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Abstract - Since diabetes is becoming more common, early and precise prediction is essential for prevention and management. 

This study predicts diabetes mellitus in the Pima Indian community using Deep Learning (DL) and advanced Machine Learning 

(ML) techniques. Model performance improved significantly through meticulous data preprocessing, incorporating imputation 

for missing values, data balancing techniques, advanced feature engineering, and sophisticated statistical methods for managing 

incomplete data and identifying key features. The models employed here include a multilayer deep learning model called the 

Tree-based Pipeline Optimization Tool (TPOT) and ensemble learning using LightGBM and K-Nearest Neighbors (KNN). High 

accuracy score, precision score, recall score, and F1 score of roughly 94.5% were attained by each model following a rigorous  

review and improvement procedure. Comprehensive experiments were conducted, with results analyzed graphically and 

numerically, offering in-depth insights and recommendations. The proposed approach outperforms the most advanced techniques 

already in use, proving its efficacy and emphasizing the critical role that prompt and precise prediction plays in the prevention 

and treatment of diabetes in high-risk populations. 

Keywords - Deep Learning, Diabetes prediction, Feature engineering, Machine Learning, Medical informatics.

1. Introduction  
Since 1980, the prevalence of diabetes mellitus, a  common 

chronic illness, has nearly doubled worldwide [5]. 

Approximately one in ten individuals worldwide had diabetes. 

In 2021, it was found that in the age group of 20 to 79 years, 

537 million adults were diabetic. This number may reach 643 

million by 2030. The number of diabetics may reach 783 

million by 2045. About 75% of diabetes patients belong to low- 

and middle-income countries. With 6.7 million deaths in 2021, 

diabetes was responsible for one death every five seconds on 

average. Moreover, the global healthcare expenditure related 

to diabetes wa s nea rly  $966 billion, reflecting a  316% rise 

over the previous 15 years [10]. The Pima Indian population, 

a  Native American group residing predominantly in Arizona, 

has been a focus of diabetes research due to their 

exceptionally high rates of type 2 diabetes. This population’s 

genetic predisposition, combined with lifestyle and 

environmental factors, makes it particularly vulnerable, 

highlighting the need for effective diabetes prediction and 

prevention strategies. Many cases of diabetes often go 

undiagnosed due to a lack of early symptoms, complicating 

early detection efforts.  

Some of the methods of diagnosis available for diabetes 

include Random Blood Sugar (RBS), PostPrandial Blood 

Sugar (PPBS), Fasting Blood Sugar (FBS), Haemoglobin A1c 

(HbA1c) testing, urine sugar testing, urine microalbumin 

testing, and organ-specific investigations for complications 

like kidney disease. Early detection through these tests is 

critical to preventing severe complications like kidney 

disease and reducing healthcare costs. Integrating connected 

medical devices with Artificial Intelligence (AI) models, 

including DL and ML, offers promising potential for 

improving diagnosis, especially in underserved areas [5]. 

Trust and transparency are essential in healthcare, where 

accuracy is paramount. AI tools are highly effective at 

processing vast medical datasets, uncovering hidden patterns 

that enhance diagnostic accuracy and treatment decisions. 

Despite substantial progress in diabetes prediction using ML 

and DL methods, many studies suffer from inconsistent 

handling of missing values, limited exploration of engineered 

features, and suboptimal model performance, particularly in 

high-risk subgroups like the Pima Indian population. This 

study addresses these gaps by introducing robust preprocessing 

techniques, novel engineered features, and optimized ensemble 

and deep learning models. This paper applies three state-of-

the-art AI models-Light Gradient Boosting Machine (Light - 

GBM) and K-Nearest Neighbors (KNN)- for accurate 

diabetes prediction, delivering highly effective and 
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interpretable results. Despite numerous studies using ML/DL 

for diabetes prediction, several specific challenges remain 

unresolved. Many models suffer from poor generalization due 

to data imbalance and a lack of robust preprocessing strategies. 

Additionally, most studies rely on default features without 

exploring domain-informed feature interactions. Manual 

tuning and a lack of automated optimization frameworks also 

limit reproducibility and scalability. Furthermore, very few 

works validate improvements statistically, raising concerns 

about the reliability of reported gains. This study addresses 

these limitations through advanced data preprocessing, novel 

feature engineering, ensemble learning, and statistical 

evaluation. 

This paper makes the following contributions. 

1. Apply statistical methods to handle missing data, select 

key features, balance the dataset, and engineer new 

features. Visualizations further supported data 

exploration, helping to clarify relationships and improve 

model performance. 

2. Implementation of three AI techniques: Ensemble 

Learning with LightGBM and KNN, Tree-based Pipeline 

Optimization Tool (TPOT), and Multilayer Deep 

Learning. 

3. Presentation and analysis of comprehensive experimental 

results through both graphical and numerical methods. 

This analysis includes in-depth explanations and 

recommendations. To demonstrate the efficiency and 

benefits of the proposed work, this paper compares the 

findings to those of the most advanced methods currently 

available. 

This outline of the proposed article is as follows: Section 

2 presents a study of related work in this domain. I n  Section 

3, the paper sheds light on the models and concepts used, 

including data pretreatment approaches, feature selection, 

TPOT, multilayer deep learning, and ensemble techniques with 

LightGBM and KNN. The experimental analysis is described 

in full in Section 4, along with the model evaluation, data 

analysis, and parameters for all applicable procedures. Section 

5 of the study provides the scope of future research and 

concludes the proposed work. 

2. Literature Review 
Here, we examine several studies that have investigated 

different DL and ML methods for the prediction of diabetes, 

highlighting significant gains in model performance and 

accuracy across a range of datasets. Kannadasan et al. 2019 

[14] utilized stacked autoencoders for feature extraction. 

They achieved a n  accuracy of 86.26%. A  Support Vector 

Machine (SVM) for prediction using imputation, feature 

selection, feature scaling, data augmentation techniques, and 

tenfold stratified cross-validation was used by Raafat et al. 

2021 [19]. Their method yielded a good accuracy score 

(83.20%), sensitivity score (87.20%), and specificity score 

(79%) in a framework for remote monitoring. Khanam and 

Foo (2021), [15] utilized different machine learning 

algorithms.  

They reported high accuracy rates, reaching up to 88.6% 

for diabetes prediction, outperforming previous studies. For 

prediction of the risk of diabetes, Ramesh et al. 2021 [20] also 

used SVM with similar results, achieving an accuracy of 

83.20% with data imputation, feature scaling and selection, 

augmentation, and cross-validation with tenfold stratification. 

Using outlier rejection, missing value imputation, and 

normalization, Gupta et al. (2022) [9] compared Deep 

Learning and Quantum Machine Learning models. Their DL 

model outperformed both QML and existing models, 

achieving 90% accuracy with low false detection and missed 

detection rates, while the QML model showed satisfactory 

performance comparable to existing literature. Chatrati et al. 

2022 [6] explored conditional decision-making for predicting 

blood pressure and used SVM for predicting diabetes within  

a desktop application for home monitoring.  

They achieved 75% accuracy in diabetes prediction 

using diastolic blood pressure and glucose measurements. 

Chang et al. (2023) [5] trained and tested interpretable 

supervised ML models while assessing feature selection 

subsets using a variety of metrics. The NB fared better than 

the other models, achieving 79.13% accuracy, while DT 

consistently performed well in sensitivity (88.43-89.92%), 

with all models demonstrating around 80% accuracy. An 

analysis of ensemble and conventional ML models for 

diabetes prediction risk was conducted by Saxena et al. (2023) 

[24]. According to their research, the Super Learner model 

possessed the highest accuracy, coming in at 86%. 

