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Abstract - Diabetic Retinopathy is one of the blood vessel problems in the eye, which develops in people with uncontrolled 

diabetes, causing vision impairment worldwide. Early diagnosis of DR requires urgent attention because it helps to minimize the 

effects of this disease. Many deep learning methods have been proposed for classifying diabetic retinopathy, but developing 

models that are both effective and dependable requires a lot of knowledge and computing power. The proposed approach adopts 

ResNet and DenseNet deep learning architectures for the purpose of DR classification from retina fundus images. The 

enhancement of retinal fundus image features, including microaneurysms and hemorrhages during image preprocessing, is 

improved by using Contrast Limited Adaptive Histogram Equalization (CLAHE) and Particle Swarm Optimization (PSO), which 

serves as a tool to perform hyperparameter tuning by optimizing learning rate together with dropout rate parameters to enhance 

the performance of the model. The combination methodology produces quicker model convergence with better generalization 

capabilities. The suggested model for finding diabetes retinopathy has a classification accuracy of 95.01% on the EyePACS 

dataset, which surpasses existing diagnostic systems. Hence, the proposed system is appropriate for large-scale DR screening. 

Keywords - Diabetic Retinopathy, ResNet, DenseNet, CLAHE, Particle Swarm Optimization, Fundus images. 

1. Introduction 
Diabetic Retinopathy (DR) can result from uncontrolled 

diabetes mellitus (blood sugar) that affects the retina 's light -

sensitive layer [1]. It is a  major contributor to vision  

impairment globally. If not treated early on, diabetic 

retinopathy can result in visual loss or full blindness. When 

blood sugar levels stay too high for a  long time, they can hurt 

the small blood vessels in the retina. This can cause the blood 

vessels to leak, bulge and develop abnormally. In earlier times, 

doctors manually visually examined retinal fundus images and 

classified the disease. However, it requires a huge amount of 

time, and to avoid these limitations, there is a  need for 

efficient, accurate, and scalable diabetic retinopathy 

screening systems. Moreover, high sugar levels can damage 

multiple organs and tissues throughout the body [2]. The 

retina  functions as one of the most susceptible parts of the eye 

because it represents the light-sensitive tissue that exists at its 

posterior end. The scientific understanding of diabetic 

retinopathy as a  major vision impairment disorder started at 

the beginning of the twentieth century along with the 

increasing numbers of diabetic patients worldwide. Diabetic 

retinopathy exists as a major preventable reason for vision loss 

throughout the world despite recent significant progress in 

diagnostic and therapeutic approaches. This problem worsens 

because of a  continuous rise of diabetes cases worldwide [3]. 
The diabetic retinopathy health crisis impacts approximately 

103 million people world-wide at present, of which nearly 28 

million are at risk for progression to vision threatening stages 

of the disease [4]. An estimated 30% of people over the age 

of 40 with diabetes in developed countries like the United 

States (US) have diabetic retinopathy, and 4.4% of these 

individuals have macular edema with a significant risk of 

losing vision. Diabetic retinopathy is much common in lower 

and moderate-income countries due to less access to early 

diagnosis and correct treatment. DR contains two main types, 

including Non-Proliferative Diabetic Retinopathy (NPDR), 

which follows Proliferative Diabetic Retinopathy (PDR). The 

initial stage of the disease is characterized by mild changes in 

the retinal known as NPDR which progressively deteriorates 

[5]. Subsequently, the development of microaneurysms and 

retinal haemorrhages are important signs of NPDR and 

without proper and timely management, these early 

manifestations could progress and potentially lead to a  more 

severe outcome and evolution to the proliferative phase. 

Diabetic retinopathy has a last stage characterized by typical 

fragile blood vessel growth on the retina’s surface and it is 

referred to as Proliferative Diabetic Retinopathy (PDR). The 

newly formed vessels are susceptible to burst, and this leads 
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to vitreous haemorrhage and retinal detachment. If not 

received proper treatment by the medical person, it may lead 

to irreversible blindness or major visual impairment during 

this crucial time [6]. Considerably, recent improvement in the 

Artificial Intelligence (AI) along with Machine Learning 

(ML) technologies made the way for deep learning approaches 

to be introduced and delivers very effective and powerful 

solutions to the automatic process of medical images. Various 

literature deliberates that Convolutional Neural Networks 

(CNNs) are highly successful in disease detection using 

medical images and achieving more accuracy over the 

performance of human experts [7]. Owing to their ability to 

extract and learn complex hierarchical features of retinal 

images, CNN-based architectures are one of the widely used 

models in DR identification [8].  

