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Abstract - Within the Pre-Engineered Buildings (PEBs) framework, error-free consumable prediction poses a significant 

challenge due to the inherent variation in project designs, component types, and fabrication scales. Conventional estimation 

practices may not be able to capture such complexities, thus leading to inefficiencies, cost overruns, and wastage of excess 

materials. The current research introduces a data-driven methodology that applies machine learning techniques, especially 

Random Forest Regression (RFR), to develop a robust predictive model trained on concurrent PEB projects . The total fabrication 

tonnage of each project is broken down into different amounts of individual components, which are further used as structured 

inputs for predictive model training. A multi-output forecasting strategy is employed to facilitate concurrent forecasting of 

multiple consumable needs for similar future projects in a single execution. Probabilistic clustering based on major fabrication 

consumables and scales is applied to enhance the accuracy and precision of the forecasts produced by the model. 

Hyperparameters are tuned through GridSearchCV; hence, the exactness and model generalization are improved. The proposed 

methodology demonstrates significant improvements in forecasting accuracy, facilitating improved resource planning, cost 

effectiveness, and sustainability in PEB fabrication processes. The results highlight the potential advantages of incorp orating 

machine learning methodologies in construction planning for facilitating more intelligent and scalable decision -making 

practices. 

Keywords - Artificial Intelligence (AI), Machine Learning (ML), Consumable prediction, Pre-Engineered Buildings (PEB), 

Random Forest Regression. 

1. Introduction 
The increasing application of Pre-Engineered Buildings 

(PEBs) in present-day construction is due to their flexibility , 

rapid assembly processes, and cost-effective benefits. 

Nonetheless, stakeholders have never been able to make 

reliable predictions of material consumption, mainly due to 

inherent variability with respect to project-specific designs, 

scale of production, and component interdependencies. 

Conventional estimation methods tend to lack the complexity 

to address such complexity, thereby leading to inefficiencies 

in the form of excess inventory, order delays, or inefficient 

utilization of resources [4, 16]. Most existing studies on 

material forecasting in construction either focus on bulk cost 

estimation or generalised material classes, with limited  

attention to member-specific consumables or stage-wise 

manufacturing data. Additionally, very few have applied 

machine learning in the context of PEB fabrication plants, 

particularly for predicting multiple consumables 

simultaneously. To address such a problem, the current work 

employs a novel framework that integrates probabilistic 

project classification with Random Forest Regression (RFR) 

to predict the usage of 100+ consumables across multiple 

fabrication stages and to improve the precision of prediction 

by training the model on diversified real-time data inputs that 

deconstruct total project tonnage into individual member 

quantities from PEB projects. Instead of taking disconnected 

high-level indicators, input data breaks down total tonnage 

into individual fabrication elements (utilizing 45+ fabrication 

members as input), thus allowing the model to understand 

complex project characteristics and material requirements 

interdependencies. The process involving multiple inputs 

from the project leads to a system that allows multi-output 

prediction, thus creating a more advanced platform for 

resource management and consumable forecasting [5–7]. In 

addition to improving operational effectiveness by employing 

a probabilistic group strategy and incorporating fabrication 

https://www.internationaljournalssrg.org/
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quantity thresholds, the model also encourages more 

sustainable building practices through reduced waste and 

optimal utilization efficiency of resources [8–10]. While 

previous works have used machine learning for cost 

forecasting or construction productivity, their models often 

rely on high-level project indicators rather than detailed 

fabrication datasets. In contrast, our model is trained on actual 

member-wise tonnage data, enhancing prediction specificity  

and real-world applicability [2, 5, 8, 10, 14]. The research 

further aims to evaluate prediction accuracy across distinct 

classification sets and to demonstrate how such predictions 

can enhance material planning, reduce procurement risks, and 

improve cost-efficiency compared to conventional estimation 

methods. 

