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Abstract - Frequent Subgraph Mining (FSM) is a key technique for identifying recurring structural patterns in large graph 

datasets. It has a broad spectrum of applications ranging from bioinformatics and cheminformatics to social network analysis. 

Nonetheless, state-of-the-art FSM algorithms, such as gSpan, still suffer from a scalability problem stemming from the 

exponential candidate generation and the in-memory constraint. Although existing distributed methods (such as FSM-MR) are 

MapReduce-friendly, they suffer from static reducer assignment, redundant subgraph recomputation, and inefficiency in pruning. 

Such constraints significantly influence the run-time efficiency, quality of patterns, and scalability on large-scale real-world big 

data. To address these challenges, an enhanced MapReduce-based pattern searching framework, FSM-MR++, is proposed for 

efficient and adaptive frequent subgraph discovery. The framework incorporates three innovations: a hybrid caching technique 

to prune repetitive subgraph generation, a dynamic reducer configuration scheme to prevent skewed task distribution, and a 

density-aware pruning strategy to abandon unpromising candidates early during mining. These primitives are combined with 

canonical Labeling and cost-aware partitioning to optimize parallelism and convergence. A quantitative evaluation is conducted 

to assess its performance on both synthetic and real datasets. It was observed that FSM-MR++ runs up to 30% faster than FSM-

MR and is up to half the run-time of centralized gSpan, while still enabling high-quality, interpretable patterns. We conduct a 

series of ablation studies to validate the improvements introduced by each proposed enhancement , and scalability tests are used 

to evaluate the framework against growing data and cluster sizes. The framework’s efficacy in discovering target-specific 

substructures in a domain and in an interpretable manner is demonstrated using real-world, PubChemBioAssay, and DBLP 

datasets. In general, FSM-MR++ fills the gaps of current FSM methods, providing a scalable, efficient, and flexible solution for 

frequent subgraph mining in a distributed big data setting. 

Keywords - Frequent Subgraph Mining, MapReduce framework, Distributed graph Mining, hybrid caching, Dynamic reducer 

scaling. 

1. Introduction  
As a subtask of data mining and knowledge discovery, 

Frequent Subgraph Mining (FSM) is now widely recognized  

for analyzing large amounts of graph data from various 

application domains, including bioinformatics, 

cheminformatics, social networks, and cybersecurity. 

Discovering frequent subgraphs from graph databases for 

molecular activity pattern analysis, collaboration network 

analysis, and inter- and multi-relational network discovery is 

a challenging and active area of research. Nevertheless, 

traditional FSM methods,  including gSpan and FSG, suffer 

from expensive computing and insufficient scalability on 

large-scale graph data. Distributed FSM algorithms, such as 

FSM-MR, have attempted to address these challenges through 

MapReduce. Still, they suffer from static reducer allocation 

problems, high redundancy among candidates, and a lack of 

adaptive pruning. Recent research studies have drawn 

attention to the necessity of scalable, adaptive, and workload-

balanced FSM techniques that can handle millions of graphs 

in a distributed computing environment [1-3]. Existing 

methods predominantly rely on memory-based calculations or 

overlook task balance and convergence optimization, which is 

unsuitable for real-world big data applications.  

Accordingly, a framework capable of reconciling 

MapReduce’s robustness while incorporating algorithmic 

optimizations for efficiency and redundancy reduction, and 

preserving the significance of pattern-derived information is 
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needed. Although many distributed FSM methods are 

proposed, including FSM-MR, G-thinker, and PEREGRINE, 

they still suffer from various persistent problems: (i) Static 

task allocation suffers from load balance, (ii) Isomorphic 

subgraphs can be generated and recomputed redundantly, and 

(iii) Memory and reducer scalability are not efficient for large, 

dense, or irregular graph structures. Such restrictions slow 

down convergence speed, increase the overhead costs in 

measurable resources, and decrease the releva nce of the 

learned patterns, particularly in real-world settings, where 

low-scale and high-parallel interpretability is needed. 

Additionally, adaptive scheduling and memory-aware 

optimization techniques are not well-coupled in studies based 

on the MapReduce paradigm; thus, a  unified and scalable 

framework for FSM is still lacking. 

To address these challenges, we propose FSM-MR++, a 

novel and more efficient framework for frequent subgraph 

mining based on MapReduce. We develop our proposed 

solution based on five innovations: (1) graph partitioning 

strategy to alleviate load skews, (2) cost-aware mapper 

scheduler to achieve balanced memory and computation, (3) 

hybrid memory-caching mechanisms to reduce disk I/Os, (4) 

density-aware candidate pruning to prune low utility patterns 

early, and (5) dynamic reducer scaling to dynamically and 

optimally spread the iterative tasks. The innovations in FSM-

MR++ are: (i) adaptive parallel mining by dynamically 

allowing or disallowing map tasks to avoid redundant 

computation, and (ii) increased convergence time (until 

satisfying PoE) without losing pa ttern quality, as compared to 

state-of-the-art methods. Our solution retains interpretability 

and domain relevance, outperforming traditional models 

(gSpan) and more recent frameworks (FSM-MR) in terms of 

running time, achieving up to 30% faster execution time and 

up to 50% run-time reduction on various real-world datasets. 

The rest of the paper is structured as follows: Section 2 

reviews the literature on related work and advancements in 

FSM. Section 3 presents the proposed FSM-MR++ method, 

consisting of an architecture and two algorithmic components. 

Section 4 describes the experimental results, ablation studies, 

and scalability tests. Section 5 concludes and discusses related 

work and limitations. The remainder of this article is  

organized as follows: Section 6 summarizes and concludes the 

article, discussing future work. 

2. Related Work 
This literature review explores recent advancements, 

limitations, and future directions in scalable subgraph mining 

and graph-based data analytics. Yan et al. [1] presented 

PrefixFPM, an adaptable framework for mining common 

patterns that addresses shortcomings in current methods and 

makes recommendations for future improvements. Yan et al. 

[2] examined the shortcomings of current models, evaluated 

developments in graph-parallel systems, and looked at 

potential directions for graph analytics. Besta and Hoefler [3] 

discovered efficiency issues, evaluated graph neural network 

parallelism, and made recommendations for future 

optimization research paths. Megherbi et al. [4] developed a 

deep learning technique for dense subgraph mining, 

highlighting its advantages while acknowledging its 

drawbacks and recommending potential improvements. Yang 

et al. [5] examined and categorized Personalized PageRank 

methods, highlighting issues with efficiency and suggesting 

further research on dynamic graph applications and systematic 

comparisons. 

Vandierendonck [6] presented novel set intersection 

methods for maximal clique enumeration, highlighting the 

difficulties associated with higher graph sizes while achieving 

notable speedups. Lu et al. [7] developed Xorbits, a  scalable 

data science platform that addresses out-of-memory problems; 

further development is needed to make it compatible with a 

broader range of applications. Gao et al. [8] presented CSM-

TopK, a method for identifying high-density matches in 

dynamic weighted graphs, highlighting its NP-hardness and 

offering enhancements for broader application. Ponnusamy 

and Gupta [9] investigated cloud-based, scalable data-

partitioning strategies, highlighting inefficiencies and 

recommending future improvements for data-intensive 

applications. Yao et al. [10] developed the MSBE algorithm, 

which addresses shortcomings in current models and proposes 

improvements for the future, to locate similar bicliques in 

bipartite networks efficiently. 

Yu et al. [11] presented KSP-DG, a distributed technique 

that addresses scalability challenges and proposes efficient 

indexing for k-shortest paths in dynamic road networks. Wei 

et al. [12] created the geospatial knowledge graph 

FineGeoKG, which effectively captures strong geographic 

linkages and improves query speed while recommending 

improvements. Zhang [13] examined the use of extensive 

health data analytics to enhance the performance of senior 

employees, highlighting the challenges and upcoming tasks in 

integrating complex medical systems. Yuan et al. [14] 

developed a batch processing approach to enhance the 

performance of multiple searches in large networks for hop-

constrained s-t path enumeration. Das et al. [15] examined 

stock prediction using GNNs and sentiment analysis, pointing 

out its drawbacks and recommending areas for further study. 

Liu and Seshadhri [16] proposed a novel triangle counting 

approach for constrained arboricity graphs that balances space 

constraints with efficiency. Erbel and Grabowski [17] 

developed a dynamic run-time architecture for scientific 

processes that enables the integration of bespoke apps and 

real-time resource management; further improvements are 

recommended. Mahnoor et al. [18] examined quick clustering 

techniques, identified issues, and suggested avenues for 

further study to enhance the effectiveness and relevance of 

these techniques across various domains. Dahiphale et al. [19] 

developed BiECCA, a distributed algorithm that addresses the 
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limitations of single-node methods for identifying 2-edge-

linked components in large networks. Chaturvedi et al. [20] 

utilized FP-Growth and PFP-Growth to analyze social media 

data and identify common patterns, highlighting 

preprocessing flaws and potential areas for further study. 

Song et al. [21] developed a filtering-based optimal 

partial assessment technique to enhance the efficiency of 

subgraph matching in large knowledge networks. Ma et al. 

[22] examined 98 articles on the use of Hadoop in big data for 

transportation, identifying patterns, weaknesses, and areas for 

further study. One of its limitations is an inadequate 

comprehensive study of Hadoop’s basic technology. Yan et al. 

[22] examined graph mining approaches for cybersecurity, 

discussing current solutions and highlighting important 

datasets and methodologies.  

