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Abstract - The robot system's parameters fluctuate unpredictably or cannot be precisely determined and are further influenced 

by external disturbances during movement. Various adaptive, robust, and adaptive -robust control methods exist for robot motion 

control, all requiring an uncertain mathematical model, parameter estimation, or the assumption of constant uncertainty. 

However, an alternative approach—iterative learning control—does not rely on a mathematical model or assume parameter 

constancy. Instead, it determines learning function parameters online using an optimization method based on minimizing the 

sum of squared errors. This article explores and compares control performance for a 2 -degree-of-freedom robot, highlighting 

the effectiveness of the adaptive-robust controller versus the conventional learning controller. 

Keywords - Adaptive-Robust Control, Interactive Learning Control (ILC), Taylor series estimation. 

1. Introduction  
Industrial robots are objects that work in cycles, 

performing repetitive tasks to ensure accuracy in speed and 

position. However, industrial robots are highly nonlinear 

objects with many uncertain parameters, are affected by inter-

channel effects between joints, and are subject to external 

interference, which are the causes of trajectory tracking errors, 

so research to improve the quality of precise trajectory 

tracking motion control of industrial robots is always of 

interest to many domestic and foreign scientists. That is why 

many control methods for industrial robots have been 

developed, from traditional to using artificial intelligence, 

including iterative learning control.  

2. Literature Review  
Conventional control methods are usually model-based, 

which are control methods designed from the Euler-Lagrange 

model of robots (1). According to the document, these control 

methods are built and classified on the basis of known 

parameters and external disturbances or uncertain components 

of the model, precisely the gravity compensation PD control 

method [1]. This control method requires knowing the exact 

parameters of the object, while the actual industrial robot 

object has many constant and uncertain parameters. Therefore, 

implementing controllers according to this method is 

challenging in terms of accuracy, or in other words, difficult 

to implement in practice. The fuzzy control method, according 

to documents [2, 3], is a  new method that has appeared in 

recent years but has had some applications in practice. The 

essential advantage of fuzzy control compared to other 

controls is that it can synthesize the controller without 

knowing the characteristics of the object accurately in 

advance. Fuzzy control has transferred biological systems' 

information processing and control principles to technical 

systems. Therefore, fuzzy control has successfully solved 

many complex control problems that were previously 

unsolved. The disadvantage of the method is that it is 

necessary to have expert knowledge and operating experience 

to build a suitable fuzzy controller when synthesizing. There 

have been many studies in different directions to standardize 

the design and optimization of fuzzy controllers. The control 

method uses neural networks (Neural Networks: NN), 

according to documents [4-6]. This control method has the 

advantage of parallel processing, so the information 

processing speed is very high. Due to the ability to "learn," the 

network promises to apply interference in the field of science 

and technology, especially controlling complex dynamic 

systems (systems with strong nonlinearity, systems with  

unknown parameters, or known but incomplete or inaccurate 

parameters) with high control accuracy and small control time, 

good anti-interference, stable and sustainable, capable of 

controlling objects with the same model with different 
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parameters, even variations. The disadvantage of the method 

is the complexity of synthesizing the neural controller and the 

low feasibility of practical applications. According to 

document [1], the robust control method was born in the 1960s 

and is used for systems in which one or more parameters are 

not accurately modeled or cannot be modeled. Therefore, the 

robust control problem aims to control the system to change 

within an allowable range or the uncertain disturbance 

changes continuously without having to model the entire 

system. The limitation of this method is that the controller 

requires pre-determining the boundaries of the system 

parameters, and the appearance of external disturbances 

cannot ensure the asymptotic stability of the trajectory 

tracking error. 

According to documents [7-9],  the adaptive control 

method was born after 1950 and is used in automatic systems. 

In essence, the adaptation process measures state parameters 

such as errors and output signals to evaluate the system's 

current state. Using calculation tools, the controller will 

automatically determine the parameters and adjust them 

accordingly to achieve the control characteristics as desired. 

The adaptation process occurs according to the change in 

system parameters or the impact of disturbances. Therefore, 

the structure of the controller usually consists of two parts: the 

adaptation part to update and identify data and the control part 

to determine the control signal. Each of the above control 

methods contributes to the application in some wa y. 

Although many control methods exist, the tracking 

quality is not always satisfactory due to insufficient model 

accuracy or unrepresentative impact disturbances. The reasons 

may be limitations in theory, modeling understanding, 

incompatibility with traditional control methods, or 

unforeseen changes in the system. Although the initial model 

is accurate, material aging and actuator changes reduce the 

control quality over time. Redesigning the controller or 

replacing equipment wastes essential system information and 

increases maintenance costs. Research on integrating 

intelligent control methods to calibrate control signals without 

redesigning or replacing equipment is necessary to optimize 

maintenance time and improve operational efficiency.  

One of the suitable methods is Iterative Learning Control 

(ILC) [10-22], which relies on experience to improve current 

and future control quality. With ILC, one does not need to re-

adjust the traditional controller or intervene deeply in the 

existing system. However, ILC cannot be successfully applied 

to all volatile systems. The quality of the ILC depends 

significantly on the dynamics and the reasonable selection of 

the tuning law. Therefore, it is necessary to research and find 

an intelligent solution to pre-intervene in the system, creating 

the possibility of applying iterative learning control to it and 

determining the tuning law applicable to many classes of 

systems. The main content of the paper is to compare and 

analyze the performance between traditional controllers, such 

as adaptive stability controllers and Iterative Learning 

Controllers (ILC), for 2-degree-of-freedom robots to evaluate 

the ability to improve control quality, reduce trajectory 

tracking errors, and ensure system stability. The paper 

analyzes how the adaptive robust controller handles 

disturbances and uncertainties in the robot dynamics model 

compared to the ILC’s ability to learn from past data to 

improve accuracy. From there, the study proposes a suitable 

approach to optimize control performance and improve robot 

reliability during operation. 