Ashour et al. (2024), [1] evaluated FNN and CNN 

models. The FNN model achieved 82% accuracy, 

outperforming previous studies, while both models 

demonstrated high accuracy, specificity, and AUC for early 

diabetes detection. Jain et al., 2024 [12] assessed four 

imputation techniques (MICE, KNN, Mean, and Median) on 

different ML classifiers, including DT, RF, SVC, and 

Gaussian Naive Bayes, for diabetes classification. They 

found that SVM with median imputation performed best in 

accuracy and precision, while GNB with KNN imputation 

excelled in the recall, and GNB with MICE imputation led in 

F1-score, AUC, and G-mean.  

However, the impact of imputation techniques on 

classifier performance was minor. Noviyanti and Alamsyah, 

2024 [17] utilized the Random Forest algorithm for early 

diabetes detection, achieving 87% accuracy. By using the 

PIMA diabetes dataset, Bhuvaneswari [2024] combined RF, 

Radial SVM, and KNN in an ensemble technique (En-

RfRsK), and had the capacity to forecast diabetes mellitus 

with an accuracy of 88.89%. Employing an ensemble stacking 
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technique that included deep neural networks and classical 

models, Reza et al. 2024 [21] achieved 75.03% accuracy using 

a train-test splitting mechanism.  

They achieved 77.10% accuracy with cross-validation, 

beating previous approaches by 2.23% to 12%. Logistic 

Regression (LR), SVM, and RF were utilized for diabetes 

prediction by Xie, 2024 [26], who employed K-NN for 

imputation. The LR model outperformed RF and SVM with 

79.13% accuracy and 0.8571 precision, indicating high 

promise for early diabetes diagnosis using machine learning 

methods Finally, Salih et al., 2024 [23] applied data 

preprocessing techniques, including outlier removal, 

imputation, and normalization, followed by feature selection 

using PCA and classification models such as SVM, RF, NB, 

and DT.  

They achieved 89.86% accuracy in diabetes 

classification using SVM with feature selection, 

outperforming other classifiers. Unlike prior works that 

primarily rely on default features, our study introduces five 

novel features designed from domain knowledge, improving 

robustness and reducing feature redundancy. Moreover, we 

utilize a combination of TPOT, ensemble voting, and deep 

learning to systematically explore and benchmark 

performance. While most studies report 74% and 89% 

accuracy, few combine robust imputation strategies, advanced 

feature engineering, and statistical validation, which our 

proposed framework achieves.  

While prior studies have achieved reasonable accuracy, 

several limitations persist. First, many works rely on default 

features without leveraging domain-driven feature engineering 

(e.g., Glucose-to-Blood Pressure ratio, BMI × Insulin). 

Second, imputation is often inconsistent or applied globally, 

which ignores class-specific data distributions. Third, few 

studies adopt ensemble frameworks that combine interpretable 

and high-performance models. Lastly, comparative studies 

rarely validate improvements using statistical significance 

tests. These gaps motivate our work, which proposes a hybrid 

framework combining class-wise preprocessing, novel 

features, and rigorous statistical evaluation. 

Table 1 summarizes the related work on diabetes among 

the Pima Indians. After reviewing state-of-the-art 

techniques, two main limitations were identified: 

1 . Imputation and Preprocessing Variability; inconsistent 

evaluation of imputation and preprocessing techniques 

can lead to biases and a  lack of standard practices (See 

Section 3).  

2. Suboptimal Results: Some studies report less than 

optimal performance, indicating room for improvement 

in predictive accuracy (See Section 4.3). 

Table 1. Summarized related work on PIMA Indian diabetes 

Author Year Methodology Key Findings 

Kannadasan et al., 

2019 [14] 
Stacked autoencoders Achieved 86.26% classification accuracy on PIDD. 

Raafat et al., 

2021 [19] 
SVM Accuracy:83.20% 

Khanam & Foo, 

2021 [15] 
Seven different ML techniques Achieved high accuracy rates (up to 88.6%). 

Ramesh et al., 

2021 [20] 
SVM Accuracy:83.20% 

Gupta  et al., 

2022 [9] 
DL and Quantum ML Achieving 90% with low false detection and missed detection rates. 

Chatrati et al., 

2022 [6] 
SVM Achieved: 75%accuracy. 

Chang et al., 

2023 [5] 
Three different ML techniques 

Decision tree consistently performed well in sensitivity (88.43-

89.92%); models demonstrated good accuracy (around 80%). 

Saxena et al., 

2023 [24] 

Different ensemble and classical 

machine learning models for predicting 

the risk of diabetes 

Achieved 86% accuracy. 

Ashour et al., 

2024 [1] 

Feedforward Neural Network and 

Convolutional Neural Network 
FNN achieved 82% accuracy. 

Jain et al., 

2024 [12] 

Evaluated four imputation techniques 

(MICE, KNN, Mean, Median) on 

various ML classifiers 

SVM with median imputation was best for accuracy and precision. 

GNB with KNN imputation excelled in recall. GNB with MICE 

imputation led to F1 score, AUC, and G-mean. 

Noviyanti & 

Alamsyah, 2024, 

[17] 

Random Forest algorithm Achieved 87% accuracy. 
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Bhuvaneswari 

2024 [3] 

Ensemble approach (RF, R-SVM, 

KNN) 
88.89% accuracy. 

Reza et al., 

2024 [21] 

Combining a deep neural network with 

classical models using the stacking 

ensemble approach 

Obtained 75.03% accuracy and 77.10% with cross-validation. 

Xie, L. 

2024 [26] 

K-NN for imputation, LR, SVM, and 

RF for diabetes prediction 
Achieved 79.13% accuracy and precision of 0.8571 (LR Model). 

Salih et al., 

2024 [23] 

Feature selection (PCA), classification 

models (SVM, RF, NB, DT) 
Achieved 89.86% accuracy. 

3. Methodology 
Key data pretreatment steps,  how to handle missing 

values, balance data, engineer features, standardization, 

identify critical features, and model training and evaluation, 

are covered in detail in this section. First, handling missing 

values ensures data  completeness, which is essential for 

accurate model predictions. Class imbalances are then 

resolved using data balancing, which might distort model 

performance if ignored. After that, feature engineering turns 

unstructured data into useful features that increase model 

effectiveness. To ensure that each feature contributes equally, 

standardization is then done to scale the features. Important 

features are found in the prepared data to draw attention to 

variables that significantly impact the model. To adjust the 

model and make sure it performs effectively on never-before-

seen data, the training of the model and the evaluation stage are 

completed last. The general methodology employed in this 

investigation is depicted in Figure 1. 

 
Fig. 1 The overall methodology 

3.1. Data Exploration 

The dataset under analysis pertains to the most popular 

Pima Indians Diabetes dataset [8]. The dataset contains 

diagnostic measures instrumental in identifying individuals 

at risk for diabetes. A summary of the dataset is given in this 

section, along with information on its kinds, structure, and the 

importance of each characteristic. The dataset consists of 768 

records, each representing an individual case, and 9 columns 

(features) that correspond to different diagnostic 

measurements. However, an initial inspection of the data 

revealed that certain features contained zero values. As these 

values appeared illogical within the context of the data, they 

were interpreted as missing values and subsequently replaced 

with NaN. Figure 2 shows a  population divided into two 

distinct categories: Healthy and Diabetic. A horizontal bar 

chart shows the numerical distribution (Label 1 or Diabetic: 

268 and Label 0 or Healthy: 500) of individuals within each 

category. The “Healthy” category significantly outnumbers 

the “Diabetic” category, indicating a lower incidence of 

diabetes in this population. The charts reveal a clear 

distinction between the two groups, highlighting a  

substantial disparity in the number of individuals classified 

as healthy versus diabetic. As a result, data  balancing is 

essential to improve model accuracy, a  topic further explored 

in Section 3.3. 