Among the drawbacks is the requirement for better cyber 

entity correlation modeling. Research directions for the future 

are suggested. Kumbhkar et al. [24] developed a data 

reduction plan to address the challenges in making significant 

decisions with large datasets for multiclass classification in 

survival analysis. One of the limitations is the potential 

simplification of complicated data . Future research ought to 

investigate further optimization strategies. Asmaa et al. [25] 

proposed a scalable approach to reduce communication costs 

in graph mining; however, further advancements are needed 

for broader applications. 

Mo et al. [26] discussed cohesive subgraph mining, 

particularly k-trusses, but pointed out scalability issues and 

recommended further study. Reddy et al. [27] developed the 

SIFT framework to identify subgraph coverage patterns in 

graph transactional data, emphasizing its effectiveness but 

requiring further evaluations of its broader application. Liu et 

al. [28] evaluated Subgraph enumeration using MapReduce 

algorithms, highlighting scalability issues and stressing the 

need for better overhead control in distributed systems. Pasini 

et al. [29] enhanced semantic representation by introducing a 

frequent subgraph mining approach for picture 

summarization; nonetheless, future research may investigate 

more extensive applications. Ayall et al. [30] examined 

computer systems and graph partitioning for large-scale 

analytics, addressing scalability issues and offering ideas for 

future study. 

Zhang et al. [31] addressed the current model’s 

shortcomings and suggested additional improvements by 

developing a novel temporal graph model and clustering 

technique to enhance accuracy and efficiency. Ma et al. [32] 

demonstrated an effective DDS solution utilizing [x, y]-core 

principles, which significantly increased performance; 

nonetheless, further scalability improvements are required. 

Wang et al. [33] presented GPARs for social network analysis, 

which utilize scalable algorithms to solve discovery problems; 

however, additional optimization may be needed. Hua et al. 

[34] improved accuracy and efficiency by using colSimulation 

for frequent graph pattern mining; nevertheless, scalability has 

to be improved in future work. Franco et al. [35] enhanced 

scalability and efficiency by developing Variable Resolution 

LSH for approximation kNN graphs, while more optimization 

research is advised. 

Guo et al. [36] proposed a GPU-based method for 

subgraph enumeration optimization by reusing intersection 

results, which enhances performance; however, further 

efficiency improvements are needed in future studies. Sun and 

Luo [37] examined the advantages and disadvantages of eight 

subgraph matching techniques and recommended additional 

optimization for more extensive searches. Pashanasangi and 

Seshadhri [38] presented EVOKE, a scalable approach for 

counting local subgraphs that improves speed and efficiency.  

However, scalability may be further enhanced in future 

studies. Yuan et al. [39] reduced latency and costs by 

introducing GeoGraph for effective geo-distributed graph 

query processing; nevertheless, scalability upgrades are 

required in the future. Rajita et al. [40] offered a Spark-based 

social network event prediction framework that achieves 

excellent efficiency and accuracy. However, scalability might 

be improved with additional tuning. The review synthesizes 

contributions across distributed subgraph mining, dynamic 

graph analysis, and parallel processing frameworks. While 

many studies offer scalable solutions using MapReduce, 

GNNs, and GPUs, challenges such as data partitioning, 

overhead reduction, and scalability persist. Future work 

should focus on enhancing adaptability, efficiency, and 

support for real-time, large-scale graph analytics. 

3. Proposed Framework 
This section presents the FSM-MR++ framework to 

overcome the scalability and efficiency challenges in 

distributed frequent subgraph mining. It introduces key 

enhancements, including hybrid caching, dynamic reducer 

scaling, and density-aware pruning. The overall system 

architecture, iterative execution workflow, and algorithmic 

modules are detailed to illustrate the framework’s 

adaptability, performance optimization, and pattern quality 

assurance. 

3.1. Preliminaries: FSM-MR Framework 

The framework of FSM-MR is a distributed frequent 

subgraph mining framework proposed by the authors in [41] 

in an earlier study. We proposed FSM-MR, the first algorithm 

for subgraph mining within the MapReduce programming 

paradigm, to overcome scalability and performance problems. 

This new work, FSM-MR++, expands upon the ideas, 

implementation, and results of FSM-MR. This section 

provides a brief introduction to FSM-MR for completeness. 

Still, interested readers are referred to [41] for more 

comprehensive details about the algorithm design, 

implementation, and baseline performance measurements.  
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Frequent Subgraph Mining (FSM) is a data mining task 

that finds user-defined subgraphs of a given graph dataset. A 

subgraph gg is considered frequent if it can be found in at least 

graphs in the database 𝒟 = {𝐺1 , 𝐺2 , … , 𝐺𝑛
}, where 𝜎 is a  user-

defined minimum support threshold: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔 ⊆ 𝐺𝑖
}| (1) 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑓:  𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) ≥ 𝜎  (2) 

FSM is computationally demanding, stemming from two 

main problems: the exponential increase in subgraph 

candidates and the difficulty of checking subgraph 

isomorphism. FSM-MR [41] copes with this problem with a 

distributed iterative MapReduce-based design, where at each 

iteration, previously discovered frequent subgraphs are 

extended and infrequent ones are pruned.  

The mapping phase, used for constructing the subgraph, 

and the reduction phase, used for the support computation,  

compose the framework along with a Driver module managing 

iterative execution.  

FSM-MR generates all 1-edge frequent subgraphs from 

the dataset and passes them to the mapper in the first iteration. 

Each mapper processes a shard of the dataset and creates 

candidate kk-subgraphs by adding one more edge to the 

frequent (𝑘 − 1) -subgraphs.  

We map each generated subgraph into a  canonical 

representation with a labeling function ℓ(𝑔𝑘 )so that 

isomorphic subgraphs share exact representation 

ℓ(𝑔𝑘 ) = min
𝜋∈𝛱

𝑒𝑛𝑐𝑜𝑑𝑒 (𝐴𝜋) (3) 

Where 𝛱 is the aggregation over all permutations of the 

set of vertices, and cap a. to the pi is the adjacency matrix g 

sub k nder a permutation. In the Reducer phase, the sub-

graphs with identical canonical labels are grouped, and their 

support is computed over the dataset. The resulting set  of 

frequent subgraphs is then: 

𝐹𝑘 = {𝑔𝑘 ∣ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘 ) ≥ 𝜎𝑡
} (4) 

The driver observes each iteration and checks for 

termination when no new frequent subgraphs are found: 

𝐹𝑘 +1 = ∅ ⇒ 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒  (5) 

FSM-MR includes a few optimizations that improve the 

performance for distributed environments: 

Canonical Labeling, to not process any duplicate 

isomorphic subgraphs. 

In-Mapper Combiner: Decrease the amount of 

intermediate key-value pairs in the shuffle phase. 

Dynamic Support Thresholding for base learners on 

heterogeneous graphs. 

Subgraph Generation Edge Sorting Heuristics for 

enhanced determinism.S 

While FSM-MR showed significant performance gain on 

mid-scale datasets, it struggled when scaled to more complex, 

high-density, or unbalanced graph datasets.  

The abovementioned issues, the load imbalance, large 

disk I/O, and inflexible resource allocation, motivate the 

improvements presented in FSM-MR++,  where adaptive 

memory-efficient and highly scalable subgraph mining is 

targeted across various data orientations. We recommend [41] 

for in-depth insights into the design rationale and performance 

results behind FSM-MR, which is the building block of this 

work. Table 1 provides key notations representing graph 

components, algorithm parameters, and performance metrics 

used in the FSM-MR++ framework. 

Table 1. Notations used in the FSM-MR++ framework 

Notation Description 

𝒟 Input graph dataset {𝐺1 , 𝐺2 , … , 𝐺𝑛
} 

𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) A single graph instance with vertices 𝑉𝑖  and edges 𝐸𝑖  

𝑔𝑘  Candidate subgraph of size 𝑘 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) Number of graphs in 𝒟 that contain subgraph 𝑔 

𝜎, 𝜎𝑡  Minimum support threshold (global or iteration-specific) 

ℓ(𝑔) Canonical label of subgraph 𝑔 

𝑇𝑡𝑜𝑡 𝑎𝑙 Total execution time of the algorithm 

𝑇𝑖  Execution time of iteration 𝑖 

𝑆 Data shuffle volume (size of intermediate data transferred) 

𝜙 Pruning efficiency (% of subgraphs filtered before support counting) 

𝜂 Scalability factor across multiple computing nodes 

𝑀𝑝𝑒𝑎𝑘  Peak memory utilization per node 

𝑟𝑡  Number of reducer tasks in iteration 𝑡 
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3.2. Problem Statement and Motivation 

Frequent Subgraph Mining (FSM) is a  fundamental 

operation in graph data. The patterns have significant 

applications in various domains in chemoinformatics, 

bioinformatics, cybersecurity, and social network analysis. 

Let us first explain some basic terms that are assumed to be 

known about frequent subgraph mining (Shah et al. 2010). A 

subgraph is frequent if there are at least support frequency 

graphs in which it appears, where support is a  user-defined 

threshold. Let 𝒟 be a dataset of graphs 𝒟 = {𝐺1 , 𝐺2 , … , 𝐺𝑛
} , 

the support of a candidate subgraph is defined as in Equation 

(1).  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔 ⊆ 𝐺𝑖
}| (1) 

A subgraph 𝑔 is frequent if it satisfies the condition in 

Equation (2).  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) ≥ 𝜎  (2) 

Where  𝜎 denotes the minimum support threshold. 