The content of the paper is presented in 5 parts: Part 1 is 

a general introduction, Part 2 is the adaptive-robust control 

method, Part 3 is the theory of ILC iterative learning control 

and its application to control industrial robot systems, and Part 

4 is the conclusion and future research directions. 

3. Robot Control using an Adaptive Robust 

Control Method 
3.1. Algorithmic Content, [1] 

Starting from the robot's dynamic equation written in the 

form: 

𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) + 𝑇𝑑  (1) 

In this case, T is the nx1 vector describing the unknown 

external noise. 

Suppose the robot's dynamics equations can be rewritten 

as follows: 

𝜔 = 𝑀(𝑞)(𝑞̈𝑑 + 𝛬𝑒̇) + 𝐶(𝑞, 𝑞̇)(𝑞̇𝑑 + 𝛬𝑒) + 𝐺(𝑞) + 𝑇𝑑

 (2) 

The uncertainty here is the uncertainty in the amount of 

external disturbance load, the friction coefficient. Therefore, a  

positive scalar function 𝜌can be used to limit the uncertainty 

𝜌, which can be given as follows: 

𝜌 ≥ ‖𝑤‖ (3) 

The physical properties that can be used to show that the 

given robot's dynamic equations can be bounded are as 

follows: 

𝜌 = 𝛿0 + 𝛿1
‖𝑒‖ + 𝛿2

‖𝑒‖2 ≥ ‖𝑤‖ (4) 

With: 

𝑒 = [𝑒
𝑒̇

]

 

(5) 

𝛿1,𝛿2 , 𝛿3 Positive limit constants are calculated based on 

the maximum value of load mass, connecting rod mass, 

friction coefficient, and external noise. As is known, the robust 

controller requires the bounding region defined in (4) to have 
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a pre-determined shape. The adaptive robust controller studied 

here will “learn” the online bounding regions that the adaptive 

component determines when the robot arm moves. 

The proposed adaptive robust controller is as follows: 

𝜏 = 𝐾𝑣𝑟 +
𝑟𝜌2

𝜌‖𝑟‖+𝜀

 

(6) 

In there, 𝐾𝑣𝑟 the persistence component 
𝑟𝜌2

𝜌‖𝑟‖+𝜀
 is the 

adaptation component 

𝐾𝑣 is a  positive definite diagonal nxn matrix  

𝑉𝑅  is the auxiliary control nx1 vector 

𝑟 = 𝛬𝑒 + 𝑒̇  

𝜀 ̇ = −𝑘𝜀 𝜀, 𝜀(0) > 0  

𝑘𝜀 : is a  positive control constant 

𝜌 = 𝛿̂0 + 𝛿̂1
‖𝑒‖ + 𝛿̂2

‖𝑒‖2

 
(7) 

𝛿̂1, 𝛿̂2, 𝛿̂3 These are the dynamic estimates of the 

corresponding limiting constants 𝛿1, 𝛿2,𝛿3 above. Those 

estimates marked with “ ^ ” are continuously updated by the 

adaptive component and are written in a different form as 

follows: 

𝜌 = 𝑆𝜃
 

(8) 

In there:  

𝑆 = [1 ‖𝑒‖ ‖𝑒‖2]     and     𝜃 = [𝛿̂1 𝛿̂2 𝛿̂3
]𝑇  

Therefore, 𝜌 can be written in matrix form as follows: 

𝜌 = 𝑆𝜃
 

(9) 

In there: 𝜃 = [𝛿0𝛿1𝛿2
]𝑇 

The updated rule is given as follows: 

𝜃̇ = 𝛾𝑆𝑇 ‖𝑟‖
 

(10) 

In there 𝛾 is a  positive control constant. 

Set: 

𝜃 = 𝜃 − 𝜃 (11) 

Therefore:    

𝜃̇ = −𝛾𝑆𝑇 ‖𝑟‖ (12) 

The proposed adaptive-stable controller above makes the 

Robot system stable according to the Lyapunov criterion. 

Choose a positive definite Lyapunov function: 

𝑉 =
1

2
𝑟𝑇 𝑀(𝑞)𝑟 +

1

2
𝜃 𝑇 𝛾−1𝜃̃ + 𝑘𝜀

−1𝜀 (13) 

⇒ 𝑉̇ = 𝑟𝑇 𝑀(𝑞)𝑟̇ +
1

2
𝑟𝑇 𝑀̇(𝑞)𝑟 + 𝜃 𝑇 𝛾−1 𝜃̇̃ + 𝑘𝜀

−1𝜀 ̇ (14) 

From this, we have: 

𝜔 − 𝜏 = 𝑀(𝑞)𝑟̇ + 𝐶(𝑞, 𝑞̇)𝑟 (15) 

Set𝑣𝑅 =
𝑟 𝜌2

𝜌 ‖𝑟‖+𝜀
 then we have: 

𝑀𝑟̇ = −𝐶𝑟 + 𝜔 − 𝐾𝑣 𝑟 − 𝑣𝑅  (16) 

⇒ 𝑉̇ = 𝑟𝑇 (−𝐶𝑟 + 𝜔 − 𝐾𝑣𝑟 − 𝑣𝑅)  

+
1

2
𝑟𝑇 𝑀̇𝑟 + 𝜃𝑇 𝛾−1 𝜃̇̃ + 𝑘𝜀

−1𝜀 ̇ 

= −𝑟𝑇 𝐾𝑣𝑟 + 𝑟𝑇 (𝜔 − 𝑣𝑅) −
1

2
𝑟𝑇 (2𝐶(𝑞, 𝑞̇) − 𝑀̇(𝑞))𝑟 

+𝜃 𝑇 𝛾−1 𝜃̇̃ + 𝑘𝜀
−1𝜀 ̇ (17)  