 
Fig. 2 Outcome types and their counts, and distribution of outcome 

variables 
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The dataset displays skewed distributions across its 

eight features (Figure 3), with most values concentrated on 

the lower end. Age and pregnancies are primarily lower, 

while glucose and blood pressure show a similar trend of 

lower values. Skin thickness is more symmetrical, but insulin 

levels are significantly skewed towards higher values. BMI 

is moderately skewed, and t h e  diabetes pedigree function 

is primarily low. Overall, the dataset seems biased towards 

a  younger, healthier population, with fewer instances of 

higher glucose, blood pressure, and pregnancy counts.  

Table 2 displays summary statistics of all the features. 

Potential issues were observed, such as missing data, with  

several features having minimum values of 0, possibly  

indicating missing entries. Additionally, the data distribution 

shows skewness in some features, like Pregnancy and insulin. 

Among these variables, Glucose, BMI, and Insulin emerge as 

crucial predictors for diabetes, with Blood Pressure, Age, and 

Diabetes Pedigree Function (DPF) also being significant 

indicators.  

The distribution of the dataset is depicted in the boxplot 

(Figure 4), which shows that most features are skewed with  

longer tails towards higher values, suggesting that most people 

had lower measurements in these categories. Features like 

Insulin, Skin Thickness, and Blood Pressure show significant 

outliers, suggesting the presence of extreme values.  

The data shows that most women have had few 

pregnancies, with generally low glucose, blood pressure, and 

insulin levels, though there are some high outliers. Based on 

the data distribution (Figure 3), summary statistics (Table 3), 

and box plot (Figure 4), it is observed that while the dataset is 

complete, several features contain zero values (except for 

features Pregnancies, Diabetes Pedigree Function, Age, and 

Outcome), where data may be missing. It is crucial to address 

these potential missing values appropriately. In Section 3.2, a  

detailed discussion is provided on how these missing values 

are handled. 

3.2. Handling Missing Values 

The table (Table 3) depicts how missing data  is handled 

in various features of the dataset. The “# Zero” column 

shows the number of records with zero values, which might 

indicate missing or invalid data  points. The distributions of 

skin thickness, blood pressure, BMI, insulin, and glucose in 

healthy and diabetic groups are shown in Figure 5. The 

noticeable skewness in most features supports the choice of 

using the median for imputing missing values. Using the 

median to handle missing values is a  reliable data  

preprocessing technique [13].  

3.3. Exploratory Data Analysis (EDA) 

To fully understand the dataset, we conduct a detailed 

Exploratory Data Analysis. Descriptive statistics revealed 

significant skewness in variables such as Insulin and 

SkinThickness, with several zero entries likely indicating 

missing data. 

Histograms and boxplots (Figures 2-4) highlighted strong 

differences in Glucose and BMI distributions between diabetic 

and non-diabetic groups. A class imbalance was noted, with 

268 positive and 500 negative samples. 

The correlation heatmap (Figure 7) showed a strong 

positive correlation between Glucose and Outcome, and 

moderate associations with BMI and Age. This informed 

feature selection and model prioritization. EDA also helped 

validate the rationale for engineered features such as the 

Glucose-to-Blood Pressure Ratio (GBPR) and BMI × Insulin, 

which were positively skewed among diabetic individuals. 

These insights guided data preprocessing and model design in 

subsequent sections. 

Median is better than mean since it is less impacted by 

outliers and skewed data, particularly for characteristics with 

extreme values. Even with asymmetric distributions, the 

data ’s central tendency is reliably represented by substituting 

the median for missing values. 

This approach enhances dataset completeness, leading 

to better model training and more reliable predictions. The last 

two columns (Table 4) detail the median values used for 

imputation: the last but one column for individuals with a 

class label of 0 (Healthy), and the last column for those with a 

class label of 1 (Diabetic). For example, in the “Insulin” 

feature, 374 records (48.70%) had zeros, which were 

imputed with the median values 102.5 for Healthy individuals 

and 169.5 for Diabetic individuals. 

3.4. Data Balancing  

Here, we employ the Synthetic Minority Over-sampling 

Technique (SMOTE) [7] to remove the data imbalance, where 

there were 500 healthy people and 268 diabetics in the sample. 

In a medical diagnosis scenario, a  model trained on 

imbalanced data might incorrectly predict that a patient is 

healthy, simply because most of the data used for training is 

from healthy subjects. To properly balance the dataset, 

SMOTE produces synthetic data instances for the minor class 

(diabetes group) instead of replicating existing instances.  

The process starts by separating the target variable 

(Outcome) from the feature set. After that, SMOTE produces 

a new dataset with almost the same number of instances in 

each class. This approach ensures that the model trains on data 

that does not favor the majority class, thereby reducing bias 

and improving predictive accuracy. After applying SMOTE, 

the dataset becomes balanced, with 500 samples in both 

classes. The application of SMOTE can be effectively justified 

by the lemma that follows: 
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Fig. 3 A graphical representation of the feature distributions in the Pima Indians diabetes dataset 

 
Fig. 4 Displays the distribution of the features using the boxplots 
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Table 2. Summary STATISTICS of the Pima Indian diabetes dataset 

Features Mean Std Dev. Minimum Quartile 1 Median Quartile 3 Maximum 

Pregnancies 3.854 3.370 0 1.000 3.000 6.000 17.000 

Glucose 120.895 31.973 0 99.000 117.000 140.250 199.000 

Blood Pressure 69.105 19.356 0 62.000 72.000 80.000 122.000 

Skin Thickness 20.536 15.952 0 0 23.000 32.000 99.000 

Insulin 79.799 115.244 0 0 30.500 127.250 846.000 

BMI 31.993 7.884 0 27.300 32.000 36.600 67.100 

DPF 0.472 0.331 0.078 0.244 0.372 0.626 2.420 

Age 33.241 11.760 21.000 24.000 29.000 41.000 81.000 

Outcome 0.349 0.477 0 0 0 1 1 

Table 3. Identification and handling of missing values 

Features # Zero % Missing Values Replaced for 0 class Values Replaced for 1 class 

Pregnancies 111 NA NA NA 

Glucose 5 0.65 107.0 140.0 

Blood Pressure 35 4.56 70.0 74.5 

Skin Thickness 227 35.42 27.0 32.0 

Insulin 374 48.70 102.5 169.5 

BMI 11 1.43 30.1 34.3 

DPF 0 0 NA NA 

Age 0 0 NA NA 

 

  
(a) (b) 

  
(c) (d) 
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(e) 

Fig. 5 Comparison of features distributions between healthy (class 1) and diabetic groups (class 0) 

3.4.1. Lemma 1 (Impact of Data Imbalance on Model 

Precision) 

In a binary classification task, it is anticipated that if the 

minority class is underrepresented, the classifier’s precision  

will decrease, particularly if data balancing strategies such as 

SMOTE are not used.  

3.4.2. Proof 

Let the dataset consist of two classes, C0  (majority) and 

C1  (minority), such that |C1| ≪ |C0|. In this case, a   classifier 

tends to be biased toward predicting C0, resulting in a  higher 

number of false positives for C1.  

Precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

Where FP stands for false positives and TP for true 

positives. In an imbalanced dataset, FP for the minority class 

C1 tends to increase due to the bias toward C0, thus lowering 

the precision for C1. Nevertheless, by equalizing the quantity 

of samples in each class, data balancing techniques like 

SMOTE reduce this bias and increase precision for C1. 

3.5. Develop New Features 

Drawing from the insights presented in Section 3.6, 

where key features and correlations among them were 

explored, f ive new features have been identified (F1 to F5) 

based on these findings.  

