
International Journal of Engineering Trends and Technology Volume 73 Issue 8, 147-169, August 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I8P113 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

FSM-MR++ Enhanced MapReduce-Based Framework

for Scalable Frequent Subgraph Mining in Large-Scale

Graph Datasets

Naga Mallik Atcha1*, Jagannadha Rao D B2, Vijayakumar Polepally3

1Department of CSE, Malla Reddy University, Hyderabad, Telangana, India.

2Malla Reddy University, Hyderabad, Telangana, India.

3Kakatiya Institute of Technology & Science, Warangal, Telangana, India.

1Corresponding Author : mallik.atcha@gmail.com

Received: 21 June 2025 Revised: 25 July 2025 Accepted: 31 July 2025 Published: 30 August 2025

Abstract - Frequent Subgraph Mining (FSM) is a key technique for identifying recurring structural patterns in large graph

datasets. It has a broad spectrum of applications ranging from bioinformatics and cheminformatics to social network analysis.

Nonetheless, state-of-the-art FSM algorithms, such as gSpan, still suffer from a scalability problem stemming from the

exponential candidate generation and the in-memory constraint. Although existing distributed methods (such as FSM-MR) are

MapReduce-friendly, they suffer from static reducer assignment, redundant subgraph recomputation, and inefficiency in pruning.

Such constraints significantly influence the run-time efficiency, quality of patterns, and scalability on large-scale real-world big

data. To address these challenges, an enhanced MapReduce-based pattern searching framework, FSM-MR++, is proposed for

efficient and adaptive frequent subgraph discovery. The framework incorporates three innovations: a hybrid caching technique

to prune repetitive subgraph generation, a dynamic reducer configuration scheme to prevent skewed task distribution, and a

density-aware pruning strategy to abandon unpromising candidates early during mining. These primitives are combined with

canonical Labeling and cost-aware partitioning to optimize parallelism and convergence. A quantitative evaluation is conducted

to assess its performance on both synthetic and real datasets. It was observed that FSM-MR++ runs up to 30% faster than FSM-

MR and is up to half the run-time of centralized gSpan, while still enabling high-quality, interpretable patterns. We conduct a

series of ablation studies to validate the improvements introduced by each proposed enhancement , and scalability tests are used

to evaluate the framework against growing data and cluster sizes. The framework’s efficacy in discovering target-specific

substructures in a domain and in an interpretable manner is demonstrated using real-world, PubChemBioAssay, and DBLP

datasets. In general, FSM-MR++ fills the gaps of current FSM methods, providing a scalable, efficient, and flexible solution for

frequent subgraph mining in a distributed big data setting.

Keywords - Frequent Subgraph Mining, MapReduce framework, Distributed graph Mining, hybrid caching, Dynamic reducer

scaling.

1. Introduction
As a subtask of data mining and knowledge discovery,

Frequent Subgraph Mining (FSM) is now widely recognized

for analyzing large amounts of graph data from various

application domains, including bioinformatics,

cheminformatics, social networks, and cybersecurity.

Discovering frequent subgraphs from graph databases for

molecular activity pattern analysis, collaboration network

analysis, and inter- and multi-relational network discovery is

a challenging and active area of research. Nevertheless,

traditional FSM methods, including gSpan and FSG, suffer

from expensive computing and insufficient scalability on

large-scale graph data. Distributed FSM algorithms, such as

FSM-MR, have attempted to address these challenges through

MapReduce. Still, they suffer from static reducer allocation

problems, high redundancy among candidates, and a lack of

adaptive pruning. Recent research studies have drawn

attention to the necessity of scalable, adaptive, and workload-

balanced FSM techniques that can handle millions of graphs

in a distributed computing environment [1-3]. Existing

methods predominantly rely on memory-based calculations or

overlook task balance and convergence optimization, which is

unsuitable for real-world big data applications.

Accordingly, a framework capable of reconciling

MapReduce’s robustness while incorporating algorithmic

optimizations for efficiency and redundancy reduction, and

preserving the significance of pattern-derived information is

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mallik.atcha@gmail.com

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

148

needed. Although many distributed FSM methods are

proposed, including FSM-MR, G-thinker, and PEREGRINE,

they still suffer from various persistent problems: (i) Static

task allocation suffers from load balance, (ii) Isomorphic

subgraphs can be generated and recomputed redundantly, and

(iii) Memory and reducer scalability are not efficient for large,

dense, or irregular graph structures. Such restrictions slow

down convergence speed, increase the overhead costs in

measurable resources, and decrease the releva nce of the

learned patterns, particularly in real-world settings, where

low-scale and high-parallel interpretability is needed.

Additionally, adaptive scheduling and memory-aware

optimization techniques are not well-coupled in studies based

on the MapReduce paradigm; thus, a unified and scalable

framework for FSM is still lacking.

To address these challenges, we propose FSM-MR++, a

novel and more efficient framework for frequent subgraph

mining based on MapReduce. We develop our proposed

solution based on five innovations: (1) graph partitioning

strategy to alleviate load skews, (2) cost-aware mapper

scheduler to achieve balanced memory and computation, (3)

hybrid memory-caching mechanisms to reduce disk I/Os, (4)

density-aware candidate pruning to prune low utility patterns

early, and (5) dynamic reducer scaling to dynamically and

optimally spread the iterative tasks. The innovations in FSM-

MR++ are: (i) adaptive parallel mining by dynamically

allowing or disallowing map tasks to avoid redundant

computation, and (ii) increased convergence time (until

satisfying PoE) without losing pa ttern quality, as compared to

state-of-the-art methods. Our solution retains interpretability

and domain relevance, outperforming traditional models

(gSpan) and more recent frameworks (FSM-MR) in terms of

running time, achieving up to 30% faster execution time and

up to 50% run-time reduction on various real-world datasets.

The rest of the paper is structured as follows: Section 2

reviews the literature on related work and advancements in

FSM. Section 3 presents the proposed FSM-MR++ method,

consisting of an architecture and two algorithmic components.

Section 4 describes the experimental results, ablation studies,

and scalability tests. Section 5 concludes and discusses related

work and limitations. The remainder of this article is

organized as follows: Section 6 summarizes and concludes the

article, discussing future work.

2. Related Work
This literature review explores recent advancements,

limitations, and future directions in scalable subgraph mining

and graph-based data analytics. Yan et al. [1] presented

PrefixFPM, an adaptable framework for mining common

patterns that addresses shortcomings in current methods and

makes recommendations for future improvements. Yan et al.

[2] examined the shortcomings of current models, evaluated

developments in graph-parallel systems, and looked at

potential directions for graph analytics. Besta and Hoefler [3]

discovered efficiency issues, evaluated graph neural network

parallelism, and made recommendations for future

optimization research paths. Megherbi et al. [4] developed a

deep learning technique for dense subgraph mining,

highlighting its advantages while acknowledging its

drawbacks and recommending potential improvements. Yang

et al. [5] examined and categorized Personalized PageRank

methods, highlighting issues with efficiency and suggesting

further research on dynamic graph applications and systematic

comparisons.

Vandierendonck [6] presented novel set intersection

methods for maximal clique enumeration, highlighting the

difficulties associated with higher graph sizes while achieving

notable speedups. Lu et al. [7] developed Xorbits, a scalable

data science platform that addresses out-of-memory problems;

further development is needed to make it compatible with a

broader range of applications. Gao et al. [8] presented CSM-

TopK, a method for identifying high-density matches in

dynamic weighted graphs, highlighting its NP-hardness and

offering enhancements for broader application. Ponnusamy

and Gupta [9] investigated cloud-based, scalable data-

partitioning strategies, highlighting inefficiencies and

recommending future improvements for data-intensive

applications. Yao et al. [10] developed the MSBE algorithm,

which addresses shortcomings in current models and proposes

improvements for the future, to locate similar bicliques in

bipartite networks efficiently.

Yu et al. [11] presented KSP-DG, a distributed technique

that addresses scalability challenges and proposes efficient

indexing for k-shortest paths in dynamic road networks. Wei

et al. [12] created the geospatial knowledge graph

FineGeoKG, which effectively captures strong geographic

linkages and improves query speed while recommending

improvements. Zhang [13] examined the use of extensive

health data analytics to enhance the performance of senior

employees, highlighting the challenges and upcoming tasks in

integrating complex medical systems. Yuan et al. [14]

developed a batch processing approach to enhance the

performance of multiple searches in large networks for hop-

constrained s-t path enumeration. Das et al. [15] examined

stock prediction using GNNs and sentiment analysis, pointing

out its drawbacks and recommending areas for further study.

Liu and Seshadhri [16] proposed a novel triangle counting

approach for constrained arboricity graphs that balances space

constraints with efficiency. Erbel and Grabowski [17]

developed a dynamic run-time architecture for scientific

processes that enables the integration of bespoke apps and

real-time resource management; further improvements are

recommended. Mahnoor et al. [18] examined quick clustering

techniques, identified issues, and suggested avenues for

further study to enhance the effectiveness and relevance of

these techniques across various domains. Dahiphale et al. [19]

developed BiECCA, a distributed algorithm that addresses the

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

149

limitations of single-node methods for identifying 2-edge-

linked components in large networks. Chaturvedi et al. [20]

utilized FP-Growth and PFP-Growth to analyze social media

data and identify common patterns, highlighting

preprocessing flaws and potential areas for further study.

Song et al. [21] developed a filtering-based optimal

partial assessment technique to enhance the efficiency of

subgraph matching in large knowledge networks. Ma et al.

[22] examined 98 articles on the use of Hadoop in big data for

transportation, identifying patterns, weaknesses, and areas for

further study. One of its limitations is an inadequate

comprehensive study of Hadoop’s basic technology. Yan et al.

[22] examined graph mining approaches for cybersecurity,

discussing current solutions and highlighting important

datasets and methodologies.

Among the drawbacks is the requirement for better cyber

entity correlation modeling. Research directions for the future

are suggested. Kumbhkar et al. [24] developed a data

reduction plan to address the challenges in making significant

decisions with large datasets for multiclass classification in

survival analysis. One of the limitations is the potential

simplification of complicated data . Future research ought to

investigate further optimization strategies. Asmaa et al. [25]

proposed a scalable approach to reduce communication costs

in graph mining; however, further advancements are needed

for broader applications.

Mo et al. [26] discussed cohesive subgraph mining,

particularly k-trusses, but pointed out scalability issues and

recommended further study. Reddy et al. [27] developed the

SIFT framework to identify subgraph coverage patterns in

graph transactional data, emphasizing its effectiveness but

requiring further evaluations of its broader application. Liu et

al. [28] evaluated Subgraph enumeration using MapReduce

algorithms, highlighting scalability issues and stressing the

need for better overhead control in distributed systems. Pasini

et al. [29] enhanced semantic representation by introducing a

frequent subgraph mining approach for picture

summarization; nonetheless, future research may investigate

more extensive applications. Ayall et al. [30] examined

computer systems and graph partitioning for large-scale

analytics, addressing scalability issues and offering ideas for

future study.

Zhang et al. [31] addressed the current model’s

shortcomings and suggested additional improvements by

developing a novel temporal graph model and clustering

technique to enhance accuracy and efficiency. Ma et al. [32]

demonstrated an effective DDS solution utilizing [x, y]-core

principles, which significantly increased performance;

nonetheless, further scalability improvements are required.

Wang et al. [33] presented GPARs for social network analysis,

which utilize scalable algorithms to solve discovery problems;

however, additional optimization may be needed. Hua et al.

[34] improved accuracy and efficiency by using colSimulation

for frequent graph pattern mining; nevertheless, scalability has

to be improved in future work. Franco et al. [35] enhanced

scalability and efficiency by developing Variable Resolution

LSH for approximation kNN graphs, while more optimization

research is advised.

Guo et al. [36] proposed a GPU-based method for

subgraph enumeration optimization by reusing intersection

results, which enhances performance; however, further

efficiency improvements are needed in future studies. Sun and

Luo [37] examined the advantages and disadvantages of eight

subgraph matching techniques and recommended additional

optimization for more extensive searches. Pashanasangi and

Seshadhri [38] presented EVOKE, a scalable approach for

counting local subgraphs that improves speed and efficiency.