Traditional algorithms, like gSpan and Apriori-based FSM 

techniques, require heavy in-memory computations, causing 

memory exhaustion and performance bottlenecks. In addition, 

the syntactic generation of candidate subgraphs and the 

verification of subgraph isomorphisms are both exponential 

operations and make this technique infeasible if the data 

volume is high. In response, a few distributed frameworks 

have been proposed, e.g., G-thinker, PEREGRINE, and 

FlexMiner; however, they also suffer from drawbacks, 

including unnecessary shuffling of intermediate data, non-

targeted pruning approaches, and an incapacity to adapt to 

variability in datasets quickly. The first FSM-MR framework 

proposed by the authors in [41] tackled some of these 

problems using the MapReduce paradigm. It proposed 

optimizations like canonical Labeling, an in-mapper 

combiner, and dynamic support thresholds to limit 

redundancy and increase parallelism. FSM-MR attained 

considerable run-time and scalability benefits, but exhibited 

performance degradation when working on highly dense 

graphs or heterogeneous-sized graph datasets. In particular, 

these bottlenecks included limits arising from load balancing, 

saturation, mapper and reducer, and memory inefficiencies. 

Thus, this work generalizes FSM-MR to FSM-MR++, an 

enriched version of the original framework. It combines the 

motivation and necessity to develop a strong, adaptable FSM 

framework that can scale well on both synthetic and realistic 

graph datasets under settings of high edge density and skewed 

subgraph complexity. Specifically, FSM-MR++ employs a 

graph partitioning mechanism, cost-aware mapper scheduling, 

hybrid memory optimization, and dynamic reducer 

reconfiguration. These extensions aim to optimize the 

performance of FSM further when used in a  distributed 

environment, and to promote FSM-MR++ as a generic 

solution for large-scale frequent subgraph mining problems. 

3.3. Overview of the Proposed FSM-MR++ Framework 

FSM-MR++ is the framework proposed in Figure 1 

towards scalable and efficient frequent subgraph mining for 

large-scale graph datasets with a MapReduce-based 

framework. The contribution extends the original FSM-MR 

framework, which overcomes the performance bottlenecks 

caused by computation skew, memory overhead, and data 

transfer costs in a distributed setting. FSM-MR++ retains the 

two-phase iterative nature (subgraph construction and support 

counting) of the two-phase algorithm, while incorporating the 

benefits of intelligent scheduling, memory optimization, and 

adaptive resource allocation to significantly improve run-time 

and scalability. 

Fig. 1 FSM-MR++ system architecture with graph partitioning, cost-aware scheduling, hybrid caching, and dynamic reducer configuration 

Iterative Drive/Controller 

Cost-Aware Mapper 

Scheduler 

FSM Mapper  

(with Hybrid Cache) 

Graph Dataset (input) Graph Partition-ting FSM Reducer  

(Dynamic Scaling) 

HDFS (Intermediate 

Storage) 

Phase 1: Subgraph Construction 
Phase 2: Support Counting 
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At a high level,  the framework is divided into four 

modules: graph partitioning, adaptive mapper scheduling, 

hybrid memory-caching mappers, and dynamically 

configurable reducers. The execution starts with the input 

dataset 𝐷 = {𝐺1, 𝐺2 , . . . , 𝐺𝑛
}, where each 𝐺𝑖  is a  labeled 

graph. The first step is preprocessing the dataset 𝑃 =
{𝐺1

′ , 𝐺2
′ , . . . , 𝐺𝑘

′ }, where it is separated into categories 

considering edge density 𝜌(𝐺𝑖 )  and average degree 𝑑̅(𝐺𝑖 ), 

which are determined as in Equations (6) and (7).  

𝜌(𝐺𝑖 ) =
2∣𝐸𝑖 ∣

∣𝑉𝑖∣(∣𝑉𝑖∣−1)
  (6) 

𝑑̅(𝐺𝑖 ) =
2∣𝐸𝑖∣

∣𝑉𝑖 ∣
 (7) 

These metrics allow different mappers to handle 

partitions of similar complexity, thus reducing load 

imbalance. The other part, the mapper scheduler, employs a 

cost-aware function to allocate the mapper node partition. For 

a graph partition 𝐺𝑖
′, the cost estimate is given by Equation (8).  

𝑐𝑜𝑠𝑡(𝐺𝑖
′) = 𝛼 ⋅ 𝑑̅(𝐺𝑖

′) + 𝛽 ⋅ 𝜌(𝐺𝑖
′) (8) 

Where 𝛼 and 𝛽  are tunable coefficients that capture the 

computational effects of degree and density, respectively. This 

cost is recorded and needs to be used by the scheduler to 

dynamically allocate partitions across mapper nodes so none 

of the nodes gets overcrowded by a dense (or complex) 

partition. 

In the mapper phase, FSM-MR++ creates candidate kk-

subgraphs by expanding each frequent (𝑘 − 1)-subgraph 

with some extra edge. We assign a canonical label ℓ(𝑔𝑘 ) to 

each candidate subgraph, ensuring no two isomorphic 

subgraphs will share the same label. Here is how we compute 

the canonical label as in Equation (9).  

ℓ(𝑔𝑘 ) = min
𝜋∈𝛱

𝑒𝑛𝑐𝑜𝑑𝑒 (𝐴𝜋) (9) 

Where 𝛱 is the set of all vertex permutations and 𝐴𝜋  is 

the adjacency matrix under permutation  𝜋. Before being sent 

to the reducer, subgraphs with the same labels are combined. 

FSM-MR++ employs a hybrid memory-caching approach to 

reduce disk I/O and shuffling overhead. If a  subgraph has 

access frequency  higher than a threshold 𝜃, it is kept in 

memory as in Equation (10).  

𝑓𝑟𝑒𝑞 _𝑎𝑐𝑐𝑒𝑠𝑠 (𝑔) ≥ 𝜃 ⇒ 𝑔 ∈ 𝐶𝑎𝑐ℎ𝑒 (10) 

Otherwise, it is managed with HDFS. This optimization 

is especially powerful in early iterations, with a few repeated 

substructures being extended multiple times. In the reducer 

phase, subgraphs are cluster in terms of their canonical labels, 

and their associated support values are calculated as in 

Equation (11).  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘 ) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔𝑘 ⊆ 𝐺𝑖
}| (11) 

Subgraphs are frequently used if the condition in 

Equation (12) is satisfied.  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘 ) ≥ 𝜎𝑡  (12) 

Where 𝜎𝑡  is the dynamic support threshold for the 

iteration 𝑡. The configuration of reducers is also dynamically 

tuned based on the number of intermediate keys. 𝑘𝑡  emitted 

by mappers as in Equation (13).  

𝑟𝑡 = [
𝑘𝑡

𝜅
] (13) 

Where 𝑟𝑡  is the number of reducers in iteration 𝑡, and 𝜅 is 

the reducer load capacity threshold. The looping driver 

orchestrates these operations, iterating over the mapper and 

reducer phases until no new frequent subgraphs are produced. 

After each iteration, the termination condition is checked, as 

in Equation (14).  

𝐹𝑡 +1 = ∅ (14) 

If it holds true, the mining process is stopped and all 

found most subgraphs 𝐹 = ⋃𝑖=1
𝑡 𝐹𝑖  are returned. Therefore, 

FSM-MR++ combines partition-aware preprocessing, 

adaptive mapper scheduling, hybrid-memory optimization, 

canonical subgraph labeling, and dynamically scaled reducers 

to efficiently provide a comprehensive framework for 

frequent subgraph mining. The ability to work in a distributed 

MapReduce style across a heterogeneous graph setting with 

its modular memory-based architecture and resource-

conscious design. 

Figure 2 illustrates the iterative execution workflow of the 

FSM-MR++ framework. In each iteration, candidate 

subgraphs are generated using mappers, labeled canonically, 

and optionally cached if frequently accessed. These are then 

passed to reducers for support counting and density-aware 

pruning. The frequent subgraphs are written to HDFS and 

passed on to the next iteration. The process continues until no 

new frequent subgraphs are discovered, at which point it 

triggers termination. This iterative control enables scalable 

and efficient subgraph mining over large graph datasets using 

the MapReduce paradigm. 

3.4. Key Enhancements Over FSM-MR 

To address the limitations above in FSM-MR, the 

proposed framework, FSM-MR++, adopts a sequence of core 

optimizations about scalability, load balancing, memory 

footprint, and computation. The above improvements enable 

FSM-MR++ to handle large and complex graph datasets more 

efficiently while maintaining accuracy and parallel 

performance. Below, we detail the five key enhancements that 

FSM-MR++ introduces.
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Fig. 2 Iterative execution workflow of FSM-MR++ highlighting mapreduce-based subgraph construction, support counting, pruning, and termination 

control across iterations 
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3.4.1. Graph Partitioning to Help Balance Loads 

Input graphs were fed into the mapper nodes of FSM-MR 

without any structural preprocessing, which resulted in a load 

imbalance in the mapper nodes. FSM-MR++: Partitioned 

Approach Using Preprocessing. Built a  preprocessing module 

that partitions the input graph dataset based on vertex degree 

distribution, edge density, or component size. The idea is to 

ensure that each partition contains segments of the graph with 

approximately equal structural complexity. 

Let 𝐺 = (𝑉, 𝐸) be a graph having heterogeneous degrees 

of vertices. The goal of partitioning is to separate 𝐺 into  𝑃 =
{𝐺1 , 𝐺2 , … , 𝐺𝑘

} such that it satisfies Equation (15).  

max
1≤𝑖≤𝑘

𝑐𝑜𝑠𝑡(𝐺𝑖 ) − min
1≤𝑗≤𝑘

𝑐𝑜𝑠𝑡(𝐺𝑗 ) ≤ 𝜖  (15) 

Where 𝑐𝑜𝑠𝑡(𝐺𝑗 )  is a  processing time estimator tied to 

vertex and edge density, and is a  small constant threshold. 

This balancing approach allows for better utilization of 

mapper nodes by minimizing idle cycles and preventing the 

overloading of nodes during subgraph enumeration. 