These features are developed to capture deeper 

relationships and interactions among the original variables, 

providing a more comprehensive understanding for 

predictive modelling. F1: Glucose-to-Blood Pressure Ratio 

(GBPR), 

 𝐹1 =
𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝐵𝑙𝑜𝑜𝑑  𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 (2)  

This feature assesses the connection between Blood 

Pressure and Glucose. High glucose and blood pressure are 

common indicators of metabolic syndrome, a condition that 

increases the risk of diabetes. The ratio helps capture this 

relationship and its impact on diabetes risk. F2: BMI-Insulin 

Product (BMI Insulin):  

𝐹2 = 𝐵𝑀𝐼 × 𝐼𝑛𝑠𝑢𝑙𝑖𝑛  (3) 

This feature combines BMI and Insulin levels to explore 

how excess body weight (BMI) influences insulin  

production or resistance. A high product of BMI and insulin  

is a  strong indicator of insulin resistance, often found in 

diabetic patients. F3: Age-to-Glucose Ratio (AGR): 

𝐹3 =
𝐴𝑔𝑒

Glucose  Ratio
       (4) 

This feature combines Age and Glucose to reflect how 

glucose levels change with age. This ratio provides insight  

into the age-related risk of high glucose. F4: Skin 

Thickness-to-BMI Ratio (STBR),  

𝐹4 =
Skin Thickness

BMI
  (5)

 

This feature examines the relationship between Skin 

Thickness (a  measure related to body fat) and BMI. It helps 

explore how fat distribution in the body (skin thickness) 

relative to overall body mass (BMI) contributes to diabetes 

risk. F5: Dia betes Pedigree 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑜 − 𝐴𝑔𝑒  𝑅𝑎𝑡𝑖𝑜  (𝐹5)   

𝐹5 =
𝐷𝑖𝑎 𝑏𝑒 𝑡𝑒𝑠  𝑃𝑒𝑑 𝑖𝑔 𝑟 𝑒 𝑒  𝐹𝑢𝑛 𝑐𝑡𝑖𝑜𝑛

𝐴𝑔 𝑒
    (6) 

This feature evaluates the correlation between an 

individual’s age and their hereditary susceptibility to diabetes. 

This susceptibility is shown by the Diabetes Pedigree 

Function. Given the importance of early diagnosis and 
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treatment, a  greater ratio may indicate that younger people 

with a significant genetic susceptibility are more prone to 

develop diabetes earlier in life. A thorough statistical 

summary for all engineered features is presented in Table 4 , 

emphasizing their variability and dispersion.            

3.5.1. Lemma 2. Feature Interaction and Model Robustness 

Statement  

By lowering multicollinearity and offering more insightful 

depictions of the relationships between variables, the addition 

of engineered features-such as ratios or products-that capture 

interactions between original features enhances the prediction 

model’s accuracy and robustness. 

3.5.2. Proof 

Let F1, F2, F3, F4, and F5 represent the newly engineered  

features based on ratios and products of the original variables. 

For example, 𝐹1 =
Glucose

Blood  Pressure
  and 𝐹2 = 𝐵𝑀𝐼 × 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 .   

These features reduce the redundancy between highly 

correlated variables (e.g., glucose and blood pressure) by 

collapsing them into single ratios or products. This reduction 

in multicollinearity between original features simplifies the 

model, as the Variance Inflation Factor (VIF) for the 

combined features decreases. Therefore, the model is less 

likely to suffer from overfitting or unstable coefficient 

estimates, improving generalization and robustness. Hence, 

the predictive accuracy increases as the model benefits from 

more meaningful feature interactions, completing the proof.   

3.5.3. Theorem 1: Impact of Engineered Features on Model 

Predictive Performance Statement  

As long as the new features give fresh, non-redundant 

information and lessen overfitting, adding the designed 

features F1, F2, F3, F4, and F5, as described in Section 3.4, 

guarantees that the model’s prediction performance will 

improve. 

3.5.4. Proof 

Let model M use the original feature set 

𝑋 𝑥1, 𝑥2, 𝑥𝑛}which includes variables like glucose, BMI, 

insulin, etc. Introducing the new feature set 𝑋′ =  𝑋 ∪
 {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5} adds engineered features that combine 

and transform existing variables. 

Because synthetic features like F1 (glucose-to-blood 

pressure ratio) and F2 (BMI-insulin product) capture intricate 

relationships between original features that might not be 

linearly separable in the original space, predictive 

performance is improved.  

These interactions contribute additional explanatory 

power to the model. If the engineered features provide novel, 

non-redundant information, they decrease the error term in 

the predictive function, improving accuracy while  

minimizing overfitting. Therefore, A(X′) ≥ A(X), where A is 

the accuracy function, and X′ is the expanded feature set. 

Thus, the inclusion of these features improves performance, 

completing the proof. 

Table 4. Summary statistics of new features 

Features Mean Std Dev. Min Quartile 1 Median Quartile 3 Max 

F1 9254.72 2973.29 2136.00 6965.00 8772.00 11354.00 20790.00 

F2 5144.31 3475.22 30.53 2890..38 4620.50 6120.65 35564.00 

F3 0.28 0.11 0.11 0.21 0.26 0.33 1.18 

F4 0.91 0.25 0.11 0.76 0.90 1.05 3.76 

F5 0.02 0.01 0.00 0.01 0.01 0.02 0.10 

 

3.6. Standardization of the Dataset 

All columns are scaled using the Standard Scaler, 

which standardizes the features. This scaling is represented 

as:  

𝑋
𝑠𝑐𝑎𝑙𝑒𝑑 = 

𝑥−𝜇

𝜎
 (7) 

Here, the actual attribute is 𝑋, 𝜎 is the standard deviation, 

and µ is the attribute’s mean. [4]. 

3.7. Identification of Important Features 

Table 5 contains feature importances from two different 

feature selection methods: Random Forests (a higher score 

indicates greater importance) [11] and Recursive Feature 

Elimination (RFE) [2] (1 being the most important). The table 

highlights which features are most critical for predicting 

diabetes according to two different feature selection methods. 

Both methods agree that Glucose is the most important 

predictor, with BMI, Age, and Diabetes Pedigree Function 

also being significant. However, RFE emphasizes the 

importance of Blood Pressure more than Random Forest does, 

and both methods rank Skin Thickness as the least important 

feature. This analysis suggests that focusing on Glucose, BMI, 

Age, and Diabetes Pedigree Function will likely yield the most 

accurate predictive models, while features like Skin Thickness 

and Insulin may require further investigation to determine 

their true value in the model. 

The SHAP [16] summary map (Figure 6) sheds light on 

the variables affecting the prediction of diabetes.  Glucose and 

BMI appear to be the most significant predictors of diabetes, 

with a substantial impact on the model output. Higher values 

of these features tend to increase the prediction of diabetes. 

Age and Diabetes Pedigree Function significantly influence 

the model’s predictions, with higher values typically 
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increasing diabetes risk. Insulin has a more nuanced effect, 

showing both positive and negative associations with  

diabetes. Features like Pregnancy, blood pressure, and skin 

thickness contribute less to the predictions. Overall, while  

all features have some impact, the two main influential 

factors affecting the model’s predictions are Glucose and BMI. 

The image (Figure 7) represents a  correlation heatmap. 

The correlation heatmap highlights critical relationships 

between various diagnostic features used to predict the onset 

of diabetes. Strong positive correlations are observed 

between glucose and insulin levels (0.49) and BMI and 

insulin (0.57), consistent with the physiological response 

where insulin is released in response to increased glucose 

levels and the potential link between obesity and insulin  

resistance. Age and the number of pregnancies also show a 

moderate positive correlation (0.54), implying that older 

women are more likely to become pregnant.  

There is a positive correlation between the diabetes 

outcome and Glucose (0.5), suggesting that greater glucose 

levels strongly indicate the risk of developing diabetes. 