However, scalability may be further enhanced in future

studies. Yuan et al. [39] reduced latency and costs by

introducing GeoGraph for effective geo-distributed graph

query processing; nevertheless, scalability upgrades are

required in the future. Rajita et al. [40] offered a Spark-based

social network event prediction framework that achieves

excellent efficiency and accuracy. However, scalability might

be improved with additional tuning. The review synthesizes

contributions across distributed subgraph mining, dynamic

graph analysis, and parallel processing frameworks. While

many studies offer scalable solutions using MapReduce,

GNNs, and GPUs, challenges such as data partitioning,

overhead reduction, and scalability persist. Future work

should focus on enhancing adaptability, efficiency, and

support for real-time, large-scale graph analytics.

3. Proposed Framework
This section presents the FSM-MR++ framework to

overcome the scalability and efficiency challenges in

distributed frequent subgraph mining. It introduces key

enhancements, including hybrid caching, dynamic reducer

scaling, and density-aware pruning. The overall system

architecture, iterative execution workflow, and algorithmic

modules are detailed to illustrate the framework’s

adaptability, performance optimization, and pattern quality

assurance.

3.1. Preliminaries: FSM-MR Framework

The framework of FSM-MR is a distributed frequent

subgraph mining framework proposed by the authors in [41]

in an earlier study. We proposed FSM-MR, the first algorithm

for subgraph mining within the MapReduce programming

paradigm, to overcome scalability and performance problems.

This new work, FSM-MR++, expands upon the ideas,

implementation, and results of FSM-MR. This section

provides a brief introduction to FSM-MR for completeness.

Still, interested readers are referred to [41] for more

comprehensive details about the algorithm design,

implementation, and baseline performance measurements.

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

150

Frequent Subgraph Mining (FSM) is a data mining task

that finds user-defined subgraphs of a given graph dataset. A

subgraph gg is considered frequent if it can be found in at least

graphs in the database 𝒟 = {𝐺1 , 𝐺2 , … , 𝐺𝑛
}, where 𝜎 is a user-

defined minimum support threshold:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔 ⊆ 𝐺𝑖
}| (1)

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑓: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) ≥ 𝜎 (2)

FSM is computationally demanding, stemming from two

main problems: the exponential increase in subgraph

candidates and the difficulty of checking subgraph

isomorphism. FSM-MR [41] copes with this problem with a

distributed iterative MapReduce-based design, where at each

iteration, previously discovered frequent subgraphs are

extended and infrequent ones are pruned.

The mapping phase, used for constructing the subgraph,

and the reduction phase, used for the support computation,

compose the framework along with a Driver module managing

iterative execution.

FSM-MR generates all 1-edge frequent subgraphs from

the dataset and passes them to the mapper in the first iteration.

Each mapper processes a shard of the dataset and creates

candidate kk-subgraphs by adding one more edge to the

frequent (𝑘 − 1) -subgraphs.

We map each generated subgraph into a canonical

representation with a labeling function ℓ(𝑔𝑘)so that

isomorphic subgraphs share exact representation

ℓ(𝑔𝑘) = min
𝜋∈𝛱

𝑒𝑛𝑐𝑜𝑑𝑒 (𝐴𝜋) (3)

Where 𝛱 is the aggregation over all permutations of the

set of vertices, and cap a. to the pi is the adjacency matrix g

sub k nder a permutation. In the Reducer phase, the sub-

graphs with identical canonical labels are grouped, and their

support is computed over the dataset. The resulting set of

frequent subgraphs is then:

𝐹𝑘 = {𝑔𝑘 ∣ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘) ≥ 𝜎𝑡
} (4)

The driver observes each iteration and checks for

termination when no new frequent subgraphs are found:

𝐹𝑘 +1 = ∅ ⇒ 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 (5)

FSM-MR includes a few optimizations that improve the

performance for distributed environments:

Canonical Labeling, to not process any duplicate

isomorphic subgraphs.

In-Mapper Combiner: Decrease the amount of

intermediate key-value pairs in the shuffle phase.

Dynamic Support Thresholding for base learners on

heterogeneous graphs.

Subgraph Generation Edge Sorting Heuristics for

enhanced determinism.S

While FSM-MR showed significant performance gain on

mid-scale datasets, it struggled when scaled to more complex,

high-density, or unbalanced graph datasets.

The abovementioned issues, the load imbalance, large

disk I/O, and inflexible resource allocation, motivate the

improvements presented in FSM-MR++, where adaptive

memory-efficient and highly scalable subgraph mining is

targeted across various data orientations. We recommend [41]

for in-depth insights into the design rationale and performance

results behind FSM-MR, which is the building block of this

work. Table 1 provides key notations representing graph

components, algorithm parameters, and performance metrics

used in the FSM-MR++ framework.

Table 1. Notations used in the FSM-MR++ framework

Notation Description

𝒟 Input graph dataset {𝐺1 , 𝐺2 , … , 𝐺𝑛
}

𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) A single graph instance with vertices 𝑉𝑖 and edges 𝐸𝑖

𝑔𝑘 Candidate subgraph of size 𝑘

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) Number of graphs in 𝒟 that contain subgraph 𝑔

𝜎, 𝜎𝑡 Minimum support threshold (global or iteration-specific)

ℓ(𝑔) Canonical label of subgraph 𝑔

𝑇𝑡𝑜𝑡 𝑎𝑙 Total execution time of the algorithm

𝑇𝑖 Execution time of iteration 𝑖

𝑆 Data shuffle volume (size of intermediate data transferred)

𝜙 Pruning efficiency (% of subgraphs filtered before support counting)

𝜂 Scalability factor across multiple computing nodes

𝑀𝑝𝑒𝑎𝑘 Peak memory utilization per node

𝑟𝑡 Number of reducer tasks in iteration 𝑡

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

151

3.2. Problem Statement and Motivation

Frequent Subgraph Mining (FSM) is a fundamental

operation in graph data. The patterns have significant

applications in various domains in chemoinformatics,

bioinformatics, cybersecurity, and social network analysis.

Let us first explain some basic terms that are assumed to be

known about frequent subgraph mining (Shah et al. 2010). A

subgraph is frequent if there are at least support frequency

graphs in which it appears, where support is a user-defined

threshold. Let 𝒟 be a dataset of graphs 𝒟 = {𝐺1 , 𝐺2 , … , 𝐺𝑛
} ,

the support of a candidate subgraph is defined as in Equation

(1).

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔 ⊆ 𝐺𝑖
}| (1)

A subgraph 𝑔 is frequent if it satisfies the condition in

Equation (2).

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) ≥ 𝜎 (2)

Where 𝜎 denotes the minimum support threshold.

Traditional algorithms, like gSpan and Apriori-based FSM

techniques, require heavy in-memory computations, causing

memory exhaustion and performance bottlenecks. In addition,

the syntactic generation of candidate subgraphs and the

verification of subgraph isomorphisms are both exponential

operations and make this technique infeasible if the data

volume is high. In response, a few distributed frameworks

have been proposed, e.g., G-thinker, PEREGRINE, and

FlexMiner; however, they also suffer from drawbacks,

including unnecessary shuffling of intermediate data, non-

targeted pruning approaches, and an incapacity to adapt to

variability in datasets quickly. The first FSM-MR framework

proposed by the authors in [41] tackled some of these

problems using the MapReduce paradigm. It proposed

optimizations like canonical Labeling, an in-mapper

combiner, and dynamic support thresholds to limit

redundancy and increase parallelism. FSM-MR attained

considerable run-time and scalability benefits, but exhibited

performance degradation when working on highly dense

graphs or heterogeneous-sized graph datasets. In particular,

these bottlenecks included limits arising from load balancing,

saturation, mapper and reducer, and memory inefficiencies.

Thus, this work generalizes FSM-MR to FSM-MR++, an

enriched version of the original framework. It combines the

motivation and necessity to develop a strong, adaptable FSM

framework that can scale well on both synthetic and realistic

graph datasets under settings of high edge density and skewed

subgraph complexity. Specifically, FSM-MR++ employs a

graph partitioning mechanism, cost-aware mapper scheduling,

hybrid memory optimization, and dynamic reducer

reconfiguration. These extensions aim to optimize the

performance of FSM further when used in a distributed

environment, and to promote FSM-MR++ as a generic

solution for large-scale frequent subgraph mining problems.

3.3. Overview of the Proposed FSM-MR++ Framework

FSM-MR++ is the framework proposed in Figure 1

towards scalable and efficient frequent subgraph mining for

large-scale graph datasets with a MapReduce-based

framework. The contribution extends the original FSM-MR

framework, which overcomes the performance bottlenecks

caused by computation skew, memory overhead, and data

transfer costs in a distributed setting. FSM-MR++ retains the

two-phase iterative nature (subgraph construction and support

counting) of the two-phase algorithm, while incorporating the

benefits of intelligent scheduling, memory optimization, and

adaptive resource allocation to significantly improve run-time

and scalability.

Fig. 1 FSM-MR++ system architecture with graph partitioning, cost-aware scheduling, hybrid caching, and dynamic reducer configuration

Iterative Drive/Controller

Cost-Aware Mapper

Scheduler

FSM Mapper

(with Hybrid Cache)

Graph Dataset (input) Graph Partition-ting FSM Reducer

(Dynamic Scaling)

HDFS (Intermediate

Storage)

Phase 1: Subgraph Construction
Phase 2: Support Counting

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

152

At a high level, the framework is divided into four

modules: graph partitioning, adaptive mapper scheduling,

hybrid memory-caching mappers, and dynamically

configurable reducers. The execution starts with the input

dataset 𝐷 = {𝐺1, 𝐺2 , . . . , 𝐺𝑛
}, where each 𝐺𝑖 is a labeled

graph. The first step is preprocessing the dataset 𝑃 =
{𝐺1

′ , 𝐺2
′ , . . . , 𝐺𝑘

′ }, where it is separated into categories

considering edge density 𝜌(𝐺𝑖) and average degree 𝑑̅(𝐺𝑖),

which are determined as in Equations (6) and (7).

𝜌(𝐺𝑖) =
2∣𝐸𝑖 ∣

∣𝑉𝑖∣(∣𝑉𝑖∣−1)
 (6)

𝑑̅(𝐺𝑖) =
2∣𝐸𝑖∣

∣𝑉𝑖 ∣
 (7)

These metrics allow different mappers to handle

partitions of similar complexity, thus reducing load

imbalance. The other part, the mapper scheduler, employs a

cost-aware function to allocate the mapper node partition. For

a graph partition 𝐺𝑖
′, the cost estimate is given by Equation (8).

𝑐𝑜𝑠𝑡(𝐺𝑖
′) = 𝛼 ⋅ 𝑑̅(𝐺𝑖

′) + 𝛽 ⋅ 𝜌(𝐺𝑖
′) (8)

Where 𝛼 and 𝛽 are tunable coefficients that capture the

computational effects of degree and density, respectively. This

cost is recorded and needs to be used by the scheduler to

dynamically allocate partitions across mapper nodes so none

of the nodes gets overcrowded by a dense (or complex)

partition.

In the mapper phase, FSM-MR++ creates candidate kk-

subgraphs by expanding each frequent (𝑘 − 1)-subgraph

with some extra edge. We assign a canonical label ℓ(𝑔𝑘) to

each candidate subgraph, ensuring no two isomorphic

subgraphs will share the same label. Here is how we compute

the canonical label as in Equation (9).

ℓ(𝑔𝑘) = min
𝜋∈𝛱

𝑒𝑛𝑐𝑜𝑑𝑒 (𝐴𝜋) (9)

Where 𝛱 is the set of all vertex permutations and 𝐴𝜋 is

the adjacency matrix under permutation 𝜋. Before being sent

to the reducer, subgraphs with the same labels are combined.

