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Abstract - This study evaluates the performance of Machine Learning (ML) and Deep Learning (DL) models for Condition-

Based Maintenance (CBM) of a raw mill, focusing on motor condition prediction. The work systematically analyzes and 

compares the predictive capabilities of Random Forest (RF) and Long Short-Term Memory (LSTM) models for three critical 

motors, Main Drive (MD), Separator (SR), and Fan (FN), using varying input timespans to identify the optimal approach. The 

RF model consistently outperformed the LSTM model across all motors, achieving superior accuracy and efficiency. Specifically, 

the RF model recorded an RMSE of 0.0235 and an R² of 97.9% for the MD motor , compared to the LSTM model's RMSE of 

0.0858 and R² of 72.2%. Similarly, the RF model achieved an RMSE of 0.0466 and an R² of 91.1% for the SR motor , 

outperforming the LSTM model. While the LSTM model offers higher configurability and is well -suited for complex time-series 

tasks, its performance in this study was hindered by limited and noisy data, underscoring the robustness of shallow ML models 

like RF in such scenarios. A MATLAB-based dashboard was developed to visualize motor conditions, predict accuracy, and 

allow real-time updates. These results highlight RF as the preferred approach for CBM in industrial settings, offering greater 

consistency, computational efficiency, and ease of implementation compared to its deep learning counterpart.  

Keywords - Raw mill, Condition Based Maintenance (CBM), Prognostics, Random Forest (RF), Long Short -Term Memory 

(LSTM), Machine Learning, Deep Learning. 

1. Introduction  
The cement industry is a critical sector with significant 

contributions to infrastructure development [1]. Cement 

production typically involves multiple strategically located 

plants equipped with advanced facilities to ensure efficient 

operations. The production process begins with raw material 

acquisition and premixing. Materials such as clay, limestone, 

silica sand, and iron sand are extracted from quarries or 

transported via jetties and stored in stockpiles. These materials 

are then processed in raw mills, which are ground and mixed 

into raw meals. The raw meal is subjected to high  

temperatures in preheaters and kilns, transforming it into 

clinker. Finally, the clinker is ground into fine cement powder 

in cement mills. This process ensures the material meets the 

required quality and granular size before being shipped for 

use. Despite advancements in production systems, equipment 

downtime remains a significant challenge for cement plants. 

Downtime in critical components, such as the raw mill system, 

can considerably affect overall plant efficiency and production 

capacity [2]. For instance, an analysis of a raw mill system in 

one cement plant from 2021 to early 2023 revealed availability 

ranging from 83.95% to as low as 57.21%, with an average of 

72.46%, falling short of the ideal 90% standard [3]. This 

inefficiency leads to reduced productivity, longer lead times, 

and diminished customer satisfaction [4]. Raw mill systems 

are comprised of multiple components, including the mill, 

separators, fans, and transport systems. As a critical element, 

motors are essential power functions like the raw mill table 

and fans, making them pivotal for continuous operations. Tool 

condition is a significant parameter that directly influences the 

performance and quality of the machining process, 

underscoring the importance of continuous monitoring for 

efficient operation and quality control in industrial systems 

[5]. Conventional maintenance strategies, such as scheduled 

overhauls and manual interpretation of sensor data for 

temperature and vibration monitoring, often fail to prevent 

unexpected failures or optimize maintenance schedules. These 

limitations highlight the need for advanced predictive 

approaches like Condition-Based Maintenance (CBM). CBM 

utilizes real-time equipment condition data for diagnostics and 

prognostics, predicting failures before they occur [4, 6]. CBM 

refers to identifying anomalies and diagnosing faults. 

Anomaly detection focuses on determining whether the 

system is operating within normal parameters, while fault 

diagnosis aims to identify deviations from expected behavior 

and evaluate their severity [7]. In general, the primary goal of 

CBM is to do a real-time assessment of equipment conditions 

in order to make maintenance decisions, therefore reducing 
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unnecessary maintenance and associated costs [8]. However, 

traditional CBM approaches often rely on rule-based or 

preventive maintenance strategies, which can lead to 

inefficiencies such as under-maintenance or over-

maintenance. These conventional methods struggle to adapt to 

dynamic industrial conditions and are less effective in 

handling the complexity of high-dimensional sensor data. 

Several studies have explored the use of various Machine 

Learning (ML) algorithms for predictive maintenance. Deep 

Learning (DL), a subfield of ML, has also demonstrated its 

effectiveness in such tasks. Research on production line 

maintenance has shown that Random Forest (RF) algorithms 

provide highly accurate predictions for prognostic 

assessments [9]. Random Forest models have been found to 

perform well regardless of dataset size or binning methods, 

even in applications involving ball bearings [10]. 

Additionally, Long-Short Term Memory (LSTM) networks, a  

type of Deep Learning algorithm, have been favored for 

predictive maintenance due to their unique design. LSTM 

networks use neural networks as memory cells, which are 

well-suited for time-series data. Studies involving LSTM in 

predictive maintenance for assets like those of the Spanish 

Naval Army have yielded promising results [11]. Further 

research has demonstrated the application of LSTM models in 

predicting material crack growth in aluminum, achieving over 

95% accuracy [12]. 

Despite advances in both shallow machine learning and 

deep learning for predictive maintenance, existing studies 

rarely evaluate and compare RF and LSTM models on the 

same noisy, high‑dimensional industrial sensor datasets. RF is 

favored in industrial fault diagnosis for its robustness to noise 

and low computational overhead [13]. By contrast, LSTM 

excels at modeling temporal dependencies but demands large, 

clean datasets and substantial computational resources, which 

can impede real‑time implementation [14]. Furthermore, most 

prognostic approaches focus solely on one‑step‑ahead 

forecasts, neglecting the practical need for multi‑horizon 

predictions (e.g., 1–60 minutes) that maintenance teams use 

for planning. Single-step predictions in prognostics often 

neglect uncertainty, leading to unreliable forecasts [15-17]. 

Consequently, there remains a gap in head‑to‑head, 

multi‑horizon comparisons of RF and LSTM on real‑world  

industrial data rather than benchmark or simulated datasets. 

