
International Journal of Engineering Trends and Technology Volume 73 Issue 8, 303-311, August 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I8P126 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Modified Sailfish Optimizer with Opposition Based

Learning to Optimize Traveling Salesman Problem

Prayoga Yudha Pamungkas

Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia .

1Corresponding Author : prayoga.pamungkas@binus.ac.id

Received: 22 February 2025 Revised: 01 July 2025 Accepted: 31 July 2025 Published: 30 August 2025

Abstract - The newly proposed Modified Sailfish Optimizer (MSFO) is designed to address the issue of the Traveling Salesmen

Problem (TSP) effectively. In this modification, Opposition-Based Learning (OBL) is hybridized to enhance population diversity

and speed up convergence. A simplified attack power mechanism improves the exploration -exploitation balance, which helps

MSFO escape local optima and find better solutions. Experimental results on benchmark TSP instances pro ve that MSFO

outperforms among the compared algorithms. It achieves optimal solutions with zero deviation and is better than the compared

algorithms. MSFO can discover the minimum possible tours that other algorithms cannot reach, and the best solution. These

results confirm that the proposed modifications significantly improve the effectiveness of the original Sailfish Optimizer.

Keywords - Modified Sailfish Optimizer, metaheuristics, Opposition based learning, Traveling Salesman Problem, Discrete

optimization.

1. Introduction
Delivery and logistics systems underlying the

contemporary global economy are key to ensuring the

effective delivery of goods to customers. From the perspective

of companies, saving on logistics is essential in terms of profit

maximization along the supply chain. One of the challenges to

logistics is the optimization of routes by reducing

transportation distance. Perhaps one of the most significant

combinatorial optimization issues in logistics is the Traveling

Salesman Problem (TSP), which attempts to determine the

optimal tour a salesperson could take to stop at a group of

cities and then return to the original city such that the overall

travel distance is kept to a minimum. The TSP is extensively

studied in optimization and serves as a benchmark for

evaluating various optimization methods [1]. Since the TSP is

at the core of most industries, such as manufacturing,

telecommunications, and logistics, its optimization is an

important research area. The problem has been identified as

NP-hard [2], in that the number of possible routes increases

exponentially with the number of cities, and thus brute-force

approaches cannot be applied to large instances. Therefore, an

efficient solution to the TSP is important, especially for

practical uses where computational viability is paramount.

The classical methods for solving TSP are Linear

Programming (LP), enumeration, and branch-and-bound.

While linear programming is able to cast the TSP as a

constrained optimization problem with linear constraints, it is

not very effective in dealing with the combinatorial aspects of

the problem and hence performs poorly for large data sets.

Enumeration techniques, which investigate all possible paths

and identify the optimal path, yield precise solutions at a high

computational cost that increases exponentially in the number

of cities. Likewise, branch-and-bound techniques assist in

pruning bad solutions but encounter scalability problems with

increasing problem sizes. While exact algorithms can

guarantee optimal solutions [3], they are often unsuitable for

large-scale problems due to their computational intensity. As

a result, heuristics and metaheuristics have become more

prevalent in solving the TSP, as they can often find good

solutions more quickly. Heuristic methods, such as the nearest

neighbor and greedy algorithms, provide fast solutions but do

not guarantee optimality. These approaches are often used in

practical scenarios where a good, fast solution is more

important than an exact one. Metaheuristic-based techniques

have become more popular in recent years for addressing the

TSP and other difficult optimization problems. These

algorithms, analogues of biological and physical system

processes, apply genetic evolution, simulated annealing and

particle swarm optimization to large search spaces.

Metaheuristics contain randomization together with local

search mechanisms, that allow them to escape local minima

and to explore broader solution domains. Metaheuristics are

useful for real-world problems, and although they do not

always guarantee an optimal solution [4], they frequently yield

a nearly optimal solution in a much shorter time than

traditional exact methods. Inspired by sailfish hunting

behavior, the Sailfish Optimizer (SFO) is a new member of

the metaheuristic family [5].

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1Corresponding%20Author%20:%20prayoga.pamungkas@binus.ac.id

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

304

By mimicking the sailfish’s movement patterns during

hunting, the SFO algorithm balances exploration and

exploitation to efficiently search for optimal solutions. Initial

studies show that the SFO algorithm outperforms other

traditional metaheuristics in solving the TSP, providing more

efficient solutions. However, as with most metaheuristics,

SFO may converge to local optima, meaning it may not always

find the global optimum, particularly in larger or more

complex instances of the problem. Even though

metaheuristics like SFO have some benefits, they can be hard

to use because they are expensive to compute, especially when

dealing with big problems. As the problem gets bigger, the

search space gets bigger, and it takes more computing power

to find good solutions. Furthermore, there is an inherent

tradeoff between solution quality and computational

resources, making it essential to strike a balance between the

two. Hybridizing multiple metaheuristics can help mitigate

some of these challenges by improving convergence speed and

solution quality [6]. The Sailfish Optimizer has been

implemented in wireless sensor networks [7], oral cancer

classification [8], feature selection to enhance model accuracy

[9], nutrient deficiency detection for accurate diagnosis [10],

Apple Leaf Disease Detection [11], and salient feature

determination [12].