Yet these models provide several benefits; they also have 

some drawbacks. Hyperparameters such as learning rate, 

batch size, optimizer and architectural depth all have a 

significant impact on model performance. Tuning these 

manually or automatically is time-consuming and 

computationally expensive. Overfitting is another limitation 

when training on small or imbalanced datasets. Moreover, 

CNN architectures like ResNet and DenseNet have become 

highly accepted architectures owing to their amazing 

performance in image classification tasks.  

Therefore, ResNet utilizes a residual learning framework 

that effectively makes it easier to train deeper networks by 

reducing the gradient vanishing problem. On the other hand, 

DenseNet uses dense connections by having direct 

connections between all layers, allowing for better 

improvement in information flow through the network and 

feature reuse. Such an architecture resolves gradient 

vanishing issues effectively and improves feature propagation, 

making it highly suitable for complicated image classification 

problems. Since effective feature extraction is vital for the 

classification of diabetic retinopathy. Recent research 

demonstrates that combining deep learning models allows 

separate architectures to share their respective benefits, thus 

achieving superior results than individual models would 

achieve alone. 

This paper formulates an efficient classification model for 

DR using a hybrid ResNet-DenseNet architecture, CLAHE for 

image processing and PSO for hyperparameter tuning. The 

goal of this effort is to sort retinal images into 5 stages of 

diabetic retinopathy: No DR, Mild DR, Moderate DR, Severe 

DR and Proliferative DR. The proposed method provides a  

precise, scalable computer-based method for the early 

diagnosis of the disease. Employing high-end deep learning 

architectures and various suitable preprocessing and 

optimization, followed by evaluating the performance on the 

widely used fundus image dataset, this system could 

contribute to a  significant reduction of diabetes associated 

visual impairment and blindness. 

The following important points are brought out in this 

work: 

• ResNet50 and DenseNet121 are used as dual backbones 

for feature extraction, utilizing their strengths in medical 

image analysis. 

• CLAHE is the preprocessing step to enhance contrast in 

fundus images, improving the visibility of key diagnostic 

features like microaneurysms and hemorrhages. 

• PSO algorithm is used for fine-tuning the 

hyperparameters, including learning rate, momentum and 

dropout rates. 

The methodology was tested on the EyePACS dataset and 

yielded significant performance. In summary, the 

methodology of the research seeks to greatly enhance the 

diagnosis and categorization of DR disorders, offering a useful 

tool for healthcare practitioners and maybe resolving issues 

related to conventional diagnostic techniques. The rest of this 

study's framework is set up as follows: In Section 2, a  

literature review of the current methods is presented. The 

description of the proposed model is discussed in Section 3. 

Section 4 gives the results of the experiment and a comparison 

study for classifying diabetic retinopathy. Finally, Section 5 

summarizes the study and defines the future scope of the 

study. 

2. Literature Review 
The current section describes a wide-ranging review of 

new advancements in DR classification and medical image 

investigation, aiming at deep learning methods. Early methods 

involved traditional machine learning approaches, which  

required manual features and struggled with scalability. The 

introduction of CNNs can fully change the growing accuracy 

of classification. The overview of existing studies to classify 

DR disease based on deep learning methods is summarized in 

Table 1. This table presents methodologies, preprocessing, 

architecture, datasets, performance measures, and a 

comparative survey of available knowledge.  

These details highlight the progress and obstacles of each 

approach. Qureshi et. al. [8] introduced an Active Deep 

Learning (ADL) framework that utilized CNNs for feature 

extraction in conjunction with Expected Gradient Length 

(EGL) based active learning to decrease the burden of manual 

annotation for DR severity classification by using the 

EyePACS dataset, and showed that their model achieved high 

accuracy. Similarly, Das et al. proposed adaptive histogram 

equalization and morphological operations to improve the 

overall vessel segmentation and feature extraction process and 

their method was found to have a stable performance 

regarding the DIARETDB1 dataset [9]. Aware of the need for 

hyperparameter optimization, researchers such as Menaouer et 

al. stated about hybrid CNN models with VGG16 and 

VGG19 architectures.  
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Table 1. Summary of recent surveys on diabetic retinopathy classification 

The authors used retinal ischaemia to classify DR severity 

with an accuracy of 90.6% on a database of 5,584 images [10]. 