This research proposes the application of CBM to 

enhance the maintenance strategy for raw mill systems by 

leveraging AI-based models. A comparative study between 

RF and LSTM algorithms will identify the best approach for 

predicting equipment health under varying data conditions. 
For high-dimensional datasets, DL typically outperforms 

shallow ML, while for low-dimensional datasets, shallow ML 

offers better interpretability and performance [18]. Sensor 

data, collected over 26 months, is pre-processed through 

outlier removal, missing value handling, MinMax scaling, and 

Principal Component Analysis (PCA) [19, 20]. Data is split  

into training and testing sets, and both RF and LSTM models 

are trained and optimized through hyperparameter tuning. 

Model performance is evaluated using metrics like Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and R², with the best model selected for use [21]. 

Additionally, a  dashboard interface will be developed that 

follows seven principles [22] to visualize predictions and 

sensor data, providing actionable insights for maintenance 

scheduling, spare part procurement, and production planning. 

The proposed approach aims to enhance operational 

reliability, reduce maintenance costs, and optimize production 

efficiency, contributing to the industry's overall growth and 

competitiveness. 

2. Data Acquisition and Pre-Processing 
2.1. Data Acquisition  

The raw mill system is equipped with two bearing 

vibration sensors, two bearing temperature sensors, and three 

winding temperature sensors on the Main Drive motor (MD), 

Separator Motor (SR), and Fan Motor (FN). The main drive 

motor operated stably below the trip threshold, while winding 

temperatures showed minor variations. The non-drive end 

bearing experienced higher temperatures than the drive end 

bearing, with both bearings surpassing the alarm threshold for 

vibrations. The separator motor also remained within 

acceptable thresholds, and its bearings mostly maintained 

acceptable vibration levels. Similarly, the fan motor operated 

well within alarm and trip thresholds, with slight variations in 

winding temperatures and vibration levels between drive-end 

and non-drive-end bearings. 

The dataset comprises 26 months of one‑minute‑interval 

sensor readings collected from a raw mill system at a cement 

production plant. Three motors, the MD, SR, and FN, were 

each instrumented with seven sensors (two bearing vibration, 

two bearing temperature, and three winding temperature), 

yielding over 1.133.286 data points per sensor and 

approximately 7.9 million rows in total.  As raw data sources 

often contain noise and inconsistencies due to automatic data 

collection flaws, data cleaning is applied to improve data 

quality and provide accurate and reliable data for further 

analysis [23]. 

2.2. Data Cleaning 

The data cleaning process begins by removing sensor 

readings recorded while the system was powered off to ensure 

accuracy in subsequent condition predictions. Although the 

dataset does not have missing values, outliers are detected and 

eliminated using the Hampel filter with a moving median 

method and a window of 60. Addressing outliers is critical for 

maintaining data integrity, as noisy and irregular data points 

can distort analysis results. In cases where gaps in the data 

arise from sensor failures, interpolation techniques like cubic 

spline interpolation are applied. This ensures data continuity, 

transforming incomplete datasets into reliable, comprehensive 
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inputs for further analysis. By addressing these issues, the 

cleaned dataset becomes suitable for predictive maintenance 

modeling, offering a robust foundation for accurate and 

actionable insights [24]. The cleaned data is presented in 

Figure 1. After cleaning and scaling, the dataset is reduced to 

816,783 rows, representing 72.07% of the original raw data. 

Despite some sensors showing prolonged constant values, 

these readings are assumed to be accurate and are retained for 

analysis. This rigorous cleaning process ensures high-quality 

data for reliable predictive modeling. 

2.3. Feature Extraction 

After cleaning the dataset, Principal Component Analysis 

(PCA) is applied to extract key features, summarizing the data 

efficiently without significant information loss. PCA is 

particularly effective in time-series forecasting and 

automatically selects the principal component with the highest 

explained variance for further analysis [20].  

The data is prepared for prediction, where the current time 

step (xt) serves as the output, and previous time steps (x t-1, xt-

2, xt-3, xt-4,..., xt-n) are used as inputs. Various historical time 

spans are tested to identify the optimal input size that balances 

prediction accuracy and computational efficiency. This 

approach ensures the model is well-trained to forecast future 

conditions based on relevant historical patterns. The cleaned 

dataset is divided into training (80%) and testing (20%) 

subsets, with 653,427 rows for training and 163,356 rows for 

testing. PCA is applied separately to the training and testing 

datasets to mimic real-world scenarios, where unseen test data 

represents future sensor readings. The number of principal 

components to retain is determined using established criteria. 

The Kaiser criterion retains components with eigenvalues 

greater than 1 [25], while the threshold method uses a cutoff 

of 70% for total variance explained [26].  

The PCA biplot shown in Figure 2 illustrates a dense 

spread of data among condition sensor readings, likely due to 

high inter-variable correlation. The first principal component 

effectively captures most of the data variance compared to the 

second component. The data projected onto the selected 

principal component summarizes motor conditions, which are 

then used for predicting future conditions of the raw mill 

system motors. The condition data is configured such that 

previous conditions serve as input, and the current condition 

serves as the output for machine learning and deep learning 

algorithms. In time series data, the number of previous 

observations is vital in capturing the underlying relationship 

in the time series. Too many input nodes tend to overfit the 

training data , while too few input nodes might lead to 

underfitting the data [27]. The input that is to be tested is at n 

equal to 1, 5, 10, 20, 40, 60. The input selection is multiplied  

over to cover the possibility of overfitting or underfitting the 

data while preserving the computational efficiency required. 

The input is capped to 60, as a higher input indicates an hourly 

interval that would be easier to capture using an hourly 

interval instead of a  minute interval. 

 
(a) 
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(b) 

 
(c) 

Fig. 1 Clean data, (a) Main drive motor, (b) Separator motor, and (c) Fan motor. 
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Fig. 2 PCA Biplot for (a) Main Drive Motor (MD), (b) Separator Motor (SR), and (c) Fan Motor (FN). 

3. Model Building  
The initial hyperparameter settings for both the Random 

Forest (RF) and Long Short-Term Memory (LSTM) 

algorithms are derived from prior research and MATLAB's 

default configurations. For RF, the primary hyperparameters 

include the number of learning cycles, the number of 

predictors at each split, leaf size, and maximum number of 

splits. For LSTM, the key hyperparameters are the LSTM 

hidden units, epochs, number of LSTM layers, and dropout 

value. 