Because  𝑆 = 2𝐶 − 𝑀̇ it is the skew matrix 

So 
1

2
𝑟𝑇 (2𝐶 − 𝑀̇)𝑟 = 0

 

And  

𝜃̇ = −𝛾𝑆𝑇 ‖𝑟‖  ⇒   𝛾−1 . 𝜃̇ = −𝑆𝑇 ‖𝑟‖   

⇒   𝜃 𝑇 𝛾−1𝜃̇ =  −𝜃𝑇 𝑆𝑇 ‖𝑟‖ = −𝑆𝜃‖𝑟‖  (18) 

⇒    𝑉̇ = −𝑟𝑇 𝐾𝑣𝑟 + 𝑟𝑇 (𝜔 − 𝑣𝑅 ) − 𝑆𝜃‖𝑟‖ + 𝑘𝜀
−1𝜀 ̇ (19) 

𝐷𝑢𝑒  𝑡𝑜              𝜌 ≥ ‖𝑤‖  and  𝜌 = 𝑆𝜃    

⇒   V̇ ≤ −𝑟𝑇 𝐾𝑣𝑟 − 𝑆𝜃‖𝑟‖ + 𝑆𝜃‖𝑟‖ − 𝑟𝑇 𝑣𝑅 + 𝑘𝜀
−1𝜀 ̇

⇒   V̇ ≤ −𝑟𝑇 𝐾𝑣𝑟 + 𝑆𝜃‖𝑟‖ −
𝑟𝑇 𝑟(𝑆𝜃)

2

𝑆𝜃‖𝑟‖ + 𝜀
− 𝜀 

⇒   V̇ ≤ −𝑟𝑇 𝐾𝑣𝑟 + 𝑆𝜃‖𝑟‖ −
‖𝑟‖2(𝑆 𝜃)

2

𝑆 𝜃‖𝑟‖+𝜀
− 𝜀     

⇒   V̇ ≤ −𝑟𝑇 𝐾𝑣𝑟 +
𝜀𝑆 𝜃‖𝑟‖

𝑆𝜃‖𝑟‖ +𝜀
− 𝜀

 

(20) 

So   

𝜀𝑆 𝜃‖𝑟‖

𝑆𝜃 ‖𝑟‖+𝜀
− 𝜀 ≤ 0      ⇒      V̇ ≤ −𝑟𝑇 𝐾𝑣𝑟  

⇒ 𝑉̇ ≤ 0 (21) 

Thus, according to the Lyapunov stability theorem, the 

system is stable with the given control law. In general, the 

torque controller is designed as follows: 
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τ = K𝑣r +
rρ̂2

𝜌‖𝑟‖+ε
 (23) 

with 

𝜌 = Sθ̂ = [1 ‖[𝑒
𝑒̇

]‖ ‖[𝑒
𝑒̇

]‖
2

] [𝛿̂0𝛿̂1𝛿̂2]
𝑇
  

𝑟 = 𝑒 + 𝑒̇    và   𝜀̇ = −𝑘𝜀 𝜀    và   K𝑣 = 𝑘𝑣𝐼      

The update rule estimates the bounds for the parameters:  

𝜃̇ = γS𝑇 ‖𝑟‖
 

(24) 

The structure diagram of the adaptive robust controller is 

shown in Figure 1: 

 
Fig. 1 Schematic diagram of a sustainable-adaptive control structure 

3.2. Simulation and Verification via a Robot with 2 Degrees 

of Freedom using Matlab/Simulink Software 

 
Fig. 2 2-DOF robot 

Results of the Motivational Learning Method 

𝑀11=m1𝑎c1
2 +I1+m2𝑎1

2 +I2  
𝑀12=M21=M22=I2,𝐻11 = 𝐻21 = 0  
𝐺11 = 𝑚1𝑔𝑎𝑐1𝑐𝜃1 + 𝑚2𝑔𝑎1𝑐𝜃1   

𝐺21 = 0 

 
From (23), we can determine the input sustainable-

adaptive control law of the form: 

{
𝜏𝑑 𝑘1

= 𝑘𝑣 𝑟1 + 𝑟1 𝜌2 1

𝜌‖𝑟‖+𝜀

𝜏𝑑 𝑘2
= 𝑘𝑣 𝑟2 + 𝑟2𝜌 2

    

With: 

𝐾𝑣 = 𝑘𝑣𝐼; 𝑟1 = 𝛬𝑒1 + 𝑒̇1, 𝑟1 = 𝛬𝑒2 + 𝑒̇2, 𝑟2 = 𝛬𝑒2 + 𝑒̇2 

 

𝜀 ̇ = −𝑘𝜀 𝜀, ‖𝑟‖ = √𝑟1
2 + 𝑟2

2  

𝜌 = 𝑆𝜃 = [1 ‖𝑒‖ ‖𝑒‖2][𝛿̂1 𝛿̂2
]𝑇   

‖𝑒‖ = √𝑒1
2 + 𝑒2

2 + 𝑒̇1
2 + 𝑒̇2

2  

Updated law:  

𝛿̂̇
0 = 𝛾(𝑟),   𝛿̂̇

1 = 𝛾‖𝑒‖‖𝑟‖,   𝛿̂̇
2 = 𝛾‖𝑒‖2‖𝑟‖ (25) 

Table 1. Controller parameters 

Symbol Parameter name 
Joint axis parameter 

values 

𝑘𝑣  

Adjustment factor 

sustainability 

component 

𝑘𝑣 = 1000 

𝑞𝑑  
The set value of the 

joint axes 

𝑞𝑑1
= 1.3(𝑟𝑎𝑑 ), 𝑞𝑑2

= 1.3(𝑟𝑎𝑑 ) 

𝛾 
Adaptive component 

correction factor 
𝛾 = 50 

 
(a) 
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(b) 

Fig. 3 Position and velocity deviations of joints 

3.2.1. Comments 

The robot simulation results show that the joint angle 

error between the set and actual values is approaching 0, with 

no oscillation. The speed value also approaches 0. 

