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Abstract - The newly proposed Modified Sailfish Optimizer (MSFO) is designed to address the issue of the Traveling Salesmen 

Problem (TSP) effectively. In this modification, Opposition-Based Learning (OBL) is hybridized to enhance population diversity 

and speed up convergence. A simplified attack power mechanism improves the exploration -exploitation balance, which helps 

MSFO escape local optima and find better solutions. Experimental results on benchmark TSP instances pro ve that MSFO 

outperforms among the compared algorithms. It achieves optimal solutions with zero deviation and is better than the compared 

algorithms. MSFO can discover the minimum possible tours that other algorithms cannot reach, and the best solution. These 

results confirm that the proposed modifications significantly improve the effectiveness of the original Sailfish Optimizer.  
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1. Introduction 
Delivery and logistics systems underlying the 

contemporary global economy are key to ensuring the 

effective delivery of goods to customers. From the perspective 

of companies, saving on logistics is essential in terms of profit 

maximization along the supply chain. One of the challenges to 

logistics is the optimization of routes by reducing 

transportation distance. Perhaps one of the most significant 

combinatorial optimization issues in logistics is the Traveling 

Salesman Problem (TSP), which attempts to determine the 

optimal tour a salesperson could take to stop at a  group of 

cities and then return to the original city such that the overall 

travel distance is kept to a minimum. The TSP is extensively 

studied in optimization and serves as a benchmark for 

evaluating various optimization methods [1]. Since the TSP is 

at the core of most industries, such as manufacturing, 

telecommunications, and logistics, its optimization is an 

important research area. The problem has been identified as 

NP-hard [2], in that the number of possible routes increases 

exponentially with the number of cities, and thus brute-force 

approaches cannot be applied to large instances. Therefore, an 

efficient solution to the TSP is important, especially for 

practical uses where computational viability is paramount. 

The classical methods for solving TSP are Linear 

Programming (LP), enumeration, and branch-and-bound. 

While linear programming is able to cast the TSP as a 

constrained optimization problem with linear constraints, it is 

not very effective in dealing with the combinatorial aspects of 

the problem and hence performs poorly for large data sets. 

Enumeration techniques, which investigate all possible paths 

and identify the optimal path, yield precise solutions at a  high 

computational cost that increases exponentially in the number 

of cities. Likewise, branch-and-bound techniques assist in 

pruning bad solutions but encounter scalability problems with 

increasing problem sizes. While exact algorithms can 

guarantee optimal solutions [3], they are often unsuitable for 

large-scale problems due to their computational intensity. As 

a result, heuristics and metaheuristics have become more 

prevalent in solving the TSP, as they can often find good 

solutions more quickly. Heuristic methods, such as the nearest 

neighbor and greedy algorithms, provide fast solutions but do 

not guarantee optimality. These approaches are often used in 

practical scenarios where a good, fast solution is more 

important than an exact one. Metaheuristic-based techniques 

have become more popular in recent years for addressing the 

TSP and other difficult optimization problems. These 

algorithms, analogues of biological and physical system 

processes, apply genetic evolution, simulated annealing and 

particle swarm optimization to large search spaces. 

Metaheuristics contain randomization together with local 

search mechanisms, that allow them to escape local minima 

and to explore broader solution domains. Metaheuristics are 

useful for real-world problems, and although they do not 

always guarantee an optimal solution [4], they frequently yield 

a nearly optimal solution in a much shorter time than 

traditional exact methods. Inspired by sailfish hunting 

behavior, the Sailfish Optimizer (SFO) is a new member of 

the metaheuristic family [5].  
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By mimicking the sailfish’s movement patterns during 