Table 1. Research gap in metaheuristics on the traveling salesman problem

No Author Problem Objective Decision Variable Approach Methods

1
Shadravan

[5]

Engineering

(welding, gear, I-

beam)

Minimize cost

Weld thickness &

length, beam height

& thickness

Meta-

heuristics
Sailfish Optmizer

2 Kumar [7]
Wireless Sensor

Network

Minimize node

power

consumption

Cluster heads

position

Meta-

heuristics
Sailfish Optimizer

3
Tomazella

[13]

Flowshop Scheduling

Problem

Minimize time

completion

Machine assignment,

operation sequence,

starting time

Exact Branch and bound

4
Rajarajeswari

[14]

Traveling Salesman

Problem

Minimize total

distance
Path xij to take Exact Branch and bound

5 Yang [15]
Traveling Salesman

Problem

Minimize total

distance
Path xij to take

Meta-

heuristics

Genetic Algorithm,

Shuffled Frog

Leaping

6 Li [16]
Traveling Salesman

Problem

Minimize total

distance
Path xij to take

Meta-

heuristics

Particle Swarm,

Discrete Artificial

Bee

Table 1 illustrates how different researchers have applied

both metaheuristic and exact methods to address various

optimization problems, especially the issue of the salesman

traveling. Genetic Algorithm, Shuffled Frog Leaping, Particle

Swarm Optimization, and Discrete Artificial Bee Colony are

some of the most common metaheuristic algorithms. They can

find good solutions in less time than other algorithms.

However, these methods often do not achieve the same

level of solution accuracy as exact algorithms like branch and

bound, which are designed to find the best possible solution

but require significantly more processing time. This results in

a tradeoff in the performance of efficient but less effective

metaheuristics compared to the exact algorithm, which is

accurate but not practical for large-scale problems.

Furthermore, a large number of classic metaheuristics are not

well-adapted to the discrete character of problems such as the

TSP. Hence, the requirement persists to enhance the

metaheuristic methods, such that the metaheuristic methods

could get quality solutions without compromising the

computation speed. Filling this gap is crucial in solving real-

world problems that demand both high accuracy and fast

computation. A newer version of the Sailfish Optimizer is

showing a lot of promise for combinatorial problems. Its

search steps were redesigned so it can look more widely across

possible answers without slowing down too much. As a result,

it often gets very close to the best‑known answers that exact

solvers find, but it uses far less computing power. That mix of

speed and accuracy makes it a good fit for the Traveling

Salesman Problem. Early results are encouraging, and there is

room to improve the method even more. Over time, it could

help close the distance between quick metaheuristics and

exact, highly accurate algorithms. The TSP is tough and shows

up in many real applications, so people use many tools to

tackle it: brute‑force enumeration, linear programming,

branch‑and‑bound, plus heuristics and metaheuristics. The

Sailfish Optimizer is one of the newer options that can produce

strong tours, though it still faces issues like getting stuck in

local optima or running longer on big cases. With thoughtful

tweaks, however, it can be a practical choice for solving the

TSP in logistics and other optimization settings.

2. Related Works
This study examines a wide range of work on the

Traveling Salesman Problem and methods based on the

Sailfish Optimizer.

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

305

2.1. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is about finding

the best way to visit all the cities while keeping the total

distance traveled as short as possible [17]. Dantzig [18] came

up with the mathematical model for the TSP.

2.1.1. Objective Function

TSP seeks the shortest tour that visits every city once, as

shown in Equation 1.

min ∑ ∑ 𝑐𝑖𝑗
N
j=1

N
i=1 𝑥 𝑖𝑗 (1)

2.1.2. Constraints

Standard formulations add constraints to ensure each city

is visited exactly once and that the tour respects feasible travel

rules. These restrictions narrow the search space and

guarantee that any solution corresponds to a valid route.

∑ 𝑥 𝑖𝑗
𝑁
𝑖=1 = 1, 𝑗 = 1,2, … , 𝑁 (2)

∑ 𝑥 𝑖𝑗
𝑁
𝑗=1 = 1, 𝑖 = 1,2,… , 𝑁 (3)

𝑥 𝑖𝑗 = {0,1}, 𝑖, 𝑗 = 1,2, … , 𝑁 (4)

In this model, cij denotes the distance (or cost) from city

i and city j, and xij indicates whether that route is used. The

objective in Equation (1) minimizes the total distance traveled.

Constraints (2) and (3) require exactly one departure from

each city and exactly one arrival to each city, ensuring every

location is visited once. Finally, equation (4) makes xij=1 if

the route from i to j is chosen and xij=0 otherwise.

2.2. Metaheuristics

Metaheuristics are high-level strategies for solving

difficult optimization problems when traditional exact

methods are too costly to run [19]. These algorithms are based

on natural or physical processes, like genetic evolution,

simulated annealing, or swarm intelligence, and aim to explore

large, multidimensional solution spaces to balance exploration

and exploitation.

Unlike exact optimization techniques, which guarantee

optimal solutions under certain conditions, metaheuristics

typically focus on finding near-optimal solutions within a

computationally feasible timeframe, making them particularly

suitable for real-world applications. By incorporating both

randomization and structured search mechanisms,

metaheuristics are capable of escaping local optima and

exploring a wider array of potential solutions. Although they

do not guarantee global optimality, their ability to quickly find

good solutions has led to their widespread use in diverse

fields, including logistics, machine learning, and network

optimization.

2.3. Sailfish Optimizer

2.3.1. Source of Inspiration

With a top speed of 100 km/h, sailfish is known as one of

the fastest fish in the ocean [20]. Swift movements of the

sardines make it challenging for the sailfish, which uses its

rostrum to either slash at multiple sardines or destabilize a

single one. Although most attacks do not immediately result

in a catch, repeated strikes leave more sardines injured and

separated from the school, making them easier to capture. This

coordinated hunting behavior, similar to pack hunting in

wolves, sees sailfish changing their body color and fin

positions to signal each other and avoid injuring fellow

hunters. The alternation strategy in sailfish hunting inspired

the creation of the Sailfish Optimizer (SFO) algorithm, which

models these behaviors for optimization problems.