The sustainable-adaptive control method combines the 

two methods of sustainable control and adaptive control. 

Therefore, the sustainable-adaptive controller will include 

sustainable and adaptive components. The sustainable 

component will stabilize the system in a specific bounding 

area, while the adaptive component always updates the change 

in the bounding area. Therefore, when using the sustainable-

adaptive controller, the system is always stable. 

Over time, environmental factors like equipment wear 

gradually deteriorate the original design’s quality, making 

controller reconstruction necessary. In traditional industrial 

robot motion control design, a fundamental requirement is a 

clear understanding of the control object, which must be 

represented by a mathematical model, such as a transfer 

function or a system of first-order differential equations.  

Additionally, unforeseen external influences can reduce 

system performance, requiring reevaluation of the 

mathematical model, assessment of objective impacts, and 

adjustments or redesign of the controller. To address these 

disadvantages, intelligent control methods can be used, which 

do not rely on the robot's dynamic model (1), ensuring control 

quality remains unaffected by components q(t) and d(t). This 

article focuses on the iterative learning control method, 

emphasizing the online optimization of standa rd arithmetic 

function parameters by minimizing the sum of squared errors 

and applying it to 2-degree-of-freedom robots. 

4. Iterative Learning Control Theory and its 

Application in Industrial Robot System Control 
The paper aims to use an iterative learning controller with 

a linear learning function to control nonlinear processes. To 

achieve this goal, there are two main tasks: 

First: Determine the principle of reasonable correction of 

the control signal from experience for the iterative learning 

controller. In other words, it would be best if the correction of 

the control signal, including the selection of the convergence 

parameter for the learning function, does not depend on the 

mathematical model of the process. 

Second: If the deviation of the mathematical model of the 

process and the deviation of the actuator are considered total 

disturbances, it is necessary to intelligently estimate this total 

disturbance component, including the function uncertainty 

components, without using the mathematical model of the 

system. This, through the control of total disturbance 

compensation, will expand the scope of applying the 

combined control method between ILC and traditional 

techniques. 

4.1. Determine the Optimal Standard Arithmetic Function 

Parameters Online by Minimizing the Sum of Squared 

Errors 

Consider a linear discrete system in the form: 

{
𝑥𝑘(𝑖 + 1) = 𝐴𝑥𝑘

(𝑖) + 𝐵𝑢𝑘
(𝑖)

𝑦𝑘 (𝑖) = 𝐶𝑥𝑘
(𝑖)

 (26) 

With: 𝐴 ∈ 𝑅𝑛𝑥𝑛 , 𝐵 ∈ 𝑅𝑛𝑥𝑚 , 𝐶 ∈ 𝑅𝑚𝑥𝑛  are the system 

matrix, control matrix, and output matrix; 𝑥(𝑡) ∈ 𝑅𝑛 ,𝑢(𝑡) ∈
𝑅𝑚, 𝑦(𝑡) ∈ 𝑅𝑚  are vectors of state, input, and output signals. 

When using D-style learning functions: 

𝑢𝑘+1(𝑖) = 𝑢𝑘 (𝑖) + 𝐾𝑒𝑘 (𝑖 + 1), 𝑖 = 0,1, . . . , 𝑁 − 1 (27) 

with 𝑒𝑘 (𝑖) = 𝑟𝑘 (𝑖) − 𝑦𝑘 (𝑖) 

Where: k is the trial index; i is the specific time in each 

trial, corresponding to time 𝑡 = 𝑘𝑇 + 𝑖𝑇𝑠. The preset signal is 

assumed to be periodic with period T. 

The convergence condition is given as follows: 

‖𝐼 − 𝐶𝐵𝐾‖ < 1 (28) 

4.1.1. Comment 

With the assumption 𝐶𝐵 ≠ 0, [22] is not only a sufficient 

condition but also a necessary condition. So from (28), the 

content of the article proposes to determine the parameter 

matrix K for the learning function (27) that can change 

adaptively according to the tracking error through each kth 
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trial, called the online learning function parameter, according 

to the optimization criterion of minimizing the sum of squared 

tracking errors, denoted by. The proof of the necessity and 

sufficiency of condition (28) is shown in the documents [11, 

21]. 

With the necessary and sufficient condition (28) showing 

that the system (26) has 𝐶𝐵 ≠ 0an infinite number of 

parameters, K will exist that makes the learning and tuning 

process with the learning function P converge. However, if the 

system 𝐶𝐵 = 0is a  matrix with all elements equal to 0, there 

will not exist any convergent parameter K. So the content of 

the article will present the case of creating many convergent 

parameters, we can determine a parameter with the best 

convergence speed as well as in the case where there is no 

convergent parameter K in the sense that ‖𝜀𝑘
‖ → 0we can at 

least determine a parameter K that makes ‖𝜀𝑘
‖ → 𝑚𝑖𝑛 

According to [11, 21], it is proposed to use the standard 

‖𝐼 − 𝐶𝐵𝐾‖ → 𝑚𝑖𝑛  (29) 

To determine the parameter K, replace the condition (25). 

So, the accepted solution will depend on the tracking error 

vector ‖𝜀𝑘‖, which changes with each test k. So, to be strict, 

the criterion (29) will be rewritten as: 

𝐾𝑘 = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝑎≤𝐾≤𝑏

‖𝑒𝑘+1‖ = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝑎≤𝐾≤𝑏

‖𝐼(−𝛷𝐾)𝑒𝑘‖

 (30) 

Where a and b are two appropriately chosen limiting 

matrices, the matrix comparison 𝑎 < 𝐾 < 𝑏is understood to 

be performed for each corresponding element of those 

matrices. 

