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Abstract - Control over the availability of liquid chemical materials as raw materials is a crucial factor in the production process 

at XYZ Company. A shortage of raw materials leads to losses due to additional shipping costs and the inability to meet customer 

demands. On the other hand, ordering excessive raw materials creates another problem, as the limited warehouse capacity and 

the presence of dead stock also result in financial losses. Therefore, a more accurate forecasting method is needed compared to 

the current approach, which relies only on raw material usage in the same month of the previous year and the average of the 

last three months. To address this issue, two popular forecasting methods are applied: the traditional machine learning method 

Autoregressive Integrated Moving Average (ARIMA) and the modern deep learning method Long Short -Term Memory (LSTM). 

This study adopts the Cross-Industry Process for Data Mining (CRISP-DM) framework and utilizes Python software. The aim is 

to evaluate forecasting accuracy across different time frames by comparing RMSE and MAPE values. The results show that both 

ARIMA and LSTM perform well, with MAPE values ranging from 9.0% to 18.7%. The ARIMA method, when applied with a 

monthly time frame, achieved an MAPE of 9.0%, indicating a very high level of accuracy.  

Keywords - ARIMA, CRISP-DM, Forecasting, LSTM, Python. 

1. Introduction 
XYZ is a manufacturing company that produces 

polyurethane foam, rubber, plastic, and synthetic materials. 

These products are widely used in the automotive, 

construction, garment, and industrial parts industries. In the 

production of these products, a  significant amount of liquid  

chemical raw materials is required, 90% of which are imported 

from abroad. The daily consumption of these raw materials 

reaches approximately 25.000 kg in total. Given this high level 

of usage, ensuring the continuous availability of chemical raw 

materials is a  critical factor in XYZ’s production process. 

Control over the availability of these raw materials is essential 

because a shortage of chemical supplies can halt production at 

XYZ Company and result in unmet customer demand. The 

procurement of these raw materials requires a lead time of 

approximately one month when shipped by sea before they 

can be received. In urgent situations, air shipping can be used, 

which takes around one week but incurs significantly higher 

costs due to the large daily consumption. For instance, in July 

2024, XYZ Company experienced a shortage of 990 kg of 

chemical material type BXX-2 and 840 kg of type IXX-6, 

resulting in a total shortage of 1.830 kg. To address this issue, 

the company was forced to use air freight, which cost USD 

27.593, leading to a financial loss in shipping expenses. 

However, ordering chemical raw materials in excess creates 

another challenge due to the limited warehouse capacity, 

which makes it difficult to apply the First In, First Out (FIFO) 

system. Moreover, if stored for too long, liquid chemical 

materials risk expiring and becoming unusable. Such expired 

materials are collected and written off from the warehouse 

inventory at the end of each year, which is then recorded as a 

loss for XYZ Company. Losses caused by deadstock materials 

have increased significantly over the past two years, reaching 

Rp. 305.266.353 in 2023 and Rp. 689.809.129 in 2024.  

In this context, forecasting plays an important role in 

addressing uncertainty [1]. Accurate forecasting is essential 

for companies as it can minimize losses caused by excess 

finished goods in inventory [2] and ensure that customer 

demand is met, thereby increasing customer satisfaction [3]. 

Machine Learning is a field of study that enables computers to 

learn without being explicitly programmed. It can also be 

defined as the integration of automated computer algorithms 

with advanced statistical methods to discover hidden patterns 

within datasets [4]. In general, machine learning methods are 

divided into two main categories: supervised learning and 
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unsupervised learning. This study focused on supervised 

learning to conduct time series forecasting. Among the various 

machine learning techniques, two of the most widely used are 

ARIMA as a traditional method and LSTM as a modern deep 

learning based method. 

The Autoregressive Integrated Moving Average 

(ARIMA) method is one of the most widely used techniques 

for time series prediction. Pandit et al. [5] applied the ARIMA 

method to forecast milk production in India and achieved good 

accuracy. Similar to Rizki et al. [6], who conducted a study on 

predicting rice availability in Indonesia using ARIMA, and 

also reported reliable results. Furthermore, Noor et al. [7] 

applied ARIMA to predict reject unit data in manufacturing 

companies and found that ARIMA is a powerful statistical tool 

for processing la rge amounts of data. 