FSM-MR++ employs a hybrid memory-caching approach to

reduce disk I/O and shuffling overhead. If a subgraph has

access frequency higher than a threshold 𝜃, it is kept in

memory as in Equation (10).

𝑓𝑟𝑒𝑞 _𝑎𝑐𝑐𝑒𝑠𝑠 (𝑔) ≥ 𝜃 ⇒ 𝑔 ∈ 𝐶𝑎𝑐ℎ𝑒 (10)

Otherwise, it is managed with HDFS. This optimization

is especially powerful in early iterations, with a few repeated

substructures being extended multiple times. In the reducer

phase, subgraphs are cluster in terms of their canonical labels,

and their associated support values are calculated as in

Equation (11).

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘) = |{𝐺𝑖 ∈ 𝐷 ∣ 𝑔𝑘 ⊆ 𝐺𝑖
}| (11)

Subgraphs are frequently used if the condition in

Equation (12) is satisfied.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔𝑘) ≥ 𝜎𝑡 (12)

Where 𝜎𝑡 is the dynamic support threshold for the

iteration 𝑡. The configuration of reducers is also dynamically

tuned based on the number of intermediate keys. 𝑘𝑡 emitted

by mappers as in Equation (13).

𝑟𝑡 = [
𝑘𝑡

𝜅
] (13)

Where 𝑟𝑡 is the number of reducers in iteration 𝑡, and 𝜅 is

the reducer load capacity threshold. The looping driver

orchestrates these operations, iterating over the mapper and

reducer phases until no new frequent subgraphs are produced.

After each iteration, the termination condition is checked, as

in Equation (14).

𝐹𝑡 +1 = ∅ (14)

If it holds true, the mining process is stopped and all

found most subgraphs 𝐹 = ⋃𝑖=1
𝑡 𝐹𝑖 are returned. Therefore,

FSM-MR++ combines partition-aware preprocessing,

adaptive mapper scheduling, hybrid-memory optimization,

canonical subgraph labeling, and dynamically scaled reducers

to efficiently provide a comprehensive framework for

frequent subgraph mining. The ability to work in a distributed

MapReduce style across a heterogeneous graph setting with

its modular memory-based architecture and resource-

conscious design.

Figure 2 illustrates the iterative execution workflow of the

FSM-MR++ framework. In each iteration, candidate

subgraphs are generated using mappers, labeled canonically,

and optionally cached if frequently accessed. These are then

passed to reducers for support counting and density-aware

pruning. The frequent subgraphs are written to HDFS and

passed on to the next iteration. The process continues until no

new frequent subgraphs are discovered, at which point it

triggers termination. This iterative control enables scalable

and efficient subgraph mining over large graph datasets using

the MapReduce paradigm.

3.4. Key Enhancements Over FSM-MR

To address the limitations above in FSM-MR, the

proposed framework, FSM-MR++, adopts a sequence of core

optimizations about scalability, load balancing, memory

footprint, and computation. The above improvements enable

FSM-MR++ to handle large and complex graph datasets more

efficiently while maintaining accuracy and parallel

performance. Below, we detail the five key enhancements that

FSM-MR++ introduces.

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

153

Fig. 2 Iterative execution workflow of FSM-MR++ highlighting mapreduce-based subgraph construction, support counting, pruning, and termination

control across iterations

Graph Dataset

Input

Initial Candide

Generation (1-edge

subgraphs)

Subgraph Construction

Phase (Mapper)

FSM Mapper phase

(subgraph construction)

Intermediate Storage

HDFS

(Intermediate Data)

Support Counting Phase

(Reducer)

FSM Reducer Phase

(Support Count +Pruning

Pruned Frequent

Subgraph Output

Frequent Subgraphs

(K -size)

Iterative Feeadback Loop

If New Candidates Found

New Candidates Found?

Yes No

Final Output

Final Frequent

Subgraphs

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

154

3.4.1. Graph Partitioning to Help Balance Loads

Input graphs were fed into the mapper nodes of FSM-MR

without any structural preprocessing, which resulted in a load

imbalance in the mapper nodes. FSM-MR++: Partitioned

Approach Using Preprocessing. Built a preprocessing module

that partitions the input graph dataset based on vertex degree

distribution, edge density, or component size. The idea is to

ensure that each partition contains segments of the graph with

approximately equal structural complexity.

Let 𝐺 = (𝑉, 𝐸) be a graph having heterogeneous degrees

of vertices. The goal of partitioning is to separate 𝐺 into 𝑃 =
{𝐺1 , 𝐺2 , … , 𝐺𝑘

} such that it satisfies Equation (15).

max
1≤𝑖≤𝑘

𝑐𝑜𝑠𝑡(𝐺𝑖) − min
1≤𝑗≤𝑘

𝑐𝑜𝑠𝑡(𝐺𝑗) ≤ 𝜖 (15)

Where 𝑐𝑜𝑠𝑡(𝐺𝑗) is a processing time estimator tied to

vertex and edge density, and is a small constant threshold.

This balancing approach allows for better utilization of

mapper nodes by minimizing idle cycles and preventing the

overloading of nodes during subgraph enumeration.

3.4.2. Mapper Scheduling Based on Cost

FSM-MR adopted a static scheduling across subgraphs

that did not account for differences in computation cost across

partitions. FSM-MR++ evaluates each partition based on a

cost function that uses structural metrics, including average

node degree, number of edges, and clustering coefficient. The

scheduler divides the partitions between the mapper tasks

based on this cost model, ensuring equal distribution of

computational load as in Equation (16).

𝑐𝑜𝑠𝑡(𝐺𝑖) = 𝛼 ⋅ 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺𝑖) + 𝛽 ⋅ 𝑒𝑑𝑔𝑒_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐺𝑖)
 (16)

Where 𝛼 and 𝛽 are weighting coefficients that measure

the contribution of each feature to processing cost. This

dynamic scheduling substantially reduces performance

degradation due to skewed data distributions and enforces

more predictable per-iteration run times.

3.4.3. Hybrid Memory-Caching Mechanism

Most of the previously proposed systems, including FSM-

MR, use mappers that read and write subgraph data using

HDFS, which introduces further I/O overhead and reduces

execution time for numerous subgraph iterations. FSM-MR++

tackles this problem with a hybrid caching where popular

subgraphs, adjacency matrices and partial extensions are

cached in local memory. For a subgraph 𝑔, a caching utility

caches it in memory if the condition in Equation (17) is

satisfied.

𝑓𝑟𝑒𝑞 _𝑎𝑐𝑐𝑒𝑠𝑠 (𝑔) ≥ 𝜃 (17)

Where 𝜃 is the access threshold that is iteratively defined

with respect to the statistics of the current iterations and the

dataset. HDFS for less-accessed subgraphs.

This method minimizes the latency with respect to disk

access, especially during the early iterations of the search

where the space of candidates is large, and recurring

substructures are accessed many times.

3.4.4. Dynamic Reconfiguration of Reducers

FSM-MR used a constant number of reducers for all

iterations, independent of the number of intermediate keys

produced. In FSM-MR++, at run-time, the reducer

configuration is adjusted dynamically, depending on the

number. 𝑘𝑡 of keys generated in iteration as in Equation (18).

𝑟𝑒𝑑𝑢𝑐𝑒𝑟𝑠𝑡 =
𝑘𝑡

𝜅
 (18)

Where 𝜅 is the maximum number of keys a reducer can

process efficiently. Such dynamic scaling helps the system to

prevent reducer overload in dense iterations and efficiently

utilize resources in sparse iterations. The Driver program

observes and applies the rearrangement before each iteration.

3.4.5. Density-Aware Candidate Pruning

FSM-MR++ implements a density-aware pruning

strategy during the candidate generation phase to avoid

needless subgraph isomorphism tests. By checking on local

graph density and degree statistics, this method filters out

candidate subgraphs with a low probability of satisfying the

minimum support threshold.

Just like SLAP, pruning is also executed for each

subgraph candidate 𝑔 k if the condition in Equation (19) is

satisfied.

𝑑𝑒𝑔𝑎𝑣𝑔 (𝑔) < 𝛿𝑜𝑟𝑙𝑜𝑐𝑎𝑙 _𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔) < 𝜆 (19)

Where 𝛿 and 𝜆 denote configurable threshold

parameters according to the dataset properties.

This mechanism minimizes the computation cost in the

reducer phase by filtering low-potential candidates at an

earlier time, and thus it enhances the efficiency of the mining

process. The five optimizations listed above are tightly

integrated into FSM-MR++, including partitioning, cost-

aware scheduling, hybrid caching, dynamic reducer

adjustment, and density-aware pruning. Each focuses on a

particular bottleneck in large-scale graph mining. With FSM-

MR++, these two enhanced techniques serve as a foundation

for a global and scalable framework that handles the actual

big graph analytics challenges with their low run-time,

diminished memory consumption, and balanced

computational properties.

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

155

3.5. FSM-MR++ Algorithm Description

FSM-MR++ is an extended iteration-based frequent

subgraph mining algorithm that builds upon the FSM-MR

framework [41] and incorporates new optimization strategies

to enhance scalability for large-scale mining, reduce execution

time, and optimize resource utilization. Our algorithm runs

under a distributed Hadoop environment, according to the

MapReduce paradigm for parallel computation and data

processing. FSM-MR++_part_execute.png shows each

iteration of FSM-MR++ performing candidate subgraph

generation, canonical Labeling, candidate support counting,

pruning of the enumerated subgraph space, and so on, until no

new frequent subgraphs are found.

Algorithm 1: FSM-MR++ – Enhanced Frequent Subgraph Mining Using MapReduce

Algorithm: FSM-MR++ – Enhanced Frequent Subgraph Mining Using MapReduce

Input: Graph database 𝒟, minimum support threshold 𝜎

Output: Set of all frequent subgraphs 𝐹

1: Partition 𝒟 into balanced subsets {𝐺1
′ , 𝐺2

′ , . . . , 𝐺𝑘
′ } based on degree and density

2: Estimate computational cost for each partition and schedule to mappers

3: Initialize frequent subgraph set 𝐹 = ∅, iteration index 𝑡 = 1

4: Generate all frequent 1-edge subgraphs 𝐹1

5: Store 𝐹1 in HDFS and update 𝐹 ← 𝐹 ∪ 𝐹1

6: while 𝐹𝑡 ≠ ∅ do

7: Construct candidate subgraphs 𝐶𝑡+1 from 𝐹𝑡 in mappers

8: Apply canonical labeling ℓ(𝑔) to each candidate 𝑔 ∈ 𝐶𝑡+1

9: Cache frequent substructures in memory; store others in HDFS

10: Emit ⟨ℓ(𝑔),1⟩ key-value pairs

11: Configure the number of reducers 𝑟𝑡 ← ⌈∣ 𝐶𝑡+1 ∣/𝜅⌉
12: Group by ℓ(𝑔), compute support 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) in reducers

13: Prune candidates with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) < 𝜎𝑡

14: Update 𝐹𝑡 +1 ← {𝑔 ∈ 𝐶𝑡+1 ∣ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔) ≥ 𝜎𝑡
}

15: Write 𝐹𝑡 +1 to HDFS, update 𝐹 ← 𝐹 ∪ 𝐹𝑡 +1, t←t+1

16: end while

17: Return 𝐹

Algorithm 1 starts with the input graph dataset 𝒟, which

is first fed into a graph partitioning module. This module

analyzes structural properties of graphs (e.g., average degree

of the graph, edge density) and partitions the dataset

recursively{𝐺1
′ , 𝐺2

′ , . . . , 𝐺𝑘
′ }, making sure that every partition is

relatively homogenous in complexity. This is important as it

balances the computational load on the mapper nodes. Then,

a cost-aware mapper scheduler uses a cost estimation function

to evaluate the partitions based on average node degrees and

local edge densities. Partitions expected to incur more

computational cost are spread out so no specific nodes are

overloaded. This approach enables dynamic scheduling,

which provides better performance predictability and higher

parallel efficiency.