3.1. Random Forest Model Building  

The initial model employs a n RF machine learning 

algorithm, trained and tested using pre-split data. The default 

hyperparameter settings provided in MATLAB are used 

during the initial training phase [28]. The RF model's 

prediction accuracy is evaluated across different input 

timespans using metrics such as RMSE, MAPE, Mean 

Absolute Error (MAE), and R². For the main drive motor, the 

optimal input timespans are 10 and 40, with an input of 10 

yielding an RMSE of 0.0235 and an R² of 97.9%, while an 

input of 40 achieves the lowest MAE (0.0111) and MAPE 

(0.7285).  

For the separator motor, the best timespans are 10 and 60, 

where an input of 10 provides an RMSE of 0.0237 and an R² 

of 97.6%, and an input of 60 results in the lowest MAE 

(0.0113) and MAPE (0.6795). Similarly, for the fan motor, 

timespans of 10 and 40 are most effective, with an input of 10 

achieving an RMSE of 0.0221 and an R² of 98.1%, while an 

input of 40 produces the best MAE (0.0127) and MAPE 

(0.9943). 

Despite each motor having two optimal input timespan 

options, the timespan of 10 is selected for all three motors due 

to its computational efficiency. Inputs yielding the best R² 

demonstrate the model's ability to predict a  higher proportion 

of variance in the data, while those with the lowest RMSE 

reflect minimal prediction error on the same scale as the data 

[29]. However, no definitive agreement exists on whether 

RMSE or MAE is the most appropriate metric for error 

representation [30]. 

Based on the selected input timespans, the RF model 

undergoes optimization using MATLAB's Bayesian auto 

optimizer over 10 iterations. Optimization enhances the 

performance of the RF models applied to the separator motor 

and fan motor, while the main drive motor's unoptimized 

model outperforms the optimized version in terms of RMSE, 

MAE, and MAPE.  

This discrepancy is attributed to overfitting, where the 

model overemphasizes noise in the training data rather than 

capturing its underlying patterns [31]. Overall, the Bayesian 

optimization process effectively improves the RF models for 

the separator and fan motors, yielding enhanced predictive 

accuracy. 

 

3.2. LSTM Model Building 

The LSTM algorithm was selected as the deep learning 

model for time series prediction. Its default hyperparameters 

included 128 hidden LSTM units, 30 epochs, 64 hidden units 

in the dense layer, and a dropout rate of 0.1. 

The model architecture comprised five layers as shown in 

Figure 3, including an input layer, LSTM hidden layers 

incorporating long-term memory weights, a  dropout layer to 

prevent overfitting, two dense layers for data processing, and 

a ReLU activation function for final output predictions. 

Performance evaluation of the LSTM model was conducted 

on three motor types: the main drive motor, separator motor, 

and fan motor, using different input time spans. 

For the main drive motor, an input timespan of five 

yielded the best results with an RMSE of 0.0858, MAE of 

0.0678, MAPE of 4.1197, and R² of 72.2%. In contrast, for the 

separator and fan motors, the optimal input timespan was one, 

achieving RMSE values of 0.0466 and 0.0436, MAE values 

of 0.0284 and 0.0309, MAPE values of 1.6722 and 2.2505, 

and R² values of 91.1% and 92.7%, respectively.  

Generally, smaller input timespans resulted in better 

performance, leading to the selection of an input timespan of 

one for the separator and fan motors and an input timespan of 

five for the main drive motor. 
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Fig. 3 Deep learning layer structure 

The LSTM models were optimised using MATLAB's 

experiment manager with a Bayesian optimizer, performing 

10 iterations for each model. The validation data comprised 

10% of the training dataset. While the optimized model for the 

main drive motor demonstrated improved performance 

following hyperparameter tuning, the optimized models for 

the separator and fan motors exhibited a decline in 

performance compared to their unoptimized counterparts.  

This decline suggests potential overfitting, likely due to 

the Bayesian optimizer's emphasis on validation data 

performance, which resulted in models excelling on validation 

data but failing to generalize effectively to test data . 

4. Result and Discussion 
4.1. Model Evaluation and Comparison 

In comparing ML models with DL models, the RF model 

outperformed the LSTM model in predicting motor 

conditions. Table 1 provides a general performance summary 

between the RF and LSTM models. The RF model 

consistently used the same input timespan to achieve the best 

performance across all motors, whereas the LSTM model 

required different input timespans for each motor. This 

discrepancy in input timespans can be attributed to the greater 

configurability of the DL model, which enables more 

extensive customization of hyperparameters and neural 

network architecture.  

Table 1. General performance summary between the RF and the LSTM model 

Motor Model Input Timespan RMSE MAE MAPE R2 

MD 
RF 10 0,0235 0,0113 0,7356 0,9790 

LSTM 5 0,0479 0,0240 1,6247 0,9143 

SR 
RF 10 0,0237 0,0114 0,6836 0,9765 

LSTM 1 0,0466 0,0284 1,6722 0,9109 

FN 
RF 10 0,0221 0,0128 1,0010 0,9811 

LSTM 1 0,0436 0,0309 2,2505 0,9278 
 

Based on the general performance of RF and LSTM 

models applied to the motors, the RF model achieved better 

performance in the prediction of motor condition. The RF 

model applied to the motors consistently ha s the same input 

timespan for the best prediction performance for 10 previous 

input timespans. For LSTM models, less input timespan is 

required to get the best output. For the main drive motor, the 

best input timespan is five minutes, while for separator and fan 

motors, the best input is one minute after the previous 

condition. The difference in input timespan consistency is 

based on the difference in configurability between the RF and 

LSTM models. The RF is configurable to the extent of 

configuring the hyperparameters of the algorithm, which can 

be optimized using the Bayesian hyperparameters. The limited 

capability of the RF model to be configured results in the 

consistency of performance and results between the main 

drive motor, separator motor, and fan motor. Deep learning 

models, on the other hand, are highly configurable. Deep 

learning models can be configured with more than the 

available hyperparameters. The layers of neural networks, the 

types of neural networks in each layer, the activation 

functions, and other complementary functions, including 

dropout layers. Thus, the best achieved input timespan for the 

LSTM model differs for the main drive motor, separator 

motor, and fan motor. The configurability of the deep learning 

model also contributes to the general performance compared 
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to the RF model. For the acquired dataset and specific LSTM 

structure applied, the RF model achieves better performance 

in future condition prediction. The results support the 

hypothesis that shallow machine learning models might have 

superior results in some conditions compared to deep learning 

models [18]. Based on previous research, the LSTM model 

works well on run-to-failure datasets, which is different from 

the collected dataset [12]. Research comparing deep LSTM, 

RF, and other machine learning methods implies that LSTM 

might perform better on a smoother dataset, as the RF 

performs better RMSE than on a rougher dataset [32]. 