2.3.2. Mechanism

The SFO algorithm is motivated by the group hunt

behavior of sailfish, which take turns attacking a sardine

school [1]. Here, the SHO uses two populations, one for the

prey and another for the predators, to simulate the group

hunting approach [5]. The attack technique used by the

algorithm is aimed at destroying the collective defense of prey.

Third, the movement of prey in the search space is updated,

attracting the hunter to the appropriate hunt and increasing its

fitness.

Initialization

One population-based metaheuristic method is the SFO,

which is used to represent candidate solutions; in contrast, the

variables of the problem are represented by the sailfish's

location in the search space. The solution's initial population

is produced at random across the solution space.. The sailfish

are free to explore 1, 2, 3 or higher-dimensional spaces, each

with a position vector.

Elitism

Sometimes, while updating the search agents’ positions,

some of the best solutions are lost by chance; a reduction in

the new position of the search agents with respect to the

previous location may be generated unless an elitism strategy

is used. The elite get the best solution(s) and hand them down

to the next generation. Every iteration of the SFO process

saves the position of the top sailfish, which is referred to as an

elite solution. The best sailfish is the "fittest" solution found

thus far, and it has an indirect impact on how the sardines

move and accelerate during hunting.

As mentioned above, sardines in between are also injured

by the rostrum of the sailfish when the former group-hunt.

Therefore, the location of the harmed sardine in each iteration

is memorized and assigned to be the best target for assisting

hunting from the sailfish, respectively. The positions of the

elite sailfish and the injured sardine with the highest fitness

values at the ith iteration are 𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹
𝑖 and 𝑋𝑖𝑛𝑗𝑢 𝑟𝑒𝑑𝑆

𝑖 . They are

crucial for helping improve the global performance of the

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

306

SFO method and avoiding exploration of the bad solutions that

have been discarded previously.

Attack-Alternation Strategy

Sailfish enhance their hunting success rate through a

temporally coordinated attack strategy [21]. They chase and

herd their prey, where other hunters are around the prey

school, even if they do not make a direct contribution. The

Sailfish Optimization (SFO) algorithm mimics this group

hunting strategy, particularly the attack-alternation approach.

During the exploration phase, search agents scan a large area

of the search space to find possible solutions that need more

work. Sailfish do not limit their attacks to specific directions,

such as up-down or left-right. Otherwise, they can strike from

all directions within a shrinking circular area. As a result,

sailfish dynamically update their positions within a spherical

region centered around the best solution. At the ith iteration,

the updated position of the sailfish, 𝑋𝑛𝑒𝑤𝑆 𝐹
𝑖 , is determined as

follows:

𝑋𝑛𝑒𝑤𝑆𝐹
𝑖 = 𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 − 𝜆𝑖 × (𝑟𝑎𝑛𝑑 (0, 1) ×

(
𝑋𝑒𝑙𝑖𝑡𝑒𝑆𝐹

𝑖 +𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆
𝑖

2
) − 𝑋𝑜𝑙𝑑𝑆 𝐹

𝑖) (5)

𝑋𝑛𝑒𝑤𝑆𝐹
𝑖 represents the position of the elite sailfish

identified up to the current iteration, 𝑋𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑆
𝑖 denotes the

best position of the injured sardine found so far, and 𝑋𝑜𝑙𝑑𝑆𝐹
𝑖 is

the current position of the sailfish. The term rand(0,1) refers

to a randomly generated number between 0 and 1, while 𝜆𝑖 is

a coefficient calculated at the ith iteration, defined as follows:

𝜆 𝑖 = 2 × 𝑟𝑎𝑛𝑑 (0,1) × 𝑃𝐷 − 𝑃𝐷 (6)

PD is prey density, which is the number of prey in each

iteration. Given that the number of prey decreases during

sailfish group hunting, the PD parameter is one of the main

factors that influences the updating of the sailfish position

around prey school. The adaptive formula of this parameter

can be expressed as:

𝑃𝐷 = 1 − (
𝑁𝑆𝐹

𝑁𝑆𝐹 +𝑁𝑆

) (7)

NSF and 𝑁𝑆S indicate how many sardines and sailfish

there are in each algorithm cycle, respectively. Since the initial

number of sardines is typically greater than that of

sailfish, 𝑁𝑆𝐹 is computed as 𝑁𝑆×𝑃𝑃, where the percentage of

the sardine population that makes up the original sailfish

population is indicated by 𝑃𝑃.