3.4.2. Mapper Scheduling Based on Cost 

FSM-MR adopted a static scheduling across subgraphs 

that did not account for differences in computation cost across 

partitions. FSM-MR++ evaluates each partition based on a 

cost function that uses structural metrics, including average 

node degree, number of edges, and clustering coefficient. The 

scheduler divides the partitions between the mapper tasks 

based on this cost model, ensuring equal distribution of 

computational load as in Equation (16).  

𝑐𝑜𝑠𝑡(𝐺𝑖 ) = 𝛼 ⋅ 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺𝑖 ) + 𝛽 ⋅ 𝑒𝑑𝑔𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐺𝑖 )
 (16) 

Where 𝛼 and 𝛽 are weighting coefficients that measure 

the contribution of each feature to processing cost. This 

dynamic scheduling substantially reduces performance 

degradation due to skewed data distributions and enforces 

more predictable per-iteration run times. 

3.4.3. Hybrid Memory-Caching Mechanism 

Most of the previously proposed systems, including FSM-

MR, use mappers that read and write subgraph data using 

HDFS, which introduces further I/O overhead and reduces 

execution time for numerous subgraph iterations. FSM-MR++ 

tackles this problem with a hybrid caching where popular 

subgraphs, adjacency matrices and partial extensions are 

cached in local memory. For a subgraph 𝑔, a  caching utility  

caches it in memory if the condition in Equation (17) is 

satisfied.  

𝑓𝑟𝑒𝑞 _𝑎𝑐𝑐𝑒𝑠𝑠 (𝑔) ≥ 𝜃  (17) 

Where 𝜃 is the access threshold that is iteratively defined 

with respect to the statistics of the current iterations and the 

dataset. HDFS for less-accessed subgraphs. 

This method minimizes the latency with respect to disk 

access, especially during the early iterations of the search 

where the space of candidates is large, and recurring 

substructures are accessed many times. 

3.4.4. Dynamic Reconfiguration of Reducers 

FSM-MR used a constant number of reducers for all 

iterations, independent of the number of intermediate keys 

produced. In FSM-MR++, at run-time, the reducer 

configuration is adjusted dynamically, depending on the 

number. 𝑘𝑡  of keys generated in iteration as in Equation (18).  

𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝑠𝑡 =
𝑘𝑡

𝜅
  (18) 

Where 𝜅 is the maximum number of keys a reducer can 

process efficiently. Such dynamic scaling helps the system to 

prevent reducer overload in dense iterations and efficiently 

utilize resources in sparse iterations. The Driver program 

observes and applies the rearrangement before each iteration. 

3.4.5. Density-Aware Candidate Pruning 

FSM-MR++ implements a density-aware pruning 

strategy during the candidate generation phase to  avoid 

needless subgraph isomorphism tests. By checking on local 

graph density and degree statistics, this method filters out 

candidate subgraphs with a low probability of satisfying the 

minimum support threshold. 

Just like SLAP, pruning is also executed for each 

subgraph candidate 𝑔 k if the condition in Equation (19) is 

satisfied.  

𝑑𝑒𝑔𝑎𝑣𝑔 (𝑔) < 𝛿𝑜𝑟𝑙𝑜𝑐𝑎𝑙 _𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔) < 𝜆 (19) 

Where   𝛿  and 𝜆 denote configurable threshold 

parameters according to the dataset properties. 

This mechanism minimizes the computation cost in the 

reducer phase by filtering low-potential candidates at an 

earlier time, and thus it enhances the efficiency of the mining 

process. The five optimizations listed above are tightly  

integrated into FSM-MR++, including partitioning, cost-

aware scheduling, hybrid caching, dynamic reducer 

adjustment, and density-aware pruning. Each focuses on a 

particular bottleneck in large-scale graph mining. With FSM-

MR++, these two enhanced techniques serve as a foundation 

for a global and scalable framework that handles the actual 

big graph analytics challenges with their low run-time, 

diminished memory consumption, and balanced 

computational properties. 
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3.5. FSM-MR++ Algorithm Description 

FSM-MR++ is an extended iteration-based frequent 

subgraph mining algorithm that builds upon the FSM-MR 

framework [41] and incorporates new optimization strategies 

to enhance scalability for large-scale mining, reduce execution 

time, and optimize resource utilization. Our algorithm runs 

under a distributed Hadoop environment, according to the 

MapReduce paradigm for parallel computation and data 

processing. FSM-MR++_part_execute.png shows each 

iteration of FSM-MR++ performing candidate subgraph 

generation, canonical Labeling, candidate support counting, 

pruning of the enumerated subgraph space, and so on, until no 

new frequent subgraphs are found. 

 

Algorithm 1: FSM-MR++ – Enhanced Frequent Subgraph Mining Using MapReduce 

Algorithm: FSM-MR++ – Enhanced Frequent Subgraph Mining Using MapReduce  

Input: Graph database 𝒟, minimum support threshold 𝜎  

Output: Set of all frequent subgraphs 𝐹  

1: Partition 𝒟 into balanced subsets {𝐺1
′ , 𝐺2

′ , . . . , 𝐺𝑘
′ } based on degree and density 

2: Estimate computational cost for each partition and schedule to mappers  

3: Initialize frequent subgraph set 𝐹 = ∅, iteration index 𝑡 = 1 

4: Generate all frequent 1-edge subgraphs 𝐹1  

5: Store 𝐹1 in HDFS and update 𝐹 ← 𝐹 ∪ 𝐹1 

6: while 𝐹𝑡 ≠ ∅ do 

7:  Construct candidate subgraphs 𝐶𝑡+1 from 𝐹𝑡  in mappers 

8:  Apply canonical labeling ℓ(𝑔) to each candidate 𝑔 ∈ 𝐶𝑡+1 

9:  Cache frequent substructures in memory; store others in HDFS 

10:  Emit ⟨ℓ(𝑔),1⟩ key-value pairs 

11:  Configure the number of reducers 𝑟𝑡 ← ⌈∣ 𝐶𝑡+1 ∣/𝜅⌉  
12:  Group by ℓ(𝑔), compute support 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) in reducers 

13:  Prune candidates with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) < 𝜎𝑡   

14:  Update 𝐹𝑡 +1 ← {𝑔 ∈ 𝐶𝑡+1 ∣ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) ≥ 𝜎𝑡
}  

15:  Write 𝐹𝑡 +1 to HDFS, update 𝐹 ← 𝐹 ∪ 𝐹𝑡 +1, t←t+1 

16: end while 

17: Return 𝐹  

Algorithm 1 starts with the input graph dataset 𝒟, which  

is first fed into a graph partitioning module. This module 

analyzes structural properties of graphs (e.g., average degree 

of the graph, edge density) and partitions the dataset 

recursively{𝐺1
′ , 𝐺2

′ , . . . , 𝐺𝑘
′ }, making sure that every partition is 

relatively homogenous in complexity. This is important as it 

balances the computational load on the mapper nodes. Then, 

a cost-aware mapper scheduler uses a cost estimation function 

to evaluate the partitions based on average node degrees and 

local edge densities. Partitions expected to incur more 

computational cost are spread out so no specific nodes are 

overloaded. This approach enables dynamic scheduling, 

which provides better performance predictability and higher 

parallel efficiency. 

In each iteration tt, FSM-MR++ employs frequent (𝑘 −
1)-subgraphs generated in the last round to candidate kk-

subgraphs. The FSM Mapper component takes care of this, 

where each mapper extends local subgraphs by one edge and 

computes a canonical label for each candidate subgraph in 

O(log (n)) time using the minimum lexicographic encoding 

over all vertex permutations. This step removes isomorphic 

duplicates and makes the intermediate key-value pairs unique 

before forwarding to the reducer phase. FSM-MR++ adopts a 

hybrid memory caching mechanism in the mapper. The 

frequently used subgraph or the adjacency structure that exists 

in multiple graphs or multiple iterations is kept in memory, 

while candidates that appear less frequently will be 

temporarily put in HDFS. This greatly mitigates disk I/O 

overhead and expedites early iterations, where subgraph 

explosion is most dramatic. 

The mapper intermediate output is stored in HDFS and 

given to the FSM Reducer, which groups the subgraphs by 

their canonical label. The reducer calculates the support of 

each candidate subgraph by testing its presence in the input 

graphs. Frequent subgraphs for the current iteration are output 

back to HDFS to retain the above dynamic support threshold. 

FSM-MR++ also introduces dynamic reduction 

reconfiguration to enhance efficiency. In each iteration, the 

number of reducer instances will be adjusted according to the 

size of intermediate subgraphs produced. When the emitted 

key-value pairs exceed a pre-configured reducer capacity 

threshold, the framework automatically increases the number 

of reducers to avoid memory bottlenecks and increase 

throughput. 

 Every iteration ends with a verification step from the 

iterative driver module, determining whether any frequent 
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subgraphs were newly uncovered. If the output set 𝐹𝑡 +1 is not 

empty, it fires the next iteration with the current candidate 

list. The algorithm terminates otherwise, and the union of all 

the frequent subgraphs over iterations is returned as a final 

output: 

𝐹 = ⋃ 𝐹𝑖

𝑡

𝑖=1

 

The FSM-MR++ algorithm is scalable, robust to faults, 

and able to deal with datasets of different sizes and graphs of 

different densities. It goes beyond the original FSM-MR 

algorithm by leveraging load balancing, memory-aware 

caching, and iterative scaling strategies. It shows promising 

applicability as a scalable big data graph analytics solution. 