hunting, the SFO algorithm balances exploration and 

exploitation to efficiently search for optimal solutions. Initial 

studies show that the SFO algorithm outperforms other 

traditional metaheuristics in solving the TSP, providing more 

efficient solutions. However, as with most metaheuristics, 

SFO may converge to local optima, meaning it may not always 

find the global optimum, particularly in larger or more 

complex instances of the problem. Even though 

metaheuristics like SFO have some benefits, they can be hard 

to use because they are expensive to compute, especially when 

dealing with big problems. As the problem gets bigger, the 

search space gets bigger, and it takes more computing power 

to find good solutions. Furthermore, there is an inherent 

tradeoff between solution quality and computational 

resources, making it essential to strike a balance between the 

two. Hybridizing multiple metaheuristics can help mitigate 

some of these challenges by improving convergence speed and 

solution quality [6]. The Sailfish Optimizer has been 

implemented in wireless sensor networks [7], oral cancer 

classification [8], feature selection to enhance model accuracy 

[9], nutrient deficiency detection for accurate diagnosis [10], 

Apple Leaf Disease Detection [11],  and salient feature 

determination [12].  

Table 1. Research gap in metaheuristics on the traveling salesman problem 

No Author Problem Objective Decision Variable Approach Methods 

1 
Shadravan 

[5] 

Engineering 

(welding, gear, I-

beam) 

Minimize cost 

Weld thickness & 

length, beam height 

& thickness 

Meta-

heuristics 
Sailfish Optmizer 

2 Kumar [7] 
Wireless Sensor 

Network 

Minimize node 

power 

consumption 

Cluster heads 

position 

Meta-

heuristics 
Sailfish Optimizer 

3 
Tomazella 

[13] 

Flowshop Scheduling 

Problem 

Minimize time  

completion 

Machine assignment, 

operation sequence, 

starting time 

Exact Branch and bound 

4 
Rajarajeswari 

[14] 

Traveling Salesman 

Problem 

Minimize total 

distance 
Path xij to take Exact Branch and bound 

5 Yang [15] 
Traveling Salesman 

Problem 

Minimize total 

distance 
Path xij to take 

Meta-

heuristics 

Genetic Algorithm, 

Shuffled Frog 

Leaping 

6 Li [16] 
Traveling Salesman 

Problem 

Minimize total 

distance 
Path xij to take 

Meta-

heuristics 

Particle Swarm, 

Discrete Artificial 

Bee 

 

Table 1 illustrates how different researchers have applied 

both metaheuristic and exact methods to address various 

optimization problems, especially the issue of the salesman 

traveling. Genetic Algorithm, Shuffled Frog Leaping, Particle 

Swarm Optimization, and Discrete Artificial Bee Colony are 

some of the most common metaheuristic algorithms. They can 

find good solutions in less time than other algorithms.   

However, these methods often do not achieve the same 

level of solution accuracy as exact algorithms like branch and 

bound, which are designed to find the best possible solution 

but require significantly more processing time. This results in 

a tradeoff in the performance of efficient but less effective 

metaheuristics compared to the exact algorithm, which is 

accurate but not practical for large-scale problems. 

Furthermore, a large number of classic metaheuristics are not 

well-adapted to the discrete character of problems such as the 

TSP. Hence, the requirement persists to enhance the 

metaheuristic methods, such that the metaheuristic methods 

could get quality solutions without compromising the 

computation speed. Filling this gap is crucial in solving real-

world problems that demand both high accuracy and fast 

computation. A newer version of the Sailfish Optimizer is 

showing a lot of promise for combinatorial problems. Its 

search steps were redesigned so it can look more widely across 

possible answers without slowing down too much. As a result, 

it often gets very close to the best‑known answers that exact 

solvers find, but it uses far less computing power. That mix of 

speed and accuracy makes it a  good fit for the Traveling 

Salesman Problem. Early results are encouraging, and there is 

room to improve the method even more. Over time, it could 

help close the distance between quick metaheuristics and 

exact, highly accurate algorithms. The TSP is tough and shows 

up in many real applications, so people use many tools to 

tackle it: brute‑force enumeration, linear programming, 

branch‑and‑bound, plus heuristics and metaheuristics. The 

Sailfish Optimizer is one of the newer options that can produce 

strong tours, though it still faces issues like getting stuck in 

local optima or running longer on big cases. With thoughtful 

tweaks, however, it can be a practical choice for solving the 

TSP in logistics and other optimization settings. 

2. Related Works 
This study examines a wide range of work on the 

Traveling Salesman Problem and methods based on the 

Sailfish Optimizer. 
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2.1. Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is about finding 

the best way to visit all the cities while keeping the total 

distance traveled as short as possible [17]. Dantzig [18] came 

up with the mathematical model for the TSP. 