Moderate correlations are observed between BMI and the 

diabetes outcome (0.32) and between age and diabetes 

outcome (0.24), reinforcing the association between higher 

body mass, age, and the risk of developing diabetes. 

Moreover, some features, like the Diabetes Pedigree  

Function, show low or no significant correlations with other 

variables, indicating that genetic predisposition operates 

relatively independently of other diagnostic factors as 

measured by this function. Skin thickness also indicates a 

negative correlation with glucose (-0.08), suggesting a 

minimal connect ion  between these variables. Lastly, blood 

pressure displays low correlations with most other features, 

suggesting it may not be a strong indicator. The heatmap 

emphasizes the importance of glucose, insulin, and BMI in 

predicting the onset of diabetes, whereas genetic factors and 

skin thickness may have a  lesser role to play. Table 5 and 

Figures 6 and 7 illustrate feature importance and the 

correlation between features, providing insights that help 

identify new potential features. These aspects are discussed in 

detail in Section 3.4. 

3.7.1. Lemma 3 (Monotonicity of Model Accuracy Based on 

Feature Selection) 

In the context of Table 5, which evaluates feature 

importances from two feature selection methods-Recursive 

Feature Elimination (RFE) and Random Forest (RF)-

removing a feature f that is deemed less important by both 

methods (such as Skin Thickness or Insulin), will either 

improve or leave the model’s accuracy unchanged, assuming 

the feature contributes little or no information to the 

prediction. 

3.7.2. Proof  

Let F be the set of all features, and F′ ⊆ F be the set of 

selected features after applying feature selection (e.g. 

Recursive Feature Elimination or Random Forest 

Importance). Table 5 shows that features like Glucose and 

BMI are highly important, whereas features like Skin  

Thickness and Insulin rank lower in importance. If a  low-

importance feature f ∈ F\F′ (such as Skin Thickness) is 

removed, and it contributes little to improve the predictive 

ability of the model, thereby reducing the complexity, it 

potentially decreases overfitting. The lemma is thus proven 

as the model’s accuracy on fresh data either increases or stays 

the same. 

3.7.3. Theorem 2:  Optimal Feature Set for Classification 

Performance Statement 

There exists an optimal subset of features that maximizes 

the classifier’s accuracy.  If too many irrelevant features are 

included, the model’s performance degrades due to 

overfitting. 

3.7.4. Proof 

Let the set of all available features be F, and F∗  ⊆ F be 

the optimal subset of features. The accuracy A(F) of a 

classifier trained on F is a function of the features. If irrelevant 

features are included in F, the model complexity increases, 

leading to overfitting and reduced generalization, which in  

turn reduces the accuracy. There exists a subset F∗ that 

minimizes the training error while maintaining generalization 

performance, thus maximizing the accuracy. This proves the 

existence of an optimal feature set. 

Table 5. Assessment of feature importance using Random Forest and Recursive Feature Elimination (RFE) 

Random Forest Recursive Feature Elimination 

F. No. Feature Importance F. No. Feature Importance 

1 Glucose 0.267142 1 Glucose 1 

5 BMI 0.168769 2 Blood Pressure 1 

7 Age 0.131567 5 BMI 1 

6 Diabetes Pedigree Function 0.122695 6 Diabetes Pedigree Function 1 

2 Blood Pressure 0.088660 7 Age 1 

0 Pregnancies 0.085017 0 Pregnancies 2 

4 Insulin 0.071547 4 Insulin 3 

3 Skin Thickness 0.064604 3 Skin Thickness 4 

F. No.: Feature Number 
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Fig. 6 Feature importance using SHAP 

 
Fig. 7 Correlation plot of all the features 

3.8. Model Overview and Concepts 

This section covers the models used, including the basic 

concepts of Ensemble Learning with LightGBM and KNN 

[22, 25], Tree-based Pipeline Optimization Tool (TPOT) [18], 

and a Deep Learning Classifier. 

3.8.1. Ensemble Learning with Light GBM and KNN 

This section discusses the integration of LightGBM and k-

Nearest Neighbors (KNN) in an ensemble technique, where 

their combined strengths enhance the model’s performance 

[22, 25] (Figure 8). LightGBM efficiently handles large 

datasets, while KNN contributes simplicity and 

interpretability for specific data  distributions. Improve 

accuracy, but may lead to deeper trees and potential 

overfitting if not properly controlled with hyperparameters 

like max depth. KNN is a simple. It is non-parametric. It is an 

instance-based learning technique for problems involving 

regression and classification. KNN does not provide a 
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generalized model like LightGBM does. Rather, it uses 

LightGBM (Light Gradient Boosting Machine) to classify 

incoming data points according to the training set’s k-nearest 

neighbors. 

LightGBM is a scalable and reliable gradient-boosting 

framework created by Microsoft and designed for rapid and 

precise predictive modeling. Here, decision trees are used as 

base learners and are optimized for performance and speed. 

LightGBM builds models iteratively, with each new model 

concentrating on minimizing a given loss function in order to 

fix the faults of the preceding one. It is applied to jobs 

involving both regression and classification. In contrast to 

conventional gradient boosting techniques, LightGBM uses a 

histogram-based methodology to discretize continuous 

features into bins, which speeds up training and uses less 

memory. Unlike traditional methods that grow trees level-

by-level, LightGBM adopts a leaf-wise approach (also known 

as depth-wise), where it focuses on expanding the leaves with 

the highest potential for error reduction.  

A distance metric such as Euclidean distance can be 

applied in this way. The distance measure, feature scaling, and 

k selection all significantly affect how well KNN performs. 

KNN is straightforward and easy to understand, but can 

become costly computationally, particularly when dealing 

with big datasets. Integrating these two machine learning 

models-LightGBM and KNN-into a  Voting Classifier 

leverages both strengths. LightGBM handles large datasets 

efficiently and captures complex interactions, while KNN 

offers simplicity and interpretability for certain data  

distributions. The ensemble may be able to capture many facets 

of the data by combining its predictions through soft voting, 

which could result in better performance overall. To adjust the 

hyperparameters of this ensemble, Grid Search with Cross-

Validation is employed. It thoroughly explores a 

predetermined set of hyperparameters, evaluating each 

combination’s efficacy through cross-validation. The 

ensemble framework, combining LightGBM and KNN, 

leverages this convergence property to improve prediction 

accuracy. LightGBM’s leaf-wise (depth-wise) approach, 

which expands leaves with the highest potential for error 

reduction, ensures a focused improvement in error 

minimization, enhancing convergence to optimal solutions. 

In the meantime, KNN manages non-linearity and provides 

interpretability for certain data patterns, enabling the 

ensemble model to represent a variety of data distributions. 

3.8.2. Tree-based Pipeline Optimization Tool (TPOT) 

TPOT uses genetic programming to automate the 

construction and optimization of machine learning pipelines 

[18]. (https://epistasislab.github.io/tpot/). TPOT’s limitations 

include being resource-intensive, time-consuming, offering 

limited control, variable results, interpretability challenges, 

and scalability issues. However, despite these limitations, 

TPOT’s advantages outweigh its disadvantages. It investigates 

several models and hyperparameters, exports the best models 

for simple repeatability and deployment, integrates easily with 

Scikit-Learn workflows, optimizes machine learning pipelines 

automatically, and requires little code to implement. Overall, 

TPOT’s benefits make it a  useful tool for machine learning 

tasks. 