From (30) compared with (28), it can be seen that at each 

trial k, the online learning coefficient 𝐾𝑘 will always  ‖𝜀𝑘+1
‖ 

have the smallest value compared to the parameter chosen 

from condition (28). This will increase the convergence for the 

learning and adjustment process. 

So, to facilitate the implementation of (30), we can use 

another form of the right-hand side: 

‖(𝐼 − 𝛷𝐾)𝜀𝑘
‖2 = 𝜀𝑘

𝑇 (𝐼 − 𝛷𝐾)𝑇 (𝐼 − 𝛷𝐾)𝜀𝑘 → 𝑚𝑖𝑛  (31) 

Then the optimization problem (30) becomes: 

𝐾𝑘 = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝑎≤𝐾≤𝑏

[𝜀𝑘
𝑇 (𝛷𝐾)𝑇 (𝛷𝐾)𝜀𝑘 − 2𝜀𝑘

𝑇 𝛷𝐾𝜀𝑘
] (32) 

With: 

𝛷 = (

𝐶𝐵
𝐶𝐴𝐵

⋮
−𝐶𝐴𝑁−1𝐵

0
𝐶𝐵

⋮
−𝐶𝐴𝑁−2𝐵

⋯
⋯
⋱
⋯

0
0
⋮

𝐶𝐵

), 𝜀𝑘 = (

𝑒𝑘 (1)

𝑒𝑘 (2)
⋮

𝑒𝑘(𝑁)

) 

4.2. Stabilization and Linearization without using 

Mathematical Models 

4.2.1. Estimating the Derivative of a Function Vector from 

Measured Data using Taylor Decomposition 

Consider the function vector 𝑥𝑘(𝑖) at time 𝑡𝑖 = 𝑘𝑇 + 𝑖𝑇𝑠. 

If written in the language of iteration 𝑥(𝑡𝑖 ) = 𝑥𝑘(𝑖), the 

problem is that from two consecutive measured values of 

𝑥𝑘(𝑖) and 𝑥𝑘(𝑖 − 1), we need to approximate the derivative of 

𝑥̇𝑘(𝑖) at that current time.  

Use Taylor series analysis to perform the above 

estimation problem. This formula is as follows [22]. At 𝑡𝑖 =
𝑘𝑇 + 𝑖𝑇𝑠 and when 𝑇𝑠is very small, simultaneous, and twice 

differentiable, we have: 

𝑥𝑘(𝑖) = 𝐷1
𝑇 𝑥𝑘(𝑖) − 𝐷0

𝑇 𝑥̇𝑘(𝑖 − 1) +
𝑇𝑠

2

2
𝑥̈𝑘(𝜍) (33) 

with:𝐷1
𝑇 = −𝐷0

𝑇 =
1

𝑇𝑠
 

Are the corresponding Taylor series coefficients and (𝑖 −
1)𝑇𝑠 ≤ 𝜍 ≤ 𝑖𝑇𝑠. In case 𝑥̈𝑘(𝜍) = 0, ∀𝜍 the derivative 

approximation formula (35) becomes exact, i.e., the Taylor 

series analysis has no errors. 

𝑥̇𝑘(𝑖) ≈
𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
 (34) 

This shows that the Taylor series derivative estimation 

will achieve very high accuracy when the sampling interval 𝑇𝑠 

is small enough. 

4.2.2. Application to the Linearization of Nonlinear System 

Stability without using A Model 

Consider the nonlinear system  𝑞 ∈ 𝑅𝑛described by: 

𝑞̈(𝑡) = 𝑓(𝑞, 𝑞̇) + 𝑢 (35) 

Where𝑓(𝑞, 𝑞̇) is a  vector of uncertain functions, the task 

is to design a controller to linearize and stabilize the nonlinear 

system without using the original model (35). To solve the 

above problem, we apply the derivative approximation 

formula (34) obtained by Taylor series analysis. First , 

transform (35) into the form: 

𝑞̈ = −𝐴1𝑞 − 𝐴2 𝑞̇ + 𝑢 + 𝑑 (36) 

With 𝐴1, 𝐴2 the preference matrix, 

𝑑 = (𝑞, 𝑞̇) + 𝐴1𝑞 + 𝐴2 𝑞̇ (37) 

This is the new functional uncertainty component. If we 

can accurately estimate and compensate for the uncertainty 

component 𝑑, 𝑑̂ ≈ 𝑑the control signal will have the form: 

𝑢 = 𝑣 − 𝑑̂ (38) 
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System (36) becomes: 

𝑥̇ = (
0𝑛 𝐼𝑛

−𝐴1 −𝐴2
) 𝑥 + (

0𝑛

𝐼𝑛
) [𝜗 + 𝛿𝑑

]  

= 𝐴𝑥 + 𝐵 [𝜗 + 𝛿𝑑
] (39) 

With 0𝑛 , 𝐼𝑛 are zero and identity matrices of dimension 

nxn, as well as: 

  𝑥 = (
𝑞
𝑞̇

) , 𝐴 = (
0𝑛 𝐼𝑛

−𝐴1 −𝐴2
) ,  

𝐵 = (
0𝑛

𝐼𝑛
) , 𝛿𝑑 = 𝑑 − 𝑑̂ ≈ 0 (40) 

To make the linear system (39) asymptotically stable, we 

must choose two matrices, 𝐴1, 𝐴2, so that (40) is a square 

matrix, all of whose eigenvalues have negative genuine parts. 