2.1.1. Objective Function 

TSP seeks the shortest tour that visits every city once, as 

shown in Equation 1. 

min ∑ ∑ 𝑐𝑖𝑗
N
j=1

N
i=1 𝑥 𝑖𝑗 (1) 

2.1.2. Constraints 

Standard formulations add constraints to ensure each city 

is visited exactly once and that the tour respects feasible travel 

rules. These restrictions narrow the search space and 

guarantee that any solution corresponds to a valid route. 

∑ 𝑥 𝑖𝑗
𝑁
𝑖=1 = 1, 𝑗 = 1,2, … , 𝑁 (2) 

∑ 𝑥 𝑖𝑗
𝑁
𝑗=1 = 1, 𝑖 = 1,2,… , 𝑁 (3)  

𝑥 𝑖𝑗 = {0,1}, 𝑖, 𝑗 = 1,2, … , 𝑁 (4)  

In this model, cij denotes the distance (or cost) from city 

i and city j, and xij indicates whether that route is used. The 

objective in Equation (1) minimizes the total distance traveled.  

Constraints (2) and (3) require exactly one departure from 

each city and exactly one arrival to each city, ensuring every 

location is visited once. Finally, equation (4) makes xij=1 if 

the route from i to j is chosen and xij=0 otherwise. 

2.2. Metaheuristics 

Metaheuristics are high-level strategies for solving 

difficult optimization problems when traditional exact 

methods are too costly to run [19]. These algorithms are based 

on natural or physical processes, like genetic evolution, 

simulated annealing, or swarm intelligence, and aim to explore 

large, multidimensional solution spaces to balance exploration 

and exploitation.  

Unlike exact optimization techniques, which guarantee 

optimal solutions under certain conditions, metaheuristics 

typically focus on finding near-optimal solutions within a 

computationally feasible timeframe, making them particularly 

suitable for real-world applications. By incorporating both 

randomization and structured search mechanisms, 

metaheuristics are capable of escaping local optima and 

exploring a wider array of potential solutions. Although they 

do not guarantee global optimality, their ability to quickly find 

good solutions has led to their widespread use in diverse 

fields, including logistics, machine learning, and network 

optimization. 

2.3. Sailfish Optimizer 

2.3.1. Source of Inspiration 

With a top speed of 100 km/h, sailfish is known as one of 

the fastest fish in the ocean [20]. Swift movements of the 

sardines make it challenging for the sailfish, which uses its 

rostrum to either slash at multiple sardines or destabilize a 

single one. Although most attacks do not immediately result 

in a catch, repeated strikes leave more sardines injured and 

separated from the school, making them easier to capture. This 

coordinated hunting behavior, similar to pack hunting in 

wolves, sees sailfish changing their body color and fin 

positions to signal each other and avoid injuring fellow 

hunters. The alternation strategy in sailfish hunting inspired  

the creation of the Sailfish Optimizer (SFO) algorithm, which  

models these behaviors for optimization problems. 

2.3.2. Mechanism 

The SFO algorithm is motivated by the group hunt 

behavior of sailfish, which take turns attacking a sardine 

school [1]. Here, the SHO uses two populations, one for the 

prey and another for the predators, to simulate the group 

hunting approach [5]. The attack technique used by the 

algorithm is aimed at destroying the collective defense of prey. 

Third, the movement of prey in the search space is updated, 

attracting the hunter to the appropriate hunt and increasing its 

fitness. 

Initialization 

One population-based metaheuristic method is the SFO, 

which is used to represent candidate solutions; in contrast, the 

variables of the problem are represented by the sailfish's 

location in the search space. The solution's initial population 

is produced at random across the solution space.. The sailfish 

are free to explore 1, 2, 3 or higher-dimensional spaces, each 

with a position vector. 