3.6. Evaluation Methodology 

An extensive evaluation was conducted to assess the 

scalability, efficiency, and performance improvements of the 

proposed FSM-MR++ framework over the baseline FSM-MR 

algorithm presented in the authors’ prior work [41]. We 

evaluate the framework on synthetic and real-world datasets 

of a broad range of data structures, including sparse, dense, 

and irregular graph topologies. The metrics include run-time, 

memory consumption, communication overhead, 

effectiveness of pruning, and scalability for various cluster 

sizes. This experimental setup contains a  distributed Hadoop 

cluster with up to 8 worker nodes. The nodes are Intel Xeon 

2.4GHz with 32 GB of RAM and 1TB local storage (running 

Ubuntu Server 20.04). The software stack uses Hadoop 

version 3.2.2 and Java 1.8 Hadoop Distributed File System 

(HDFS) to handle all intermediate and final outputs, and the 

FSM-MR++ modules are developed in native Java. 

Both synthetic and real-world graph datasets are used to 

test the performance. GraphSyn-100K, GraphSyn-500K, 

GraphSyn-1M, and GraphSyn-5M are synthetic datasets 

obtained with custom scripts under various graph sizes and 

edge densities. Real-world datasets comprise PubChem 

BioAssay (used in [41]), the Protein-Protein Interaction (PPI) 

network, the DBLP co-authorship graph, and the Facebook 

social graph. These datasets serve as a realistic benchmarking 

environment on multiple application domains. Multiple 

metrics measure performance. Total Run-Time: 𝑇𝑡𝑜𝑡𝑎𝑙  Total 

run-time is the summation of the time needed for mining each 

iteration of all frequent subgraphs. We track the iteration-wise 

run-time. 𝑇𝑖  for each iteration 𝑖to get an idea of the 

computational trends.   The speedup concerning FSM-MR is 

defined as 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = (
𝑇𝐹𝑆𝑀−𝑀𝑅−𝑇𝐹𝑆𝑀−𝑀𝑅++

𝑇𝐹𝑆𝑀−𝑀𝑅

) × 100%  (20) 

To measure the run-time speedup of over its predecessor. 

Memory Utilization per Node 𝑀𝑝𝑒𝑎𝑘  memory usage during 

the mapper and reducer container stage, which shows the peak 

memory it has while running. The amount of data shuffled is 

defined as the amount of intermediate key value data that  is 

transferred between mappers and reducers (in MB or GB).  

Scalability is tested by running the framework on 2, 4, 6, and 

8 nodes and recording the scalability factor 𝜂, which is 

defined as, 

𝜂 =
𝑇2−𝑛𝑜𝑑𝑒𝑠

𝑇𝑛−𝑛𝑜𝑑𝑒𝑠
, 𝑛 ∈ {4,6,8} (21) 

To evaluate how performance scales with additional 

compute. Pruning efficiency 𝜙 also provides a measurement 

to evaluate how effective the density-aware candidate 

filtering mechanism is. It is computed as the ratio of the 

number of candidates pruned prior to the reducer phase to the 

number of generated candidates: 

𝜙 = (
𝑁𝑝𝑟𝑢𝑛𝑒𝑑

𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

) × 100%   (22) 

All experiments are performed five times for reliability , 

and their average is reported. 

We compare the performance of FSM-MR++ against 

three baselines,  including FSM-MR [41], a  centralized gSpan 

implementation, and an optional standalone implementation 

using Spark (if available). The comparisons of the purpose of 

the approach in FSM-MR++ to improve parallelism, pruning, 

and memory validation are more apparent. 

There are four classes of experiments. The first type 

assesses scalability: running FSM-MR++ over synthetic 

datasets with larger sizes and different node configurations. 

The second compares total execution time, memory usage, and 

shuffle overhead across the baseline and enhanced systems to 

analyze run-time and system efficiency. Group 3 conducts an 

ablation study, turning off optimizations like hybrid caching 

and dynamic reducer reconfiguration to isolate their 

contributions. The last group does a real-world validation 

using domain-specific datasets to assess FSM-MR++ in real-

world contexts. 

The experimental results show that FSM-MR++ achieves 

better run-time performance, pruning rate, and resource 

utilization than FSM-MR and all other baselines. In the next 

section, we present and discuss the specific results of these 

evaluations. 

3.7. Illustrative Example: Mining Frequent Subgraphs 

Using FSM-MR++ 

To illustrate the utility of FSM-MR++, we will consider 

a small, toy dataset of four molecular graphs that represent 

simplified compounds: 

G1: Benzene (C6H6) 

G2: Phenol (C6H6O) 
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G3: Toluene (C7H8) 

G4: Cyclohexane (C6H12) 

Atomic symbols (C, H, O) and bonds are labelled on each 

graph. The FSM-MR++ framework then analyzes these 

graphs through its iterative MapReduce pipeline to extract 

frequent subgraphs that appear in several compounds. 

Step 1: Prepare and Split 

It analyzes the input graph dataset 𝒟 = {G1,G2 , G3, G4
}, 

calculating structural metrics like vertex degrees and edge 

densities. Using these, the dataset is split into balanced 

subsets by: 

cost(Gi) = α ⋅ d̅(Gi) + β ⋅ ρ(Gi)   

Where d̅(Gi) is average degree ρ(Gi) and the edge density 

of Gi . The responsible scheduler partitions these into different 

mapper nodes, ensuring each node gets graphs of comparable 

processing cost. 

Step 2: F1 Extraction (Initial Subgraphs) 

From each molecule, we retrieve all 1-edge subgraphs 

(bonds), e.g., C–C, C–H, C–O. We also assign canonical 

labels and user-defined states to convert isomorphic forms to 

each other. This leads to the formation of frequent  1-edge 

subgraphs: 

F1 = {C − C, C − H, C − O}  

Step 3: Candidate Generation and Caching 

In mappers, frequent 1-edge subgraphs are expanded to 

obtain 2-edge candidates. For example: 

From C–C in G1 → C–C–C (linear chain) 

G2 → C–C (phenol ring with hydroxyl) 

From C–H in G3 → C–H–C (methyl branch) 

Accessed candidates like C–C–C and C–C–H are cached 

with a threshold: 

freq_access (g) ≥ θ ⇒ g ∈ Cache   

Less frequent candidates are actually written to HDFS in 

a memory-efficient way. 

Step 4: Canonical Labeling and ~ Support Counting 

All candidate subgraphs are canonicalized and grouped. 

Support is calculated over graphs using: 

support(g) = |{Gi ∈ D ∣ g ⊆ Gi
}|   

For instance: 

G2 → support = 2 C−C−C → G1,G3 

G2 → support = 1Also, C–C–O. 

G3, G4 → support = 2 → C–C–H appears in 

Step 5: Density-based pruning and reducer scaling 

Candidates with low structure complexity or low density 

are discarded: 

degavg(g) < δ     or     local_density(g) < λ   
Participating reducers are dynamically reassigned based 

on the count of candidate keys. k t: 

rt = [
kt

κ
]  

Step 6: Iterate and Terminate 

The process continues for subgraph size 𝑘 = 3,4, … until 

no new frequent subgraphs appear. The full frequent 

subgraph set: 

𝐹 = ⋃ 𝐹𝑡

𝑇

𝑡 =1

 

Outcome 

The shared substructures such as aromatic ring (C–C–C–

C–C–C), hydroxyl branch (C–O–H) and methyl group (C–C–

H), which are highly frequent over the input molecular 

graphs, can be efficiently mined through FSM-MR++. 

Improved mechanisms such as memory caching, pruning, and 

adaptive reducer allocation reduce the run time while 

maintaining mining accuracy. 

4. Experimental Results 
This section describes the experimental evaluation of the 

FSM-MR++ framework on real-world and synthetic graph 

data. It considers run-time performance, scalability, memory 

usage, pruning efficacy, and the influence of important 

improvements. Comparisons to baselines, ablation 

experiments, and evaluations on real data are provided to show 

the proposed method’s effectiveness, stability, and usability. 

4.1. Experimental Setup 

The experiments are run on a distributed Hadoop cluster 

with eight worker nodes, an Intel Xeon 2.4 GHz processor, 32 

GB RAM, and 1 TB HDD storage. All the nodes consisted of 

Ubuntu Server 20.04 LTS with Java OpenJDK 1.8, and 

Hadoop version 3.2.2. We stored input graphs, intermediate 

outputs, and mining results in the Hadoop Distributed File 

System (HDFS). The MapReduce jobs were implemented in 

the YARN resource manager, and the number of reducers was 

changed dynamically according to the number of candidate 

subgraphs in each iteration. 

The FSM-MR++ framework was implemented in Java, 

leveraging the JGraphT library for in-memory graph 

representation and manipulation during preprocessing. Graphs 
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were input in gSpan-compatible format, where each graph 

instance was described using vertex and edge lists. Graphs 

were partitioned using a cost-aware strategy based on average 

vertex degree and edge density. These partitions were then 

evenly distributed to the mapper tasks. 

The hyperparameters used in all experiments were 

carefully selected through empirical tuning. The support 

threshold (σ\sigma) was set to 2 for synthetic datasets and 3 

for real-world datasets to balance pattern discovery and 

execution time. The cache threshold (θ\theta) was set to 5, 

allowing frequently accessed subgraphs to rema in in memory, 

improving performance across iterations. The reducer load 

balancing constant (κ\kappa) was set to 1000 candidate keys 

per reducer, ensuring that reducer tasks remained evenly 

distributed without introducing excessive parallelism 

overhead. A minimum average degree threshold (δ\delta) of 

2.0 and a local subgraph density threshold (λ\lambda) of 0.3 

were applied for density-aware pruning. 