Hunting & Catching Prey

At the start of the hunt, sailfish are highly energetic and

capable of pursuing prey, while sardines are not yet exhausted

or injured. As a result, sardines can maintain high escape

speeds and demonstrate strong manoeuvring abilities. Over

time, however, the strength of the sailfish's attacks decreases

as the hunt progresses. Due to the relentless and frequent

attacks, the prey's energy reserves diminish, and they might

become less able to recognize directional clues about the

sailfish's location. The prey school's ability to flee is hampered

by this impairment. After a while, the sailfish's bill strikes the

sardines, separating them from the others and swiftly

capturing them. In order to replicate this process, each sardine

has to adjust its position at each iteration according to the

sailfish's best position at that moment and the force of its

attack. At the ith iteration of the SFO algorithm, the sardine's

new location of 𝑋𝑛𝑒𝑤 _𝑆
𝑖 , can be expressed as:

𝑋𝑛𝑒𝑤 _𝑆
𝑖 = 𝑟 × (𝑋𝑒𝑙𝑖𝑡 𝑒 _𝑆𝐹

𝑖 − 𝑋𝑜𝑙𝑑𝑆
𝑖 + 𝐴𝑃) (8)

𝑋𝑒𝑙𝑖𝑡𝑒 _𝑆𝐹
𝑖 represents the best position of the elite sailfish

identified up to the current iteration, 𝑋𝑜𝑙 𝑑𝑆

𝑖 denotes the current

position of the sardine, r is a random number between 0 and

1, and 𝐴𝑃 indicates the Attack Power of the sailfish at each

iteration, which is calculated as follows:

𝐴𝑃 = 𝐴 × (1 − (2 × 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 × 𝜀)) (9)

A and ε are coefficients used to linearly reduce the attack

power value from A to 0. By the last stage of feeding, the

injured fish that has broken away from the school is

overwhelmed. It is also supposed in the present algorithm that

a sardine catches its prey if it gets more fit than the sailfish to

which it corresponds. Under these conditions, the position of

the sailfish is updated to that of the last captured sardine to

facilitate searching for new prey. We postulate the following

equation to describe this process:

𝑋𝑆𝐹
𝑖 = 𝑋𝑠

𝑖 𝑖𝑓 𝑓(𝑆𝑖
) < 𝑓(𝑆𝐹𝑖

) (10)

2.4. Opposition Based Learning

OBL is an optimization method that pairs every candidate

with its opposite and takes both of them into account. Taking

into account both sides of the space improves navigation and

can shrink the distance to an optimal or near-optimal solution

[22]. The opposite is taken as the complementary point to the

original one in order to achieve more complete coverage of the

search space and minimize the risk of local optima. This

mechanism has yielded dividends on a number of approaches,

with strong outcomes on evolutionary algorithms due to the

increased diversity in the search. As a result, OBL has become

a powerful tool for improving the global search ability and

overall strength of optimization algorithms in areas with

complicated problems.

2.4.1. Source of Inspiration

The concept of opposition first appeared in ancient

Chinese philosophy, and the figure of the Yin-Yang symbol

[23] is shown in Figure 1. This is a representation of the dual

concept where white and black are Yin (negative / passive /

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

307

feminine / dark) and Yang (positive / active / male / light),

respectively. The opposition concepts, such as fire (hot and

dry) versus water (cold and wet) and earth (cold and dry)

versus air (hot and wet), were also explained in the Greek

classics of natural pattern. Wet, dry, hot, and cold are all

characteristics of natural entities, as are the opposites [23]. It

seems that contrast is used to convey the idea of many things

or circumstances in the world. Indeed, when the opposition

notion is available, the description becomes much simpler for

various objects. Contrary pairs like east and west, and south

and north, cannot be established by themselves, but can be

explained.

Fig. 1 The opposition concept has its origins in the Yin-Yang symbol

3. Modified Sailfish Optimizer
3.1. Opposition based Learning

Initial solutions of heuristic optimization algorithms are

typically generated randomly when attempting to find the

optimal solution for a given problem. To make it more likely

that the best solution will be found, both a random solution

and its opposite can be made at the same time. This encourages

a more thorough search of the solution space. [23]. Let x be a

real number within the range of a and b(where a ≤ b), the

opposite of the number. 𝑥 of 𝑥 can be presented below.

𝑥 = 𝑎 + 𝑏 − 𝑥 (11)

The extended definition for higher dimensions is

provided in [24]. In a D-dimensional search space, let P = {x1,

x2, …, xD} represent a point, where each coordinate xi (1 ≤ i ≤

D) falls within the range of ai and bi. The corresponding

opposite point 𝑃̌ = {𝑥1,𝑥2, … , 𝑥𝐷 } can be determined using

the given Equation 12.

𝑥 𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑥 𝑖 (12)

From Equations (11) and (12), it can be observed that

generating both the random guess and its opposite

concurrently increases the likelihood of identifying potential

promising regions where the optimal solution might be found.

3.2. Exploration Phase

In the MSFO, the search is divided into two main phases:

exploration and exploitation. The exploration mode is enabled

if the Attack Power (AP) ≥ 0.5 at the initial optimization

stage. In this phase, the global search is enhanced, in which

sailfish and sardines are not trapped in the local niche and can

swim in different areas of the search space to prevent

premature convergence. The position updates of the

population are driven by randomness and broad movements,

enabling the algorithm to cover a wide solution space. This

behavior is controlled by the equation Equation 13.

𝐴𝑃 = 1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (13)

Through those equations, ensuring that the early iterations

prioritize diversity in the population. The exploration

mechanism is crucial in avoiding local optima, allowing the

algorithm to discover potentially promising regions that may

contain the global best solution.

3.3. Exploitation Phase

As the algorithm progresses and AP drops below 0.5, the

optimizer transitions into the exploitation phase, where the

focus shifts toward refining solutions around the best-found

candidates. During this phase, the motion of sardines becomes

more directed, with location updates based on the best-known

solutions so that the algorithm can efficiently converge to the

best area. The decreasing AP value reduces random

fluctuations, leading to more precise adjustments in the search

space. This balance between exploration and exploitation

allows MSFO to maintain a robust search capability while

ensuring convergence efficiency. The transition between these

phases is dynamically controlled, making MSFO adaptable

across different optimization landscapes.