However, the results shown in Table 1 apply to only the 

predicted condition of one of the following minutes. Thus, the 

timespan of predicted output is compared for both RF and 

LSTM models. 

4.2. Accuracy Testing for Different Prediction Timespans  

The current model performance reflects the accuracy in 

predicting one period after the training data. In real-world 

applications, maintenance personnel often need to assess 

predictions for longer periods than a single timestep. To 

address this, the model is tested across different output 

prediction timespans set to 1, 5, 10, 20, 40, and 60-minute 

intervals. This allows for an assessment of the model's 

performance over varying prediction horizons. To manage 

computational limitations, this evaluation is conducted on the 

first 480 minutes of training data. The results show that R2 

consistently gives negative values for all tests, indicating poor 

model performance. However, negative R2 values are limited 

by their inability to quantify the extent of the model's poor 

performance, as the negative limit of R2 is infinite [29]. This 

suggests that there might be minimal variation in actual values 

during the prediction timespan compared to the error between 

predicted and actual values. Therefore, R2 is not used for 

prediction timespan comparison in this study. Instead, other 

performance metrics are utilized to assess the model's 

accuracy for different prediction timespans. Root Mean 

Squared Error (RMSE) was selected as the primary metric for 

multi‑horizon analysis due to its greater penalization of large 

deviations [30], vital in maintenance contexts where 

significant prediction errors can precipitate unplanned 

equipment failures and its retention of the same units as the 

target variable, enabling intuitive comparisons across different 

forecast horizons. Table 2 shows the RMSE values obtained 

for both RF and LSTM models across six forecast horizons 

(1, 5, 10, 20, 40, and 60 minutes) for the Main Drive (MD), 

Separator (SR), and Fan (FN) Motors, thereby illustrating the 

relative error growth patterns of each algorithm over 

increasingly distant prediction intervals. 

Table 2. Multi‑Horizon RMSE comparison for RF and LSTM models 

Horizon (min) 
RF RMSE 

(MD) 

LSTM RMSE 

(MD) 

RF RMSE 

(SR) 

LSTM RMSE 

(SR) 

RF RMSE 

(FN) 

LSTM RMSE 

(FN) 

1 0,0116 0,0224 0,0125 0,0318 0,0116 0,0431 

5 0,0266 0,0330 0,0307 0,0437 0,0267 0,0571 

10 0,0416 0,0360 0,0487 0,0571 0,0419 0,0751 

20 0,0453 0,0431 0,0535 0,0788 0,0451 0,1080 

40 0,0529 0,0556 0,0635 0,1046 0,0510 0,1556 

60 0,0605 0,0650 0,0739 0,1184 0,0573 0,1864 

The RMSE trends illustrate that the RF model maintains 

a comparatively flat error trajectory across all three motors as 

forecast horizons extend. For the main drive motor, RF’s 

RMSE increases modestly from 0,0116 at a 1-minute horizon 

to 0,0605 at 60 minutes, whereas the LSTM model’s RMSE 

escalates more steeply from 0,0224 to 0,0650, reflecting over 

a two‑fold amplification of error. Similarly, RF’s error growth  

for the separator motor (0,0125 to 0,0739) and the fan motor 

(0,0116 to 0,0573) remains under 60, while LSTM’s errors 

rise to 0,1184 and 0,1864, respectively.  

This pronounced divergence confirms RF’s inherent 

robustness to cumulative uncertainty, a  consequence of its 

ensemble averaging and feature bagging mechanisms that 

mitigate sensor noise and drift. In practical CBM 

implementation, such stable error bounds enable maintenance 

planners to define dynamic alarm thresholds with predictable 

confidence intervals, minimising false positives and missed 

detections, thereby optimizing maintenance scheduling and 

reducing unplanned downtime. Mean Absolute Error (MAE), 

as shown in Table 3, offers an alternative perspective by 

equally weighting all deviations. RF’s MAE for the main drive 

motor climbs from 0,0116 at one minute to 0,0564 at 

60 minutes, whereas LSTM’s MAE rises from 0,0224 to 

0,0602. For the separator and fan motors, RF MAE pea ks at 

0,0688 and 0,0532, while LSTM MAE surpasses 0,1130 and 

0,1783. The smaller MAE increases of RF underscore its 

capacity to sustain low average prediction errors over 

extended horizons. From an operational standpoint, this 

reliability in average error magnitude translates to tighter 

maintenance windows: teams can anticipate that forecasts will 

deviate, on average, by no more than a known threshold, 

thereby planning resource allocation and spare‑parts 

provisioning with greater precision. 

MAPE conveys forecast errors in relative terms, 

facilitating comparisons across motors with differing scale 

characteristics. Table 4 shows RF’s MAPE remaining under 

3,5723 % for the main drive, 3,7830 % for the separator, and 

3,5755 % for the fan motor across all forecast horizons.
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Table 3. Multi‑Horizon MAE comparison for RF and LSTM models 

Horizon (min) 
RF MAE 

(MD) 

LSTM MAE 

(MD) 
RF MAE (SR) 

LSTM MAE 

(SR) 
RF MAE (FN) 

LSTM MAE 

(FN) 

1 0,0116 0,0224 0,0125 0,0318 0,0116 0,0431 

5 0,0249 0,0307 0,0290 0,0415 0,0251 0,0551 

10 0,0395 0,0333 0,0465 0,0538 0,0396 0,0716 

20 0,0427 0,0399 0,0506 0,0742 0,0423 0,1020 

40 0,0496 0,0515 0,0594 0,0993 0,0476 0,1475 

60 0,0564 0,0602 0,0688 0,1130 0,0532 0,1783 

In contrast, LSTM’s relative errors expand dramatically, 

exceeding 6 % for the separator and 12 % for the fan motor at 

60 minutes. These results emphasize RF’s consistent relative 

accuracy, critical for unified, cross‑equipment maintenance 

policies. In practice, maintenance engineers can set relative 

degradation thresholds (e.g., a  5 % change) with confidence 

that RF forecasts will reliably indicate meaningful condition 

shifts, whereas LSTM’s inconsistent relative errors would 

necessitate motor‑specific threshold adjustments and 

complicate decision protocols. 