Elitism 

Sometimes, while updating the search agents’ positions, 

some of the best solutions are lost by chance; a  reduction in 

the new position of the search agents with respect to the 

previous location may be generated unless an elitism strategy 

is used. The elite get the best solution(s) and hand them down 

to the next generation. Every iteration of the SFO process 

saves the position of the top sailfish, which is referred to as an 

elite solution. The best sailfish is the "fittest" solution found 

thus far, and it has an indirect impact on how the sardines 

move and accelerate during hunting.  

As mentioned above, sardines in between are also injured 

by the rostrum of the sailfish when the former group-hunt. 

Therefore, the location of the harmed sardine in each iteration 

is memorized and assigned to be the best target for assisting 

hunting from the sailfish, respectively. The positions of the 

elite sailfish and the injured sardine with the highest fitness 

values at the ith iteration are 𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹
𝑖  and 𝑋𝑖𝑛𝑗𝑢 𝑟𝑒𝑑𝑆

𝑖 . They are 

crucial for helping improve the global performance of  the 
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SFO method and avoiding exploration of the bad solutions that 

have been discarded previously. 

Attack-Alternation Strategy 

Sailfish enhance their hunting success rate through a 

temporally coordinated attack strategy [21]. They chase and 

herd their prey, where other hunters are around the prey 

school, even if they do not make a direct contribution. The 

Sailfish Optimization (SFO) algorithm mimics this group 

hunting strategy, particularly the attack-alternation approach. 

During the exploration phase, search agents scan a large area 

of the search space to find possible solutions that need more 

work. Sailfish do not limit their attacks to specific directions, 

such as up-down or left-right. Otherwise, they can strike from 

all directions within a shrinking circular area. As a result, 

sailfish dynamically update their positions within a spherical 

region centered around the best solution. At the ith iteration, 

the updated position of the sailfish, 𝑋𝑛𝑒𝑤𝑆 𝐹
𝑖 , is determined as 

follows: 

𝑋𝑛𝑒𝑤𝑆𝐹
𝑖 =  𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 − 𝜆𝑖 × (𝑟𝑎𝑛𝑑 (0, 1) ×

(
𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 +𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆
𝑖

2
) − 𝑋𝑜𝑙𝑑𝑆 𝐹

𝑖 ) (5) 

𝑋𝑛𝑒𝑤𝑆𝐹
𝑖  represents the position of the elite sailfish 

identified up to the current iteration, 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆
𝑖  denotes the 

best position of the injured sardine found so far, and 𝑋𝑜𝑙𝑑𝑆𝐹
𝑖  is 

the current position of the sailfish. The term rand(0,1) refers 

to a randomly generated number between 0 and 1, while 𝜆𝑖 is 

a  coefficient calculated at the ith iteration, defined as follows: 

𝜆 𝑖 = 2 × 𝑟𝑎𝑛𝑑 (0,1) × 𝑃𝐷 − 𝑃𝐷  (6) 

PD is prey density, which is the number of prey  in each 

iteration. Given that the number of prey decreases during 

sailfish group hunting, the PD parameter is one of the main 

factors that influences the updating of the sailfish position 

around prey school. The adaptive formula of this parameter 

can be expressed as: 

𝑃𝐷 = 1 − (
𝑁𝑆𝐹

𝑁𝑆𝐹 +𝑁𝑆

) (7) 

NSF and 𝑁𝑆S indicate how many sardines and sailfish  

there are in each algorithm cycle, respectively. Since the initial 

number of sardines is typically greater than that of 

sailfish, 𝑁𝑆𝐹 is computed as 𝑁𝑆×𝑃𝑃, where the percentage of 

the sardine population that makes up the original sailfish 

population is indicated by 𝑃𝑃. 

Hunting & Catching Prey 

At the start of the hunt, sailfish are highly energetic and 

capable of pursuing prey, while sardines are not yet exhausted 

or injured. As a result, sardines can maintain high escape 

speeds and demonstrate strong manoeuvring abilities. Over 

time, however, the strength of the sailfish's attacks decreases 

as the hunt progresses. Due to the relentless and frequent 

attacks, the prey's energy reserves diminish, and they might 

become less able to recognize directional clues about the 

sailfish's location. The prey school's ability to flee is hampered 

by this impairment. After a while, the sailfish's bill strikes the 

sardines, separating them from the others and swiftly  

capturing them. In order to replicate this process, each sardine 

has to adjust its position at each iteration according to the 

sailfish's best position at that moment and the force of its 

attack. At the ith iteration of the SFO algorithm, the sardine's 

new location of 𝑋𝑛𝑒𝑤 _𝑆
𝑖 , can be expressed as: 