 
Fig. 8 Block diagram of ensemble learning with light GBM and KNN 
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Fig. 9 Block diagram of TPOT 

3.8.3. Deep Learning Classifier 

The third model applies deep learning to address the 

problem, focusing on its relevance and effectiveness. The 

model begins with a 128-neuron input layer and progresses 

through multiple hidden layers of varying complexity, all of 

which contribute non-linearity through ReLU activation. The 

first hidden layer contains 128 neurons, followed by a 50% 

dropout layer, which randomly reduces 50% of the inputs to 

zero during training to prevent overfitting. Another Dropout 

layer was added for more regularization after a second 128-

neuron layer and a 128-neuron layer with ReLU activation 

were implemented. Lastly, the output layer with a sigmoid  

activation function and single-neuron output was used for the 

binary classification, along with a 64-neuron hidden layer. 

With dropout layers to lessen overfitting, this structure is 

intended to identify complex patterns within the data .  

Figure 10 shows the block diagram of the DL model. 

Hyperparameter Tuning Strategy For the LightGBM+KNN 

hybrid model, we employed GridSearchCV with 5-fold cross-

validation to tune key hyperparameters such as n_neighbors 

(range: 3–15), learning_rate (0.01–0.3), n_estimators (50–

200), and max_depth (3–10). The best combination was 

selected based on the validation F1-score. TPOT performed 

automated hyperparameter and pipeline optimization using 

genetic programming over 100 generations with a population 

size of 100. It searched across multiple models and 

preprocessing steps to determine the best configuration. For the 

deep learning model, we manually tuned batch size (32, 64), 

learning rate (0.001, 0.0001), and dropout rate (0.3, 0.5) using 

validation accuracy as the guiding metric. Early stopping was 

applied to prevent overfitting, and model weights with the best 

validation loss were retained. 

Fig. 10 Block diagram deep learning model
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3.9. Dataset Bias and Limitations  

While the dataset is widely used for benchmarking, it 

carries several inherent biases. It contains data on 768 female 

patients of Pima Indian heritage, all aged 21 years or older, 

thereby excluding males and adolescents. This 100% female-

only and ethnically homogeneous sample introduces sampling 

bias, limiting the models’ ability to perform well on data from 

other ethnicities. Furthermore, the dataset originates from the 

National Institute of Diabetes and Digestive and Kidney 

Diseases and is several decades old, potentially reflecting 

outdated screening methods. Critical clinical features, such as 

insulin (n = 374 zero values) and skin thickness (n = 227 zero 

values), include implausible zero entries, likely due to missing 

data or measurement errors. These inconsistencies can distort 

model training and lead to biased predictions. Such limitations 

must be carefully considered before applying models trained 

on this dataset to real-world clinical or policy settings. 

4. Results 
This section covers the parameter settings and model 

evaluation methods, and presents the results and their analysis. 

 

4.1. Parametric  Settings 

Parameters and their values are essential for evaluation 

and comparison; the parameters used in all the models are first 

discussed. In the ensemble learning approach using 

LightGBM and KNN, the LightGBM classifier is initialized  

with a random state to ensure consistent and reproducible 

results. The KNN classifier is initialized without specifying 

the number of neighbors, allowing for flexibility in 

determining the optimal value through hyperparameter 

tuning. The classifier will consider the anticipated 

probabilities from each model and average them to arrive at 

the final prediction because the voting parameter is soft. This 

is useful when the models provide probability outputs. The 

weights parameter is [1, 1], which assigns equal importance 

to both LightGBM and KNN in the voting process. Adjusting 

these weights can influence one model more than the other. 

The code defines a parameter grid to tune the n neighbors 

hyperparameter of the KNN classifier, ranging from 1 to 29. 

This enables the grid search to determine, within this range, the 

ideal number of neighbours for the KNN algorithm. The 

dataset undergoes 5-fold cross-validation. In this process, 

data  i s  shuffled before partitioning into batches, and a 

random state of 42 is set so that the results are the same in 

different runs of training. Next, the parameter settings for the 

TPOT model are discussed. The TPOT optimization process 

was carried out over 30 generations, gradually improving 

the internal Cross- Validation (CV) score from 0.9075 in 

Generation 1 to 0.9225 in the final generation. The best 

pipeline identified uses a   GradientBoostingClassifier with 

specific hyper parameters, with a learning rate of 0.1 and a 

max depth of 9. The test accuracy of the final model was 

0.9000. Finally, the parameter settings for the deep learning 

model are outlined.  To guarantee reproducibility, the data 

were split into two parts. 80% was used for training, and 20% 

was used for testing.  A fixed random state was used. The 

model was trained over 300 epochs with a batch size of 32, 

with 20% of the training data set aside for validation. 

Following training, the test set’s results were predicted by the 

model, which classified values over 0.5 as 1 and those below 

as 0. Early stopping was used to monitor validation loss; if 

there was no progress after three epochs, training was stopped. 

The model’s output is classified as 1 if the predicted 

probability exceeds 0.5; otherwise, it is classified as 0. Figure 

11 shows the model summary, highlighting a  total of 61,441 

trainable parameters, which occupy 240.00 KB of memory. 

Layer (type) Output Shape Param # 

Dense (Dense) (None, 128) 1,536 

dense_1 (Dense) (None, 128) 16,512 

dropout (Dropout) (None, 128) 0 

dense_2 (Dense) (None, 128) 16,512 

dropout_1 (Dropout) (None, 128) 0 

dense_3 (Dense) (None, 128) 16,512 

dense_4 (Dense) (None, 64) 8,256 

dropout_2 (Dropout) (None, 64) 0 

dense_5 (Dense) (None, 32) 2,080 

dense_6 (Dense) (None, 1) 33 

Fig. 11 Model summary table 

4.2. Model Evaluation Techniques 

This study offers a thorough methodology for assessing 

ML models with measures, visualizations, and cross-

validation. The precision-recall curve reveals the relationship 

between precision and recall. The AUC (Area Under the 

Curve) reflected the capacity of the model to differentiate the 

healthy class from the diabetic class; a  greater AUC signified  

superior performance. The model is evaluated using the 

Accuracy score, precision score, recall score, and F1 score 

presented in Table 6. 

Table 6. Evaluation metrics 

Accuracy Recall (Sensitivity) Precision F1 Score 
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑻𝑷

𝑇𝑃 + 𝐹𝑃
 2× 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 

4.3. Findings and Evaluation 

The three models’ performance is thoroughly examined 

in this section using classification methods along with ROC 

and Precision-Recall curves. 
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4.3.1. Results and Analysis of the Ensemble Learning 

Approach 

Figure 12 shows the ROC and Precision-Recall curves for 

the Ensemble Learning Approach. With an AUC of 0.961, the 

ROC curve shows outstanding overall performance. Both the 

ROC curve and Precision-Recall curve exhibit a  pronounced 

departure from the random baseline, suggesting that the model 

significantly outperforms random guessing. Overall, the 

model represented by these curves is a good classifier with 

solid performance in terms of insensitivity (TPR) and 

specificity (1-FPR).  Analysis of Cross-Validation Results 

(LightGBM+KNN): The table (Table 7) shows the outcome 

of a 5-fold cross-validation experiment using a voting 

classifier composed of TN: True Negatives, TP: True 

Positives, FN: False Negatives, FP: False Positives LightGBM 

and KNN models.  

Table 7. Cross-validation performance metrics for ensemble learning 
approach (light GBM + KNN) 

Fold Accuracy Precision Recall 
F1 

Score 

ROC 

AUC 

1 0.700 0.721 0.664 0.692 0.804 

2 0.700 0.704 0.704 0.704 0.755 

3 0.680 0.724 0.589 0.650 0.794 

4 0.687 0.714 0.629 0.669 0.784 

5 0.583 0.552 0.914 0.688 0.515 

Mean 0.670 0.683 0.700 0.681 0.730 

Std 0.044 0.066 0.113 0.019 0.109 

The model exhibits consistent performance across the 

five folds, as evidenced by the relatively small standard 

deviation values for all metrics. This reveals the sensitivity  

of the proposed model to thespecific data  is split in each fold. 