Table 4. Multi‑Horizon MAPE comparison for RF and LSTM models 

Horizon (min) 
RF MAPE 

(MD) 

LSTM MAPE 

(MD) 

RF MAPE 

(SR) 

LSTM MAPE 

(SR) 

RF MAPE 

(FN) 

LSTM MAPE 

(FN) 

1 0,7374 1,4326 0,6994 1,7360 0,8040 2,9412 

5 1,5997 1,9670 1,5792 2,2681 1,6934 3,7666 

10 2,5388 2,1331 2,5202 2,9415 2,6504 4,9065 

20 2,7336 2,5471 2,7499 4,0590 2,8328 7,0087 

40 3,1522 3,2735 3,2539 5,4393 3,1955 10,1470 

60 3,5723 3,8190 3,7830 6,1870 3,5755 12,2769 

The comparison between the RF and LSTM models for 

the three motors, main drive (a), separator (b), and fan (c), 

using three metrics (RMSE, MAE, MAPE) as shown in Figure 

4, indicates that the RF model generally outperforms the 

LSTM model across most prediction timespans. The 

performance trends clearly demonstrate that RF  provides 

significant operational advantages over LSTM across all three 

motors and forecast horizons. In the key 10 - 20 minute 

window, RF’s modest error growth enables narrow alarm 

thresholds and minimizes both false positives and missed 

detections. By contrast, LSTM’s rapidly increasing errors 

would compel wider safety margins, leading to either 

unnecessary maintenance interventions or unplanned 

equipment failures. This pattern holds true for the main drive 

(Figure 4(a)), separator (Figure 4(b)), and fan motors 

(Figure 4(c)), underscoring RF’s suitability as the core 

prognostic model for CBM. Employing RF forecasts allows 

maintenance operations to be scheduled with precision, 

optimizing resource allocation and enhancing overall plant 

reliability. From a practical perspective, embedding RF within  

a real‑time dashboard equips equipment managers with  

actionable insights, such as condition thresholds that can be 

set relative to RF’s known error envelope, and multi‑horizon 

forecasts (up to 60 minutes) can be generated in under two 

seconds on standard industrial hardware, supporting rapid 

decision cycles. The dashboard’s retraining feature further 

guarantees model relevance as new data accrue, maintaining 

forecast accuracy over the system’s lifecycle. 

 
(a) 
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(b) 

 
(c) 

Fig. 4 Comparison of prediction timespan for (a) Main drive motor, (b) Separator motor, and (c) Fan motor. 

Nonetheless, RF’s ensemble structure lacks explicit  

temporal dynamics, limiting its sensitivity to abrupt 

operational regime shifts such as sudden load changes or 

emergent faults that evolve on atypical timescales. To 

overcome this, future research should explore hybrid RF-

LSTM architectures wherein RF establishes a stable baseline 

forecast and LSTM flags rapid deviations as anomaly alerts. 

Additionally, integrating attention‑based or Transformer‑style 

deep models augmented with denoising layers could bolster 

long‑horizon accuracy in the presence of heavy noise and 

non‑stationarity. Coarser time‑series aggregation (hourly or 

daily) should also be evaluated to extend prognostic horizons 

beyond one hour, enabling strategic, plant‑wide maintenance 

planning. 

Recent studies in aerospace prognostics have leveraged 

Transformer architectures to capture complex temporal 

dependencies in multivariate sensor streams. For example, 

[33] propose an improved Transformer with predictive vector 

angle minimization and feature fusion gates, achieving 

Remaining Useful Life (RUL) prediction accuracies above 

95 % on benchmark turbofan datasets. Similarly, the STAR 

framework introduces a two‑stage attention‑based hierarchical 

Transformer that addresses sensor‑wise attention and 

temporal dynamics, demonstrating significant error reductions 

over vanilla Transformers [34]. However, these methods focus 

primarily on deep architectures and often require extensive 

training data and computational resources that slow real‑time 

use, as well as extensive tuning that can lead to overfitting and 

poor performance on new equipment or changing conditions. 

In contrast, this study shows that a well‑tuned RF model, 

supported by a solid preprocessing pipeline, delivers reliable 

multi‑horizon forecasts using relatively little data and standard 

hardware. To further improve performance without the full 

complexity of Transformers, future work could explore hybrid 

approaches, pairing RF’s strength in handling noisy data with 

lightweight attention modules to catch sudden anomalies. 

Techniques like data augmentation, transfer learning from 

other industries, and on‑device raining would help maintain 

model accuracy as operating conditions change. 

Based on the performance, RF should serve as the 

primary prognostic engine for CBM, providing consistent, 

low‑error forecasts that enable proactive maintenance 

scheduling and efficient resource allocation. Meanwhile, 

LSTM remains suited to ultra‑short‑term  anomaly alerts 

(under five minutes), supporting a hybrid framework in which 
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LSTM handles immediate alarms and RF manages extended 

prognostics. Deploying this combined approach can minimize 

unplanned downtime, streamline maintenance cycles, and 

yield substantial cost savings in industrial settings. 

4.3. Dashboard for Visualization 

The dashboard visualization is created using MATLAB's 

app designer. As shown in Figure 5, the dashboard 

visualization provides a user-friendly interface to visualize the 

current motor condition, predicted motor condition, and 

prediction accuracy metrics.  

It also supports file uploads for prediction data, allows 

users to choose between RF and LSTM models, and enables 

the configuration of the prediction timespan. The app supports 

file upload for prediction data, the option to choose between 

RF and LSTM models, and the ability to configure the 

prediction timespan. Each model features a dedicated 

readiness indicator, employing a green/yellow/red schema to 

signal whether the model is uninitialized, on standby, or ready 

for prediction. This ensures that forecasts are generated only 

with compatible, up‑to‑date models, and it allows 

maintenance personnel to retrain either model within the 

application as new data becomes available.  

A single “Predict” button executes the chosen model for 

the selected motor (Main Drive, Separator, or Fan) and desired 

forecast horizon (1–60 minutes), as configured via a 

convenient knob control. The resulting condition forecasts are 

overlaid in real time on the motor’s actual condition time 

series, displayed on separate axes for each motor. 

Adjacent performance panels report key accuracy metrics 

computed on the latest 20 % of data, enabling users to assess 

model reliability at a  glance and adjust forecasting horizons or 

model selection accordingly. 