To support reproducibility, the prototype implementation 

includes modular components for graph loading, subgraph 

generation, canonical Labeling, caching, and support 

counting. Each module is accessible and tunable via 

configuration constants defined in the ConfigConstants.java 

file. The FSMDriverPlus class orchestrates the iterative 

execution logic and can be adjusted to control the number of 

iterations or early termination criteria. Input datasets, 

configuration files, and the complete source code are 

structured in a standalone format and packaged to allow 

replication of the results in any standard Hadoop environment. 

4.2. Datasets Used 

The empirical analysis of FSM-MR++ was conducted 

based on synthetic and real datasets to examine mining speed, 

scalability, and efficiency under diverse types of graph 

structures. We created synthetic datasets programmatically to 

represent various graph scales and topologies. GraphSyn-

100K, GraphSyn-500K, GraphSyn-1M, and GraphSyn-5 M, 

about graphs between 100000 and 5000000 edges.  

These graphs have been generated with varying rates of 

vertex-to-edge relations and with the density of the graph 

regulated, to examine the system ’s behavior as the graphs’ 

complexity and size increase. All the synthetic graphs were 

represented in gSpan with nodes labeled by atomic symbols 

(e.g., C, H, O) like chemical compound structures. This 

structure enabled parsing and subgraph enumeration to be kept 

identical across experiments. 

Practical patterns were also generated using real-world  

data to demonstrate the framework’s practicality . The 

PubChem BioAssay dataset [42] was utilized for chemical 

compound graphs, where each graph instance represents a 

molecular structure, with nodes representing atoms and edges 

representing bonds. The Protein-Protein Interaction (PPI) 

dataset [44] was chosen to approximate sparse biological 

networks, with the DBLP co-authorship network [43] and 

Facebook social graph offering sparser and denser social 

structures of different scales, incompleteness, and community 

structure. 

All generations were stored in HDFS under iteration-level 

input folders, with names such as G1.txt and G2. Txt, etc. Each 

file consisted of one graph instance in gSpan-readable edge 

list format. The mapper input loader reads these files on the 

fly in every iteration. Preprocessing consisted mainly of 

validating the format and creating a partition based on cost. 

Collectively, this collection of datasets offers a broad 

spectrum of structural types and densities, enabling the 

rigorous evaluation of FSM-MR++ under various graph 

mining settings. 

4.3. Illustrative Example of FSM-MR++ Workflow 

To visually depict the FSM-MR++ procedure, we further 

implemented an example test case using five simple molecular 

graph inputs denoted as G1G_1, B2B_2, G3G_3, C4C_4, and 

CHC_H, to illustrate the workflow of the FSM-MR++, 

representing some simple organic compounds with three types 

of atoms (C, H, O) and unweighted single-edge undirected 

bonds. This example highlights process flow clarity, not the 

scale of the data set, and was used to ensure the framework’s 

behavior across a known execution path.  

In this example, the graph files were preprocessed and 

partitioned before input to the mapper phase. The mappers 

generated 1-edge subgraphs from each graph and performed 

canonical Labeling to eliminate duplicates. Frequently 

occurring subgraphs, such as C–C and C–H, were cached 

using the hybrid cache manager to reduce redundant 

computation in subsequent iterations. After pruning patterns 

with low density or low degree based on the thresholds δ and 

λ, the resulting candidates were sent to the reducers to count 

their support. If the support of the subgraph was above the 

threshold, the subgraph was emitted and considered when 

generating candidates for the next iteration. The process was 

repeated multiple times until the FSM-MR++ system no 

longer found frequent subgraphs. 

The output of this run was a collection of frequent 

subgraphs that contained chain-like C–C–C (chain-like) and 

branch-like C–H–C (branch-like) patterns (Figure 3). This 

example highlights how the FSM-MR++ processes its 

pipeline step-by-step, how caching, pruning, and iterative 

refinement work in action in an accurate MapReduce pipeline. 

It can also be utilized to verify the accuracy and 

interpretability of the FSM-MR++ framework at the concept 

level, before adopting it on larger datasets. 

4.4. Performance Analysis 

The last part examines the contribution of FSM-MR++ 

relative to baseline methods (FSM-MR and gSpan) in more 
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detail. It measures the overall run-time, efficiency in 

iterations, resource consumption, and the efficacy of dynamic 

reducer scaling. Experiments demonstrate that the algorithm 

is efficient in execution, exhibiting better load balancing and 

computational efficiency than the previous algorithm, which 

suggests the benefits of the proposed strategies for large-scale 

subgraph mining. 

 
Fig. 3 Illustrative example of the FSM-MR++ framework for frequent subgraph mining using MapReduce 

Table 2. Run-time comparison of FSM-MR++, FSM-MR, and gSpan across various datasets 

Dataset 
gSpan Run-

time (s) 

FSM-MR Run-

time (s) 

FSM-MR++ Run-

time (s) 

Speedup vs FSM-

MR (%) 

Speedup vs 

gSpan (%) 

GraphSyn-100K 148 102 75 26.47 49.32 

GraphSyn-500K 742 503 364 27.63 50.94 

GraphSyn-1M 1456 992 703 29.14 51.72 

PubChem 

BioAssay 
1104 765 558 27.06 49.46 

PPI Network 923 658 478 27.34 48.22 

DBLP Co-

authorship 
1308 947 682 27.99 47.86 

Table 2 compares the running times of FSM-MR++, 

FSM-MR, and gSpan on the synthetic and real datasets. We 

observe that FSM-MR++ significantly outperforms both 

baselines, achieving up to a 30% speedup over FSM-MR and 

over 50% compared to gSpan. These enhancements are 

achieved by utilizing the embedding caching, pruning, and 

dynamic reducer techniques of the FSM-MR++ framework. 
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Fig. 4 Run-time comparison of gSpan, FSM-MR, and FSM-MR++ across multiple datasets highlighting performance gains of the proposed 

framework 

Figure 4 presents a bar chart comparing the run-time 

performance of three graph mining approaches—gSpan, 

FSM-MR, and FSM-MR++—across six datasets, including 

synthetic and real-world graphs. The datasets range from 

moderately sized graphs (GraphSyn-100K) to large-scale real-

world networks such as the DBLP co-authorship graph. 

As illustrated, FSM-MR++ consistently demonstrates the 

lowest run-time across all datasets. The performance gap is 

particularly significant in large datasets such as GraphSyn-

1M, DBLP, and PubChem BioAssay, where FSM-MR++ 

achieves a run-time reduction of approximately 25–30% 

compared to FSM-MR, and over 45–50% compared to the 

centralized gSpan algorithm.  

This result confirms the scalability advantage of FSM-

MR++ as data volume and structural complexity increase. For 

the smallest dataset (GraphSyn-100K), all three methods 

perform relatively fast, but the trend of improvement is still 

visible, with FSM-MR++ outperforming FSM-MR by 

approximately 26% and gSpan by nearly 50%. FSM-MR’s 

performance degrades as the dataset size increases due to a 

fixed reducer configuration and redundant subgraph 

enumeration.  

In contrast, FSM-MR++ benefits from hybrid caching, 

which avoids recomputing frequent patterns, and dynamic 

reducer scaling, which improves task distribution and reduces 

execution overhead. These findings validate the effectiveness 

of FSM-MR++ in managing computational workload through 

architectural enhancements. The consistent speedup across all 

datasets further demonstrates the framework’s generalizability 

to a wide variety of graph structures and densities. This run-

time performance improvement directly supports the claim 

that FSM-MR++ is better suited for scalable frequent 

subgraph mining in big data environments. 

Table 3. Iteration-wise run-time and frequent subgraph count in FSM-MR++ 

Dataset Iteration Run-time (s) Frequent Subgraphs Found Cumulative % of Total 

GraphSyn-1M 1 312 1250 67.6% 
 2 239 420 90.4% 
 3 152 80 95.7% 
 4 98 30 97.3% 
 5 61 14 98.0% 

PubChem BioAssay 1 278 1075 70.2% 
 2 211 360 93.7% 
 3 143 45 96.6% 
 4 92 21 98.0% 

Table 3 shows the iteration-wise run-time and the number 

of frequent subgraphs explored by FSM-MR++ on all the 

datasets. The experimental results reveal that more than 90% 

of the frequent subgraphs are discovered within the first two 

to three iterations. Run-time and output curves reduce over 

iterations, justifying the applicability of early pruning, 

caching, and convergence in the FSM-MR++ process. 
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Fig. 5 Iteration-wise run-time and frequent subgraph count in FSM-MR++ for GraphSyn-1M and PubChem datasets demonstrating early 

convergence and pruning efficiency 

Figure 5 shows the iteration-wise run-time and the 

number of frequent subgraphs found by the FSM-MR++ for 

the GraphSyn-1M and PubChem BioAssay datasets. The plot 

has two Y-axes: the left Axis Indicates run-time in seconds, 

and the right Axis indicates the number of frequent subgraphs 

mined in sequential iterations.  

As regards the datasets, the running time per iteration 

decreases, as expected, with the peak occurring during the first 

iteration, when many subgraph patterns are generated and 

evaluated. As iterations continue, the running time decreases 

dramatically because early pruning and caching reduce the 

number of candidate patterns that need to be assessed. This 

hints that FSM-MR++ can efficiently reduce redundant 

computations by combining hybrid caching and a canonical 

label. 

The number of frequent subgraphs also declines across 

iterations. In GraphSyn-1M, more than 67% of the total 

patterns are discovered in the first iteration, and over 90% 

within the first two iterations. PubChem shows a similar 

behavior, with more than 70% of the patterns identified early.  

After the third iteration, very few new patterns are 

discovered, highlighting the framework’s convergence 

behavior. 