Dai et al. [11] Further expanded this work by developing 

DeepDR, a multi-task CNN-based system trained on more 

than 466,247 images to detect lesions and grade DR severity 

and reported AUC values above 0.94. Alyoubi et al. [12] 

proposed a Synergic Deep Learning (SDL) architecture to 

classify DR types obtained from pre-processed retinal 

images. Their method combines histogram-based 

segmentation with CNNs to achieve good accuracy on the 

Messidor dataset. Math et. al. [13] proposed a segment-based 

CNN framework without requiring any manual annotations, 

which could learn features from the data, achieving 96.37% 

sensitivity value on the Kaggle DR dataset for the 

segmentation problem. Kobat et al. [14] used a patch-based 

segmentation method combining DenseNet201 architecture 

and SVM classifiers to enhance lesion detection. This method 

achieves 94.06% accuracy by patch separation and employs 

NCA. Tymchenko et al. [15] proposed an improved transfer 

learning method to reduce the influence of label inconsistency 

and achieved impressive sensitivity and specificity scores on 

the APTOS2019 dataset. Transfer learning-based approaches 

have been introduced to tackle dataset challenges. Sikder et al. 

[16] proposed an ensemble learning method in which texture 

features and gray level intensity are extracted from the fundus 

images, and achieved an accuracy of 94% and F-measure of 

93.5% using a decision tree-based classifier. Similarly, Nazir 

et al. [17] achieved simultaneous lesion classification on the 

APTOS 2019 and IDRiD by combining CenterNet and 

DenseNet-100, and attaining scalability and robustness. 

Employing Efficient neural architectures to classify vision-

threatening DR stages, the best AUC values of 0.984 were 

reported over the EyePACS dataset by  Chetoui and Akhloufi 

[18]. Preprocessing and data  augmentation were conducted 

during model development by Mushtaq and Farheen [19], 

leading to the employment of attention mechanisms and 

ensemble learning techniques to enhance classification 

accuracy. Yi et al. [20] incorporated residual attention blocks 

Study Methodology 
Preprocessing 

Techniques 
Architecture/ Model Dataset 

Performance 

Metrics 

Menaouer 

et al.[10] 

Hybrid Deep Learning 

model 
None specified 

CNN with VGG16  

and VGG19 

5,584 retinal 

images 

Accuracy: 90.6%, 

Recall: 95%, 

F1-Score: 94% 

Dai  

et al. [11] 

Multi-Task Deep Learning 

(DeepDR) 
None specified Multi-task CNN 

466,247 fundus 

images 

AUC: 0.943-0.972 

across severity 

levels 

Alyoubi 

et al. [12] 

Synergic Deep Learning 

(SDL) 

Histogram-based 

segmentation 
SDL model Messidor 

High classification 

accuracy 

Math and 

Fatima [13] 

Segment-based learning 

framework 
None specified 

Pre-trained CNN 

modified for segment-

level estimates 

Kaggle DR 
AUC: 0.963, 

Sensitivity: 96.37% 

Kobat et al. 

[14] 

Patch-based segmentation 

and DenseNet201 

Horizontal and 

vertical patch 

division 

DenseNet201 + SVM 

Custom dataset 

and  

APTOS 2019 

Accuracy: 94.06% 

Tymchenko 

et al. [15] 

Multi-stage transfer 

learning strategy 
None specified 

CNN with transfer 

learning 
APTOS 2019 

Sensitivity: 0.99, 

Specificity: 0.99 

 

Sikder 

et. al. [16] 

Decision tree-based 

ensemble learning 

Gray-level intensity 

enhancement 
Ensemble learning APTOS 2019 

Accuracy: 94%, 

F-measure: 93% 

Nazir et al. 