 
Fig. 5 Dashboard visualization 

 The dashboard has been successfully tested on a 

computer with an Intel Core i7-10700KF CPU, NVIDIA 

GeForce RTX 3080 GPU, and 32 GB of RAM. It can predict 

motor conditions for various time spans ranging from 1 to 60, 

and the performance of each motor's model can be quickly 

analyzed for accuracy.  

The model could be retrained with the latest sensor data 

to maintain its relevancy, and potential failures can be 

identified when the predicted condition surpasses the upper 

threshold.  By packaging the app for desktop, web, or 

standalone deployment, the dashboard could be the solution 

for complex ML or DL algorithms and actionable maintenance 

decision‑support, providing operators with clear, immediate 

insights into equipment health and predictive accuracy. 

5. Conclusion 
This study implements Condition‑Based Maintenance 

(CBM) for a raw mill system by integrating continuous sensor 

monitoring, predictive analytics, and interactive visualization 

for three key motors: the main drive, separator, and fan. 

Through a data‑driven framework, Random Forest (RF) and 

Long Short‑Term Memory (LSTM) models were evaluated 

side by side to determine which approach delivers the most 

reliable condition forecasts under noisy, high‑dimensional 

operating conditions. 

The result shows that the RF model outperforms the 

LSTM model in nearly all evaluation metrics for all three 

motors. For the MD, the RF model achieved an RMSE of 

0.0235, MAE of 0.0113, MAPE of 0.7356, and R² of 0.9790, 
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compared to the LSTM model's RMSE of 0.0479 and R² of 

0.9143. Similarly, the RF model demonstrated superior 

performance across all metrics for the SR and FN, including 

RMSE values of 0.0237 and 0.0221, respectively, and R² 

values above 0.9765. 

The RF model's consistent performance across all motors 

and prediction timespans underscores its robustness and 

suitability for the provided dataset, particularly when 

compared to the LSTM model. The results align with prior 

research, which suggests that shallow machine learning 

models often outperform deep learning models in scenarios 

where data is limited or noisy. 

To enhance practical implementation, a dashboard was 

developed using MATLAB App Designer, enabling real-time 

condition monitoring, model training, and performance 

analysis. This interactive tool supports the selection of 

models, prediction timespans, and retraining with updated 

sensor data, ensuring adaptability to evolving operational 

conditions. Overall, the RF model is recommended for CBM 

in this application, as it delivers superior predictive accuracy 

and reliability, making it a  valuable tool for industrial 

maintenance strategies. For future research, exploring 

alternative deep learning model configurations tailored to 

various input and prediction timespans is recommended to 

optimize condition prediction. Additionally, resampling the 

time series data into hourly, daily, or weekly intervals could 

enable longer prediction horizons, enhancing the applicability 

of these models for long-term maintenance strategies. These 

advancements could further refine predictive accuracy and 

expand the utility of CBM methodologies in industrial 

systems. 

Funding Statement  
This research was funded by the Research Center for 

Regional Development and Community Empowerment, 

Institut Teknologi Sepuluh Nopember [2192/PKS/ITS/2023] 

Acknowledgments  
The authors sincerely thank the industry partner for 

providing the crucial dataset and resources for this research. 

Also acknowledge the financial support from Institut 

Teknologi Sepuluh Nopember for making this work possible.

References   
[1] Joao M. Uratani, and Steve Griffiths, “A Forward‑Looking Perspective on the Cement and Concrete Industry: Implications of Growth and 

Development in the Global South,” Energy Research & Social Science, vol. 97, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[2] S.C. Nwanya, J.I. Udofia, and O.O. Ajayi, “Optimization of Machine Downtime in the Plastic Manufacturing Industry,” Cogent 

Engineering, vol. 4, no. 1, pp. 1-9, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Seiichi Nakajima, Introduction to TPM: Total Productive Maintenance, 1st ed., Productivity Press, Cambridge, MA, 1988. [Google 

Scholar] 

[4] Khashayar Khazraei, and Jochen Deuse, “A Strategic Standpoint on Maintenance Taxonomy,” Journal of Facilities Management, vol. 9, 

no. 2, pp. 96-113, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Deepam Goyal, and B.S. Pabla, “Condition‑Based Maintenance of Machine Tools-A Review,” CIRP Journal of Manufacturing Science 

and Technology, vol. 10, pp. 24-35, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Elsayed A. Elsayed, Reliability Engineering, 3rd ed., Wiley, Hoboken, 2021. [Publisher Link] 

[7] Jeetesh Sharma, Murari Lal Mittal, and Gunjan Soni, “Condition‑Based Maintenance using Machine Learning and the Role of 

Interpretability: A Review,” pp. 1345-1360, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Aparna Gupta, and Chaipal Lawsirirat, “Strategically Optimum Maintenance of Monitoring‑Enabled Multi‑Component Systems using 

Continuous‑Time Jump Deterioration Models,” Journal of Quality in Maintenance Engineering, vol. 12, no. 3, pp. 306-329, 2006.  

[CrossRef] [Google Scholar] [Publisher Link] 

[9] Serkan Ayvaz, and Koray Alpay, “Predictive Maintenance System for Production Lines in Manufacturing: A Machine Learning Approach 

using IoT Data in Real-Time,” Expert Systems with Applications, vol. 173, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Rodney Kizito et al., “The Application of Random Forest to Predictive Maintenance,” Proceedings of the 2018 IISE Annual Conference,  

pp. 354-359, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[11] David Fernández-Barrero et al., “SOPRENE: Assessment of the Spanish Armada’s Predictive Maintenance Tool for Naval Assets,” 

Applied Science, vol. 11, no. 16, pp. 1-18, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Amirhassan Abbasi, Foad Nazari, and C. Nataraj, “Application of Long Short‑Term Memory Neural Network to Crack Propagation 

Prognostics,” 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, USA, pp. 1-6, 2020. 

[CrossRef] [Google Scholar] [Publisher Link] 

[13] Selin Sunetcioglu, and Taner Arsan, “Predictive Maintenance Analysis for Industries,” 2024 IEEE International Black Sea Conference on 

Communications and Networking (BlackSeaCom), Tbilisi, Georgia, pp. 344-347, 2024. [CrossRef] [Google Scholar] [Publisher Link]  

[14] Shiv Shankar Sharma, Vivek V, and Ashwini Malviya, “AI‑Enhanced Predictive Maintenance in Intelligent Systems for Industries,” 2024 

International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), Indore, India, pp. 