Another method for time series prediction is Long Short-

Term Memory (LSTM). Manowska et al. [8] applied the 

LSTM method to forecast crude oil consumption in Poland, 

evaluated the results using MSE and demonstrated that LSTM 

is effective for predicting nonstationary and nonlinear time 

series. Similar to Javaid et al. [9], who conducted a study on 

forecasting hydrogen production from wind power plants 

using several methods and found that LSTM achieved the best 

result. Previous studies, such as those by Sirisha et al. [10] and 

Wang et al. [11], compared the ARIMA and LSTM methods 

for forecasting, and the results indicated that LSTM was more 

accurate than ARIMA. Currently, XYZ Company relies on a 

manual prediction method by comparing usage from the 

previous three months with usage in the same month of the 

previous year, then selecting the higher value between the two.  

However, this manual approach often leads to inaccurate 

results, as discussed earlier, where XYZ Company incurred 

losses. This method is used because customers are unable to 

provide annual or monthly demand forecasts, but only weekly 

demand forecasts. In contrast, XYZ Company requires a one-

month lead time to procure materials. Based on these 

references, this study aims to predict the usage of liquid  

chemical materials using two methods, ARIMA and LSTM. 

The prediction results will then be compared to evalua te their 

performance across different time frames, namely weekly, 

biweekly, and monthly forecasts.  

2. Literature Review 
Falatouri et al. [12] conducted Predictive Analytics (PA) 

to forecast demand in retail Supply Chain Management 

(SCM) using two methods: SARIMA and LSTM. The dataset 

consisted of 37 months of retail sales data from Australia. The 

results showed that both models performed well overall. 

However, LSTM achieved better performance for products 

with stable demand. SARIMA produced more accurate 

forecasts for products with seasonal demand. The evaluation 

using MAPE and RMSE values to assess the accuracy of the 

forecasting results. 

Sunjaya et al. [13] predicted the number of positive 

COVID-19 cases in Indonesia from 2020 to 2022 using the 

ARIMA and LSTM methods. Both methods were applied, and 

the results were compared to determine which provided 

greater accuracy. The ARIMA model produced poor 

prediction results due to unmet assumption criteria. The 

LSTM model gets better results as reflected in lower RMSE 

and MAPE values. The study concluded that LSTM 

outperformed ARIMA in forecasting COVID-19 cases. 

Shahi et al. [14] conducted a study on forecasting stock 

prices using the LSTM and GRU methods. The dataset was 

obtained from the Nepal Stock Exchange (NEPSE) for the 

period from 2011 to 2019. The study also incorporated 

financial news sentiment as an additional variable. The results 

show that both methods performed well in forecasting stock 

prices based on MSE values. Moreover, the inclusion of 

financial news sentiment further improves the forecasting 

performance. 

Angelo et al. [15] conducted a comparative analysis of the 

ARIMA and Prophet methods to forecast the Bitcoin price. 

The dataset period is from February 2019 to 2021 and is 

categorized into daily, weekly, and monthly data. The 

forecasting results were evaluated using MAE, MAPE, MSE, 

and RMSE metrics. The findings showed that the Prophet 

method performed better for daily and weekly data, while the 

ARIMA method provided accurate results for monthly data. 

Rizki et al. [6] predicted rice availability in Indonesia 

using the CRISP-DM framework and the ARIMA method. 

The dataset was obtained from the Central Statistics Agency 

for the period from 2018 to 2020, by comparing several 

ARIMA parameters and the evaluation metric using the 

RMSE value. The study demonstrated that the ARIMA 

method can effectively be used to forecast rice availability in 

the future. 

Song et al. [16] predicted oil production during the 

oilfield exploration phase using the LSTM model with an 

additional optimization technique, namely the Particle Swarm 

Optimization (PSO) algorithm. In addition to LSTM, the study 

also includes other models for comparison, such as ANN and 

RNN. Based on MAPE, RMSE, and MAE values, the LSTM 

method with PSO optimization achieves a strong performance 

with an MAPE value of 9,88%. The study highlighted that 

parameter settings are crucial when running the model. 