2. Literature Review 
The advancement of construction methods has always 

necessitated more precise and reactive means of material 

planning, especially in industrialised structures such as Pre-

Engineered Buildings (PEBs). While these systems are time 

and modularity-effective, they also come with massive 

complexity in the aspect of variability in components and 

tonnage-based fabrication needs. This has brought about a 

paradigm shift in academic literature from traditional 

deterministic estimation methods to learning systems that are 

able to learn from experience [3, 11, 12]. 

ML usage in manufacturing and construction has gained 

considerable traction in recent years. Sadatnya et al. (2023) 

employed ML models to predict construction crew 

productivity from work reports on a daily basis, enabling 

enhanced labour planning and scheduling efficiency [1]. 

Villegas-Ch et al. (2024) combined computer vision with ML 

to enhance inventory management, demonstrating the benefits 

of real-time monitoring and automated tracking [15]. In 

steelmaking, Raju et al. (2022) applied ensemble learning 

techniques for demand forecasting, with improved predictive 

accuracy compared to conventional statistical methods [12]. 

Similarly, Zermane et al. (2024) paired ML and time-series 

analysis to predict material requirements, which correctly 

represented temporal consumption patterns [3]. These studies 

demonstrate the applicability of ML techniques for resolving 

challenging forecasting issues, establishing a strong precedent 

for forecasting consumable requirements in PEB fabrication 

processes. 

Although conventional estimation techniques are based 

on empirical approximations or historical averages, they lack 

the ability to cope with the dynamic requirements of 

heterogeneous fabrication scales, component types, and 

design variations. This limitation has encouraged the 

application of Machine Learning (ML) models in construction 

fields to strengthen predictive reliability and operational 

efficiency. Existing research has supported the viability of ML 

applications in construction fields like cost estimation, energy 

consumption modeling, and resource planning. For instance, 

Mohammed et al. [8] explored the potential of smart  

prediction technologies to enhance construction productivity, 

whereas Jeong et al. [4] employed ML in productivity 

prediction in prefabricated systems, with the benefit of data-

driven decision-making in modular construction processes. 

For this issue to be addressed, more researchers have 

utilized Machine Learning (ML) methods that can identify 

patterns in project historical data and improve predictive 

precision. Specifically, Random Forest Regression (RFR) has 

been particularly promising since it can handle large amounts 

of complex datasets and suppresses the risk of overfitting. Its 

validity has been published in various application areas in the 

construction industry, including cost appraisal and resource 

programming [2, 6, 10, 14]. Rajasekaran [10] emphasized its 

reliability in manufacturing-based prediction tasks, while Li et 

al. [6] combined ML and optimizing fabrication process and 

rescheduling in Industry 4.0 environments, underscoring 

RFR’s role in flexible industrial contexts. Despite its 

effectiveness, the use of RFR for forecasting consumables at 

a granular level, especially within PEB fabrication, remains 

relatively underexplored. 

In many of the aforementioned studies, project data is 

often treated at an aggregate level, focusing on overall cost or 

schedule trends rather than item-specific material usage. This 

restricts the applicability of such models in fabrication-driven 

environments, where the breakdown of material by 

component and stage is crucial for accuracy and cost control. 

Additionally, while works like Mateus et al. [7] and Karthick 

et al. [5] explored energy or steel production forecasting using 

advanced ML models, they typically do not incorporate 

probabilistic grouping based on project type or fabrication 

stage, nor do they enable multi-output predictions for multiple 

materials simultaneously. Recent research highlights the 

importance of preprocessing project data before deploying 

Machine Learning (ML) models. The present study suggests a 

Random Forest Regression model trained on real-time 

datasets collected from a PEB manufacturing plant to explore 

this challenge. Input features of the model are collected 

through deciding the total fabrication tonnage into member-

level quantities (e.g., rafters, columns, and joists), while 

outputs are in the form of different types of consumable 

materials consumed along the length of the production line.  