[17] 

Two-phase framework 

with CenterNet 

Feature extraction 

and dataset 

annotations 

CenterNet with 

DenseNet-100 

APTOS 2019, 

IDRiD 

High accuracy and 

cross-dataset 

robustness 

Yi et al. [20] 

RA-Efficient Net 

with residual attention 

blocks 

Transfer learning RA-Efficient Net 
ImageNet pre-

trained model 

Enhanced feature 

extraction and lesion 

detection 

Madarapu 

et. al. [21] 

Multi-Resolution based 

Convolutional Attention 

Network (MuR-CAN) 

Layer-by-layer 

convolution with 

expansion rates 

MuR-CAN + SVM 
Experimental 

evaluations 

Improved 

performance over 

existing methods 

Akhtar 

et al. [22] 

EfficientNetB3 

and VGG16 

Gaussian filtering, 

data augmentation 

EfficientNetB,  

VGG16 
APTOS 2019 

Superior accuracy 

and robustness 

Mushtaq and 

Farheen [19] 

DenseNet-169-based 

classification 

Data augmentation 

and preprocessing 
DenseNet169 APTOS 2019 Accuracy: 90% 
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into Efficient Net, which improved lesion detection and 

yielded competitive AUC scores. They proposed RA-Efficient 

Net based on the principle of residual attention blocks at all 

levels for the enhanced detection of the lesions in DR images, 

and to accurately perform multi-class classification of DR, 

they improved the algorithm by adaptive transfer learning and 

multi-stage classifiers. Madarapu et al. [21] proposed Multi-

Resolution Convolutional Attention Networks (MuR-CAN), 

which include dilation-based convolution layers to better 

capture fine spatial details for improved classification 

performance. The CNN architecture was further improved by 

non-local blocks and channel-spatial attention channels to 

improve contextual feature extraction and reduce noise 

captured in DR images, resulting in better accuracy. Similarly, 

Akhtar et al. [22] employed transfer learning techniques by 

merging EfficientNetB3 and VGG16 and showed that 

Gaussian filtering and augmentation could provide better 

accuracy and robustness. Despite these improvements, older 

methods suffered from overfitting, a  lack of generalization 

capabilities, and computational inefficiencies. Considering 

these concerns, more contemporary methods, such as CLAHE 

for contrast enhancement and optimization algorithms such as 

PSO for hyperparameter tuning, have been presented to 

increase model performance and robustness in diabetic 

retinopathy classification. These techniques effectively 

prevent overfitting by extracting features and minimizing 

noise, thus making the model robust. A combination of 

CLAHE preprocessing, along with PSO optimization in a 

CNN-based architecture, has developed a more accurate and 

larger-scale model for DR classification. Specifically, the 

framework aims to overcome the challenges faced by data 

imbalance, feature inconsistency and overfitting. 

3. Proposed Methodology 
This paper suggests a  hybrid deep learning architecture 

for the efficient classification of the stages of diabetic 

retinopathy. Medical image analysis with dual backbones such 

as ResNet50 and DenseNet121 has been applied to utilize their 

strengths. CLAHE improves fundus, such as microaneurysms 

and hemorrhages. PSO is utilised for fine-tuning of 

hyperparameters together with dropout rates, learning rate and 

momentum for optimization. This method guarantees optimal 

convergence and enhanced classification performance. This 

method was tested on Kaggle’s EyePACS fundus image 

datasets, yielding important performance.  

 

 
Fig. 1 Overview of the proposed methodology
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Fundus image 
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DenseNet121 

Concatenated features 
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Fig. 2 Distribution of the EyePACS dataset 

The architecture of the suggested method utilized for the 

classification of DR is shown in Figure 1. It describes the 

important phases of methodology, starting from input image 

preprocessing of fundus images using CLAHE. They are 

followed by two DL architectures, namely ResNet50 and 

DenseNet121, for feature extraction. PSO is applied as an 

optimizer to tune the hyperparameters of the CNN model 

image by enhancing the structures important for diagnosis. 

3.1. Input Dataset 

Deep learning models need a lot of data for effective 

training. The EyePACS dataset [23] is one of the most popular 

publicly available fundus image datasets for research on 

classifying diabetic retinopathy. It has a large and varied 

collection of fundus images. The diabetic retinopathy levels 

based on severity lead to image categorization between five 

groups: No DR, Mild DR, Moderate DR, Severe DR and 

Proliferative DR. The Kaggle edition contains 88,700 fundus 

images and image distribution as follows in Figure 2. 