In each iteration tt, FSM-MR++ employs frequent (𝑘 −
1)-subgraphs generated in the last round to candidate kk-

subgraphs. The FSM Mapper component takes care of this,

where each mapper extends local subgraphs by one edge and

computes a canonical label for each candidate subgraph in

O(log (n)) time using the minimum lexicographic encoding

over all vertex permutations. This step removes isomorphic

duplicates and makes the intermediate key-value pairs unique

before forwarding to the reducer phase. FSM-MR++ adopts a

hybrid memory caching mechanism in the mapper. The

frequently used subgraph or the adjacency structure that exists

in multiple graphs or multiple iterations is kept in memory,

while candidates that appear less frequently will be

temporarily put in HDFS. This greatly mitigates disk I/O

overhead and expedites early iterations, where subgraph

explosion is most dramatic.

The mapper intermediate output is stored in HDFS and

given to the FSM Reducer, which groups the subgraphs by

their canonical label. The reducer calculates the support of

each candidate subgraph by testing its presence in the input

graphs. Frequent subgraphs for the current iteration are output

back to HDFS to retain the above dynamic support threshold.

FSM-MR++ also introduces dynamic reduction

reconfiguration to enhance efficiency. In each iteration, the

number of reducer instances will be adjusted according to the

size of intermediate subgraphs produced. When the emitted

key-value pairs exceed a pre-configured reducer capacity

threshold, the framework automatically increases the number

of reducers to avoid memory bottlenecks and increase

throughput.

 Every iteration ends with a verification step from the

iterative driver module, determining whether any frequent

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

156

subgraphs were newly uncovered. If the output set 𝐹𝑡 +1 is not

empty, it fires the next iteration with the current candidate

list. The algorithm terminates otherwise, and the union of all

the frequent subgraphs over iterations is returned as a final

output:

𝐹 = ⋃ 𝐹𝑖

𝑡

𝑖=1

The FSM-MR++ algorithm is scalable, robust to faults,

and able to deal with datasets of different sizes and graphs of

different densities. It goes beyond the original FSM-MR

algorithm by leveraging load balancing, memory-aware

caching, and iterative scaling strategies. It shows promising

applicability as a scalable big data graph analytics solution.

3.6. Evaluation Methodology

An extensive evaluation was conducted to assess the

scalability, efficiency, and performance improvements of the

proposed FSM-MR++ framework over the baseline FSM-MR

algorithm presented in the authors’ prior work [41]. We

evaluate the framework on synthetic and real-world datasets

of a broad range of data structures, including sparse, dense,

and irregular graph topologies. The metrics include run-time,

memory consumption, communication overhead,

effectiveness of pruning, and scalability for various cluster

sizes. This experimental setup contains a distributed Hadoop

cluster with up to 8 worker nodes. The nodes are Intel Xeon

2.4GHz with 32 GB of RAM and 1TB local storage (running

Ubuntu Server 20.04). The software stack uses Hadoop

version 3.2.2 and Java 1.8 Hadoop Distributed File System

(HDFS) to handle all intermediate and final outputs, and the

FSM-MR++ modules are developed in native Java.

Both synthetic and real-world graph datasets are used to

test the performance. GraphSyn-100K, GraphSyn-500K,

GraphSyn-1M, and GraphSyn-5M are synthetic datasets

obtained with custom scripts under various graph sizes and

edge densities. Real-world datasets comprise PubChem

BioAssay (used in [41]), the Protein-Protein Interaction (PPI)

network, the DBLP co-authorship graph, and the Facebook

social graph. These datasets serve as a realistic benchmarking

environment on multiple application domains. Multiple

metrics measure performance. Total Run-Time: 𝑇𝑡𝑜𝑡𝑎𝑙 Total

run-time is the summation of the time needed for mining each

iteration of all frequent subgraphs. We track the iteration-wise

run-time. 𝑇𝑖 for each iteration 𝑖to get an idea of the

computational trends. The speedup concerning FSM-MR is

defined as

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = (
𝑇𝐹𝑆𝑀−𝑀𝑅−𝑇𝐹𝑆𝑀−𝑀𝑅++

𝑇𝐹𝑆𝑀−𝑀𝑅

) × 100% (20)

To measure the run-time speedup of over its predecessor.

Memory Utilization per Node 𝑀𝑝𝑒𝑎𝑘 memory usage during

the mapper and reducer container stage, which shows the peak

memory it has while running. The amount of data shuffled is

defined as the amount of intermediate key value data that is

transferred between mappers and reducers (in MB or GB).

Scalability is tested by running the framework on 2, 4, 6, and

8 nodes and recording the scalability factor 𝜂, which is

defined as,

𝜂 =
𝑇2−𝑛𝑜𝑑𝑒𝑠

𝑇𝑛−𝑛𝑜𝑑𝑒𝑠
, 𝑛 ∈ {4,6,8} (21)

To evaluate how performance scales with additional

compute. Pruning efficiency 𝜙 also provides a measurement

to evaluate how effective the density-aware candidate

filtering mechanism is. It is computed as the ratio of the

number of candidates pruned prior to the reducer phase to the

number of generated candidates:

𝜙 = (
𝑁𝑝𝑟𝑢𝑛𝑒𝑑

𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

) × 100% (22)

All experiments are performed five times for reliability ,

and their average is reported.

We compare the performance of FSM-MR++ against

three baselines, including FSM-MR [41], a centralized gSpan

implementation, and an optional standalone implementation

using Spark (if available). The comparisons of the purpose of

the approach in FSM-MR++ to improve parallelism, pruning,

and memory validation are more apparent.

There are four classes of experiments. The first type

assesses scalability: running FSM-MR++ over synthetic

datasets with larger sizes and different node configurations.

The second compares total execution time, memory usage, and

shuffle overhead across the baseline and enhanced systems to

analyze run-time and system efficiency. Group 3 conducts an

ablation study, turning off optimizations like hybrid caching

and dynamic reducer reconfiguration to isolate their

contributions. The last group does a real-world validation

using domain-specific datasets to assess FSM-MR++ in real-

world contexts.

The experimental results show that FSM-MR++ achieves

better run-time performance, pruning rate, and resource

utilization than FSM-MR and all other baselines. In the next

section, we present and discuss the specific results of these

evaluations.

3.7. Illustrative Example: Mining Frequent Subgraphs

Using FSM-MR++

To illustrate the utility of FSM-MR++, we will consider

a small, toy dataset of four molecular graphs that represent

simplified compounds:

G1: Benzene (C6H6)

G2: Phenol (C6H6O)

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

157

G3: Toluene (C7H8)

G4: Cyclohexane (C6H12)

Atomic symbols (C, H, O) and bonds are labelled on each

graph. The FSM-MR++ framework then analyzes these

graphs through its iterative MapReduce pipeline to extract

frequent subgraphs that appear in several compounds.

Step 1: Prepare and Split

It analyzes the input graph dataset 𝒟 = {G1,G2 , G3, G4
},

calculating structural metrics like vertex degrees and edge

densities. Using these, the dataset is split into balanced

subsets by:

cost(Gi) = α ⋅ d̅(Gi) + β ⋅ ρ(Gi)

Where d̅(Gi) is average degree ρ(Gi) and the edge density

of Gi . The responsible scheduler partitions these into different

mapper nodes, ensuring each node gets graphs of comparable

processing cost.

Step 2: F1 Extraction (Initial Subgraphs)

From each molecule, we retrieve all 1-edge subgraphs

(bonds), e.g., C–C, C–H, C–O. We also assign canonical

labels and user-defined states to convert isomorphic forms to

each other. This leads to the formation of frequent 1-edge

subgraphs:

F1 = {C − C, C − H, C − O}

Step 3: Candidate Generation and Caching

In mappers, frequent 1-edge subgraphs are expanded to

obtain 2-edge candidates. For example:

From C–C in G1 → C–C–C (linear chain)

G2 → C–C (phenol ring with hydroxyl)

From C–H in G3 → C–H–C (methyl branch)

Accessed candidates like C–C–C and C–C–H are cached

with a threshold:

freq_access (g) ≥ θ ⇒ g ∈ Cache

Less frequent candidates are actually written to HDFS in

a memory-efficient way.

Step 4: Canonical Labeling and ~ Support Counting

All candidate subgraphs are canonicalized and grouped.

Support is calculated over graphs using:

support(g) = |{Gi ∈ D ∣ g ⊆ Gi
}|

For instance:

G2 → support = 2 C−C−C → G1,G3

G2 → support = 1Also, C–C–O.

G3, G4 → support = 2 → C–C–H appears in

Step 5: Density-based pruning and reducer scaling

Candidates with low structure complexity or low density

are discarded:

degavg(g) < δ or local_density(g) < λ
Participating reducers are dynamically reassigned based

on the count of candidate keys. k t:

rt = [
kt

κ
]

Step 6: Iterate and Terminate

The process continues for subgraph size 𝑘 = 3,4, … until

no new frequent subgraphs appear. The full frequent

subgraph set:

𝐹 = ⋃ 𝐹𝑡

𝑇

𝑡 =1

Outcome

The shared substructures such as aromatic ring (C–C–C–

C–C–C), hydroxyl branch (C–O–H) and methyl group (C–C–

H), which are highly frequent over the input molecular

graphs, can be efficiently mined through FSM-MR++.

Improved mechanisms such as memory caching, pruning, and

adaptive reducer allocation reduce the run time while

maintaining mining accuracy.

4. Experimental Results
This section describes the experimental evaluation of the

FSM-MR++ framework on real-world and synthetic graph

data. It considers run-time performance, scalability, memory

usage, pruning efficacy, and the influence of important

improvements. Comparisons to baselines, ablation

experiments, and evaluations on real data are provided to show

the proposed method’s effectiveness, stability, and usability.

4.1. Experimental Setup

The experiments are run on a distributed Hadoop cluster

with eight worker nodes, an Intel Xeon 2.4 GHz processor, 32

GB RAM, and 1 TB HDD storage. All the nodes consisted of

Ubuntu Server 20.04 LTS with Java OpenJDK 1.8, and

Hadoop version 3.2.2. We stored input graphs, intermediate

outputs, and mining results in the Hadoop Distributed File

System (HDFS). The MapReduce jobs were implemented in

the YARN resource manager, and the number of reducers was

changed dynamically according to the number of candidate

subgraphs in each iteration.

The FSM-MR++ framework was implemented in Java,

leveraging the JGraphT library for in-memory graph

representation and manipulation during preprocessing. Graphs

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

158

were input in gSpan-compatible format, where each graph

instance was described using vertex and edge lists. Graphs

were partitioned using a cost-aware strategy based on average

vertex degree and edge density. These partitions were then

evenly distributed to the mapper tasks.

The hyperparameters used in all experiments were

carefully selected through empirical tuning. The support

threshold (σ\sigma) was set to 2 for synthetic datasets and 3

for real-world datasets to balance pattern discovery and

execution time. The cache threshold (θ\theta) was set to 5,

allowing frequently accessed subgraphs to rema in in memory,

improving performance across iterations. The reducer load

balancing constant (κ\kappa) was set to 1000 candidate keys

per reducer, ensuring that reducer tasks remained evenly

distributed without introducing excessive parallelism

overhead. A minimum average degree threshold (δ\delta) of

2.0 and a local subgraph density threshold (λ\lambda) of 0.3

were applied for density-aware pruning.

To support reproducibility, the prototype implementation

includes modular components for graph loading, subgraph

generation, canonical Labeling, caching, and support

counting. Each module is accessible and tunable via

configuration constants defined in the ConfigConstants.java

file. The FSMDriverPlus class orchestrates the iterative

execution logic and can be adjusted to control the number of

iterations or early termination criteria. Input datasets,

configuration files, and the complete source code are

structured in a standalone format and packaged to allow

replication of the results in any standard Hadoop environment.

4.2. Datasets Used

The empirical analysis of FSM-MR++ was conducted

based on synthetic and real datasets to examine mining speed,

scalability, and efficiency under diverse types of graph

structures. We created synthetic datasets programmatically to

represent various graph scales and topologies. GraphSyn-

100K, GraphSyn-500K, GraphSyn-1M, and GraphSyn-5 M,

about graphs between 100000 and 5000000 edges.