With the incorporation of probabilistic grouping of 

projects based on structural configuration and fabrication 

scale, the model attempts to offer more tailored and accurate 

forecasts than conventional estimation methods. Projects of a 

similar nature are clustered around principal components or 

the fabrication level, thus enhancing the model's overall 

performance. [12, 13] Methods such as GridSearchCV are 

used to enhance the effectiveness of the model [8, 9]. These 

methods not only enhance the accuracy of predictions but also 

enable waste minimization, cost-effectiveness, and 

sustainability in Pre-Engineered Building (PEB) construction. 
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3. Methodology 
This research aims to build Machine Learning (ML) 

models that are meant to predict the use of different materials 

in the Pre-Engineered Building (PEB) component-

manufacturing facility. The models are meant to be built to 

maximise resource use through the analysis of past data 

obtained from previous PEB manufacturing operations. 

Traditional approaches to estimating consumables during PEB 

fabrication rely on typical consumption rates, rule-of-thumb 

estimates, or past averages. Easy to use, these approaches tend 

to ignore project-specific parameters like changes in 

component weights, fabrication order, or member geometry. 

Consequently, they yield generic estimates that do not 

accurately account for real-time material needs, particularly 

for custom-fabricated or complex projects.  

The machine learning approach eliminates these 

limitations by directly learning from past project records, thus 

decomposing total fabrication tonnage into granular member-

wise inputs. In addition, with the utilization of probabilistic  

project clustering based on structural configuration, the model 

accommodates customized, multi-output predictions for 100+ 

consumables. This data -driven methodology not only 

enhances forecasting accuracy but also minimizes reliance on 

subjective judgment, enabling planning to be more scalable 

and repeatable across project types. 70+ datasets were 

obtained from a PEB manufacturing company that possessed 

its own independent fabrication plant. The datasets contain 

data regarding more than 45 fabricated structural components, 

involving the utilisation of more than 100 types of 

consumables for PEB jobs. Figure 1 shows the workflow for 

handling and preparing data . 

The first phase involved a cleansing procedure for the 

data, in which records deemed incomplete datasets, 

specifically those missing information on quantities of 

components or associated with active projects, were removed. 

Such exclusions are largely due to human error in reporting or 

activity performed on-site. Because this research is concerned 

with operations only within the factory, such anomalies lay 

outside the ambit of the study; the datasets were subsequently 

divided by the sum of the weights of components produced 

per project, in Metric Tonnes (MT).  

For consistency and analytical precision, only projects 

between 30 MT and 110 MT weights were kept for subsequent 

analysis. Structurally ranked according to importance, 

elements such as rafters and columns are considered critical 

elements of the PEB project. Depending on their occurrence, 

the data sets were classified into: Group P1: Projects that 

include both column and rafter elements. Group P2: Projects 

including only a column or a rafter. To further refine the 

analysis, the fabrication components were clustered into three 

configuration levels: Category C1: Projects that consist 

entirely of rafters and columns. Category C2: Includes C1, 

with additional information such as eave columns, joists, 

portal beams, portal columns, and canopy rafters. Category 

C3: Extends C2 to include crane beams and jack beams. Every 

group of data was divided into a configuration type based on 

the proportion of these key elements in the overall project: 1. 

More than 75% of C1 elements, 2. More than 80% of C2 

elements, 3. More than 85% of C3 elements are in both P1 and 

P2 groupings. It was found that, following all data refinement 

stages (as depicted in Figure 1), the sizes of the datasets 

remained equivalent across the paired configurations: P1C1 

and P2C1, P1C2 and P2C2, and P1C3 and P2C3. Therefore, 

the subsequent machine learning modelling was conducted on 

these three harmonized sets of datasets to enable comparative 

analysis on a balanced basis across the project types and 

component configurations.  

The resultant group of project datasets under each paired 

set of classification after the completion of preprocessing is 

assessed. Altogether, 29 components, such as columns, 

rafters, portal beams, and other PEB members, seem to have 

been fabricated. Among these 29 members, 15 components are 

found to be in all 3 sets of classification. The total tonnage is 

broken into quantities of each member; therefore, the training 

of machine learning models becomes even more precise. 