3.2. Preprocessing 

Noise removal is the first step in preprocessing, which 

removes undesired artifacts and fluctuations from the image. 

Here, key features like blood arteries are carefully preserved 

using the technique of median filtering. The size of each image 

is normalized in the dataset. Normalization adjusts the pixel 

intensity values to fall within a specified range, usually 

between 0 and 1. This ensures uniformity across all images 

and helps the model train more efficiently.  

Image normalization is calculated by using: 

Inorm =
I−Imin

Imax−Imin
    (1) 

I  initial value of the pixel 

Imin represents the image's minimal pixel value. 

Imax represents the image's maximum pixel value. 

The image quality improvement is achieved by enhancing 

contrast in retina  images; the CLAHE technique is applied 

[24]. CLAHE improves blood vessels and other critical 

features, especially in darker regions of the retina. The 

CLAHE algorithm can be represented as: 

Ienhanced = CLAHE (I, ClipLimit, TileGridSize)  (2) 
Here, I is the original input image 
ClipLimit controls the contrast enhancement. 

tileGridSize defines the size of the contextual regions. 

The success of CLAHE in improving fundus image 

quality is visibly displayed in Figure 3, which shows pre- and 

post-processed images for various stages of diabetic 

retinopathy, including mild, moderate, severe and 

proliferative. The use of CLAHE produces substantial contrast 

enhancement, allowing for improved delineation of retinal 

structures such as microaneurysms, hemorrhages, and 

neovascular formations. This augmentation is especially 

useful in darker parts of the retina, where diseased 

abnormalities can be difficult to identify. The enhanced 

visibility of these parameters allows for more accurate 

diagnosis and feature extraction in later processing phases. 

3.3. Feature Extraction and Feature Fusion 

Two pre-trained deep learning models, namely Residual 

Network with 50 layers (ResNet50) [25] and Densely  

Connected Convolutional Network with 121 layers 

(DenseNet121) [26], are employed to extract the features. 

These models operate without enabling fully connected layers 

PDR, 1200

No DR, 73000

Mild DR, 7500

Moderate, 5500

Severe DR, 1500
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to obtain feature maps from the convolutional layers. The key 

benefit behind hybridizing ResNet and DenseNet is utilisation 

of ResNet’s deep residual learning capabilities alongside 

DenseNet’s feature reuse mechanism.  

Before CLAHE 

Filter 

     

After CLAHE 

Filter 

     

DR Type No DR Mild DR Moderate DR Severe DR PDR 
Fig. 3 Images before and after CLAHE operation 

Let fResNet and fDenseNet indicate the feature maps extracted 

from ResNet50 and DenseNet121 models, respectively. 

𝐹𝑅𝑒𝑠𝑁𝑒 𝑡 = 𝑓𝑅𝑒𝑠𝑁𝑒𝑡
(𝐼)  (3) 

𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 = 𝑓𝐷𝑒𝑛 𝑠𝑒𝑁𝑒𝑡 (𝐼) (4) 

Where I is the Input Image 

The features from ResNet50 and DenseNet121 are 

extracted and combined to make a hybrid feature vector. This 

combination produces a more robust feature set by capturing 

the complementary qualities of both models.  

Let the fused feature vector be represented as: 

𝐹𝑓𝑢𝑠𝑒𝑑 = [𝐹𝑅𝑒𝑠𝑁𝑒 𝑡||𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 ]   (5) 

Where ‘||’ represents the concatenation process 

3.4. Classification Layer 

The concatenated feature vector is passed through a series 

of fully connected (dense) layers to perform the classification 

task. In these layers, every input neuron is coupled to all 

output neurons, making a structure that is highly connected. 

Each of these dense layers uses a Rectified Linear Unit 

(ReLU) non-linear activation function. The output of the ith 

hidden neuron 

ℎ𝑖 = 𝑅𝑒𝐿𝑈 (𝑊𝑖 𝐹𝑓𝑢𝑠𝑒𝑑 + 𝑏𝑖) (6) 

Where Ffused is the input feature vector 

Wi and bi represent the weight matrix and bias for layer i. 