𝑋𝑛𝑒𝑤 _𝑆
𝑖 = 𝑟 × (𝑋𝑒𝑙𝑖𝑡 𝑒 _𝑆𝐹

𝑖 − 𝑋𝑜𝑙𝑑𝑆
𝑖 + 𝐴𝑃)  (8)  

𝑋𝑒𝑙𝑖𝑡𝑒 _𝑆𝐹
𝑖  represents the best position of the elite sailfish  

identified up to the current iteration, 𝑋𝑜𝑙 𝑑𝑆

𝑖  denotes the current 

position of the sardine, r is a  random number between 0 and 

1, and 𝐴𝑃 indicates the Attack Power of the sailfish at each 

iteration, which is calculated as follows: 

𝐴𝑃 = 𝐴 × (1 − (2 × 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝜀)) (9)   

A and ε are coefficients used to linearly reduce the attack 

power value from A to 0. By the last stage of feeding, the 

injured fish that has broken away from the school is 

overwhelmed. It is also supposed in the present algorithm that 

a sardine catches its prey if it gets more fit than the sailfish to 

which it corresponds. Under these conditions, the position of 

the sailfish is updated to that of the last captured sardine to 

facilitate searching for new prey. We postulate the following 

equation to describe this process: 

𝑋𝑆𝐹
𝑖 = 𝑋𝑠

𝑖    𝑖𝑓   𝑓(𝑆𝑖
) < 𝑓(𝑆𝐹𝑖

) (10)   

2.4. Opposition Based Learning  

OBL is an optimization method that pairs every candidate 

with its opposite and takes both of them into account. Taking 

into account both sides of the space improves navigation and 

can shrink the distance to an optimal or near-optimal solution 

[22]. The opposite is taken as the complementary point to the 

original one in order to achieve more complete coverage of the 

search space and minimize the risk of local optima. This 

mechanism has yielded dividends on a number of approaches, 

with strong outcomes on evolutionary algorithms due to the 

increased diversity in the search. As a result, OBL has become 

a powerful tool for improving the global search ability and 

overall strength of optimization algorithms in areas with  

complicated problems. 

2.4.1. Source of Inspiration 

The concept of opposition first appeared in ancient 

Chinese philosophy, and the figure of the Yin-Yang symbol 

[23] is shown in Figure 1. This is a  representation of the dual 

concept where white and black are Yin (negative / passive / 
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feminine / dark) and Yang (positive / active / male / light), 

respectively. The opposition concepts, such as fire (hot and 

dry) versus water (cold and wet) and earth (cold and dry) 

versus air (hot and wet), were also explained in the Greek  

classics of natural pattern. Wet, dry, hot, and cold are all 

characteristics of natural entities, as are the opposites [23]. It 

seems that contrast is used to convey the idea of many things 

or circumstances in the world. Indeed, when the opposition 

notion is available, the description becomes much simpler for 

various objects. Contrary pairs like east and west, and south 

and north, cannot be established by themselves, but can be 

explained. 

 
Fig. 1 The opposition concept has its origins in the Yin-Yang symbol 

3. Modified Sailfish Optimizer 
3.1. Opposition based Learning 

Initial solutions of heuristic optimization algorithms are 

typically generated randomly when attempting to find the 

optimal solution for a given problem. To make it more likely  

that the best solution will be found, both a random solution 

and its opposite can be made at the same time. This encourages 

a more thorough search of the solution space. [23]. Let x be a 

real number within the range of a and b(where a ≤ b), the 

opposite of the number. 𝑥  of 𝑥  can be presented below. 

𝑥 =  𝑎 +  𝑏 −  𝑥 (11) 

The extended definition for higher dimensions is 

provided in [24]. In a D-dimensional search space, let P = {x1, 

x2, …, xD}  represent a point, where each coordinate xi (1 ≤ i ≤ 

D) falls within the range of ai and bi. The corresponding 

opposite point 𝑃̌ = {𝑥1,𝑥2, … , 𝑥𝐷 } can be determined using 

the given Equation 12. 