This visualization confirms that FSM-MR++ effectively 

captures the majority of frequent subgraphs early in the 

mining process, reducing the computational burden in later 

stages. It also emphasizes the role of iterative optimization 

strategies, such as density-aware pruning and support filtering, 

in achieving high efficiency and scalability.

Table 4. Load balancing and resource utilization across datasets 

Dataset 
Avg CPU Utilization 

(%) 

Max Mapper Load 

(MB) 

Max Reducer Load 

(MB) 

Std Dev. of Reducer 

Load 

GraphSyn-100K 74.5 186 94 11.2 

GraphSyn-500K 78.3 452 237 18.6 

GraphSyn-1M 80.9 870 428 22.4 

PubChem 

BioAssay 
77.1 615 382 20.7 

PPI Network 75.6 538 301 17.2 

DBLP Co-

authorship 
79.4 794 415 21.9 

Table 4 presents metrics related to load distribution and 

resource utilization during FSM-MR++ execution. The results 

show high CPU utilization across all datasets, validating the 

practical use of hardware. Mapper and reducer loads scale 

proportionally with input size. Low standard deviation in 

reducer load confirms the effectiveness of dynamic reducer 

configuration in achieving balanced task execution and 

minimizing straggler effects. Figure 6 visualizes resource 

utilization and load balancing metrics for the FSM-MR++ 

framework across six datasets. The bar groups display three 

key metrics: average CPU utilization, maximum mapper load, 

and maximum reducer load.  
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Fig. 6 Load balancing and resource utilization in FSM-MR++ across datasets, highlighting mapper and reducer load distribution with CPU 

utilization 

The red line plot overlays the standard deviation of 

reducer load to reflect the variance in task distribution. The 

results consistently indicate high CPU utilization across all 

datasets, ranging from 74.5% to 80.9%, confirming that FSM-

MR++ efficiently utilizes computational resources. As the 

dataset size increases, the mapper and reducer loads grow 

proportionally, validating the effectiveness of cost-aware 

graph partitioning and workload scaling. Crucially, the 

standard deviation of reducer load remains relatively low 

(between 11.2 MB and 22.4 MB), demonstrating the stability 

and uniformity of task distribution achieved through the 

dynamic reducer configuration mechanism in FSM-MR++. 

The balanced reducer loads prevent straggler tasks, minimize 

execution delays, and ensure better parallel performance. This 

figure provides strong evidence that FSM-MR++ improves 

run-time and optimizes hardware usage and workload 

distribution, making it suitable for scalable subgraph mining 

in distributed environments. 

Table 5. Reducer scaling effectiveness with static vs Dynamic configuration 

Iteration Dataset 
Reducers 

(Static) 
Time (Static) (s) 

Reducers 

(Dynamic) 
Time (Dynamic) (s) 

Speedup 

(%) 

1 GraphSyn-500K 8 241 5 178 26.14 

2 GraphSyn-500K 8 197 4 145 26.39 

1 GraphSyn-1M 12 431 7 319 25.99 

2 GraphSyn-1M 12 388 6 284 26.80 

1 PubChem BioAssay 10 405 6 300 25.93 

2 PubChem BioAssay 10 362 5 266 26.52 

Table 5 compares the effectiveness of static and dynamic 

reducer configurations in FSM-MR++ across the datasets and 

iterations. DRA reduces time consumption by 25–27% per 

iteration. In FM-MR++, the number of reducers is varied 

according to the candidate subgraph volume, resulting in good 

load balancing, low processing overhead, and high processing 

efficiency for iterative subgraph mining. 

Figure 7 compares the run-time of FSM-MR++ with static 

and dynamic reducer configurations over multiple iterations 

and datasets. There are two bars for every iteration-dataset 

pair: static and dynamic (based on subgraph candidate 

volume) reducer allocation. The findings show that the 

dynamic reducer configuration substantially reduces run-time 

in different testing cases. For example, at GraphSyn-1M v1, 

the run-time goes down from 431 seconds with static reducers 

to 319 seconds with dynamic reducers (between 1% and 26% 

speedup). The GraphSyn-500K and PubChem datasets show 

the same trend in run-time reductions, decreasing run-times 

between 25% and 27%. 

In FSM-MR++, we employ a dynamic configuration 

strategy that proportionally plans the reducers according to the 

count of the candidate subgraphs, rt = ⌈kt/κ⌉, using the formula 

to balance the reducers’ workload. Such adaptive scaling 

effectively removes underloaded or overloaded reducer tasks 

and straggler-based behavior, optimizing resource allocation. 

This number indicates the necessity of being able to execute 

the individual tasks at an arbitrary time point, and it confirms 

that the dynamic reducer scale significantly increases the 

overall efficiency and scalability of the FSM-MR++ 

framework. 
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Fig. 7 Reducer scaling effectiveness in FSM-MR++ showing run-time comparison between static and dynamic configurations across iterations and 

datasets 

4.5. Scalability Tests 

In this section, we report the scalability tests of FSM-

MR++ on dataset size and number of nodes. We compare the 

framework’s performance on synthetic datasets with 100K to 

5M edges and cluster sizes from 2 to 8 nodes. Experimental 

results demonstrate a near-linear increase in run-time and 

uniform parallel efficiency, thereby confirming the 

framework’s generality and adaptability to large-scale graph 

mining. Table 6 presents the scalability performance of FSM-

MR++ on synthetic datasets ranging from 100K to 5M edges. 

The results exhibit a  roughly linear trend of scaling, again 

verifying the framework’s scalability. Though we encounter 

larger graph sizes and denser structures, the number of 

iterations increases slowly, demonstrating good pruning and 

early convergence properties that enable our method to remain 

scale-invariant. 

Table 6. Dataset size scalability of FSM-MR++ on synthetic graphs 

Dataset 
No. of 

Graphs 

Avg Nodes per 

Graph 

Avg Edges per 

Graph 

Total Run-time 

(s) 

No. of 

Iterations 

GraphSyn-100K 1,000 15 20 75 3 

GraphSyn-500K 5,000 18 26 364 4 

GraphSyn-1M 10,000 22 34 703 5 

GraphSyn-2M 20,000 25 42 1320 5 

GraphSyn-5M 50,000 28 50 2965 6 

 
Fig. 8 Dataset size scalability of FSM-MR++ showing run-time and iteration trends across increasing synthetic graph volumes 
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Figure 8 illustrates the scalability of FSM-MR++ as the 

dataset scales from 100,000 to 5 million edges. The overall 

time gets nearly linear as long as the scaling is linear, which  

means the parallelization is well done. The number of 

iterations increases progressively, showing early pruning and 

convergence characteristics. These trends justify FSM-MR++ 

as a satisfactory and scalable approach for mining frequent 

subgraphs in big graph datasets. 

Table 7 presents the cluster scalability in terms of node 

numbers for FSM-MR++ in terms of expressiveness on the 

GraphSyn-1M dataset. As the number of nodes increases from 

2 to 8, the total run-time drops dramatically, resulting in 

approximately a 3× acceleration. The parallel efficiency is still 

over 70%, indicating good resource utilization. There is a 

decrease in efficiency due to distributed overhead, as would 

be expected when running larger clusters. 

Table 7. Cluster size scalability of FSM-MR++ on GraphSyn-1M dataset 

No. of Nodes Total Run-Time (s) Speedup Over 2 Nodes Parallel Efficiency (%) 

2 1241 1.00x 100.0 

4 703 1.77x 88.5 

6 518 2.40x 80.0 

8 431 2.88x 72.0 

 
Fig. 9 Cluster size scalability of FSM-MR++ on GraphSyn-1M showing run-time, speedup, and parallel efficiency with increasing number of nodes 

Figure 9 shows the scalability of FSM-MR++’s cluster 

size on the GraphSyn-1M dataset. As the number of nodes 

increases from 2 to 8, the total run-time decreases, and the 

speedup increases, which supports the notion that the 

parallelism is efficient. A slight drop in parallel efficiency is 

due to higher distributed overhead. However, it remains 

within the 70% range, and hence, the framework’s scalability 

and balance are maintained across various cluster sizes. 

4.6. Ablation Study 

In this section, we analyze the effectiveness of the 

components in FSM-MR++ by conducting ablation studies. 

Using disabled hybrid caching, dynamic reducer scaling, and 

pruning, we investigate the influence of each optimization on 

run-time and pattern quality. The experimental results indicate 

that every factor substantially impacts performance, and the 

pruning contributes the most to performance improvement, 

either in execution time or subgraph relevance. Table 8 shows 

an ablation study of the effects of the key components in FSM-

MR++. Omitting hybrid caching or dynamic reducers, we 

observe a 20–26% increase in run-time while the number of 

patterns remains unchanged. Nevertheless, when pruning is 

turned off, the run-time and the number of patterns grow 

significantly, which justifies the importance of this technique 

in removing low-utility subgraphs to support efficient 

discovery of good patterns. 

Figure 10 illustrates the ablation study results of FSM-

MR++ on GraphSyn-1M and PubChem datasets. Turning off 

hybrid caching or dynamic reducers reduces run-time without 

affecting the number of discovered patterns. In contrast, 

removing pruning results in significantly higher run-time and 

subgraph count, indicating excessive pattern generation. 

These results validate the importance of each component in 

ensuring efficiency and output quality.