These graphs have been generated with varying rates of

vertex-to-edge relations and with the density of the graph

regulated, to examine the system ’s behavior as the graphs’

complexity and size increase. All the synthetic graphs were

represented in gSpan with nodes labeled by atomic symbols

(e.g., C, H, O) like chemical compound structures. This

structure enabled parsing and subgraph enumeration to be kept

identical across experiments.

Practical patterns were also generated using real-world

data to demonstrate the framework’s practicality . The

PubChem BioAssay dataset [42] was utilized for chemical

compound graphs, where each graph instance represents a

molecular structure, with nodes representing atoms and edges

representing bonds. The Protein-Protein Interaction (PPI)

dataset [44] was chosen to approximate sparse biological

networks, with the DBLP co-authorship network [43] and

Facebook social graph offering sparser and denser social

structures of different scales, incompleteness, and community

structure.

All generations were stored in HDFS under iteration-level

input folders, with names such as G1.txt and G2. Txt, etc. Each

file consisted of one graph instance in gSpan-readable edge

list format. The mapper input loader reads these files on the

fly in every iteration. Preprocessing consisted mainly of

validating the format and creating a partition based on cost.

Collectively, this collection of datasets offers a broad

spectrum of structural types and densities, enabling the

rigorous evaluation of FSM-MR++ under various graph

mining settings.

4.3. Illustrative Example of FSM-MR++ Workflow

To visually depict the FSM-MR++ procedure, we further

implemented an example test case using five simple molecular

graph inputs denoted as G1G_1, B2B_2, G3G_3, C4C_4, and

CHC_H, to illustrate the workflow of the FSM-MR++,

representing some simple organic compounds with three types

of atoms (C, H, O) and unweighted single-edge undirected

bonds. This example highlights process flow clarity, not the

scale of the data set, and was used to ensure the framework’s

behavior across a known execution path.

In this example, the graph files were preprocessed and

partitioned before input to the mapper phase. The mappers

generated 1-edge subgraphs from each graph and performed

canonical Labeling to eliminate duplicates. Frequently

occurring subgraphs, such as C–C and C–H, were cached

using the hybrid cache manager to reduce redundant

computation in subsequent iterations. After pruning patterns

with low density or low degree based on the thresholds δ and

λ, the resulting candidates were sent to the reducers to count

their support. If the support of the subgraph was above the

threshold, the subgraph was emitted and considered when

generating candidates for the next iteration. The process was

repeated multiple times until the FSM-MR++ system no

longer found frequent subgraphs.

The output of this run was a collection of frequent

subgraphs that contained chain-like C–C–C (chain-like) and

branch-like C–H–C (branch-like) patterns (Figure 3). This

example highlights how the FSM-MR++ processes its

pipeline step-by-step, how caching, pruning, and iterative

refinement work in action in an accurate MapReduce pipeline.

It can also be utilized to verify the accuracy and

interpretability of the FSM-MR++ framework at the concept

level, before adopting it on larger datasets.

4.4. Performance Analysis

The last part examines the contribution of FSM-MR++

relative to baseline methods (FSM-MR and gSpan) in more

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

159

detail. It measures the overall run-time, efficiency in

iterations, resource consumption, and the efficacy of dynamic

reducer scaling. Experiments demonstrate that the algorithm

is efficient in execution, exhibiting better load balancing and

computational efficiency than the previous algorithm, which

suggests the benefits of the proposed strategies for large-scale

subgraph mining.

Fig. 3 Illustrative example of the FSM-MR++ framework for frequent subgraph mining using MapReduce

Table 2. Run-time comparison of FSM-MR++, FSM-MR, and gSpan across various datasets

Dataset
gSpan Run-

time (s)

FSM-MR Run-

time (s)

FSM-MR++ Run-

time (s)

Speedup vs FSM-

MR (%)

Speedup vs

gSpan (%)

GraphSyn-100K 148 102 75 26.47 49.32

GraphSyn-500K 742 503 364 27.63 50.94

GraphSyn-1M 1456 992 703 29.14 51.72

PubChem

BioAssay
1104 765 558 27.06 49.46

PPI Network 923 658 478 27.34 48.22

DBLP Co-

authorship
1308 947 682 27.99 47.86

Table 2 compares the running times of FSM-MR++,

FSM-MR, and gSpan on the synthetic and real datasets. We

observe that FSM-MR++ significantly outperforms both

baselines, achieving up to a 30% speedup over FSM-MR and

over 50% compared to gSpan. These enhancements are

achieved by utilizing the embedding caching, pruning, and

dynamic reducer techniques of the FSM-MR++ framework.

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

160

Fig. 4 Run-time comparison of gSpan, FSM-MR, and FSM-MR++ across multiple datasets highlighting performance gains of the proposed

framework

Figure 4 presents a bar chart comparing the run-time

performance of three graph mining approaches—gSpan,

FSM-MR, and FSM-MR++—across six datasets, including

synthetic and real-world graphs. The datasets range from

moderately sized graphs (GraphSyn-100K) to large-scale real-

world networks such as the DBLP co-authorship graph.

As illustrated, FSM-MR++ consistently demonstrates the

lowest run-time across all datasets. The performance gap is

particularly significant in large datasets such as GraphSyn-

1M, DBLP, and PubChem BioAssay, where FSM-MR++

achieves a run-time reduction of approximately 25–30%

compared to FSM-MR, and over 45–50% compared to the

centralized gSpan algorithm.

This result confirms the scalability advantage of FSM-

MR++ as data volume and structural complexity increase. For

the smallest dataset (GraphSyn-100K), all three methods

perform relatively fast, but the trend of improvement is still

visible, with FSM-MR++ outperforming FSM-MR by

approximately 26% and gSpan by nearly 50%. FSM-MR’s

performance degrades as the dataset size increases due to a

fixed reducer configuration and redundant subgraph

enumeration.

In contrast, FSM-MR++ benefits from hybrid caching,

which avoids recomputing frequent patterns, and dynamic

reducer scaling, which improves task distribution and reduces

execution overhead. These findings validate the effectiveness

of FSM-MR++ in managing computational workload through

architectural enhancements. The consistent speedup across all

datasets further demonstrates the framework’s generalizability

to a wide variety of graph structures and densities. This run-

time performance improvement directly supports the claim

that FSM-MR++ is better suited for scalable frequent

subgraph mining in big data environments.

Table 3. Iteration-wise run-time and frequent subgraph count in FSM-MR++

Dataset Iteration Run-time (s) Frequent Subgraphs Found Cumulative % of Total

GraphSyn-1M 1 312 1250 67.6%
 2 239 420 90.4%
 3 152 80 95.7%
 4 98 30 97.3%
 5 61 14 98.0%

PubChem BioAssay 1 278 1075 70.2%
 2 211 360 93.7%
 3 143 45 96.6%
 4 92 21 98.0%

Table 3 shows the iteration-wise run-time and the number

of frequent subgraphs explored by FSM-MR++ on all the

datasets. The experimental results reveal that more than 90%

of the frequent subgraphs are discovered within the first two

to three iterations. Run-time and output curves reduce over

iterations, justifying the applicability of early pruning,

caching, and convergence in the FSM-MR++ process.

0

200

400

600

800

1000

1200

1400

1600

GraphSyn-100K GraphSyn-500K GraphSyn-1M PubChem

BioAssay

PPI Network DBLP Co-

authorship

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Datasets

Runtime Comparison Across Methods

gSpan Runtime (s) FSM-MR Runtime (s) FSM-MR++ Runtime (s)

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

161

Fig. 5 Iteration-wise run-time and frequent subgraph count in FSM-MR++ for GraphSyn-1M and PubChem datasets demonstrating early

convergence and pruning efficiency

Figure 5 shows the iteration-wise run-time and the

number of frequent subgraphs found by the FSM-MR++ for

the GraphSyn-1M and PubChem BioAssay datasets. The plot

has two Y-axes: the left Axis Indicates run-time in seconds,

and the right Axis indicates the number of frequent subgraphs

mined in sequential iterations.

As regards the datasets, the running time per iteration

decreases, as expected, with the peak occurring during the first

iteration, when many subgraph patterns are generated and

evaluated. As iterations continue, the running time decreases

dramatically because early pruning and caching reduce the

number of candidate patterns that need to be assessed. This

hints that FSM-MR++ can efficiently reduce redundant

computations by combining hybrid caching and a canonical

label.

The number of frequent subgraphs also declines across

iterations. In GraphSyn-1M, more than 67% of the total

patterns are discovered in the first iteration, and over 90%

within the first two iterations. PubChem shows a similar

behavior, with more than 70% of the patterns identified early.

After the third iteration, very few new patterns are

discovered, highlighting the framework’s convergence

behavior.

This visualization confirms that FSM-MR++ effectively

captures the majority of frequent subgraphs early in the

mining process, reducing the computational burden in later

stages. It also emphasizes the role of iterative optimization

strategies, such as density-aware pruning and support filtering,

in achieving high efficiency and scalability.

Table 4. Load balancing and resource utilization across datasets

Dataset
Avg CPU Utilization

(%)

Max Mapper Load

(MB)

Max Reducer Load

(MB)

Std Dev. of Reducer

Load

GraphSyn-100K 74.5 186 94 11.2

GraphSyn-500K 78.3 452 237 18.6

GraphSyn-1M 80.9 870 428 22.4

PubChem

BioAssay
77.1 615 382 20.7

PPI Network 75.6 538 301 17.2

DBLP Co-

authorship
79.4 794 415 21.9

Table 4 presents metrics related to load distribution and

resource utilization during FSM-MR++ execution. The results

show high CPU utilization across all datasets, validating the

practical use of hardware. Mapper and reducer loads scale

proportionally with input size. Low standard deviation in

reducer load confirms the effectiveness of dynamic reducer

configuration in achieving balanced task execution and

minimizing straggler effects. Figure 6 visualizes resource

utilization and load balancing metrics for the FSM-MR++

framework across six datasets. The bar groups display three

key metrics: average CPU utilization, maximum mapper load,

and maximum reducer load.

0

200

400

600

800

1000

1200

1400

50

100

150

200

250

300

350

1 2 3 4 5

F
re

q
u

e
n

t
S

u
b

g
ra

p
h

s
 F

o
u

n
d

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Iteration

Runtime (GraphSyn-1M) Runtime (PubChem)

Subgraphs (GraphSyn-1M) Subgraphs (PubChem)

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

162

Fig. 6 Load balancing and resource utilization in FSM-MR++ across datasets, highlighting mapper and reducer load distribution with CPU

utilization

The red line plot overlays the standard deviation of

reducer load to reflect the variance in task distribution. The

results consistently indicate high CPU utilization across all

datasets, ranging from 74.5% to 80.9%, confirming that FSM-

MR++ efficiently utilizes computational resources. As the

dataset size increases, the mapper and reducer loads grow

proportionally, validating the effectiveness of cost-aware

graph partitioning and workload scaling. Crucially, the

standard deviation of reducer load remains relatively low

(between 11.2 MB and 22.4 MB), demonstrating the stability

and uniformity of task distribution achieved through the

dynamic reducer configuration mechanism in FSM-MR++.

The balanced reducer loads prevent straggler tasks, minimize

execution delays, and ensure better parallel performance. This

figure provides strong evidence that FSM-MR++ improves

run-time and optimizes hardware usage and workload

distribution, making it suitable for scalable subgraph mining

in distributed environments.

Table 5. Reducer scaling effectiveness with static vs Dynamic configuration

Iteration Dataset
Reducers

(Static)
Time (Static) (s)

Reducers

(Dynamic)
Time (Dynamic) (s)

Speedup

(%)

1 GraphSyn-500K 8 241 5 178 26.14

2 GraphSyn-500K 8 197 4 145 26.39

1 GraphSyn-1M 12 431 7 319 25.99

2 GraphSyn-1M 12 388 6 284 26.80

1 PubChem BioAssay 10 405 6 300 25.93

2 PubChem BioAssay 10 362 5 266 26.52

Table 5 compares the effectiveness of static and dynamic

reducer configurations in FSM-MR++ across the datasets and

iterations. DRA reduces time consumption by 25–27% per

iteration. In FM-MR++, the number of reducers is varied

according to the candidate subgraph volume, resulting in good

load balancing, low processing overhead, and high processing

efficiency for iterative subgraph mining.