𝑥 𝑖 =  𝑎𝑖 + 𝑏𝑖 − 𝑥 𝑖 (12)  

From Equations (11) and (12), it can be observed that 

generating both the random guess and its opposite 

concurrently increases the likelihood of identifying potential 

promising regions where the optimal solution might be found. 

3.2. Exploration Phase 

In the MSFO, the search is divided into two main phases: 

exploration and exploitation. The exploration mode is enabled 

if the Attack Power (AP) ≥ 0.5 at the initial optimization 

stage. In this phase, the global search is enhanced, in which  

sailfish and sardines are not trapped in the local niche and can 

swim in different areas of the search space to prevent 

premature convergence. The position updates of the 

population are driven by randomness and broad movements, 

enabling the algorithm to cover a wide solution space. This 

behavior is controlled by the equation Equation 13. 

𝐴𝑃 = 1 − 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
  (13) 

Through those equations, ensuring that the early iterations 

prioritize diversity in the population. The exploration 

mechanism is crucial in avoiding local optima, allowing the 

algorithm to discover potentially promising regions that may 

contain the global best solution.  

3.3. Exploitation Phase 

As the algorithm progresses and AP drops below 0.5, the 

optimizer transitions into the exploitation phase, where the 

focus shifts toward refining solutions around the best-found 

candidates. During this phase, the motion of sardines becomes 

more directed, with location updates based on the best-known 

solutions so that the algorithm can efficiently converge to the 

best area. The decreasing AP value reduces random 

fluctuations, leading to more precise adjustments in the search 

space. This balance between exploration and exploitation 

allows MSFO to maintain a robust search capability while 

ensuring convergence efficiency. The transition between these 

phases is dynamically controlled, making MSFO adaptable 

across different optimization landscapes. 

3.4. Algorithm 

The pseudocode of the improved version of the MSFO 

with OBL is given in the algorithm below to improve the 

exploration and exploitation of  the search process. It 

simplifies the attack power mechanism, which is conducive to 

improving the efficiency of the algorithm to solve the 

optimization problem. 

Pseudocode of modified sailfish optimizer 

1. Initialize a random population of sailfish and sardines. 

2. Set parameters (Λ = 4, ε = 0.001). 

3. Calculate the fitness of all sailfish and sardines. 

4. Use Opposition-Based Learning (OBL) to improve 

diversity. 

5. Identify the best sailfish as the elite sailfish and the 

sardine as the weakest sardine. 

6. While current iteration < maximum iteration: 

7. For each sailfish 

8. Compute λi using Equation 6, where PD is 

calculated using Equation 7. 

9. Update sailfish positions using Equation 5 

10. Apply OBL to check opposite positions for better 

results using Equations 11 and 12. 

11. End for 

12. Calculate AttackPower (AP) to decide exploration or 

exploitation using Equation 13 

13. If AP < 0.5 (exploration phase): 
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14. Compute opposite positions using OBL as 

Equations 11 and 12 

15. Update selected sardine position using Equation 8 

16. Else: 

17. Update the position of all the sardines using 

Equation 8 

18. Evaluate the fitness of all sardines. 

19. Sort sailfish and sardines by fitness. 

20. For each sailfish 

21. If the fitness value of the sardine is better than that 

of the sailfish: 

22. Replace the weak sailfish with its sardine using 

Equation 10 

23. Remove the selected sardine from the 

population. 

24. Update the best sailfish and best sardine. 

25. End if 

26. End For 

27. Regenerate missing sardines to maintain population 

size. 

28. Return the best sailfish. 

4. Results and Discussion 
The Modified Sailfish Optimizer (MSFO) is applied to 

address the issue of the traveling salesman, which is a classic  

problem in combinatorial optimization. MSFO could find 

near-optimal solutions with lower computational complexity 

by simplifying the attack power decay mechanism and 

eliminating some parameters. On the Burma14 dataset, 

containing 14 cities, the algorithm proves its effectiveness in 

competitive solution quality. Although the algorithm is 

stochastic in nature, with some variability in results, MSFO 

consistently provides high-quality solutions. 