3.4. Algorithm

The pseudocode of the improved version of the MSFO

with OBL is given in the algorithm below to improve the

exploration and exploitation of the search process. It

simplifies the attack power mechanism, which is conducive to

improving the efficiency of the algorithm to solve the

optimization problem.

Pseudocode of modified sailfish optimizer

1. Initialize a random population of sailfish and sardines.

2. Set parameters (Λ = 4, ε = 0.001).

3. Calculate the fitness of all sailfish and sardines.

4. Use Opposition-Based Learning (OBL) to improve

diversity.

5. Identify the best sailfish as the elite sailfish and the

sardine as the weakest sardine.

6. While current iteration < maximum iteration:

7. For each sailfish

8. Compute λi using Equation 6, where PD is

calculated using Equation 7.

9. Update sailfish positions using Equation 5

10. Apply OBL to check opposite positions for better

results using Equations 11 and 12.

11. End for

12. Calculate AttackPower (AP) to decide exploration or

exploitation using Equation 13

13. If AP < 0.5 (exploration phase):

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

308

14. Compute opposite positions using OBL as

Equations 11 and 12

15. Update selected sardine position using Equation 8

16. Else:

17. Update the position of all the sardines using

Equation 8

18. Evaluate the fitness of all sardines.

19. Sort sailfish and sardines by fitness.

20. For each sailfish

21. If the fitness value of the sardine is better than that

of the sailfish:

22. Replace the weak sailfish with its sardine using

Equation 10

23. Remove the selected sardine from the

population.

24. Update the best sailfish and best sardine.

25. End if

26. End For

27. Regenerate missing sardines to maintain population

size.

28. Return the best sailfish.

4. Results and Discussion
The Modified Sailfish Optimizer (MSFO) is applied to

address the issue of the traveling salesman, which is a classic

problem in combinatorial optimization. MSFO could find

near-optimal solutions with lower computational complexity

by simplifying the attack power decay mechanism and

eliminating some parameters. On the Burma14 dataset,

containing 14 cities, the algorithm proves its effectiveness in

competitive solution quality. Although the algorithm is

stochastic in nature, with some variability in results, MSFO

consistently provides high-quality solutions.

4.1. Dataset

The Burma14 instance is a benchmark dataset for the

Traveling Salesman Problem (TSP) containing 14 cities,

which is used in order to assess the effectiveness of

optimization algorithms [25]. That data is a well-known

combinatorial optimization problem, where one seeks the

shortest tour that visits each city exactly once and returns to

its origin. Its simplicity, with fewer parameters, is its strength

and computational efficiency, and thus it is a nice approach

for solving TSP instances of this size.

Table 2. Cities coordinate with the instance

City Longtitude Latitude

0 16.47 96.10

1 16.47 94.44

2 20.09 92.54

3 22.39 93.37

4 25.23 97.24

5 22.00 96.05

6 20.47 97.02

7 17.20 96.29

8 16.30 97.38

9 14.05 98.12

10 16.53 97.38

11 21.52 95.59

12 19.41 97.13

13 20.09 94.55

In this paper, three well-known metaheuristic algorithms

are comparatively studied and applied to solve the traveling

salesman problem. The main goal is to compare the

performance of the algorithms in achieving near-optimal

solutions to the problem in an overall sense of travel distance.

The dataset’s Best Known Solution (BKS) under

consideration is taken as the basis for comparison.

The effectiveness of each algorithm is evaluated based on

whether or not it can converge to a solution that best

approximates the BKS, with a focus on solution quality and

computation. The experiments are depicted in order to set up

the ability of each of the three algorithms to generate

competitive-quality solutions; however, large discrepancies

are apparent in their closeness to the BKS. This comparative

study identifies the strengths and weaknesses of GA, PSO, and

SA in solving combinatorial optimization problems like the

TSP and provides insights into their relative success in finding

optimal or near-optimal solutions for different instances of

problems.

Table 3. Comparative analysis of well-known metaheuristics

Method
Solution

Value
Gap

Best Known Solution 30.87 -

Genetic Algorithm 33.96 9.97%

Particle Swarm Optimization 35.37 14.5%

Simulated Annealing 34.98 13.27%

4.2. Computational Result

The Modified Sailfish Optimizer (MSFO) satisfactorily

solved the problem of the salesman’s travel route through the

Burma14 dataset using Python, as seen from the

computational results. The program was run on a laptop with

an AMD Ryzen 5600H processor and 16GB RAM. The setup

was ideal to determine the solution to the problem.

The optimization utilized the following settings: 500

iterations, population of 100, and different values for the pp

parameter (SailFish to Sardines ratio) of 0.1. These parameters

resulted in a search space that was balanced between

exploitation and exploration.

Table 4. MSFO parameters for TSP

Parameter Value

Iteration number 500

Population size 100

Pp 0.1

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

309

The algorithm worked well, finding good solutions close

to optimal ones within the given number of iterations. The

MSFO could search the solution space efficiently with a

population size of 100 and get competitive routes that

minimized the total distance covered. The pp values were

attempted in different ways, and each way gave relatively

different results. However, they all yielded good solutions

within a reasonable period of time. The hardware

configuration of the laptop was not too demanding, and hence

the computational cost was low. Optimization proceeded

without compromising the performance too much, and this

suggests that the MSFO is effective on TSP problems of this

size. Table 5 shows the shortest route that the Modified

Sailfish Optimizer (MSFO) found to find the solution of the

salesman’s travel path.