Multiple user input values will be given, and a list of multi-

variable consumables quantities will be the output. Likely, the 

similarities between all 3 sets were studied and are as follows. 

More than 100+ consumables are being used in the fabrication 

process. Among these, 87 consumables are commonly found 

to be used in all 3 sets of classification. Whereas set 1 - P1C1 

vs P2C1 comprises the same 87 consumables, and the other 2 

sets (P1C2 vs P2C2 and P1C3 vs P2C3) consist of 91 and 101 

consumables, respectively. From these many consumables, 

about 37.5%, 26.92% and 25% of consumables are found to 

be the most majorly used in the maximum datasets in all the 3 

sets, respectively. 

Fig. 1 Data preprocessing of PEB projects 
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Fig. 2 Consumables usage pattern in varied projects 

Figure 2 presents the utilization pattern of consumables in 

PEB projects under all 3 categories (P1C1, P1C2 and P1C3). 

For example, under category P1C3, 15 various consumables 

are utilized in all 9 projects. Establishing a base, wherein  

consumables utilized in (>= 5) projects from the 3 

classifications are then categorized as significantly utilized  

consumables. Those utilized in (>= =) to 3 and <= 5 of the 

PEB datasets are referred to as moderately utilized  

consumables. In the same way, consumables utilized in (< 3) 

projects are referred to as rarely utilized consumables, as 

stated in Figure 2.  

A small subset of uncommon consumables, 4 from P1C2 

and 14 from P1C3, were observed to be utilized only in either 

P1C3 or P1C2. Surprisingly, these consumables not being 

utilized come in the range of less significant or rarely used 

consumables. Notably, it doesn't reflect any significant 

influence on the datasets. Figure 2 also reflects around 

55.17%, 56.04%, and 57.43% of combining the most 

important and moderately utilized consumables in P1 C1, P1 

C2 and P1 C3, respectively. 

4. Development and Evaluation of the Machine 

Learning Model 
Random Forest Regression was used for prediction 

modelling in this research due to its effectiveness in handling 

datasets with a large number of input variables and its inherent 

capacity to handle overfitting. Its inherent ensemble property 

makes Random Forest particularly well-suited for prediction 

modelling in industrial applications, e.g., manufacturing of 

PEB components. The model was hyperparameter-tuned to 

achieve its highest prediction accuracy, and cross-validation 

techniques were used to ensure tha t it generalized well on new 

data. 

The Random Forest Regression (RFR) model was 

incorporated into Python’s scikit-learn library. The input 

features consisted of the total quantity (tonnage) of each 

fabrication member per project, while the output was the 

corresponding usage of over 100 consumables. The dataset 

was divided at random, with 80% chosen to train and the 

remaining 20% kept for testing. Hyperparameter tuning was 

performed using a grid search combined with 5-fold cross-

validation, focusing on frameworks such as the number of 

estimators (n_estimators), the maximum tree depth 

(max_depth), and the minimum number of samples required 

to split a  node (min_samples_split). The RFR model was 

evaluated across all three classification pairs using R², Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and 

Mean Absolute Percentage Error (MAPE). 

Table 1. Prediction performance by classification group 

Group R² 
MAE 

(%) 

RMSE 

(%) 

MAPE 

(%) 

P1C1 vs 

P2C1 
0.94 4.2 5.1 5.8 

P1C2 vs 

P2C2 
0.91 4.5 5.6 6.0 

P1C3 vs 

P2C3 
0.92 4.7 5.4 6.2 

The results in Table 1 show that predictive accuracy 

remained consistently high across all configurations, with R² 

values above 0.90. Error margins stayed within ±6.2%, 

meeting industry expectations for procurement-level decision-

making. 

Figure 3 (a), (b), and (c) shows a comparison of actual test 

data with machine learning predictions for some consumables 

in the three project categories. The third table of each figure 

presents the percentage difference observed between actual 

values and predicted values. 