Figure 7 compares the run-time of FSM-MR++ with static

and dynamic reducer configurations over multiple iterations

and datasets. There are two bars for every iteration-dataset

pair: static and dynamic (based on subgraph candidate

volume) reducer allocation. The findings show that the

dynamic reducer configuration substantially reduces run-time

in different testing cases. For example, at GraphSyn-1M v1,

the run-time goes down from 431 seconds with static reducers

to 319 seconds with dynamic reducers (between 1% and 26%

speedup). The GraphSyn-500K and PubChem datasets show

the same trend in run-time reductions, decreasing run-times

between 25% and 27%.

In FSM-MR++, we employ a dynamic configuration

strategy that proportionally plans the reducers according to the

count of the candidate subgraphs, rt = ⌈kt/κ⌉, using the formula

to balance the reducers’ workload. Such adaptive scaling

effectively removes underloaded or overloaded reducer tasks

and straggler-based behavior, optimizing resource allocation.

This number indicates the necessity of being able to execute

the individual tasks at an arbitrary time point, and it confirms

that the dynamic reducer scale significantly increases the

overall efficiency and scalability of the FSM-MR++

framework.

10

12

14

16

18

20

22

24

0

200

400

600

800

1000

GraphSyn-100KGraphSyn-500K GraphSyn-1M PubChem

BioAssay

PPI Network DBLP Co-

authorship

R
e
d

u
c
e
r

L
o

a
d

 S
td

 D
e
v

 (
M

B
)

R
e
s
o

u
rc

e
 M

e
tr

ic
s

Load Balancing and Resource Utilization in FSM-MR++

Avg CPU Utilization (%) Max Mapper Load (MB)

Max Reducer Load (MB) Std Dev. of Reducer Load

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

163

Fig. 7 Reducer scaling effectiveness in FSM-MR++ showing run-time comparison between static and dynamic configurations across iterations and

datasets

4.5. Scalability Tests

In this section, we report the scalability tests of FSM-

MR++ on dataset size and number of nodes. We compare the

framework’s performance on synthetic datasets with 100K to

5M edges and cluster sizes from 2 to 8 nodes. Experimental

results demonstrate a near-linear increase in run-time and

uniform parallel efficiency, thereby confirming the

framework’s generality and adaptability to large-scale graph

mining. Table 6 presents the scalability performance of FSM-

MR++ on synthetic datasets ranging from 100K to 5M edges.

The results exhibit a roughly linear trend of scaling, again

verifying the framework’s scalability. Though we encounter

larger graph sizes and denser structures, the number of

iterations increases slowly, demonstrating good pruning and

early convergence properties that enable our method to remain

scale-invariant.

Table 6. Dataset size scalability of FSM-MR++ on synthetic graphs

Dataset
No. of

Graphs

Avg Nodes per

Graph

Avg Edges per

Graph

Total Run-time

(s)

No. of

Iterations

GraphSyn-100K 1,000 15 20 75 3

GraphSyn-500K 5,000 18 26 364 4

GraphSyn-1M 10,000 22 34 703 5

GraphSyn-2M 20,000 25 42 1320 5

GraphSyn-5M 50,000 28 50 2965 6

Fig. 8 Dataset size scalability of FSM-MR++ showing run-time and iteration trends across increasing synthetic graph volumes

0

100

200

300

400

1-GS500K 2-GS500K 1-GS1M 2-GS1M 1-PubChem 2-PubChem

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Iteration - Dataset

Reducer Scaling Effectiveness: Static vs Dynamic Configuration

Static Reducers Dynamic Reducers

2.5

3

3.5

4

4.5

5

5.5

6

0

500

1000

1500

2000

2500

3000

100K 500K 1M 2M 5M

It
e
ra

ti
o

n
s

R
u

n
ti

m
e
 (

s
e
c
o

n
d

s
)

Dataset Size

Dataset Size Scalability of FSM-MR++

Total Runtime (s) No. of Iterations

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

164

Figure 8 illustrates the scalability of FSM-MR++ as the

dataset scales from 100,000 to 5 million edges. The overall

time gets nearly linear as long as the scaling is linear, which

means the parallelization is well done. The number of

iterations increases progressively, showing early pruning and

convergence characteristics. These trends justify FSM-MR++

as a satisfactory and scalable approach for mining frequent

subgraphs in big graph datasets.

Table 7 presents the cluster scalability in terms of node

numbers for FSM-MR++ in terms of expressiveness on the

GraphSyn-1M dataset. As the number of nodes increases from

2 to 8, the total run-time drops dramatically, resulting in

approximately a 3× acceleration. The parallel efficiency is still

over 70%, indicating good resource utilization. There is a

decrease in efficiency due to distributed overhead, as would

be expected when running larger clusters.

Table 7. Cluster size scalability of FSM-MR++ on GraphSyn-1M dataset

No. of Nodes Total Run-Time (s) Speedup Over 2 Nodes Parallel Efficiency (%)

2 1241 1.00x 100.0

4 703 1.77x 88.5

6 518 2.40x 80.0

8 431 2.88x 72.0

Fig. 9 Cluster size scalability of FSM-MR++ on GraphSyn-1M showing run-time, speedup, and parallel efficiency with increasing number of nodes

Figure 9 shows the scalability of FSM-MR++’s cluster

size on the GraphSyn-1M dataset. As the number of nodes

increases from 2 to 8, the total run-time decreases, and the

speedup increases, which supports the notion that the

parallelism is efficient. A slight drop in parallel efficiency is

due to higher distributed overhead. However, it remains

within the 70% range, and hence, the framework’s scalability

and balance are maintained across various cluster sizes.

4.6. Ablation Study

In this section, we analyze the effectiveness of the

components in FSM-MR++ by conducting ablation studies.

Using disabled hybrid caching, dynamic reducer scaling, and

pruning, we investigate the influence of each optimization on

run-time and pattern quality. The experimental results indicate

that every factor substantially impacts performance, and the

pruning contributes the most to performance improvement,

either in execution time or subgraph relevance. Table 8 shows

an ablation study of the effects of the key components in FSM-

MR++. Omitting hybrid caching or dynamic reducers, we

observe a 20–26% increase in run-time while the number of

patterns remains unchanged. Nevertheless, when pruning is

turned off, the run-time and the number of patterns grow

significantly, which justifies the importance of this technique

in removing low-utility subgraphs to support efficient

discovery of good patterns.

Figure 10 illustrates the ablation study results of FSM-

MR++ on GraphSyn-1M and PubChem datasets. Turning off

hybrid caching or dynamic reducers reduces run-time without

affecting the number of discovered patterns. In contrast,

removing pruning results in significantly higher run-time and

subgraph count, indicating excessive pattern generation.

These results validate the importance of each component in

ensuring efficiency and output quality.

0

20

40

60

80

100

120

400

500

600

700

800

900

1000

1100

1200

1300

2 4 6 8

S
p

e
e
d

u
p

 /
 E

ff
ic

ie
n

c
y

T
o

ta
l
R

u
n

ti
m

e

(s

e
c
o

n
d

s
)

Number of Nodes

Cluster Size Scalability of FSM-MR++ on GraphSyn-1M

Total Runtime (s) Speedup Over 2 Nodes Parallel Efficiency (%)

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

165

Table 8. Ablation study results showing the impact of FSM-MR++ components

Dataset Variant
Total Run-time

(s)

Frequent

Subgraphs

% Drop in

Run-time

% Drop in

Patterns

GraphSyn-1M FSM-MR++ (Full) 703 1764 – –

 w/o Hybrid

Caching
879 1764 19.98% 0%

 w/o Dynamic

Reducers
948 1764 25.60% 0%

 w/o Pruning 1260 2798 44.25% –58.58%

PubChem

BioAssay
FSM-MR++ (Full) 558 1602 – –

 w/o Hybrid

Caching
731 1602 23.67% 0%

 w/o Dynamic

Reducers
710 1602 21.68% 0%

 w/o Pruning 1042 2420 46.46% –51.07%

Fig. 10 Ablation study of FSM-MR++ showing the impact of hybrid caching, dynamic reducers, and pruning on run-time and pattern discovery

4.7. Real-World Validation

To validate the practical utility of the FSM-MR++

framework, we applied it to two real-world domain-specific

datasets: PubChem BioAssay (bioinformatics) and the DBLP

co-authorship network (social graph). The goal was to analyze

the nature of frequent subgraphs discovered and assess their

relevance, interpretability, and completeness in their

respective application contexts. In the PubChem BioAssay

dataset, FSM-MR++ identified several chemically significant

frequent substructures, including common molecular

fragments such as alkyl chains (C–C–C), hydroxyl groups (C–

O–H), and carbonyl groups (C=O). These subgraphs appeared

consistently across compounds with similar biological

activity, suggesting their domain relevance in structure-

activity relationships. A sa mple output subgraph with a

support of 68 was identified as a core substructure shared

across multiple anti-inflammatory compounds, aligning with

known pharmaceutical scaffolds. The qualitative assessment

by a domain chemoinformatics expert confirmed that the most

frequent subgraphs had meaningful interpretations in terms of

functional groups and pharmacophores. Table 9 summarizes

key frequent subgraphs mined from real-world datasets,

highlighting their structural patterns, support counts, and

domain relevance.

For the DBLP co-authorship graph, FSM-MR++

extracted recurring collaboration patterns, including triangular

cliques (three-author cycles) and star-shaped subgraphs (one

central author with multiple co-authors). These subgraphs

matched known collaboration motifs in academic

communities. Subgraphs with high support typically involve

authors from the same institution or working on related topics.

The patterns also aligned well with topological motifs in

previous graph mining studies on scholarly networks.

1400

1600

1800

2000

2200

2400

2600

2800

3000

0

200

400

600

800

1000

1200

1400

Full No Caching No Reducers No Pruning

F
re

q
u

e
n

t
S

u
b

g
ra

p
h

s
 F

o
u

n
d

T
o

ta
l
R

u
n

ti
m

e

(s

)

Ablation Study of FSM-MR++ Components

Runtime (GraphSyn-1M) Runtime (PubChem)

Patterns (GraphSyn-1M) Patterns (PubChem)

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

166

Table 9. Real-world frequent subgraph patterns discovered by FSM-MR++

Dataset Subgraph Type
Structure

(Summary)

Support

Count
Domain Interpretation

PubChem BioAssay Linear Chain C–C–C 74 The alkyl group is common in organic molecules

PubChem BioAssay Functional Group C–O–H 68 The hydroxyl group in active pharmaceutical cores

PubChem BioAssay
Aromatic Ring

Fragment
C=C–C=C 52 Phenyl ring component in bioactive drugs

DBLP Co-authorship
Clique

(Triangular)
A–B–C–A 89 Mutual co-authorship within research groups

DBLP Co-authorship Star Motif A–{B, C, D, E} 106 Central author with multiple collaborators

DBLP Co-authorship Line Chain A–B–C 77 Author collaboration chain across labs

The analytical evaluation was achieved by analyzing the

frequency of the mined patterns, redundancy support, and

structural diversity. For both data sets, FSM-MR++ achieved

more than 95% pattern completeness within the first 3-4

iterations, while maintaining a redundancy rate of less than

8%, resulting in seldom subgraph overlap. Moreover,

subgraph pruning and canonical labelling were applied to keep

only structurally unique and well-supported patterns. This

constrained the vast and excessive number of patterns

produced, facilitated interpretation, and decreased post-

processing cost. These results demonstrate that FSM-MR++ is

not only time-efficient but also effective in extracting domain-

related patterns from accurate world graphs, and therefore, can

be applied in bioinformatics and social network analysis.