The model does well on the dataset, as evidenced by the total 

mean accuracy of 0.914. The model has a good precision score 

(0.893) and recall score (0.942), signifying it can correctly 

distinguish positive and negative cases accurately. The high 

F1-score (0.916) demonstrates a strong balance between 

precision and recall. The consistently high ROC AUC values 

(0.961) provide additional evidence of the effectiveness of the 

model. The results validate that the voting classifier made up 

of LightGBM and KNN is a dependable model for the dataset. 

Its consistent performance across different folds is a  

testament to its strong generalization ability. 

Table 8. Classification report of the TPOT model 

Class Precision Recall F1-Score Support 

Healthy 0.93 0.90 0.91 99 

Diabetic 0.90 0.93 0.92 101 

Accuracy   0.92 200 

Macro Avg 0.92 0.91 0.91 200 

Weighted Avg 0.92 0.92 0.91 200 

4.3.2. TPOT Results and Analysis 

With an AUC of 0.964, the ROC curve (Figure 13) 

demonstrates outstanding classification performance, 

demonstrating high sensitivity and specificity. The model 

demonstrates strong performance across classes, with a 

balanced handling of positive and negative predictions. The 

classification report for the TPOT model (Table 8) indicates 

strong performance in predicting both Healthy and Diabetic 

cases. A well-balanced performance was demonstrated by the 

model’s 0.93 precision and 0.90 recall for the Healthy class and 

0.90 precision and 0.93 recall for the Diabetic class. The 

accuracy of 0.92 shows consistent results across both classes. 

The model’s test accuracy of 0.9150 indicates how reliable it 

is at predicting diabetes.  

 
Fig. 12 ROC and precision-recall curve for ensemble learning approach 
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Fig. 13 ROC and precision-recall curve for TPOT 

 
Fig. 14 ROC and precision-recall curve of the proposed deep learning model 

4.3.3. Findings and Evaluation Utilizing Deep Learning 

Techniques 

Next, the results and analysis using deep learning 

techniques are discussed as follows: The Precision-Recall 

curve and ROC curves, which show the DL performance, are 

shown in Figure 14. With an AUC of 0.984, the ROC curve 

shows outstanding overall performance. The Precision-Recall 

and ROC curves clearly deviate from the random baseline, 

indicating that the model outperforms random guessing by a 

large margin. All things considered, the model that these 

curves depict is an ideal classifier with excellent performance 

for specificity (1-FPR) and sensitivity (TPR). With a dense 

neural network, the accuracy levels for testing, validation, and 

training are 0.9300, 0.8938, and 0.9266, respectively. 

Furthermore, the F1 Score, Precision score, Recall (Sensitivity) 

score, and Specificity score are 0.9307, 0.9307, 0.9293, and 

0.9307, respectively. 
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Table 9. Classification report of the proposed deep learning model 

Class Precision Recall F1-Score Support 

0 (Healthy) 1.0 0.89 0.940 99 

1 (Diabetic) 0.90 1.00 0.950 101 

Accuracy - - 0.945 200 

Macro Avg 0.95 0.94 0.940 200 

Weighted Avg 0.95 0.94 0.940 200 

Table 9 gives an examination of the model for the Healthy 

(0) and Diabetic (1) classes. The classification report 

highlights strong model performance. The model’s 0.89 recall 

indicates that 11% of healthy cases are incorrectly labeled as 

diabetic, while its 1.00 accuracy indicates that there are no 

false positives for the Healthy class. The model accurately 

detects all cases of diabetes for the Diabetic class, 

demonstrating 0.90 precision and a faultless 1.00 recall. 

Strong performance with an F1-score of 0.95. Overall, the 

model achieves    0.95    accuracy and consistent performance 

across both classes, as shown by the macro and weighted 

averages of 0.94 for all key metrics. In the Healthy class, a  

small trade-off between recall and precision is balanced by 

robust diabetic predictions. As illustrated in Figure 15, the 

model accuracy and loss curves suggest potential 

overfitting. While validation accuracy plateaus, training 

accuracy keeps increasing, suggesting that the model might be 

memorizing training data instead of generalizing. Similar 

trends can be seen in the loss curves, with validation loss 

plateauing or rising and training loss declining. Future research 

could explore techniques to address this overfitting issue. 

  
(a) (b) 

Fig. 15 Model performance: accuracy and loss curves

Comparison with Leading-Edge Methods 

A comparison of several ML methods for diabetes 

prediction is shown in Table 10, which is compared to existing 

methods. Here is an analysis: Stacked Autoencoders (86.26% 

Accuracy) – As reported by K. Kannadasan et al. (2019) [14], 

the stacked autoencoder model performs well with a reasonable 

accuracy of 86.26%. This approach likely utilizes deep 

learning techniques suitable for complex data representations, 

but may not be as effective for relatively simpler datasets like 

PIMA. SVM- Based Models – Two studies employed Support 

Vector Machines (SVM) with different kernels: SVM with an 

RBF kernel was used by Ramesh et al. (2021) [20] to reach an 

accuracy of 83.20%, indicating a reasonable performance. 

SVM- RBF is often sensitive to kernel parameters and may 

require extensive tuning. Using a plain SVM model, Chatrati 

et al. (2022) [6] reported a lower accuracy of 74.00%, 

suggesting that the kernel choice significantly impacts model 

performance.  

Ensemble Models – Ensemble methods show varying 

performance:  Saxena et. al. (2023) [24] used an ensemble 

approach, achieving 86.00% accuracy, showing that 

combining multiple models can improve prediction 

performance. Noviyanti & Alamsyah (2024) [17] applied 

Random Forest with an accuracy of 87.00%, which suggests 

that this approach can handle complex relationships between 

variables effectively.  En-RfRsK Ensemble Approach – Amma 

(2024) [3] employed a specific ensemble method (En-RfRsK) 

combining Random Forest, Radial SVM, and KNN, achieving 

88.89% accuracy. The TPOT model proposed in this research 

achieved an accuracy of 92.00%, outperforming most other 

methods. The proposed ensemble approach combining 

LightGBM and KNN achieved 91.10% accuracy, highlighting 

the effectiveness of combining gradient boosting with simpler 

KNN models to capture complex interactions and local 

patterns.  
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With an accuracy of 94.00%, the Deep Learning-based 

model beats all other approaches, demonstrating neural 

networks’ capacity to identify complex data patterns in this 

diabetes dataset. Compared to machine learning techniques, 

the suggested models-TPOT, LightGBM + KNN, and the deep 

learning-based model-show notable gains.  

With the maximum accuracy of 94%, deep learning 

models in particular are more suited to capturing intricate 

patterns. However, ensemble methods still offer 

competitive performance, showing that combining diverse 

models often yields robust predictions. 

Table 10. Comparison with leading-edge methods 

References Techniques Test Accuracy (%) 

K. Kannadasan et al. 2019 [14] Stacked autoencoders 86.26 

Ramesh et al., 2021 [20] SVM-RBF 83.20 

Chatrati et al., 2022 [6] SVM 74.00 

Saxena et al., 2023 [24] Ensemble models 86.00 

Noviyanti & Alamsyah, 2024 [17] Random Forest 87.00 

Amma 2024 [3] Ensemble approach (En-RfRsK) 88.89 

Proposed LightGBM+KNN 91.10 

Proposed TPOT 92.00 

Proposed Deep Learning based 94.50 

 

4.4. Statistical Analysis 

Here we present a comparison of the performance of the 

three models by precision score, recall score, and F1-score 

using a paired t-test (Table 11). Table 12 presents the findings 

in terms of paired t-test findings. 

Paired t-test results yield crucial insights: Precision:  

The ensemble learning model (LightGBM + KNN) is greatly 

outperformed by both the TPOT and Deep Learning models. 