0

20

40

60

80

100

120

400

500

600

700

800

900

1000

1100

1200

1300

2 4 6 8

S
p

e
e
d

u
p

 /
 E

ff
ic

ie
n

c
y

T
o

ta
l 
R

u
n

ti
m

e
 
(s

e
c
o

n
d

s
)

Number of Nodes

Cluster Size Scalability of FSM-MR++ on GraphSyn-1M

Total Runtime (s) Speedup Over 2 Nodes Parallel Efficiency (%)



Naga Mallik Atcha  et al. / IJETT, 73(8), 147-169, 2025 

 

165 

Table 8. Ablation study results showing the impact of FSM-MR++ components 

Dataset Variant 
Total Run-time 

(s) 

Frequent 

Subgraphs 

% Drop in  

Run-time 

% Drop in 

Patterns 

GraphSyn-1M FSM-MR++ (Full) 703 1764 – – 

 w/o Hybrid 

Caching 
879 1764 19.98% 0% 

 w/o Dynamic 

Reducers 
948 1764 25.60% 0% 

 w/o Pruning 1260 2798 44.25% –58.58% 

PubChem 

BioAssay 
FSM-MR++ (Full) 558 1602 – – 

 w/o Hybrid 

Caching 
731 1602 23.67% 0% 

 w/o Dynamic 

Reducers 
710 1602 21.68% 0% 

 w/o Pruning 1042 2420 46.46% –51.07% 

 
Fig. 10 Ablation study of FSM-MR++ showing the impact of hybrid caching, dynamic reducers, and pruning on run-time and pattern discovery 

4.7. Real-World Validation 

To validate the practical utility of the FSM-MR++ 

framework, we applied it to two real-world domain-specific 

datasets: PubChem BioAssay (bioinformatics) and the DBLP 

co-authorship network (social graph). The goal was to analyze 

the nature of frequent subgraphs discovered and assess their 

relevance, interpretability, and completeness in their 

respective application contexts. In the PubChem BioAssay 

dataset, FSM-MR++ identified several chemically significant 

frequent substructures, including common molecular 

fragments such as alkyl chains (C–C–C), hydroxyl groups (C–

O–H), and carbonyl groups (C=O). These subgraphs appeared 

consistently across compounds with similar biological 

activity, suggesting their domain relevance in structure-

activity relationships. A sa mple output subgraph with a 

support of 68 was identified as a core substructure shared 

across multiple anti-inflammatory compounds, aligning with 

known pharmaceutical scaffolds. The qualitative assessment 

by a domain chemoinformatics expert confirmed that the most 

frequent subgraphs had meaningful interpretations in terms of 

functional groups and pharmacophores. Table 9 summarizes 

key frequent subgraphs mined from real-world datasets, 

highlighting their structural patterns, support counts, and 

domain relevance. 

For the DBLP co-authorship graph, FSM-MR++ 

extracted recurring collaboration patterns, including triangular 

cliques (three-author cycles) and star-shaped subgraphs (one 

central author with multiple co-authors). These subgraphs 

matched known collaboration motifs in academic 

communities. Subgraphs with high support typically involve 

authors from the same institution or working on related topics. 

The patterns also aligned well with topological motifs in 

previous graph mining studies on scholarly networks.
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Table 9. Real-world frequent subgraph patterns discovered by FSM-MR++ 

Dataset Subgraph Type 
Structure 

(Summary) 

Support  

Count 
Domain Interpretation 

PubChem BioAssay Linear Chain C–C–C 74 The alkyl group is common in organic molecules 

PubChem BioAssay Functional Group C–O–H 68 The hydroxyl group in active pharmaceutical cores 

PubChem BioAssay 
Aromatic Ring 

Fragment 
C=C–C=C 52 Phenyl ring component in bioactive drugs 

DBLP Co-authorship 
Clique 

(Triangular) 
A–B–C–A 89 Mutual co-authorship within research groups 

DBLP Co-authorship Star Motif A–{B, C, D, E} 106 Central author with multiple collaborators 

DBLP Co-authorship Line Chain A–B–C 77 Author collaboration chain across labs 

 

The analytical evaluation was achieved by analyzing the 

frequency of the mined patterns, redundancy support, and 

structural diversity. For both data sets, FSM-MR++ achieved 

more than 95% pattern completeness within the first 3-4 

iterations, while maintaining a redundancy rate of less than 

8%, resulting in seldom subgraph overlap. Moreover, 

subgraph pruning and canonical labelling were applied to keep 

only structurally unique and well-supported patterns. This 

constrained the vast and excessive number of patterns 

produced, facilitated interpretation, and decreased post-

processing cost. These results demonstrate that FSM-MR++ is 

not only time-efficient but also effective in extracting domain-

related patterns from accurate world graphs, and therefore, can 

be applied in bioinformatics and social network analysis. 

5. Discussion 
With the growing availability of graph-based data in 

scientific, social, and industrial applications, there is an 

increasing demand for efficient and scalable Frequent 

Subgraph Mining (FSM) methods. Additionally, traditional 

FSM-based approaches such as gSpan and its extensions are 

constrained by in-memory computation and do not scale well 

with large graph databases. The existing distributed methods, 

such as ‘FSM-MR’, have made strides but are subject to 

serious issues, including redundant candidate generation, load 

imbalance, and non-adaptive schedule decisions. However, 

these factors limit the approach’s usefulness in large-scale 

scenarios involving relatively complex and dense graph 

datasets. 

The proposed FSM-MR++ framework builds on the 

MapReduce paradigm by integrating many new advancements 

to bridge these gaps. In contrast to previous models, FSM-

MR++ incorporates:  hybrid caching to minimize the 

recomputation, density-aware pruning to prune the candidate 

space at an early stage, and dynamic reducer scaling to provide 

a balanced load distribution.  

This latter set of features provides a practical tradeoff 

between running time and pattern accuracy. In addition,  the 

approach integrates canonical subgraph labeling and cost -

aware graph decomposition to achieve deterministic subgraph 

enumeration and parallelization with cost efficiency. 

Through experiments on both synthetic and accurate data, 

the benefits of FSM-MR++ are proven in practice. The 

framework achieves competitive time performance,  

scalability, and pattern completeness on centralized and 

distributed baselines. Ablation studies further authenticate the 

individual contributions of caching, pruning, and dynamic 

reducers to the overall system performance. Additionally, 

real-world validation demonstrates that we have extracted 

engaging, relevant, and interpretable subgraphs for 

bioinformatics and social network analysis. 

By handling efficiently the fundamental inadequacies of 

earlier techniques (e.g., fixed task assignment, high  

redundancy, and deferred convergence), FSM-MR++ presents 

a viable and generic scheme for distributed subgraph mining. 

The contribution advances the state of the art by providing a 

pragmatic model that balances processing efficiency and 

pattern quality, enabling efficient deployment in data-

intensive scenarios.  

The substantial performance gap of FSM-MR++ against 

state-of-the-art techniques can be attributed to the dedicated 

architectural innovations that are tightly integrated and 

specialized for distributed subgraph mining. FSM-MR uses 

static assignment of reducers and is heavily disk I/O bound. 

FSM-MR++ tackles this problem with a hybrid caching layer, 

reducing the amount of redundant disk I/O through 

substructure reuse and allowing early iterations to be resolved 

much quickly. This feature of the dynamic reducer 

reconfiguring mechanism causes the number of candidates to 

fluctuate in iterations, thereby avoiding bottlenecks and 

maintaining a balance of tasks. In addition, since our density-

aware pruning strategy filters out low-utility subgraphs 

immediately after their generation process and before their 

support counting, it reduces the number of expensive subgraph 

support counts while also increasing the output pattern quality. 

Overall, these integrated enhancements yield 25–30% 

combined run-time improvements, with significantly lower 

memory and shuffle overheads. This demonstrates that on 

large datasets, FSM-MR++ scales better and generates more 

interpretable and relevant patterns than existing literature-

reported approaches, such as gSpan, FSM-MR, and Spark-

based graph miners. The limitations encountered during the 

study are discussed in Section 5.1. 
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5.1. Limitations of the Study 

The limitations of this study are as follows: First, the 

framework’s performance was primarily tested on synthetic 

and selected real-world datasets, which do not represent the 

entirety of domain-specific graph structures. Second, although 

the MapReduce implementation is scalable, it may suffer from 

I/O overheads, hindering the execution of real-time 

applications. Third, our FSM-MR++ implementation is 

limited to undirected, unweighted graphs; to handle dynamic, 

weighted, or labeled graphs, one must modify the interface to 

the graph itself. 

6. Conclusion and Future Work  
This paper has presented a novel MapReduce-based 

FSM-MR++ for efficient large-scale graph frequent pattern 

mining. By integrating hybrid caching, dynamic reducer 

scaling, and density-aware pruning, the framework addresses 

several limitations of previous IFSM approaches, including 

computational redundancy, static task assignment, and 

scalability issues. The synthetic and real data experiments 

demonstrate that FSM-MR++ exhibits significant advantages 

in terms of run-time efficiency, scalability, and pattern quality 

compared to traditional methods. Furthermore, the fast 

convergence and high relevance of the subgraph also reinforce 

the practical applicability of the framework, as seen in 

applications such as bioinformatics and social network 

analysis. Although FSM-MR++ has some desirable 

properties, it has some limitations: it has been tested on only a 

few datasets and can only handle undirected, unweighted 

graphs. These limits also suggest potential future research 

directions. We leave the extension of the proposed framework 

to dynamic, weighted, and multi-labeled graphs as future work 

to achieve a further generalization that applies to a broader 

range of domains. Furthermore, incorporating the framework 

with real-time or streaming data scenarios would accelerate its 

engagement and implementation in latency-critical systems. 

New distributed paradigms: Besides MapReduce, other 

distributed paradigms (e.g., Spark or Flink) are worth 

investigating, which could also lead to an improved 

processing time. In summary, FSM-MR++ offers a suitable 

foundation for developing scalable and interpretable graph 

mining algorithms. 
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