 To facilitate interpretation, the forecast value 

considerably underestimates the actual usage in the 

highlighted areas. Underprediction here can lead to material 

shortages or unexpected project delays. Yellow and white 

highlights stand for predictions within a reasonable tolerance 

of ±5%, representing high forecast accuracy. Green highlights 

signify exact matches between actual and forecast values, 

highlighting the model's skill in accurate estimation. Out of 

over 100 consumable products, 47 were found to be the most 

utilized from the data collected through the project. These 

consumables, as indicated in Figure 3 (a), (b), and (c), as Most 

/ Moderately Used, were ranked highest in the evaluation and 

validation process to validate the model for real-world use. 

Notably, consumables with little usage—termed negligib le 

consumables—showed very high predictive consistency. 

Precisely, 93%, 95%, and 92% of such consumables in all 

three 3 respective paired sets of categories made entirely  

accurate predictions. Since they have little effect on total 

material consumption and expenditure, these products were 

deemed non-essential to validation and were thus not included 

in the general performance evaluation. 
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(a) 

(b)  

 
(c)  

Fig. 3 Comparison of actual and ML predicted consumables usage under (a) P1C1 vs P2C1, (b) P1C2 vs P2C2,  and (c) P1C3 vs P2C3. 

5. Results and Discussion 
The accuracy of machine learning-based quantity 

predictions for test samples was checked with statistical 

methods and is graphically plotted in Figure 4 (a), (b), and  (c).  

With ±5% tolerance, the highs and lows of percentage 

deviations for every consumable are marked in the event of 

estimated surplus or shortage. Additionally, based on each 

consumable's cumulative percentage from the experimental 
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projects, the model predictions are categorized into high-

margin, low-margin, and actual-profit outcomes, as shown in 

Figures 4 (a), (b), and (c).  

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Statistical analysis of quantitative ML on (a) P1C1 vs P2C1,                   

(b) P1C2 vs P2C2, and (c) P1C3 vs P2C3. 

A scenario whereby the machine learning algorithm 

overestimates the predicted demand for a material is beneficial 

to the producer. In these cases, predicted demand exceeds 

reality, thus ensuring the consistent availability of the 

Materials over the period of the project timeline. This assists 

in eliminating the risk of shortage within the project and  

making it possible to reuse excess stock for future purposes, 

thus avoiding potential delays and expenses. Conversely, 

forecasted volumes are a major operational issue. A shortfall 

during project completion requires emergency procurement, 

generally at higher prices and with minimal vendor flexibility . 

Besides adding cost, this can also undermine project budget 

adherence. Mention should be made here that consumables 

represent a major percentage of production costs in PEB 

manufacture, often coming close to raw material costs, and 

thus, correct forecasting is of paramount importance. Where 

forecasted values match exactly with tendered quantities, the 

project is considered maximally profitable, realizing desired  

outcomes with neither excess nor deficiency. Figure 5 

consolidates these trends from a bar graph, condensing the 

distribution of forecast quantities into three buckets: 

underestimation (shortfall), overestimation (excess), and 

values within the acceptable tolerance. In all three 

classification comparisons, the rate of overestimated 

consumables is around 25%, and the rate of underpredicted 

items is below 20%. Around 60% of the forecasts fall within 

the acceptable ±5% tolerance, reflecting effective and 

balanced forecasting practices. Apart from this, the predictive 

efficiency of the model is also illustrated in Figure 6, which  

indicates that all three categories of classification have over 

80% of predictions allocated, resulting in fruitful outcomes. It 

indicates the ability of the model to generate financially 

rewarding predictions with high reliability. 

Fig. 5 Shortfall, excess and profitable ML predictions of consumables 

usage 

 
Fig. 6 Overall profit 
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Inaccurate prediction of consumables can have serious 

implications for the efficiency and profitability of PEB 

manufacturing projects. Underestimation often results in the 

need for emergency procurement during ongoing fabrication 

activities, which may lead to inflated costs, delays in 

production, and disruption of sequential operations. 