The Modified Sailfish Optimizer (MSFO) found a

solution to the Traveling Salesman Problem (TSP) for the

Burma14 dataset, creating an optimized route that worked

very well. The algorithm was able to find the shortest route

that went through all the cities exactly once, starting in City

11, going through the other cities, and ending in City 6 before

going back to City 11. This last route meets the TSP goal

because it follows the rules of the problem and makes sure that

the distance traveled is as short as possible.

The fact that MSFO can create this route shows that it can

explore the solution space well and get close to the best

solution in a reasonable number of iterations. With a

population of 100, the algorithm went through the 14 cities,

looking at different combinations and picking the best route

that would cover the least distance overall. The route that was

created, which started in City 13 and ended by returning there

after visiting all the other cities, is another example of how

strong and useful the algorithm is for solving the TSP, even

with small datasets like the Burma14. This success shows that

the MSFO can efficiently improve TSP routes while still being

fast at computing.

Fig. 2 Constructed route using MSFO

Table 5 shows a route for the issue of a salesman traveling

with a total distance of 30.87. This is the best value for this

case. This distance is the shortest route that goes to each city

only once. So, for its instance dataset, the solution can be

thought of as the best one.

Table 5. Generated solution

Route Distance

13–2–3–4–5–11–6–12–7–10–8–9–0–1 30.87

The traveled distance is 30.87. The results show that the

travel starts at city 13 and ends at city 1, with the visits to all

the other cities once. The total distance shows that MSFO has

the ability to achieve the shortest distance, which is the same

as the best-known solution. This shows that MSFO has the

ability to effectively solve difficult combinatorial problems

using the best exploration and exploitation techniques. The

algorithm is able to escape local optima and achieve the best

solution using Opposition-Based Learning (OBL) and a better

attack power mechanism. These observations render MSFO

an even better candidate than traditional optimization

algorithms for solving routing and logistics problems.

Fig. 3 Convergence rate

The Modified Sailfish Optimizer (MSFO) found the

optimal solution for the salesman travel problem in Table 5.

The distance traveled is 30.87. As can be seen from the results,

the tour starts in city 13 and ends in city 1, with a visit to each

of the other cities once. The total distance shows that MSFO

can achieve the shortest distance, as it is equal to the best-

known solution. It proves that MSFO is efficient in solving

hard combinatorial problems by using exploration and

exploitation in the most suitable way. By utilizing Opposition-

Based Learning (OBL) and a new attack power mechanism,

the algorithm can get rid of local optima and converge to the

best solution. These results show that MSFO is an even better

option than traditional optimization algorithms when it comes

to the resolution of routing and logistics issues.

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

310

Table 6. Comparative analysis of MSFO

Method
Solution

value
Gap

Best Known Solution 30.87 -

Genetic Algorithm 33.96 9.97%

Particle Swarm Optimization 35.37 14.5%

Simulated Annealing 34.98 13.27%

Modified Sailfish Optimizer 30.87 0%

Table 6 compares different optimization algorithms for

the traveling salesman route. The Modified Sailfish Optimizer

(MSFO) has a solution value of 30.87, which is exactly equal

to the Best-Known Solution. This means that there is an

optimality gap of 0%. These results show that MSFO

outperforms the other metaheuristic algorithms in finding the

optimal solutions and optimizing them. The fact that MSFO

can find the optimal solution proves that the hybridized

Opposition-Based Learning (OBL) and enhanced attack

power mechanism works effectively in strengthening search

exploration and exploitation. On the other hand, the inferior

performance of GA, PSO, and SA shows that they are plagued

by escaping local optima and slow convergence. The results

show that MSFO is a competitive optimization algorithm for

solving challenging combinatorial problems like the TSP and

can be used in other real-world settings.

5. Conclusion
In conclusion, the modified Sailfish Optimizer (SFO) has

performed well in developing the best possible solutions of the

Traveling Salesman Problem (TSP). The algorithm is better as

it uses Opposition-Based Learning (OBL) that improves the

diversity of solutions and speeds up convergence. It also

modulates the attack strength in a simpler but efficient way.

These changes render the SFO more effective at

balancing exploration and exploitation, leading to improved

results compared to other optimization methods like Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), and

Simulated Annealing (SA). Experimental results reveal that

the proposed changes help the algorithm identify shorter paths

faster, making the method suitable for solving hard

combinatorial problems.

References
[1] Petrică C. Pop et al., “A Comprehensive Survey on the Generalized Traveling Salesman Problem,” European Journal of Operational

Research, vol. 314, no. 3, pp. 819-835, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[2] Mohd Arfian Ismail, “A GPU Accelerated Parallel Genetic Algorithm for the Traveling Salesman Problem,” Journal of Soft Computing

and Data Mining, vol. 5, no. 2, pp. 137-150, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Irina Dumitrescu, and Thomas Stützle, Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms , Annals of Information

Systems, Boston, Massachusetts, vol. 10, pp. 103-134, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[4] Agung Chandra, and Aulia Naro, “S-Metaheuristics Approach to Solve Traveling Salesman Problem,” Metris: Journal of Science and

Technology, vol. 21, no. 2, pp. 111-115, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] S. Shadravan, H.R. Naji, and V.K. Bardsiri, “The Sailfish Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm for Solving