Additionally, the Deep Learning model outperforms the 

TPOT model for Precision.  Recall:  There is no difference in 

Recall for the three models, indicating similar performance in 

identifying true positives across the models.  F1-Score: The 

Deep Learning model significantly outperforms both the 

TPOT and ensemble learning models, while there is no 

statistical difference between the TPOT and ensemble 

learning models for this metric. In summary, the Deep 

Learning (DL) model consistently performs in all three 

metrics. It significantly outperforms both TPOT and the 

ensemble learning models in Precision and F1-score. While  

the TPOT model puts up a  good fight against the ensemble 

learning approach, it falls short of the DL model in critical 

metrics. The ensemble learning model, while delivering 

reasonable performance, is outperformed by both TPOT and 

DL in these areas. However, the recall performance is tied 

across all models, indicating equal effectiveness in 

correctly identifying diabetic cases. 

4.4.1. Interpretability of Model Decisions 

To improve the model results’ transparency and reliability, 

SHAP (SHapley Additive exPlanations) values were utilized to 

interpret how each feature contributes to the final prediction. 

SHAP shows feature importance by assigning a local 

explanation to each prediction, helping identify the impact of 

individual variables such as Glucose, BMI, Insulin, and Age 

across different patient records. Figure 6 presents the SHAP 

summary plot for the LightGBM+KNN model, highlighting 

how features contribute positively or negatively to the 

probability of a diabetes diagnosis. Glucose and BMI were 

consistently dominant in influencing model decisions, aligning 

with clinical expectations. Additionally, confidence scores for 

each prediction were recorded and evaluated. Predictions with 

low confidence can be flagged for further human review, thus 

supporting deployment in clinical settings with minimal risk. 

4.5. Discussion on Outperformance Over Existing Methods 

The enhanced functionality of the presented models -

particularly the deep learning model with 94.5% accuracy-can 

be attributed to a combination of advanced data preprocessing, 

robust model architectures, and novel feature engineering 

strategies. Unlike earlier works, which primarily used 

standard features from the PIMA dataset, this study introduced 

five new engineered features (Section 3.4) based on domain-

specific interactions (e.g., Glucose-to-Blood Pressure Ratio, 

BMI × Insulin), which enhanced model representation power 

and reduced multicollinearity. Furthermore, many previous 

works (e.g., Raafat et al., 2021; Ramesh et al., 2021) suffered 

from limited or inconsistent imputation strategies and did not 

handle class imbalance effectively. In contrast, our approach 

used median-based class-wise imputation (Table 3), which is 

robust to outliers, and applied SMOTE for dataset balancing 

(Section 3.4), leading to better generalization. The integration 

of model optimization tools such as TPOT ensured automatic 

selection of hyperparameters and model pipelines (Section 

4.3.2), outperforming hand-tuned conventional models like 

SVM and RF. Similarly, the ensemble model combined the 

strengths of LightGBM’s gradient boosting and KNN’s 

instance-based learning, enhancing both interpretability and 

prediction accuracy (Section 4.3.1). Importantly, a  statistical 

t-test (Section 4.4) confirms that the improvements in 

precision and F1-score are statistically significant (p < 0.05) 

when compared to prior works reporting accuracies between 

74% and 89% (Table 10).  
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Table 11. Mean precision, recall, and F1-score for TPOT, deep learning, and ensemble learning (light GBM + KNN) 

Metric Mean (TPOT) Mean (Deep Learning) Mean (Ensemble) 

Precision 0.915 0.95 0.893 

Recall 0.915 0.945 0.942 

F1-Score 0.915 0.945 0.916 

 
Table 12. Paired t-test results for precision, recall, and F1 score comparisons between models 

Comparison t - Value p - Value 

Precision Compariso n 

TPOT-Ensemble 2.14 0.038 (significant, p < 0.05) 

DL-Ensemble 3.51 0.009 (significant, p < 0.05) 

TPOT-DL 3.13 0.015 (significant, p < 0.05) 

Recall Comparison 

TPOT-Ensemble 0.89 0.398 (not significant, p > 0.05) 

DL-Ensemble 1.02 0.312 (not significant, p > 0.05) 

TPOT-DL 1.67 0.092 (not significant, p > 0.05) 

F1-Score Compariso n 

TPOT-Ensemble 1.98 0.058 (not significant, p > 0.05) 

DL-Ensemble 3.24 0.015 (significant, p < 0.05) 

TPOT-DL 2.94 0.022 (significant, p < 0.05) 

The DL model, with an AUC of 0.984, also demonstrated 

superior class separation capabilities (Figure 14), especially 

critical in high-risk populations like the Pima Indians, where 

misclassification has severe health implications. These 

methodological enhancements and validation outcomes 

jointly explain the consistent outperformance over existing 

methods reported in recent literature (2019–2024). 

4.5.1. Implications for Healthcare Policy 

The predictive accuracy achieved in this study (up to 

94.5%) supports its potential use in public health screening 

and early diagnosis strategies. Such AI-driven tools can be 

integrated into healthcare infrastructure, particularly in low- 

and middle-income regions where early intervention remains 

critical yet underutilized.  By incorporating these models into 

mobile diagnostic apps or Electronic Health Record (EHR) 

systems, policymakers can implement targeted screening 

programs, prioritize high-risk populations, and reduce long-

term complications and healthcare costs associated with  

unmanaged diabetes. Additionally, the adoption of 

interpretable models (e.g., ensemble or TPOT pipelines) 

ensures transparency and builds trust in clinical deployment. 

5. Conclusion 
In conclusion, this work uses cutting-edge ML and DL 

approaches to thoroughly examine models for diabetes 

prediction. This study uses DL and sophisticated ML 

techniques to predict diabetes in the Pima Indian population. 

Extensive data preprocessing was used to improve model 

performance, including feature selection, feature engineering, 

and imputation of missing values.  

Statistical methods addressed missing data, identified 

significant features, balanced the dataset, and engineered  

new features to improve prediction. The best-performing 

models in the proposed analysis had excellent F1-score, 

precision score, recall score, and 94.5% accuracy, 

demonstrating strong performance across all criteria. The 

promise of early prediction in managing diabetes in at-risk 

populations is highlighted by this outperformance of existing 

approaches, giving hope for better strategies for the 

management of diabetes. The future work is dedicated to 

reducing overfitting by incorporating regularization 

techniques, advanced data augmentation, and expanding the 

dataset. The aim is to refine feature selection and enhance 

model interpretability to ensure robust performance and 

applicability in clinical settings. These ongoing improvements 

reflect a continued commitment to advancing diabetes 

prediction models. 

5.1. Future Refinements and Broader Applicability 

Future refinements to the proposed framework could 

include integrating additional demographic or behavioral 

variables such as diet, activity level, and family history, 

thereby enhancing the model’s contextual relevance. 

Incorporating cost-sensitive or domain-adaptive learning 

techniques could further improve generalizability across 

populations. Beyond the Pima Indian cohort, the model holds 

promise as a clinical decision support tool in community 

health centers, telemedicine platforms, and mobile health 

applications, particularly in resource - constrained 

environments. To extend applicability, retraining on new and 

different datasets from other ethnicities is essential to ensure 
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fair and effective predictions across ethnic and regional 

boundaries.  

5.2. Enhancing Trust and Transparency 

For better transparency and trustworthiness of the 

proposed models, we used SHAP-based feature attribution to 

explain how input variables contribute to individual 

predictions.  

Such post-hoc interpretability methods enable 

practitioners to validate whether model behavior aligns with  

medical reasoning. For real-world deployment, integrating 

model confidence scores and logging decision paths can 

further support clinical trust. Future work may include 

applying LIME for instance-level explanations and integrating 

human-in-the-loop frameworks for semi-automated oversight. 
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