Next, we estimated 𝑑through 𝑑̂formula (36), which is 

rewritten according to the formula of iterative learning, then:  

𝑞̈𝑘(𝑖) = −𝐴1 𝑞𝑘(𝑖) − 𝐴2𝑞̇𝑘(𝑖) + 𝑢𝑘(𝑖) + 𝑑𝑘(𝑖) (41) 

or 

𝑥̇𝑘(𝑖) = 𝐴𝑥𝑘(𝑖) + 𝐵[𝑢𝑘(𝑖) + 𝑑𝑘(𝑖)] (42) 

Replace the left side in (42) with the derivative 

approximation formula (34) to get: 

⇔
𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
≈ 𝐴𝑥𝑘(𝑖) + 𝐵[𝑢𝑘(𝑖) + 𝑑𝑘(𝑖)] (43) 

Then convert it into the correct formula by replacing ≈

, 𝑑𝑘(𝑖) with =, 𝑑̂𝑘(𝑖), respectively, we will get: 

𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
= 𝐴𝑥𝑘(𝑖) + 𝐵[𝑢𝑘(𝑖) + 𝑑̂𝑘 (𝑖)]  

⇒ 𝑑̂𝑘(𝑖) = (𝐵 𝑇 𝐵)−1𝐵 𝑇 [
𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
− 𝐴𝑥𝑘(𝑖) −

𝐵𝑢𝑘(𝑖)] = 𝐵 𝑇 [
𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
− 𝐴𝑥𝑘(𝑖) − 𝐵𝑢𝑘(𝑖)] (44) 

(45) will be used to estimate 𝑑̂(𝑡) in piecewise constant 

form as follows: 

𝑑̂𝑘(𝑡) = 𝑑̂𝑘(𝑖)𝑘ℎ𝑖𝑘𝑇 + 𝑖𝑇𝑠 ≤ 𝑡 ≤ 𝑘𝑇 + (𝑖 + 1)𝑇𝑠 (45) 

in there i = 0,1,…,N-1 with 𝑁 =
𝑇

𝑇𝑠
. If there is𝑖 ≥ 𝑁, then 

replace𝑘𝑇 + (𝑖 + 1)𝑇𝑠it with (𝑖 + 1)𝑇 + (𝑖 − 𝑁)𝑇𝑠 

To evaluate the quality of the stable linearized controller 

in formula 𝑢 = 𝜗 − 𝑑 when using the estimated value 𝑑̂𝑘(𝑡) 

from formula (45), we have some apparent conclusions as 

follows: 

• If 𝑓(𝑞, 𝑞̇) it is continuous, the smaller the Ts  value update, 

the smaller the 𝛿𝑑  deviation between the actual value and 

the estimated value 

• The estimated formula 𝑑̂𝑘(𝑖) depends only on matrix A 

and B given by (40), not the original model (35). 

• Estimated value 𝑑̂𝑘(𝑖) according to (44) will make the 

two sides of (43), with the smallest quadratic standard. 

Indeed, if the symbol of the two sides of (42) is: 

 𝜀 = 𝐴𝑥𝑘(𝑖) + 𝐵[𝑢𝑘(𝑖) + 𝑑𝑘 (𝑖)] −
𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)

𝑇𝑠
 

 = 𝐵𝑑𝑘(𝑖) + 𝛥; 𝛥 = 𝐴𝑥𝑘(𝑖) + 𝐵𝑢𝑘(𝑖) −
[𝑥𝑘(𝑖)−𝑥𝑘(𝑖−1)]

𝑇𝑠
  

Then, the square root optimization problem 

𝑑 ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑑𝑘(𝑖)

‖𝜀2‖ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑑𝑘(𝑖)

(𝐵𝑑𝑘(𝑖) + 𝛥)𝑇 𝐵

𝑑𝑘(𝑖) + 𝛥 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑑𝑘(𝑖)

[𝑑𝑘(𝑖)𝑇 (𝐵 𝑇 𝐵)𝑑𝑘 (𝑖) + 2𝛥𝑇 𝐵𝑑𝑘(𝑖) +

𝛥𝑇 𝛥]  (46)  

Will give a single solution: 

𝑑 ∗ = −(𝐵 𝑇 𝐵)−1(𝛥𝑇 𝐵)𝑇 = −𝐵 𝑇𝛥   

And this solution coincides with (44). 

4.3. Control the Structure of Two Loops without using a 

Robot's Math Model 

The structure diagram consists of two loops, as shown in 

Figure 4. The outer loop is an iterative learning controller to 

determine the control signal 𝜗 to make the trajectory of the 

joint variables q accurately follow the given trajectory R. This 

iterative learning controller will use a P-type learning function 

with the learning function parameter 𝐾𝑘  adjusted online after 

each kth trial according to the principle of minimizing the sum 

of squared tracking errors. The inner circuit is a  bright  

irregular identity identifier E by Umu, thanks to the Taylor 

banana analysis method to convert the original robot system 

(1) into a linear system with noise in the input (14) by the 

compensation control method. 

Fig. 4 Structure diagram for robot control 
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4.3.1. The Inner Ring Control is with an Intelligent Linear 

Controller, Thanks to a State Feedback 

 First, to control the inner ring, we need to deploy the 

formula to estimate the function through the Taylor chain 

analysis to get the inner ring controller, as shown in Figure 4, 

helping to transfer the irregular robot system in the form: 

 𝑥̇ = 𝐴𝑥 + 𝐵[𝑣 + 𝜇] (47) 

with 𝐴 = (
0𝑛 𝐼𝑛

−𝐴1 −𝐴2
) , 𝐵 = (

0𝑛

𝐼𝑛
)Linear system: 

𝑞̈ = 𝜗 + 𝜇 − 𝜇̂ = 𝜗 + 𝛿 (48) 

The residual uncertainty component is tiny. The task of 

robust tracking with this residual disturbance will be 

performed by an iterative learning controller in the outer loop 

whose learning parameters are determined online. The 

problem of implementing formula (33) to estimate the 

derivative of a function vector from its measured values for 

the industrial robot control problem described by (47), which  

is then rewritten in the standard form of iterative learning, 

expressed together with the K-th duty cycle as: 

 𝑥̇𝑘(𝜏) = 𝐴𝑥𝑘(𝜏) + 𝐵[𝜗𝑘 (𝜏) + 𝜇] (49) 

It has the following characteristics: 

First, the derivative value of the function vector 𝑥𝑘(𝜏) to 

be estimated is at the last of the two previous measured values 

𝑥𝑘(𝜏). Second, the set of all measured values is equidistant, 

i.e., there is 𝜏𝑖 − 𝜏𝑖−1 = 𝑇𝑠 for all i. 