Constrained Engineering Optimization Problems,” Engineering Applications of Artificial Intelligence, vol. 80, pp. 20-34, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Mamta Kumari et al., “Utilizing A Hybrid Metaheuristic Algorithm to Solve Capacitated Vehicle Routing Problem,” Results in Control

and Optimization, vol. 13, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Battina Srinuvasu Kumar, S.G. Santhi, and S. Narayana, “Sailfish Optimizer Algorithm (SFO) for Optimized Clustering in Wireless

Sensor Network (WSN),” Journal of Engineering, Design and Technology, vol. 20, no. 6, pp. 1449-1467, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[8] Mesfer Al Duhayyim et al., “Sailfish Optimization with Deep Learning Based Oral Cancer Classification Model,” Computer Systems

Science and Engineering, vol. 45, no. 1, pp. 753-767, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Safaa. M. Azzam, O.E. Emam, and Ahmed Sabry Abolaban, “An Improved Differential Evolution with Sailfish Optimizer (DESFO) for

Handling Feature Selection Problem,” Scientific Reports, vol. 14, pp. 1-27, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] R. Sathyavani, K. JaganMohan, and B. Kalaavathi, “Sailfish Optimization Algorithm with Deep Convolutional Neural Network for

Nutrient Deficiency Detection in Rice Plants,” Journal of Pharmaceutical Negative Results, vol. 14, no. 2, pp. 1713-1728, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Mazen Mushabab Alqahtani et al., “Sailfish Optimizer with EfficientNet Model for Apple Leaf Disease Detection,” Computers, Materials

and Continua, vol. 74, no. 1, pp. 217-233, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Utkarsh Mahadeo Khaire et al., “Instigating the Sailfish Optimization Algorithm based on Opposition-Based Learning to Determine the

Salient Features from a High-Dimensional Dataset,” International Journal of Information Technology & Decision Making, vol. 22, no. 5,

pp. 1617-1649, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Caio Paziani Tomazella, and Marcelo Seido Nagano, “A Comprehensive Review of Branch-and-Bound Algorithms: Guidelines and

Directions for Further Research on the Flowshop Scheduling Problem,” Expert Systems with Applications, vol. 158, pp. 1-19, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.ejor.2023.07.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+the+generalized+traveling+salesman+problem&btnG=
https://www.sciencedirect.com/science/article/pii/S0377221723005581
https://doi.org/10.30880/jscdm.2024.05.02.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+GPU+Accelerated+Parallel+Genetic+Algorithm+for+the+Traveling+Salesman+Problem&btnG=
https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/17688
https://doi.org/10.1007/978-1-4419-1306-7_4
https://scholar.google.com/scholar?q=Usage+of+Exact+Algorithms+to+Enhance+Stochastic+Local+Search+Algorithms&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-1-4419-1306-7_4
https://doi.org/10.25170/metris.v21i02.2496
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S-Metaheuristics+Approach+to+Solve+Traveling+Salesman+Problem&btnG=
https://ejournal.atmajaya.ac.id/index.php/metris/article/view/2496
https://doi.org/10.1016/j.engappai.2019.01.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Sailfish+Optimizer%3A+A+novel+nature-inspired+metaheuristic+algorithm+for+solving+constrained+engineering+optimization+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0952197619300016
https://doi.org/10.1016/j.rico.2023.100292
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Utilizing+a+hybrid+metaheuristic+algorithm+to+solve+capacitated+vehicle+routing+problem&btnG=
https://www.sciencedirect.com/science/article/pii/S2666720723000942
https://doi.org/10.1108/JEDT-02-2021-0087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sailfish+optimizer+algorithm+%28SFO%29+for+optimized+clustering+in+wireless+sensor+network+%28WSN%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sailfish+optimizer+algorithm+%28SFO%29+for+optimized+clustering+in+wireless+sensor+network+%28WSN%29&btnG=
https://www.emerald.com/jedt/article-abstract/20/6/1449/432306/Sailfish-optimizer-algorithm-SFO-for-optimized?redirectedFrom=fulltext
https://doi.org/10.32604/csse.2023.030556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sailfish+Optimization+with+Deep+Learning+Based+Oral+Cancer+Classification+Model&btnG=
https://www.techscience.com/csse/v45n1/49334
https://doi.org/10.1038/s41598-024-63328-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+Differential+evolution+with+Sailfish+optimizer+%28DESFO%29+for+handling+feature+selection+problem&btnG=
https://www.nature.com/articles/s41598-024-63328-w
https://doi.org/10.47750/pnr.2023.14.02.217
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sailfish+optimization+algorithm+with+deep+convolutional+neural+network+for+nutrient+deficiency+detection+in+rice+plants&btnG=
https://www.pnrjournal.com/index.php/home/article/view/7599
https://doi.org/10.32604/cmc.2023.025280
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sailfish+Optimizer+with+EfficientNet+Model+for+Apple+Leaf+Disease+Detection&btnG=
https://www.techscience.com/cmc/v74n1/49764
https://doi.org/10.1142/S0219622022500754
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Instigating+the+Sailfish+Optimization+Algorithm+Based+on+Opposition-Based+Learning+to+Determine+the+Salient+Features+From+a+High-Dimensional+Dataset&btnG=
https://www.worldscientific.com/doi/10.1142/S0219622022500754
https://doi.org/10.1016/j.eswa.2020.113556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+review+of+Branch-and-Bound+algorithms%3A+Guidelines+and+directions+for+further+research+on+the+flowshop+scheduling+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417420303808?via%3Dihub

Prayoga Yudha Pamungkas / IJETT, 73(8), 303-311, 2025

311

[14] P. Rajarajeswari, and D. Maheswari, “Travelling Salesman Problem Using Branch and Bound Technique,” International Journal of

Mathematics Trends and Technology, vol. 66, no. 5, pp. 202-206, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Wenqiang Yanget al., “Improved Shuffled Frog Leaping Algorithm for Solving Multi-aisle Automated Warehouse Scheduling

Optimization,” Communications in Computer and Information Science, Berlin, Germany, pp. 82-92, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Li Li et al., “A Discrete Artificial Bee Colony Algorithm for TSP Problem,” Lecture Notes in Computer Science, Berlin, Heidelberg, pp.