The final classification layer employs a softmax function 

to output class probabilities for the five DR categories: 

𝑃(𝑦 = 𝑗|𝑥) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘
𝐾

𝑘=1

 (7) 

Where Zj is the output of class j  

y is the target label 

x is the input features, and the total number of classes is 

K. 

3.5. Optimization Using Particle Swarm Optimization (PSO)  

The proposed method uses Particle Swarm Optimization 

(PSO) to automate hyperparameter tuning [28], with each 

particle representing a possible set of hyperparameter values. 

These particles explore the search space by adjusting their 

positions depending on both their own experience (personal 

best) and the swarm's overall performance (global best). The 

optimization procedure is led by a fitness function, which is 

defined as the model's validation accuracy. By iteratively 

refining particle locations and velocities, PSO effectively 

explores the hyperparameter space, decreasing the need for 

manual tuning and the risk of becoming trapped in local 

optima. As a result, the model performs better in classification, 

with greater accuracy, F1-score, and AUC than configurations 

that use default or user-chosen parameters. Each particle Pi in 

the swarm is characterized by: 

Position Xi(t), which represents a possible solution (set of 

hyperparameters) 

Velocity Vi(t) represents the rate of change of the 

particle’s position. Personal best Pi
* the best solution found by 

the particle. 
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Global best G is the best solution found by the entire 

swarm. 

The velocity and position update rules in PSO are updated 

as follows in Equations (8) and (9). 

𝑉𝑖
(𝑡 + 1) = 𝜔𝑉𝑖

(𝑡) + 𝑏1 𝑟1(𝑃𝑖
∗ − 𝑋𝑖

(𝑡)) + 𝑏2 𝑟2 (𝐺 −

𝑋𝑖 (𝑡)) (8) 

𝑋𝑖
(𝑡 + 1) = 𝑋𝑖

(𝑡) + 𝑉𝑖
(𝑡 + 1) (9) 

Where ω denotes the inertia weight 

b1 and b2 are the coefficients of acceleration 

r1 and r2 are the random values [0,1] 

PSO is applied to reduce the categorical cross-entropy 

measure of classification error on the validation set.  

Cross entropy is defined as:  

𝐿 = − ∑  𝑁
𝑖=1

∑  𝐾
𝑗=1 𝑦𝑖𝑗 𝑙𝑜𝑔 (𝑦𝑖𝑗̂) (10) 

Here, N is the total number of samples, K represents the 

number of classes, yᵢⱼ and ŷᵢⱼ are real and the predicted 

probability that the ith sample belongs to class j. 

3.6. Training and Evaluation 

Applying the Adam optimizer, the model is initially  

trained using a learning rate of 0.001. To avoid overfitting, 

training is done over 100 epochs with early stopping. The 

categorical cross-entropy loss function helps to reduce 

training loss.  

The test set is used to evaluate the model's performance, 

and the classification results are then compared to the most 

advanced diabetic retinopathy classification techniques to 

determine the performance of the proposed model. 

4. Results and Discussion 
The experimental setup was built on a system powered by 

an Intel i7 processor with Windows 11 operating system, 

featuring a 2.4 GHz processing speed and 16 GB RAM 

supported by an NVIDIA GeForce RTX 4060 Laptop GPU.  

The simulations were executed using Python in Visual 

Studio Code. 

4.1. Performance Metrics 

The performance of the model is assessed using a few 

parameters [29]. 

Accuracy: Accuracy is the percentage of right predictions 

out of all the predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
)       (11) 

Sensitivity(recall): It measures the ability of a model to 

correctly identify the total positive instances 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (12) 

Area Under the Curve (AUC): It shows how successfully 

the model differentiates positive and negative classes; larger 

values mean better performance. The Area Under the Curve 

(AUC) is calculated using the Receiver Operating 

Characteristic (ROC) curve, which indicates the connection 

between the True Positive Rate (TPR) and the False Positive 

Rate (FPR) at various categorization thresholds. 

