sensor data, which may or may not vary across regions. 

Additionally, deploying the system on the cloud infrastructure 

sometimes introduces latency issues, leading to higher costs in 

remote or resource-constrained environments. Most 

prominently, the current model does not account for some 

other external factors, such as traffic density or industrial 

emissions. In future work, as an extension, it is planned to 
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experiment on satellite-based environmental data and expand 

its adaptability to accommodate different national AQI  

standards. Moreover, the development of mobile-based AQI 

alert systems is planned to improve public accessibility and 

real-time responsiveness. 

5. Conclusion 
Air pollution remains a challenge that needs to be tackled 

on an urgent basis because it creates significant risks to public 

health, besides posing an environmental threat. Therefore, 

sound forecasting of the air quality is requisite for mitigating 

these challenges. Hence, this paper attempts to introduce an 

advanced state-of-the-art forecasting model that integrates 

Convolutional Neural Networks (CNNs), Transformer 

networks enhanced by a self-attention mechanism, and cloud 

computing infrastructure for better accuracy while dealing 

with sophisticated spatial and temporal patterns of the air. 

The CNN component of the model excels at capturing 

spatial dependencies by processing and extracting features 

from air quality data , and these features are vital for estimating 

how air quality varies across diverse environments for the 

accurate prediction of the Air quality of a given locality. 

On the temporal side, the Transformer network with a 

self-attention mechanism plays a crucial role in the effective 

capture of long-range dependencies within the data, as this 

result will help in understanding past pollutant behaviours 

trend and how it influences future forecasts. 

The real-time prediction process is further made reliable 

and accurate by the deployment of the model on cloud 

infrastructure. Cloud computing provides the room for 

handling large-scale datasets, especially live continuous 

streams of sensor data ; hence, it ensures that the model can 

operate in real-time and is capable of providing up-to-date 

predictions. The cloud deployment also ensures scalability, as 

the model can easily handle data from multiple air sensors 

across different regions.  

To conclude, this model combines the strengths of CNNs 

for spatial pattern extraction, Transformers for modelling 

complex temporal dependencies, and cloud infrastructure for 

real-time, scalable processing. Through addressing the spatial-

temporal challenges in air quality forecasting, the model 

provides a novel, robust solution for predicting AQI and 

enabling timely health alerts. This fine, innovative approach 

can significantly improve air quality monitoring systems. 
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