Through these characteristics, the inner loop controller 

helps to ensure the system's stability by transferring the 

original system's complex problem to a simpler and more 

controllable system before transferring it to the ILC iterative 

learning controller in the outer loop. Based on these two 

characteristics, the derivative estimation formula of the state 

vector given in (33) becomes: 

 𝑥̇𝑘(𝑖) ≈ 𝐷1
𝛵𝑥𝑘(𝑖) − 𝐷0

𝛵𝑥𝑘(𝑖 − 1) (50) 

Substituting (50) into (49), corresponding to 𝜏 = 𝑖𝑇𝑠  

when 𝜇̂(i-1) it has been complemented from the previous 

time, we get 

𝐷1
𝛵𝑥𝑘(𝑖) − 𝐷0

𝛵𝑥𝑘(𝑖 − 1) ≈ 𝐴𝑥𝑘(𝑖) + 𝐵[𝜗𝑘 (𝑖) + 𝜇̂(𝑖) −
𝜇̂(𝑖 − 1)]                                                          (51) 

From (51), we will use to determine the estimated value 

directly as follows: 

First, we replace ≈and 𝜇(𝑖) in (51) by = and 𝜇̂(𝑖) 

𝐷1
𝛵𝑥𝑘(𝑖) − 𝐷0

𝛵𝑥𝑘(𝑖 − 1) =  
= 𝐴𝑥𝑘(𝑖) + 𝐵[𝜗𝑘 (𝑖) + 𝜇(𝑖) − 𝜇̂(𝑖 − 1)] (52)  

Next, with (52), we can deduce the estimated value of the 

uncertainty component of the function 𝜇(𝑡) at the current time 

𝜏 = 𝑘𝑇 + 𝑖𝑇𝑠, denoted by 𝜇̂(𝑡), by the recurrence calculation 

from 𝜇̂(𝑖 − 1) as follows: 

𝐵𝜇̂(𝑖) = 𝐷1
𝛵𝑥𝑘(𝑖) − 𝐷0

𝛵𝑥𝑘(𝑖 − 1) −  
−𝐴𝑥𝑘(𝑖) − 𝐵[𝜗𝑘(𝑖) − 𝜇̂(𝑖 − 1)] (53) 

or 

𝜇̂(𝑖) = 𝐵 𝑇 [𝐷1
𝛵 𝑥𝑘(𝑖) − 𝐷0

𝛵𝑥𝑘(𝑖 − 1) − 𝐴𝑥𝑘(𝑖)] − 
−𝜗𝑘 (𝑖) − 𝜇̂(𝑖 − 1) (54) 

Because there is 𝐵 𝑇 𝐵 = 𝐼𝑛.   

Equation (54) allows us to estimate the uncertainty 

component 𝜇(𝑡) accurately from the previous measurement 

data. The quality of the inner loop controller is influenced by 

the estimated component 𝜇̂(𝑖) accuracy, ensuring the 

linearization system's efficient and stable operation. This 

helps to reduce the residual noise, improve the ability to track 

the sample trajectory, and enhance the robustness of the 

industrial robot system. 

4.3.2. Iterative learning controller for outer loop control. 

The next task is to design an iterative learning controller 

for the outer loop, which determines 𝜗𝑘 (𝑖) the controller 𝑥 =

(
𝑞
𝑞̇

) 𝑎𝑛𝑑 𝑢𝑑𝑘 = 𝜗 − 𝐴1𝑞 − 𝐴1𝑞̇  after compensating 𝜇̂(𝑖). This 

is equivalent to constructing the controller: 

𝑢𝑘(𝑖) = 𝜗𝑘 (𝑖) − (𝐴1 , 𝐴2 )𝑥𝑘(𝑖) − 𝜇̂ (55) 

Such that the system 𝑞̈ = 𝑢 + 𝜇 = 𝜗 − 𝜇̂ + 𝜇 = 𝜗 + 𝛿, 

when transformed into discrete form with 𝜗𝑘 (𝑖) being a 

piecewise constant, is described by: 

“{
𝑥𝑘(𝑖 + 1) = 𝐴̂𝑥𝑘(𝑖) + 𝐵̂[𝜗𝑘 (𝑖) + 𝛿]

𝑦𝑘 (𝑖) = 𝐶𝑥𝑘(𝑖)
”  (56) 

Has output 𝑦𝑘 (𝑖) following sample trajectory 𝑅(𝑖), 

where: 

𝐴̂ = 𝑒𝐴 𝑇𝑠 , 𝐵̂ = ∫ 𝑒𝐴𝑡𝑇𝑠

0 𝐵𝑑𝑡,   

𝐴 = (
0𝑛 𝐼𝑛

−𝐴1 −𝐴2
) , 𝐵 = (

0𝑛

𝐼𝑛
) , 𝐶 = (𝐼𝑛 0𝑛) (57) 

In addition, the two optional matrices A1 và A2 of the 

controller (55) also need to make the matrix A defined by (57) 

Hurwitz (or Schur) to ensure the stability of the system. The 

iterative learning controller designed here will use the P-type 

learning function with the parameter K optimally adjusted for 

each k trial. The update rule is as follows: 

𝑢𝑘+1(𝑖) = 𝜗𝑘 (𝑖) + 𝐾𝑘 𝑒𝑘(𝑖) (58) 

with 

𝐾𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑎 ≤𝐾≤𝑏

‖(𝐼 − 𝛷𝐾)𝜀𝑘
‖  (59) 
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and: k k
(i) r(i) y (i) = − 𝜀𝑘 = (

𝜀𝑘 (0)

𝜀𝑘 (1)
⋮

𝜀𝑘 (𝑁 − 1)

) , 𝜙 =

(

𝐶𝐵̂ 0𝑛 ⋯ 0𝑛

𝐶𝐴̂𝐵̂ 𝐶𝐵̂ ⋯ 0𝑛

⋮ ⋮ ⋱ ⋮
𝐶𝐴̂𝑁−1𝐵̂ 𝐶𝐴̂𝑁−2𝐵̂ ⋯ 𝐶𝐵̂

)    

4.4. Control Algorithm 

Algorithm: Model-free optimization of learning 

parameters in industrial robots' second iterative learning 

controller. 