5. Discussion
With the growing availability of graph-based data in

scientific, social, and industrial applications, there is an

increasing demand for efficient and scalable Frequent

Subgraph Mining (FSM) methods. Additionally, traditional

FSM-based approaches such as gSpan and its extensions are

constrained by in-memory computation and do not scale well

with large graph databases. The existing distributed methods,

such as ‘FSM-MR’, have made strides but are subject to

serious issues, including redundant candidate generation, load

imbalance, and non-adaptive schedule decisions. However,

these factors limit the approach’s usefulness in large-scale

scenarios involving relatively complex and dense graph

datasets.

The proposed FSM-MR++ framework builds on the

MapReduce paradigm by integrating many new advancements

to bridge these gaps. In contrast to previous models, FSM-

MR++ incorporates: hybrid caching to minimize the

recomputation, density-aware pruning to prune the candidate

space at an early stage, and dynamic reducer scaling to provide

a balanced load distribution.

This latter set of features provides a practical tradeoff

between running time and pattern accuracy. In addition, the

approach integrates canonical subgraph labeling and cost -

aware graph decomposition to achieve deterministic subgraph

enumeration and parallelization with cost efficiency.

Through experiments on both synthetic and accurate data,

the benefits of FSM-MR++ are proven in practice. The

framework achieves competitive time performance,

scalability, and pattern completeness on centralized and

distributed baselines. Ablation studies further authenticate the

individual contributions of caching, pruning, and dynamic

reducers to the overall system performance. Additionally,

real-world validation demonstrates that we have extracted

engaging, relevant, and interpretable subgraphs for

bioinformatics and social network analysis.

By handling efficiently the fundamental inadequacies of

earlier techniques (e.g., fixed task assignment, high

redundancy, and deferred convergence), FSM-MR++ presents

a viable and generic scheme for distributed subgraph mining.

The contribution advances the state of the art by providing a

pragmatic model that balances processing efficiency and

pattern quality, enabling efficient deployment in data-

intensive scenarios.

The substantial performance gap of FSM-MR++ against

state-of-the-art techniques can be attributed to the dedicated

architectural innovations that are tightly integrated and

specialized for distributed subgraph mining. FSM-MR uses

static assignment of reducers and is heavily disk I/O bound.

FSM-MR++ tackles this problem with a hybrid caching layer,

reducing the amount of redundant disk I/O through

substructure reuse and allowing early iterations to be resolved

much quickly. This feature of the dynamic reducer

reconfiguring mechanism causes the number of candidates to

fluctuate in iterations, thereby avoiding bottlenecks and

maintaining a balance of tasks. In addition, since our density-

aware pruning strategy filters out low-utility subgraphs

immediately after their generation process and before their

support counting, it reduces the number of expensive subgraph

support counts while also increasing the output pattern quality.

Overall, these integrated enhancements yield 25–30%

combined run-time improvements, with significantly lower

memory and shuffle overheads. This demonstrates that on

large datasets, FSM-MR++ scales better and generates more

interpretable and relevant patterns than existing literature-

reported approaches, such as gSpan, FSM-MR, and Spark-

based graph miners. The limitations encountered during the

study are discussed in Section 5.1.

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

167

5.1. Limitations of the Study

The limitations of this study are as follows: First, the

framework’s performance was primarily tested on synthetic

and selected real-world datasets, which do not represent the

entirety of domain-specific graph structures. Second, although

the MapReduce implementation is scalable, it may suffer from

I/O overheads, hindering the execution of real-time

applications. Third, our FSM-MR++ implementation is

limited to undirected, unweighted graphs; to handle dynamic,

weighted, or labeled graphs, one must modify the interface to

the graph itself.

6. Conclusion and Future Work
This paper has presented a novel MapReduce-based

FSM-MR++ for efficient large-scale graph frequent pattern

mining. By integrating hybrid caching, dynamic reducer

scaling, and density-aware pruning, the framework addresses

several limitations of previous IFSM approaches, including

computational redundancy, static task assignment, and

scalability issues. The synthetic and real data experiments

demonstrate that FSM-MR++ exhibits significant advantages

in terms of run-time efficiency, scalability, and pattern quality

compared to traditional methods. Furthermore, the fast

convergence and high relevance of the subgraph also reinforce

the practical applicability of the framework, as seen in

applications such as bioinformatics and social network

analysis. Although FSM-MR++ has some desirable

properties, it has some limitations: it has been tested on only a

few datasets and can only handle undirected, unweighted

graphs. These limits also suggest potential future research

directions. We leave the extension of the proposed framework

to dynamic, weighted, and multi-labeled graphs as future work

to achieve a further generalization that applies to a broader

range of domains. Furthermore, incorporating the framework

with real-time or streaming data scenarios would accelerate its

engagement and implementation in latency-critical systems.

New distributed paradigms: Besides MapReduce, other

distributed paradigms (e.g., Spark or Flink) are worth

investigating, which could also lead to an improved

processing time. In summary, FSM-MR++ offers a suitable

foundation for developing scalable and interpretable graph

mining algorithms.

References
[1] Da Yan et al., “PrefixFPM: A Parallel Framework for General-Purpose Mining of Frequent and Closed Patterns,” The VLDB Journal, vol.

31, no. 2, pp. 253-286, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Da Yan et al., “Systems for Scalable Graph Analytics and Machine Learning: Trends and Methods,” KDD ‘24: Proceedings of the 30th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, pp. 6627-6632, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[3] Maciej Besta, and Torsten Hoefler, “Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 5, pp. 2584-2606, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Walid Megherbi, Mohammed Haddad, and Hamida Seba, “DeepDense: Enabling Node Embedding for Dense Subgraph Mining,” Expert

Systems with Applications, vol. 238, pp. 1-37, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[5] Mingji Yang et al., “Efficient Algorithms for Personalized PageRank Computation: A Survey,” IEEE Transactions on Knowledge and

Data Engineering, vol. 36, no. 9, pp. 4582-4602, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Hans Vandierendonck, “Differentiating Set Intersections in Maximal Clique Enumeration by Function and Subproblem Size,” ICS ‘24:

Proceedings of the 38th ACM International Conference on Supercomputing, Kyoto, Japan, pp. 150-163, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Weizheng Lu et al., “Xorbits: Automating Operator Tiling for Distributed Data Science,” 2024 IEEE 40th International Conference on

Data Engineering (ICDE), Utrecht, Netherlands, pp. 5211-5223, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Chuchu Gao et al., “CSM-TopK: Continuous Subgraph Matching with TopK Density Constraints,” 2024 IEEE 40th International

Conference on Data Engineering (ICDE), Utrecht, Netherlands, pp. 3084-3097, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Sivakumar Ponnusamy, and Pankaj Gupta, “Scalable Data Partitioning Techniques for Distributed Data Processing in Cloud

Environments: A Review,” IEEE Access, vol. 12, pp. 26735-26746, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Kai Yao, Lijun Chang, and Jeffrey Xu Yu, “Identifying Similar Bicliques in Bipartite Graphs,” The VLDB Journal, vol. 33, no. 3, pp. 703-

726, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Ziqiang Yu et al., “A Distributed Solution for Efficient K Shortest Paths Computation Over Dynamic Road Networks,” IEEE Transactions

on Knowledge and Data Engineering, vol. 36, no. 7, pp. 2759-2773, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Bo Wei et al., “Construct and Query A Fine-Grained Geospatial Knowledge Graph,” Data Science and Engineering, vol. 9, no. 2, pp. 152-

176, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] Qian Zhang, “Big Health Data for Elderly Employees Job Performance of Soes: Visionary and Enticing Challenges,” Multimedia Tools

and Applications, vol. 83, no. 2, pp. 4409-4442, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] Long Yuan et al., “Batch Hop-Constrained S-t Simple Path Query Processing in Large Graphs,” 2024 IEEE 40th International Conference

on Data Engineering (ICDE), Utrecht, Netherlands, pp. 2557-2569, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s00778-021-00687-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PrefixFPM%3A+a+parallel+framework+for+general-purpose+mining+of+frequent+and+closed+patterns&btnG=
https://link.springer.com/article/10.1007/s00778-021-00687-0
https://doi.org/10.1145/3637528.3671472
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systems+for+Scalable+Graph+Analytics+and+Machine+Learning%3A+Trends+and+Methods&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systems+for+Scalable+Graph+Analytics+and+Machine+Learning%3A+Trends+and+Methods&btnG=
https://dl.acm.org/doi/10.1145/3637528.3671472
https://doi.org/10.1109/TPAMI.2023.3303431
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallel+and+Distributed+Graph+Neural+Networks%3A+An+In-Depth+Concurrency+Analysis&btnG=
https://ieeexplore.ieee.org/document/10443519
https://ieeexplore.ieee.org/document/10443519
https://doi.org/10.1016/j.eswa.2023.121816
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepDense%3A+Enabling+Node+Embedding+for+Dense+Subgraph+Mining&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423023187?via%3Dihub
https://doi.org/10.1109/TKDE.2024.3376000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Algorithms+for+Personalized+PageRank+Computation%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/document/10471277
https://doi.org/10.1145/3650200.3656607
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differentiating+set+intersections+in+maximal+clique+enumeration+by+function+and+subproblem+size&btnG=
https://dl.acm.org/doi/10.1145/3650200.3656607
https://doi.org/10.1109/ICDE60146.2024.00392
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xorbits%3A+Automating+Operator+Tiling+for+Distributed+Data+Science&btnG=
https://ieeexplore.ieee.org/document/10597861
https://doi.org/10.1109/ICDE60146.2024.00239
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CSM-TopK%3A+Continuous+Subgraph+Matching+with+TopK+Density+Constraints&btnG=
https://ieeexplore.ieee.org/document/10597835
https://doi.org/10.1109/ACCESS.2024.3365810
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+Data+Partitioning+Techniques+for+Distributed+Data+Processing+in+Cloud+Environments%3A+A+Review&btnG=
https://ieeexplore.ieee.org/document/10436080
https://doi.org/10.1007/s00778-023-00834-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Identifying+similar+bicliques+in+bipartite+graphs&btnG=
https://link.springer.com/article/10.1007/s00778-023-00834-9
https://doi.org/10.1109/TKDE.2023.3346377
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Distributed+Solution+for+Efficient+K+Shortest+Paths+Computation+Over+Dynamic+Road+Networks&btnG=
https://ieeexplore.ieee.org/document/10378872
https://doi.org/10.1007/s41019-023-00237-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Construct+and+Query+A+Fine-Grained+Geospatial+Knowledge+Graph&btnG=
https://link.springer.com/article/10.1007/s41019-023-00237-4
https://doi.org/10.1007/s11042-023-15355-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+health+data+for+elderly+employees+job+performance+of+SOEs%3A+visionary+and+enticing+challenges&btnG=
https://link.springer.com/article/10.1007/s11042-023-15355-4
https://doi.org/10.1109/ICDE60146.2024.00201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Batch+hop-constrained+st+simple+path+query+processing+in+large+graphs&btnG=
https://ieeexplore.ieee.org/document/10597957

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

168

[15] Nabanita Das et al., “Integrating Sentiment Analysis with Graph Neural Networks for Enhanced Stock Prediction: A Comprehensive

Survey,” Decision Analytics Journal, vol. 10, pp. 1-21, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Quanquan C. Liu, and C. Seshadhri, “Brief Announcement: Improved Massively Parallel Triangle Counting in O (1) Rounds,” PODC '24:

Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, Nantes, France, pp. 519-522, 2024. [CrossRef] [Google

Scholar] [Publisher Link]
[17] Johannes Erbel, and Jens Grabowskim, “Scientific Workflow Execution in the Cloud using a Dynamic Runtime Model,” Software and

Systems Modeling, vol. 23, no. 1, pp. 163-193, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Mahnoor Imran Shafi et al., “A Review of Approaches for Rapid Data Clustering: Challenges, Opportunities and Future Directions,” IEEE