1-6, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.1016/j.erss.2023.102972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+forward+looking+perspective+on+the+cement+and+concrete+industry%3A+Implications+of+growth+and+development+in+the+Global+South&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214629623000324
https://doi.org/10.1080/23311916.2017.1335444
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+Machine+Downtime+in+the+Plastic+Manufacturing+Industry&btnG=
https://www.tandfonline.com/doi/full/10.1080/23311916.2017.1335444
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Nakajima+S%2C+Introduction+to+TPM%3A+Total+Productive+Maintenance&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Nakajima+S%2C+Introduction+to+TPM%3A+Total+Productive+Maintenance&btnG=
https://doi.org/10.1108/14725961111128452
https://scholar.google.com/scholar?q=A+strategic+standpoint+on+maintenance+taxonomy&hl=en&as_sdt=0,5
https://www.emerald.com/jfm/article-abstract/9/2/96/218127/A-strategic-standpoint-on-maintenance-taxonomy?redirectedFrom=fulltext
https://doi.org/10.1016/j.cirpj.2015.05.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Condition%E2%80%91Based+Maintenance+of+Machine+Tools-A+Review&btnG=
https://doi.org/10.1016/j.cirpj.2015.05.004
https://www.wiley.com/en-us/Reliability+Engineering%2C+3rd+Edition-p-9781119665922
https://doi.org/10.1007/s13198-022-01843-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Condition%E2%80%91Based+Maintenance+using+Machine+Learning+and+the+Role+of+Interpretability%3A+A+Review%2B&btnG=
https://link.springer.com/article/10.1007/s13198-022-01843-7
https://doi.org/10.1108/13552510610685138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strategically+Optimum+Maintenance+of+Monitoring%E2%80%91Enabled+Multi%E2%80%91Component+Systems+using+Continuous%E2%80%91Time+Jump+Deterioration+Models&btnG=
https://www.emerald.com/jqme/article-abstract/12/3/306/250631/Strategically-optimum-maintenance-of-monitoring?redirectedFrom=fulltext
https://doi.org/10.1016/j.eswa.2021.114598
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predictive+Maintenance+System+for+Production+Lines+in+Manufacturing%3A+A+Machine+Learning+Approach+using+IoT+Data+in+Real-Time&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417421000397
https://www.proceedings.com/content/040/040793webtoc.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Application+of+Random+Forest+to+Predictive+Maintenance&btnG=
https://www.proceedings.com/content/040/040793webtoc.pdf
https://doi.org/10.3390/app11167322
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SOPRENE%3A+Assessment+of+the+Spanish+Armada%E2%80%99s+Predictive+Maintenance+Tool+for+Naval+Assets&btnG=
https://www.mdpi.com/2076-3417/11/16/7322
https://doi.org/10.1109/ICPHM49022.2020.9187033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Long+Short%E2%80%91Term+Memory+Neural+Network+to+Crack+Propagation+Prognostics&btnG=
https://ieeexplore.ieee.org/abstract/document/9187033
https://doi.org/10.1109/BlackSeaCom61746.2024.10646292
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predictive+Maintenance+Analysis+for+Industries&btnG=
https://ieeexplore.ieee.org/abstract/document/10646292
https://doi.org/10.1109/ACROSET62108.2024.10743977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI%E2%80%91Enhanced+Predictive+Maintenance+in+Intelligent+Systems+for+Industries&btnG=
https://ieeexplore.ieee.org/abstract/document/10743977


Rindi Kusumawardani et al. / IJETT, 73(8), 190-201, 2025 

 

201 

[15] Nurul Fadzilawati Zainuddin et al., “The Prognostics Approaches and Applications in Aircraft Maintenance Optimization: Review,” 2021 

IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, pp. 201-205, 2021. [CrossRef] [Google 

Scholar] [Publisher Link] 

[16] Amit Kumar Jain et al., “A Comprehensive Framework from Real‑Time Prognostics to Maintenance Decisions,” IET Collaborative 

Intelligent Manufacturing, vol. 3, no. 2, pp. 175-183, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Song Mao, Xiaofeng Li, and Boyang Zhao, “Remaining Useful Life Prediction based on Time‑Series Features and Conformalized 

Quantile Regression,” Measurement Science and Technology, vol. 35, no. 12, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Christian Janiesch, Patrick Zschech, and Kai Heinrich, “Machine Learning and Deep Learning,” Electron Markets, vol. 31, no. 3, pp. 685-

695, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Md Manjurul Ahsan et al., “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance,” Technologies,  

vol.  9, no. 3, pp. 1-17, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Choi W, Kim BHS, “Applying PCA to Deep Learning Forecasting Models for Predicting PM2.5,” Sustainability, vol. 13, no. 7, pp. 1-30, 

2021. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Teo Susnjak, Gomathy Suganya Ramaswami, and Anuradha Mathrani, “Learning Analytics Dashboard: A Tool for Providing Actionable  

Insights to Learners,” International Journal of Educational Technology in Higher Education, vol. 19, no. 1, pp. 1-23, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

[22] Ali Darejeh, and Dalbir Singh, “A Review on User Interface Design Principles to Increase Software Usability for Users with Less 

Computer Literacy,” Journal of Computer Science, vol. 9, no. 11, pp. 1443-1450, 2013. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Ga Young Lee et al., “A Survey on Data Cleaning Methods for Improved Machine Learning Model Performance,” arXiv Preprint, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[24] Lattawit Kulanuwat et al., “Anomaly Detection using a Sliding Window Technique and Data Imputation with Machine Learning for 

Hydrological Time Series,” Water, vol. 13, no. 13, pp. 1-20, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Paolo Giordani, “Principal Component Analysis,” Encyclopedia of Social Network Analysis and Mining, pp. 1831-1844, 2018. [CrossRef] 

[Google Scholar] [Publisher Link] 

[26] Ian T. Jolliffe, and Jorge Cadima, “Principal Component Analysis: A Review and Recent Developments,” Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, pp. 1-16, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[27] Hassan M. Rabie et al., “Exploring Input Selection for Time Series Forecasting,” Proceedings of the 2008 International Conference on 

Data Mining, Las Vegas, USA, 2008. [Google Scholar]  

[28] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl, “Tunability: Importance of Hyperparameters of Machine Learning Algorithms,” 

Journal of Machine Learning Research, vol. 20, no. 53, pp. 1-32, 2019. [Google Scholar] [Publisher Link] 

[29] Davide Chicco, Matthijs J. Warrens, and Giuseppe Jurman, “The Coefficient of Determination R‑Squared is More Informative than  

SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation,” PeerJ Computer Science, vol. 7, pp. 1-24, 2021. [CrossRef] 

[Google Scholar] [Publisher Link] 

[30] Timothy O. Hodson, “Root‑Mean‑Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not,” Geoscientific 

Model Development Discussions, vol. 15, no. 14, pp. 5481-5487, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[31] Xue Ying, “An Overview of Overfitting and its Solutions,” Journal of Physics: Conference Series, vol. 1168, no. 2, pp. 1-6, 2019. 