Precision: Determines how many of the anticipated 

positive situations are true positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (13) 

F1-Score: A measure that shows the trade-off between 

precision and recall in tasks that involve classifying things into 

two or more classes 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒 𝑐𝑎𝑙𝑙
 (14) 

4.2. Performance on the EyePACS Dataset 

Ablation research is carried out to learn more about how 

each parameter influences the model's operation. The 

hyperparameters in Table 2 are tuned for their effect on the 

final model performance. CLAHE is used to preprocess 

fundus images of the EyePACS dataset as it enhances local 

contrast to allow better differentiation in the local 

neighborhood of retinal features such as hemorrhages and 

microaneurysms.  

Table 1. Hyperparameter settings 
S. No. Name of the Parameter Value 

1 Learning Rate 0.001 

2 Momentum 0.9 

3 Dropout Rate 0.3 

The preprocessing step significantly enhances the feature 

visibility of the model and enables it to discriminate among 

various types of diabetic retinopathy. CLAHE improves the 

contrast of the model trained on the EyePACS dataset without 

adding noise. This helps the model find important features and 

increases accuracy, precision and recall. The model 

performance is greatly enhanced on the EyePACS dataset, 

with the application of CLAHE and PSO for hyperparameter 

optimization.  

The iterative search of PSO enables the model to reach 

convergence faster whilst having good generalization 

capabilities. Obtaining more precise hyperparameter values 

from the PSO implementation on the EyePACS dataset leads 
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to significantly higher performance metrics and overall model 

accuracy. This can be seen from the ablation study on  the 

EyePACS dataset, as reported in Table 3. When CLAHE is 

applied without PSO, the accuracy comes out to be 93.26%; 

however, contrast is enhanced, but optimization does not yield 

a positive impact. Using PSO without CLAHE raises the 

accuracy to 94.37% by fine-tuning the hyperparameter. 

Table 3. Performance of model variants 

Parameter 

Model 

with CLAHE 

and   

without PSO 

Model 

without  

CLAHE 

and with PSO 

Model 

with  

CLAHE 

and PSO 

Accuracy 93.26% 94.37% 95.01% 

Precision 94.39% 95.43% 96.28% 

Recall 91.80% 93.46% 94.21% 

F1-Score 93.08% 94.24% 94.84% 

AUC 93% 94% 95% 

The proposed model's training and validation accuracy 

have changed over 100 epochs, as shown in Figure 4. This 

chart shows that the model performs well and consistently on 

both the training and validation datasets. The accuracy curve 

indicates that the model has not overfit and is well-optimized  

for the classification task. Throughout the training phase, the 

training (black) and validation (red) curves remain tightly  

matched, indicating that the model maintains strong 

generalization capability while overfitting is negligible. The 

absence of a significant gap between the curves indicates 

robust learning and suitable model complexity in relation to 

the dataset. After a few epochs, both the training and 

validation accuracy curves plat area, with a steady 

performance range of 90% to 95.01%. The model ultimately 

achieves a high validation accuracy of 95.01%, validating the 

effectiveness of the training technique, model architecture, 

and hyperparameter selection. 

A comparative evaluation of the proposed model against 

several existing deep-learning approaches for effective DR 

classification is presented in Table 4. The model's 

performance is measured using conventional classification 

measures such as Accuracy, Precision, Recall, F1-Score, and 

Area Under the Curve (AUC). The Proposed Model (enhanced 

with CLAHE for contrast improvement and PSO for 

hyperparameter tuning) outperforms all the other methods 

across all five evaluation metrics. The model attained the 

greatest accuracy of 95.01% when categorizing Diabetic 

Retinopathy (DR) images across five evaluation categories.  

 
Fig. 4 Training and validation accuracy 

Table 4. Performance evaluation of proposed and existing metrics 

Model Accuracy Precision Recall F1-Score AUC 

CNN [30] 94.50 91.2 93.5 92.3 0.91 

CNN ResNet-101 [31] 87.37 77.8 93.88 85.1 0.84 

3-Headed CNN (TTA) [32] 91.9 90.2 92.1 91.1 0.92 

CABNet [33] 84 84.7 87.3 85.9 0.86 

Proposed Model with CLAHE and PSO 95.01 93.7 94.9 94.3 0.94 

 
Its precision (93.7%) and recall (94.9%) reflect an 

excellent balance between minimizing false positives and 

false negatives, which is critical in medical diagnosis 

scenarios. The F1-score of 94.3% confirms this balance, and 

an AUC of 0.94 signifies strong discriminative ability. Among 

the compared models, the baseline CNN model [30] also 

performs well, with 94.50% accuracy and an AUC of 0.91, but 

it still falls slightly short of the proposed model in all metrics. 