Choose two matrices 𝐴1,𝐴2, given in (25), that become Hurwitz. 

Determine 𝐴̂, 𝐵̂, 𝐶 the given in (25) and𝛷the given in (28). 

Choose 0 < 𝑡𝑠 << 1. Calculate 𝑆 = 𝑇/𝑡𝑠.  

Determine 𝐷1
𝑇 =

1

𝑇𝑠
; 𝐷0

𝑇 = −𝐷1
𝑇  given in (23) 

Choose learning 𝜇̂ and tracking error 𝐸̱0 .  

Allocate 𝜗(𝑛) =R(𝑛), w𝑖𝑡ℎ n = 0,1,...,S-1 and Z = 0. 

Choose learning parameter K so that  of (28) becomes Schur. 

While continuing the control, do 

for 𝑛 = 0,1, . . . , 𝑆 − 1do 

             Send 𝑢𝑑𝑘 = 𝐴1𝑞 − 𝐴2 𝑞̇ − 𝜇̂ to the robot for a while 𝑡𝑠 

             measure 𝑋 = 𝑣𝑒𝑐 (𝐸, 𝐸̇),𝑌(𝑛) = 𝑞 . 

             Calculate 𝜇̂𝑘 ← 𝐵 𝑇 [
𝑋−𝑍

𝑡𝑠
− 𝐴𝑋] − (𝜗(𝑛) − 𝜇̂). 

            𝑆𝑒𝑡  𝑍 ← 𝑋 

end for 

assemble 𝜗 = 𝑣𝑒𝑐 (𝜗(0), . . . . . , 𝜗(𝑁 − 1)), 
𝐸 = 𝑣𝑒𝑐 (𝐸(0), . . . . . , 𝐸(𝑁 − 1)).        

calculate 𝐾 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎≤𝐾≤𝑏

‖(𝐼 − 𝛷𝐾)𝐸‖  

               and 𝜗 ← 𝜗 + 𝐾𝐸;   𝐸0 ← 𝐸;  
end while 

4.5. Applied to robot control 

With 𝑡𝑠=0.02s  and𝜏𝑑
(𝑡) = (

𝜃11 𝑠𝑖𝑛 𝜃12 𝑡
𝜃13 𝑠𝑖𝑛 𝜃14 𝑡

) (60) 

Where all 𝜽𝒏 ,𝒏 = 𝟏 ÷ 𝟏𝟓 ,𝑻 = 𝟏𝟎𝒔 

𝑹(𝒕) = {
𝟐 ∗ 𝒔𝒊𝒏(𝟑𝝅𝒕/𝑻) + 𝟎. 𝟓 𝒔𝒊𝒏(𝟔𝝅𝒕/𝑻)

𝟒 ∗ 𝒔𝒊𝒏(𝟑𝝅𝒕/𝑻) − 𝟏 𝒔𝒊𝒏(𝟔𝝅𝒕/𝑻)   

𝐴1 = [50 0
0 20

] ; 𝐴2 = [15 0
0 8

] ; 𝐾 = [0.8 0
0 0.3

] ; 𝑡𝑠 =

0.02𝑠   

The simulation results validating the above algorithm are 

presented in Figures 5 and 6. 

These visual tracking results confirm the convergence of 

both joint variables to their desired references. Throughout the 

working day, the maximum tracking error reaches 

approximately 280 with: 

𝑚𝑎𝑥|𝐸280 (1)| ≈ 0.028and𝑚𝑎𝑥|𝐸280 (2)| ≈ 0.024. 

 Moreover, they confirmed that the tracking error 

decreases as the number of trials increases, thereby fully 

validating the aforementioned theoretical claims. 

 
Fig. 5 The output response of the first common variable after trying 10 

and 280 times 

 
Fig. 6 The output response of the second common variable after trying 

10 and 280 times 

5. Conclusion 
The article proposes two control methods to improve the 

accuracy of the trajectory for a 2-DOF robot: Sustainable 

control - adaptation. This is applied to robots with uncertainty 

parameters and intermingling impact between joints, helping 

to improve trajectory accuracy. This algorithm is verified as a 

basis for development for the following joints. Repeat control: 

Use a two-loop structure, in which the loop in the estimates of 

the uncertainty component compensates for the robot input by 

the Taylor chain ana lysis method, and the outer ring is the 

repetitive learning controller. This method does not require a 

math model but only uses data measured from the system. The 

article focuses on developing conditions for determining the 

linear function parameter to ensure the convergence process, 

especially for linear objects with a time model that is not 

satisfied. In the coming time, you will study the combination 

of two methods to take advantage of both, helping to improve 
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the accuracy of the trajectory and the system's adaptability. 

Specifically, sustainable control adaptation will ensure 

stability and resistance to irregular parameters, while 

repetitive control will optimize the power based on past data. 

The study will focus on building an integrated control 

algorithm, evaluating the actual performance of industrial 

robotic systems, expanding applications for nonlinear 

systems, and changing over time. 
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