[CrossRef] [Google Scholar] [Publisher Link] 

[32] T.T.Q. Nguyen et al., “Comparing High Accurate Regression Models for Short‑Term Load Forecasting in Smart Buildings,” IECON 2020 

The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020.  [CrossRef] [Google Scholar] [Publisher Link] 

[33] Zhihao Zhou et al., “An Aircraft Engine Remaining Useful Life Prediction Method based on Predictive Vector Angle Minimization  and 

Feature Fusion Gate Improved Transformer Model,” Journal of Manufacturing Systems, vol. 76, pp. 567-584, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

[34] Zhengyang Fan, Wanru Li, and Kuo-Chu Chang, “A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine 

Remaining Useful Life Prediction,” Sensors, vol. 24, no. 3, pp. 1-19, 2024. [CrossRef] [Publisher Link]  

 
 

 
 
 
 

 

https://doi.org/10.1109/ICSGRC53186.2021.9515254
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Prognostics+Approaches+and+Applications+in+Aircraft+Maintenance+Optimization%3A+Review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Prognostics+Approaches+and+Applications+in+Aircraft+Maintenance+Optimization%3A+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/9515254
https://doi.org/10.1049/cim2.12021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Framework+from+Real%E2%80%91Time+Prognostics+to+Maintenance+Decisions&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cim2.12021
https://doi.org/10.1088/1361-6501/ad762c
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Remaining+Useful+Life+Prediction+based+on+Time%E2%80%91Series+Features+and+Conformalized+Quantile+Regression&btnG=
https://iopscience.iop.org/article/10.1088/1361-6501/ad762c/meta
https://doi.org/10.1007/s12525-021-00475-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+and+deep+learning&btnG=
https://link.springer.com/article/10.1007/s12525-021-00475-2
https://doi.org/10.3390/technologies9030052
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+Data+Scaling+Methods+on+Machine+Learning+Algorithms+and+Model+Performance&btnG=
https://www.mdpi.com/2227-7080/9/3/52
https://doi.org/10.3390/su13073726
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+PCA+to+Deep+Learning+Forecasting+Models+for+Predicting+PM2%2C+5&btnG=
https://www.mdpi.com/2071-1050/13/7/3726
https://doi.org/10.1186/s41239-021-00313-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Analytics+Dashboard%3A+A+Tool+for+Providing+Actionable+Insights+to+Learners&btnG=
https://link.springer.com/article/10.1186/s41239-021-00313-7
https://doi.org/10.3844/jcssp.2013.1443.1450
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+User+Interface+Design+Principles+to+Increase+Software+Usability+for+Users+with+Less+Computer+Literacy&btnG=
https://thescipub.com/abstract/10.3844/jcssp.2013.1443.1450
https://doi.org/10.48550/arXiv.2109.07127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Data+Cleaning+Methods+for+Improved+Machine+Learning+Model+Performance&btnG=
https://arxiv.org/abs/2109.07127
https://doi.org/10.3390/w13131862
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+using+a+Sliding+Window+Technique+and+Data+Imputation+with+Machine+Learning+for+Hydrological+Time+Series&btnG=
https://www.mdpi.com/2073-4441/13/13/1862
https://doi.org/10.1007/978-1-4939-7131-2_154
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Paolo+Giordani%2C+%E2%80%9CPrincipal+Component+Analysis%2C%E2%80%9D+Encyclopedia+of+Social+Network+Analysis+and+Mining&btnG=
https://link.springer.com/rwe/10.1007/978-1-4939-7131-2_154#citeas
https://doi.org/10.1098/rsta.2015.0202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principal+Component+Analysis%3A+A+Review+and+Recent+Developments&btnG=
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2015.0202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+Input+Selection+for+Time+Series+Forecasting&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tunability%3A+Importance+of+Hyperparameters+of+Machine+Learning+Algorithms&btnG=
https://www.jmlr.org/papers/v20/18-444.html
https://doi.org/10.7717/peerj-cs.623
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Coefficient+of+Determination+R%E2%80%91Squared+is+More+Informative+than+SMAPE%2C+MAE%2C+MAPE%2C+MSE+and+RMSE+in+Regression+Analysis+Evaluation&btnG=
https://peerj.com/articles/cs-623/
http://dx.doi.org/10.5194/gmd-15-5481-2022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Root%E2%80%91Mean%E2%80%91Square+Error+%28RMSE%29+or+Mean+Absolute+Error+%28MAE%29%3A+When+to+Use+Them+or+Not&btnG=
http://dx.doi.org/10.5194/gmd-15-5481-2022
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Overview+of+Overfitting+and+its+Solutions&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022/meta
https://doi.org/10.1109/IECON43393.2020.9255314
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+High+Accurate+Regression+Models+for+Short%E2%80%91Term+Load+Forecasting+in+Smart+Buildings&btnG=
https://ieeexplore.ieee.org/abstract/document/9255314
https://doi.org/10.1016/j.jmsy.2024.08.025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Aircraft+Engine+Remaining+Useful+Life+Prediction+Method+based+on+Predictive+Vector+Angle+Minimization+and+Feature+Fusion+Gate+Improved+Transformer+Model&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Aircraft+Engine+Remaining+Useful+Life+Prediction+Method+based+on+Predictive+Vector+Angle+Minimization+and+Feature+Fusion+Gate+Improved+Transformer+Model&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0278612524001870
https://doi.org/10.3390/s24030824
https://www.mdpi.com/1424-8220/24/3/824