566-573, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[17] Rajesh Matai, Surya Singh, and Murari Lal Mittal, Traveling Salesman Problem: An Overview of Applications, Formulations, and Solution

Approaches, InTech, pp. 1-26, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[18] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a Large-Scale Traveling-Salesman Problem,” Journal of the Operations Research

Society of America, vol. 2, no. 4, pp. 393-410, 1954. [CrossRef] [Google Scholar] [Publisher Link]

[19] Dalia T. Akl et al., “IHHO: An Improved Harris Hawks Optimization Algorithm for Solving Engineering Problems,” Neural Computing

and Applications, vol. 36, pp. 12185-12298, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Woong Sagong, Woo-Pyung Jeon, and Haecheon Choi, “Hydrodynamic Characteristics of the Sailfish (Istiophorus Platypterus) and

Swordfish (Xiphias gladius) in Gliding Postures at their Cruise Speeds,” PLoS One, vol. 8, no. 12, pp. 1-14, 2013. [CrossRef] [Google

Scholar] [Publisher Link]

[21] James E. Herbert-Read et al., “Proto-Cooperation: Group Hunting Sailfish Improve Hunting Success by Alternating Attacks on Grouping

Prey,” Proceedings of the Royal Society B: Biological Sciences, vol. 283, no. 1842, pp. 1-9, 2016. [CrossRef] [Google Scholar] [Publisher

Link]

[22] Tae Jong Choi, Julian Togelius, and Yun-Gyung Cheong, “A Fast and Efficient Stochastic Opposition-Based Learning for Differential

Evolution in Numerical Optimization,” Swarm and Evolutionary Computation, vol. 60, pp. 1-25, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[23] Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M. A. Salama, “Opposition-Based Differential Evolution,” IEEE Transactions

on Evolutionary Computation, vol. 12, no. 1, pp. 64-79, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[24] Hamid R. Tizhoosh, and Mario Ventresca, Oppositional Concepts in Computational Intelligence, Studies in Computational Intelligence,

vol. 155, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[25] TSPLIB, Discrete and Combinatorial Optimization, Ruprecht-Karls-University Heidelberg, 2013. [Online]. Available:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

https://doi.org/10.14445/22315373/IJMTT-V66I5P528
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Travelling+Salesman+Problem+Using+Branch+And+Bound+Technique&btnG=
https://ijmttjournal.org/archive/ijmtt-v66i5p528
https://doi.org/10.1007/978-3-642-45037-2_8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Improved+Shuffled+Frog+Leaping+Algorithm+for+Solving+Multi-aisle+Automated+Warehouse+Scheduling+Optimizationm+Using+Branch+And+Bound+Technique&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-45037-2_8
https://doi.org/10.1007/978-3-642-24553-4_75
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Discrete+Artificial+Bee+Colony+Algorithm+for+TSP+Problem&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-24553-4_75
https://doi.org/10.5772/12909
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Traveling+Salesman+Problem%3A+an+Overview+of+Applications%2C+Formulations%2C+and+solution+approaches&btnG=
https://www.intechopen.com/chapters/12736
https://doi.org/10.1287/opre.2.4.393
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solution+of+a+Large-Scale+Traveling-Salesman+Problem&btnG=
https://pubsonline.informs.org/doi/10.1287/opre.2.4.393
https://doi.org/10.1007/s00521-024-09603-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IHHO%3A+an+improved+Harris+Hawks+optimization+algorithm+for+solving+engineering+problems&btnG=
https://link.springer.com/article/10.1007/s00521-024-09603-3
https://doi.org/10.1371/journal.pone.0081323
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrodynamic+characteristics+of+the+sailfish+%28Istiophorus+platypterus%29+and+swordfish+%28Xiphias+gladius%29+in+gliding+postures+at+their+cruise+speeds&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrodynamic+characteristics+of+the+sailfish+%28Istiophorus+platypterus%29+and+swordfish+%28Xiphias+gladius%29+in+gliding+postures+at+their+cruise+speeds&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081323
http://dx.doi.org/10.1098/rspb.2016.1671
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proto-cooperation%3A+group+hunting+sailfish+improve+hunting+success+by+alternating+attacks+on+grouping+prey&btnG=
https://royalsocietypublishing.org/doi/10.1098/rspb.2016.1671
https://royalsocietypublishing.org/doi/10.1098/rspb.2016.1671
https://doi.org/10.1016/j.swevo.2020.100768
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fast+and+efficient+stochastic+opposition-based+learning+for+differential+evolution+in+numerical+optimization&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210650220304211
https://doi.org/10.1109/tevc.2007.894200
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Opposition-Based+Differential+Evolution&btnG=
https://ieeexplore.ieee.org/document/4358759
https://doi.org/10.1007/978-3-540-70829-2
https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=Oppositional+Concepts+in+Computational+Intelligence&btnG=
https://link.springer.com/book/10.1007/978-3-540-70829-2