4.1. Dataset 

The Burma14 instance is a benchmark dataset for the 

Traveling Salesman Problem (TSP) containing 14 cities, 

which is used in order to assess the effectiveness of 

optimization algorithms [25]. That data is a  well-known 

combinatorial optimization problem, where one seeks the 

shortest tour that visits each city exactly once and returns to 

its origin. Its simplicity, with fewer parameters, is its strength 

and computational efficiency, and thus it is a  nice approach 

for solving TSP instances of this size. 

Table 2. Cities coordinate with the instance 

City Longtitude Latitude 

0 16.47 96.10 

1 16.47 94.44 

2 20.09 92.54 

3 22.39 93.37 

4 25.23 97.24 

5 22.00 96.05 

6 20.47 97.02 

7 17.20 96.29 

8 16.30 97.38 

9 14.05 98.12 

10 16.53 97.38 

11 21.52 95.59 

12 19.41 97.13 

13 20.09 94.55 

In this paper, three well-known metaheuristic algorithms 

are comparatively studied and applied to solve the traveling 

salesman problem. The main goal is to compare the 

performance of the algorithms in achieving near-optimal 

solutions to the problem in an overall sense of travel distance. 

The dataset’s Best Known Solution (BKS) under 

consideration is taken as the basis for comparison.  

The effectiveness of each algorithm is evaluated based on 

whether or not it can converge to a solution that best 

approximates the BKS, with a  focus on solution quality and 

computation. The experiments are depicted in order to set up 

the ability of each of the three algorithms to generate 

competitive-quality solutions; however, large discrepancies 

are apparent in their closeness to the BKS. This comparative 

study identifies the strengths and weaknesses of GA, PSO, and 

SA in solving combinatorial optimization problems like the 

TSP and provides insights into their relative success in finding 

optimal or near-optimal solutions for different instances of 

problems. 

Table 3. Comparative analysis of well-known metaheuristics 

Method 
Solution 

Value 
Gap 

Best Known Solution 30.87 - 

Genetic Algorithm 33.96 9.97% 

Particle Swarm Optimization 35.37 14.5% 

Simulated Annealing 34.98 13.27% 

4.2. Computational Result 

The Modified Sailfish Optimizer (MSFO) satisfactorily 

solved the problem of the salesman’s travel route through the 

Burma14 dataset using Python, as seen from the 

computational results. The program was run on a laptop with  

an AMD Ryzen 5600H processor and 16GB RAM. The setup 

was ideal to determine the solution to the problem.  

The optimization utilized the following settings: 500 

iterations, population of 100, and different values for the pp 

parameter (SailFish to Sardines ratio) of 0.1. These parameters 

resulted in a search space that was balanced between 

exploitation and exploration.  

Table 4. MSFO parameters for TSP 

Parameter Value 

Iteration number 500 

Population size 100 

Pp 0.1 
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The algorithm worked well, finding good solutions close 

to optimal ones within the given number of iterations. The 

MSFO could search the solution space efficiently with a 

population size of 100 and get competitive routes that 

minimized the total distance covered. The pp values were 

attempted in different ways, and each way gave relatively 

different results. However, they all yielded good solutions 

within a reasonable period of time. The hardware 

configuration of the laptop was not too demanding, and hence 

the computational cost was low. Optimization proceeded 

without compromising the performance too much, and this 

suggests that the MSFO is effective on TSP problems of this 

size. Table 5 shows the shortest route that the Modified 

Sailfish Optimizer (MSFO) found to find the solution of the 

salesman’s travel path.  

The Modified Sailfish Optimizer (MSFO) found a 

solution to the Traveling Salesman Problem (TSP) for the 

Burma14 dataset, creating an optimized route that worked 

very well. The algorithm was able to find the shortest route 

that went through all the cities exactly once, starting in City 

11, going through the other cities, and ending in City 6 before 

going back to City 11. This last route meets the TSP goal 

because it follows the rules of the problem and makes sure that 

the distance traveled is as short as possible.  