The 3-Headed CNN (TTA) [32] achieves a  good trade-off 

with 91.9% accuracy and an AUC of 0.92, indicating 

robustness through test-time augmentation. However, its 

performance is marginally lower than the proposed model. In 

contrast, CNN ResNet-101 [31] and CABNet [33] show 

relatively lower performance. ResNet-101 has the lowest  

accuracy (87.37%) and AUC (0.84), despite a high recall 

(93.88%), which suggests it detects positives well but at the 

cost of more false positives. CABNet shows moderate results 

across metrics but is notably less effective than the proposed 

method, especially in accuracy and AUC. The proposed model 

with CLAHE and PSO has maximum accuracy (95.01%), 

indicating higher performance as shown in Figure 5. This 

graphical representation clearly demonstrates the 

effectiveness of the suggested strategy when compared to 

existing techniques.  
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Fig. 5 Comparison of accuracy across different models 

This model’s better classification performance can be 

attributed to merging ResNet and DenseNet designs. ResNet 

contributes residual learning, which minimizes the vanishing 

gradient issue and enables more advanced network training 

without degradation. This enables the model to efficiently 

capture global semantic information. In contrast, DenseNet 

offers dense connections, in which each layer receives inputs 

from all previous layers, enabling feature reuse and increasing 

gradient flow, hence improving the learning of fine-grained 

local features. The hybrid model, which combines these two 

powerful architectures, benefits from both depth and dense 

feature propagation, making it well-suited for the diabetic 

retinopathy classification task, where both global retinal 

patterns and local lesions (such as microaneurysms, exudates, 

and hemorrhages) must be identified. 

5. Conclusion and Future Scope 

 A hybrid DL model for Diabetic Retinopathy 

classification is proposed and implemented in this study, 

achieving considerable advancements with respect to existing 

models by extending the framework with CLAHE 

preprocessing and PSO. CLAHE and PSO enable the capture 

and enhancement of diagnostic characteristics from retinal 

images, adapting the model’s hyperparameters in favour of 

maximum efficiency. CLAHE emerged as an essential 

preprocessing step for enhancing local contrast in fundus 

images without magnifying noise and showing fine features 

like microaneurysms, hemorrhages and exudates. CLAHE 

makes these tiny retinal structures more distinguishable, 

which is essential for diagnosing the severity of DR, thus 

significantly improving feature extraction by the model. As 

seen through the outcomes across the EyePACS dataset, 

CLAHE provides the model with a substantial advantage for 

distinguishing between different DR levels and thus yields 

more précised classifications. Additionally, the employment 

of PSO aids the success of the model in terms of 

hyperparameter optimization by adjusting the learning rate, 

momentum and dropout rate. PSO is different from 

traditional gradient-based optimization methods; every 

particle in the swarm is like a separate candidate solution 

moving through hyperparameter space. PSO converges to a 

set of hyperparameters that maximizes model performance in 

terms of accuracy via  iterative updates informed by individual 

and neighborhood experiences. This leads to better 

convergence rates, minimized overfitting and improved 

generalization, as depicted from the performance metrics 

achieved on unseen test data. The maximum accuracy of this 

proposed model on the EyePACS dataset is 95.01%.  

Moreover, the model has excellent precision, recall, F1-

score, and AUC values, suggesting a fair capability for 

evaluation metrics. These results confirm the effectiveness of 

employing advanced techniques such as CLAHE and PSO in 

diabetic retinopathy classification, as these improve both the 

feature extraction and generalize the capacity of the model. 

Although the current model was trained and assessed using the 

EyePACS dataset, its performance can be further validated by 

applying it to other publicly available datasets such as 

Messidor and APTOS2019. This would assess its ability to 

generalize across various imaging environments. 

Furthermore, the model, incorporated into cloud-based 

diagnostic systems or mobile screening tools, could offer 

significant advantages, particularly in resource-limited  

regions, by facilitating early and large-scale detection of 

diabetic retinopathy with minimal reliance on clinical 

personnel.
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