Access, vol. 12, pp. 138086-138120, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Devendra Dahiphale, “Mapreduce for Graphs Processing: New Big Data Algorithm for 2-Edge Connected Components and Future Ideas,”

IEEE Access, vol. 11, pp. 54986-55001, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Shubhangi Chaturvedi, Sri Khetwat Saritha, and Animesh Chaturvedi, “Spark based Parallel Frequent Pattern Rules for Social Media Data

Analytics,” 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), Bangalore,

India, pp. 168-175, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[21] Yanyan Song et al., “Optimizing Subgraph Matching Over Distributed Knowledge Graphs Using Partial Evaluation,” World Wide Web,

vol. 26, no. 2, pp. 751-771, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[22] Changxi Ma, Mingxi Zhao, and Yongpeng Zhao, “An Overview of Hadoop Applications in Transportation Big Data,” Journal of Traffic

and Transportation Engineering (English Edition), vol. 10, no. 5, pp. 900-917, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] Bo Yan et al., “Graph Mining for Cybersecurity: A Survey,” ACM Transactions on Knowledge Discovery from Data, vol. 18, no. 2, pp. 1-

50, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[24] Makhan Kumbhkar et al., “Dimensional Reduction Method based on Big Data Techniques for Large Scale Data,” 2023 IEEE International

Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, pp. 1-7, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[25] Harif Asmaa, Namir Abdelwahid, and Marzak Abdelaziz, “Approach to Reduce the Communication Cost When Partitioning a Big Graph,”

Procedia Computer Science, vol. 220, pp. 1051-1056, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Ziwei Mo et al., “Distributed Truss Computation in Dynamic Graphs,” Tsinghua Science and Technology, vol. 28, no. 5, pp. 873-887,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[27] A. Srinivas Reddy et al., “Mining Subgraph Coverage Patterns from Graph Transactions,” International Journal of Data Science and

Analytics, vol. 13, no. 2, pp. 105-121, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] Xiaozhou Liu et al., “Practical Survey on MapReduce Subgraph Enumeration Algorithms,” International Conference on Emerging

Internetworking, Data & Web Technologies, Okayama, Japan, vol. 1, pp. 430-444, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Andrea Pasini et al., “Semantic Image Collection Summarization with Frequent Subgraph Mining,” IEEE Access, vol. 10, pp. 131747-

131764, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[30] Tewodros Alemu Ayall et al., “Graph Computing Systems and Partitioning Techniques: A Survey,” IEEE Access, vol. 10, pp. 118523-

118550, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[31] Hanlin Zhang et al., “An Efficient Vertex-Driven Temporal Graph Model and Subgraph Clustering Method,” IEEE Access, vol. 10, pp.

100627-100645, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[32] Chenhao Ma et al., “Efficient Directed Densest Subgraph Discovery,” ACM SIGMOD Record, vol. 50, no. 1, pp. 33-40, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[33] Xin Wang, Yang Xu, and Huayi Zhan, “Extending Association Rules with Graph Patterns,” Expert Systems with Applications, vol. 141,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Guanqi Hua et al., “D-colSimulation: A Distributed Approach for Frequent Graph Pattern Mining based on colSimulation in a Single Large

Graph,” 2020 IEEE International Conference on Services Computing (SCC), Beijing, China, pp. 76-93, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[35] Carlos Eiras-Franco et al., “Fast Distributed kNN Graph Construction Using Auto-tuned Locality-sensitive Hashing,” ACM Transactions

on Intelligent Systems and Technology (TIST), vol. 11, no. 6, pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[36] Wentian Guo, Yuchen Li, and Kian-Lee Tan, “Exploiting Reuse for GPU Subgraph Enumeration,” IEEE Transactions on Knowledge and

Data Engineering, vol. 34, no. 9, pp. 4231-4244, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[37] Shixuan Sun, and Qiong Luo, “In-Memory Subgraph Matching: An In-depth Study,” SIGMOD ‘20: Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, Portland OR, USA, pp. 1083-1098, 2020. [CrossRef] [Google Scholar]

[Publisher Link]
[38] Noujan Pashanasangi, and C. Seshadhri, “Efficiently Counting Vertex Orbits of All 5-Vertex Subgraphs, by Evoke,” WSDM ‘20:

Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, pp. 447-455, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.dajour.2024.100417
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+sentiment+analysis+with+graph+neural+networks+for+enhanced+stock+prediction%3A+A+comprehensive+survey&btnG=
https://www.sciencedirect.com/science/article/pii/S2772662224000213?via%3Dihub
https://doi.org/10.1145/3662158.3662819
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Brief+Announcement%3A+Improved+Massively+Parallel+Triangle+Counting+in+O+%281%29+Rounds&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Brief+Announcement%3A+Improved+Massively+Parallel+Triangle+Counting+in+O+%281%29+Rounds&btnG=
https://dl.acm.org/doi/10.1145/3662158.3662819
https://doi.org/10.1007/s10270-023-01112-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scientific+workflow+execution+in+the+cloud+using+a+dynamic+runtime+model&btnG=
https://link.springer.com/article/10.1007/s10270-023-01112-6
https://doi.org/10.1109/ACCESS.2024.3461798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Approaches+for+Rapid+Data+Clustering%3A+Challenges%2C+Opportunities+and+Future+Directions&btnG=
https://ieeexplore.ieee.org/document/10681061
https://doi.org/10.1109/ACCESS.2023.3281266
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mapreduce+for+graphs+processing%3A+New+big+data+algorithm+for+2-edge+connected+components+and+future+ideas&btnG=
https://ieeexplore.ieee.org/document/10138399
https://doi.org/10.1109/CCGridW59191.2023.00039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark+based+Parallel+Frequent+Pattern+Rules+for+Social+Media+Data+Analytics&btnG=
https://ieeexplore.ieee.org/document/10181165
https://doi.org/10.1007/s11280-022-01075-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+subgraph+matching+over+distributed+knowledge+graphs+using+partial+evaluation&btnG=
https://link.springer.com/article/10.1007/s11280-022-01075-6
https://doi.org/10.1016/j.jtte.2023.05.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+of+Hadoop+applications+in+transportation+big+data&btnG=
https://www.sciencedirect.com/science/article/pii/S2095756423001009?via%3Dihub
https://doi.org/10.1145/3610228
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+mining+for+cybersecurity%3A+A+survey&btnG=
https://dl.acm.org/doi/10.1145/3610228
https://doi.org/10.1109/ICICACS57338.2023.10100261
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dimensional+Reduction+Method+based+on+Big+Data+Techniques+for+Large+Scale+Data&btnG=
https://ieeexplore.ieee.org/document/10100261
https://doi.org/10.1016/j.procs.2023.03.147
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approach+to+reduce+the+communication+cost+when+partitioning+a+big+graph&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050923006828?via%3Dihub
https://doi.org/10.26599/TST.2022.9010019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+truss+computation+in+dynamic+graphs&btnG=
https://ieeexplore.ieee.org/document/10130042
https://doi.org/10.1007/s41060-021-00292-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mining+subgraph+coverage+patterns+from+graph+transactions&btnG=
https://link.springer.com/article/10.1007/s41060-021-00292-y
https://doi.org/10.1007/978-3-030-95903-6_45
https://scholar.google.com/scholar?q=Practical+Survey+on+MapReduce+Subgraph+Enumeration+Algorithms&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-030-95903-6_45
https://doi.org/10.1109/ACCESS.2022.3229654
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semantic+image+collection+summarization+with+frequent+subgraph+mining&btnG=
https://ieeexplore.ieee.org/document/9987488
https://doi.org/10.1109/ACCESS.2022.3219422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+computing+systems+and+partitioning+techniques%3A+A+survey&btnG=
https://ieeexplore.ieee.org/document/9938438
https://doi.org/10.1109/ACCESS.2022.3208360
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Vertex-Driven+Temporal+Graph+Model+and+Subgraph+Clustering+Method&btnG=
https://ieeexplore.ieee.org/document/9896850
https://doi.org/10.1145/3471485.3471494
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Directed+Densest+Subgraph+Discovery&btnG=
https://dl.acm.org/doi/10.1145/3471485.3471494
https://doi.org/10.1016/j.eswa.2019.112897
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extending+Association+Rules+with+Graph+Patterns&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095741741930613X?via%3Dihub
https://doi.org/10.1109/SCC49832.2020.00019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D-colSimulation%3A+A+Distributed+Approach+for+Frequent+Graph+Pattern+Mining+based+on+colSimulation+in+a+Single+Large+Graph&btnG=
https://ieeexplore.ieee.org/document/9284519
https://doi.org/10.1145/3408889
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fast+Distributed+kNN+Graph+Construction+Using+Auto-tuned+Locality-sensitive+Hashing&btnG=
https://dl.acm.org/doi/10.1145/3408889
https://doi.org/10.1109/TKDE.2020.3035564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploiting+Reuse+for+GPU+Subgraph+Enumeration&btnG=
https://ieeexplore.ieee.org/document/9247538
https://doi.org/10.1145/3318464.3380581
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=In-Memory+Subgraph+Matching%3A+An+In-depth+Study&btnG=
https://dl.acm.org/doi/10.1145/3318464.3380581
https://doi.org/10.1145/3336191.3371773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficiently+counting+vertex+orbits+of+all+5-vertex+subgraphs%2C+by+evoke&btnG=
https://dl.acm.org/doi/10.1145/3336191.3371773

Naga Mallik Atcha et al. / IJETT, 73(8), 147-169, 2025

169

[39] Ye Yuan et al., “Efficient Graph Query Processing over Geo-Distributed Datacenters,” SIGIR ‘20: Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, pp. 619-628, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[40] B.S.A.S. Rajita et al., “Spark-Based Parallel Method for Prediction of Events,” Arabian Journal for Science and Engineering, vol. 45, no.

4, pp. 3437-3453, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[41] Naga Mallik Atcha, Jagannadha Rao D B, and Vijayakumar Polepally, “Optimized Frequent Subgraph Mining Using Iterative MapReduce

for Enhanced Scalability and Performance,” Journal of Theoretical and Applied Information Technology, vol. 103, no. 5, pp. 1757-1780,

2025. [CrossRef] [Google Scholar] [Publisher Link]

[42] Yanli Wang et al., “PubChem’s BioAssay Database,” Nucleic Acids Research, vol. 40, no. D1, pp. D400-D412, 2011. [CrossRef] [Google

Scholar] [Publisher Link]

[43] Michael Ley, “The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives,” International Symposium on String

Processing and Information Retrieval, Lisbon, Portugal, pp. 1-10, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[44] Chris Stark et al., “BioGRID: A General Repository for Interaction Datasets,” Nucleic Acids Research, vol. 34, pp. D535-D539, 2006.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3397271.3401157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Graph+Query+Processing+over+Geo-Distributed+Datacenters&btnG=
https://dl.acm.org/doi/10.1145/3397271.3401157
https://doi.org/10.1007/s13369-020-04437-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark-Based+Parallel+Method+for+Prediction+of+Events&btnG=
https://link.springer.com/article/10.1007/s13369-020-04437-2
https://doi.org/10.1093/nar/gkr1132
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimized+Frequent+Subgraph+Mining+Using+Iterative+MapReduce+for+Enhanced+Scalability+and+Performance&btnG=
https://www.jatit.org/volumes/Vol103No5/11Vol103No5.pdf
https://doi.org/10.1093/nar/gkr1132
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PubChem%E2%80%99s+BioAssay+database&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PubChem%E2%80%99s+BioAssay+database&btnG=
https://academic.oup.com/nar/article/40/D1/D400/2903189
https://doi.org/10.1007/3-540-45735-6_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+DBLP+computer+science+bibliography%3A+Evolution%2C+research+issues%2C+perspectives&btnG=
https://link.springer.com/chapter/10.1007/3-540-45735-6_1
https://doi.org/10.1093/nar/gkj109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BioGRID%3A+a+general+repository+for+interaction+datasets&btnG=
https://academic.oup.com/nar/article/34/suppl_1/D535/1133554