The fact that MSFO can create this route shows that it can 

explore the solution space well and get close to the best 

solution in a reasonable number of iterations. With a 

population of 100, the algorithm went through the 14 cities, 

looking at different combinations and picking the best route 

that would cover the least distance overall. The route that was 

created, which started in City 13 and ended by returning there 

after visiting all the other cities, is another example of how 

strong and useful the algorithm is for solving the TSP, even 

with small datasets like the Burma14. This success shows that 

the MSFO can efficiently improve TSP routes while still being 

fast at computing. 

 
Fig. 2 Constructed route using MSFO 

Table 5 shows a route for the issue of a  salesman traveling 

with a total distance of 30.87. This is the best value for this 

case. This distance is the shortest route that goes to each city 

only once. So, for its instance dataset, the solution can be 

thought of as the best one. 

Table 5. Generated solution 

Route Distance 

13–2–3–4–5–11–6–12–7–10–8–9–0–1 30.87 

 

The traveled distance is 30.87. The results show that the 

travel starts at city 13 and ends at city 1, with the visits to all 

the other cities once. The total distance shows that MSFO has 

the ability to achieve the shortest distance, which is the same 

as the best-known solution. This shows that MSFO has the 

ability to effectively solve difficult combinatorial problems 

using the best exploration and exploitation techniques. The 

algorithm is able to escape local optima and achieve the best 

solution using Opposition-Based Learning (OBL) and a better 

attack power mechanism. These observations render MSFO 

an even better candidate than traditional optimization 

algorithms for solving routing and logistics problems. 

 
Fig. 3 Convergence rate 

The Modified Sailfish Optimizer (MSFO) found the 

optimal solution for the salesman travel problem in Table 5. 

The distance traveled is 30.87. As can be seen from the results, 

the tour starts in city 13 and ends in city 1, with a visit to each 

of the other cities once. The total distance shows that MSFO 

can achieve the shortest distance, as it is equal to the best-

known solution. It proves that MSFO is efficient in solving 

hard combinatorial problems by using exploration and 

exploitation in the most suitable way. By utilizing Opposition-

Based Learning (OBL) and a new attack power mechanism, 

the algorithm can get rid of local optima and converge to the 

best solution. These results show that MSFO is an even better 

option than traditional optimization algorithms when it comes 

to the resolution of routing and logistics issues. 
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Table 6. Comparative analysis of MSFO 

Method 
Solution 

value 
Gap 

Best Known Solution 30.87 - 

Genetic Algorithm 33.96 9.97% 

Particle Swarm Optimization 35.37 14.5% 

Simulated Annealing 34.98 13.27% 

Modified Sailfish Optimizer 30.87 0% 

Table 6 compares different optimization algorithms for 

the traveling salesman route. The Modified Sailfish Optimizer 

(MSFO) has a solution value of 30.87, which is exactly equal 

to the Best-Known Solution. This means that there is an 

optimality gap of 0%. These results show that MSFO 

outperforms the other metaheuristic algorithms in finding the 

optimal solutions and optimizing them. The fact that MSFO 

can find the optimal solution proves that the hybridized 

Opposition-Based Learning (OBL) and enhanced attack 

power mechanism works effectively in strengthening search 

exploration and exploitation. On the other hand, the inferior 

performance of GA, PSO, and SA shows that they are plagued 

by escaping local optima and slow convergence. The results 

show that MSFO is a competitive optimization algorithm for 

solving challenging combinatorial problems like the TSP and 

can be used in other real-world settings. 

5. Conclusion  
In conclusion, the modified Sailfish Optimizer (SFO) has 

performed well in developing the best possible solutions of the 

Traveling Salesman Problem (TSP). The algorithm is better as 

it uses Opposition-Based Learning (OBL) that improves the 

diversity of solutions and speeds up convergence. It also 

modulates the attack strength in a simpler but efficient way.  

These changes render the SFO more effective at 

balancing exploration and exploitation, leading to improved 

results compared to other optimization methods like Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and 

Simulated Annealing (SA). Experimental results reveal that 

the proposed changes help the algorithm identify shorter paths 

faster, making the method suitable for solving hard 

combinatorial problems. 
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