Furthermore, rushed procurement typically limits the ability 

to negotiate optimal pricing, further increasing financial 

strain. While less disruptive, Overestimation contributes to 

excess inventory, inefficient capital allocation, and potential 

material wastage, especially for consumables with limited  

shelf life. Given that consumable costs in PEB fabrication are 

comparable to raw material expenses, even small inaccuracies 

can significantly affect overall project budgets. Therefore, 

improving prediction accuracy is not merely a technical 

enhancement—it directly supports better resource planning, 

cost control, and sustainable manufacturing practices. 

6. Conclusion 
This research proposes a methodologically sound 

framework for material need forecasting in Pre-Engineered  

Buildings (PEBs) fabrication via Random Forest Regression  

(RFR) and probabilistic classification of comparable projects. 

With the utilization of total project tonnage as an input and 

breaking it down into heterogeneous component-specific 

quantities, the model enables multi-output predictions 

regarding major fabrication components.  

The data was made homogeneous and relevant by 

splitting 71 recently completed. Projects into P1 and P2 types 

based on significant structural components and then into 

combinations C1, C2, and C3 based on their complexity. 

Hyperparameter tuning via GridSearchCV improved model 

performance with profitability predictions of 81% for P1C1, 

83% for P1C2, and 80% for P1C3 project types. These 

findings indicate better forecasting accuracy, improved 

resource planning, and decreased procurement risks, thus 

forming a scalable and intelligent system for efficient and 

sustainable planning in PEB construction. 

This proposed model approach, compared to existing 

approaches, can be attributed to several key factors. First, the 

study uses real-time, factory-level datasets with detailed 

member-wise tonnage breakdowns, rather than relying on 

aggregate or assumed values, which are common in prior 

works. Second, the introduction of probabilistic project 

grouping (P1C1, P1C2, P1C3) based on fabrication relevance 

ensures that the model captures structural complexity and 

fabrication scale more effectively than generalized m odels. 

Third, the use of a multi-output Random Forest Regression  

model enables simultaneous prediction of over 100 

consumables, allowing the model to account for 

interdependencies between materials, which single-output or 

univariate models cannot capture. These features collectively 

contribute to the model’s superior accuracy, particularly in 

minimizing prediction errors for high-frequency consumables. 

In contrast, many state-of-the-art studies reviewed focus on 

either cost-level forecasting or energy consumption in broader 

construction contexts, lacking the granularity and industrial 

relevance achieved in this work. 

6.1. Limitations and Future Directions 

While the proposed machine learning framework 

demonstrates strong predictive accuracy and practical value in 

forecasting consumables for PEB manufacturing, certain 

limitations should be acknowledged. The model is trained on 

historical data from a single ma nufacturing unit, which may 

limit its generalizability across varying fabrication standards, 

geographic regions, or production workflows. The exclusion 

of site-level fabrication and the focus solely on factory-based 

data may also restrict the model’s applicability in hybrid 

project environments. Furthermore, the current model 

operates on static project inputs and does not account for time-

based variations or supply chain fluctuations that could impact 

material usage. Prediction accuracy may also be lower for 

infrequently used consumables due to limited data availability 

and an imbalance in usage frequency.  

Future research may explore dynamic or real-time 

forecasting models by incorporating time-series datasets and 

sensor-based inputs to build upon this work. Expanding the 

dataset to include multiple manufacturing units and cross-

regional data will help improve model robustness and 

generalization. The exploration of modern ML techniques like 

deep learning, ensemble stacking, or probabilistic regression  

methods could further enhance prediction accuracy, 

particularly for rare consumables.  

Additionally, integrating predictive outputs with  

inventory optimization systems can enable automated 

procurement planning and just-in-time inventory 

management. Investigating the environmental and economic 

benefits of predictive consumables planning may a lso provide 

broader insights into sustainable and cost-efficient 

construction practices. 
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