Training epochs must be carefully managed to avoid 

overfitting, and adding hidden layers can improve accuracy. 

But it also increases computational time. 

Dave et al. [17] conducted a study on predicting 

Indonesian exports using a hybrid ARIMA-LSTM model and 

compared its performance with ARIMA and LSTM methods. 

The evaluation was carried out using MAPE and RMSE 

values. Data was sourced from the Federal Reserve Economic 
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database from 1998 to 2019. The study used the auto_arima 

method to automatically select the best parameters based on 

the lowest Akaike Information Criterion (AIC) value. The 

result identified that Seasonal ARIMA (SARIMA) is the most 

suitable model, indicating the presence of seasonal patterns in 

the data. The forecasting results showed that all methods 

achieved very accurate MAPE interpretations. The hybrid 

ARIMA-LSTM model performed best and achieved the 

lowest MAPE value of 7,38%. 

Tolesh et al. [18] conducted a study on predicting 

international migration in Kazakhstan using the ARIMA 

method. The dataset was obtained from the Bureau of National 

Statistics from 1991 to 2020. To evaluate prediction accuracy 

using several metrics such as MAE, RMSE, and MAPE. The 

results showed that the ARIMA (0,1,0) model achieved a 

MAPE value of 20,026% which is considered a reasonable 

category. The findings of this study are expected to support 

the development of effective immigration policies to minim ize 

negative impacts while maximizing potential benefits. 

Kumar et al. [19] predicted natural disasters, especially 

floods, using data from the Disaster Management Department 

in Bihar, India , from 1991 to 2022. The study adopted the 

Long Short-Term Memory (LSTM) method with the addition 

of the Adam optimizer. The evaluation was conducted using 

MSE, MAE, and RMSE metrics. The results of the value were 

0,20, 0,41, and 0,45. The results are close to zero, indicating 

that the prediction outcomes are highly realistic. 

Torres et al. [20] predicted electricity consumption in 

Spain using the LSTM method combined with a 

hyperparameter optimization technique called the 

Coronavirus Optimization Algorithm (CVOA). The dataset 

used consists of electricity demand data from 2007 to 2016. 

For comparison, several other methods were also applied, such 

as linear regression and decision trees. The performance of 

each method was evaluated using MAE, MAPE, RMSE, and 

MSE metrics. The result showed that LSTM outperformed the 

other methods and achieved the lowest error values with a 

MAPE of less than 1,5%. That indicates a very high level of 

accuracy. 

Based on previous studies, it can be concluded that 

various machine learning methods, such as ARIMA, LSTM, 

SARIMA, GRU, and others, have been widely applied for 

prediction tasks across diverse fields, including supply chain 

management, stock markets, cryptocurrency, immigration, 

and the energy sector. To evaluate the performance of these 

models, most studies used error metrics such as RMSE and 

MAPE as the primary benchmarks for comparing the accuracy 

of different machine learning approaches.    

3. Materials and Methods  
This study applies the CRISP-DM framework to predict 

the usage of liquid chemical materials at XYZ Company. 

CRISP-DM is a widely used framework that serves as a 

comprehensive guideline for conducting data analysis 

projects. It explains how to translate business problems into 

data analysis tasks, supports the selection of appropriate 

techniques for data transformation and analysis, and 

emphasizes the evaluation of results and documentation 

throughout the analytical process. This framework has been 

broadly adopted by business analysts and practitioners across 

various industries due to its structured approach to analytical 

methods and computing technologies [21]. The CRISP-DM 

process consists of six phases: Business Understanding, Data 

Understanding, Data Prepa ration, Modeling, Evaluation, and 

Deployment.  

 
Fig. 1 CRISP-DM process cycle 

3.1. Business Understanding 

XYZ is a manufacturing company that produces 

polyurethane foam, rubber, plastic, and synthetic materials. 

These products are widely applied in the automotive, 

construction, garment, and industrial parts industries. The 

production process relies heavily on raw materials made from 

liquid chemicals, 90% of which are imported from abroad. On 

average, the company consumes approximately 25.000 kg of 

these raw materials per day. Given this large volume of usage, 

ensuring the continuous availability of chemical raw materials 

is a  critical factor in XYZ’s production process.  

In forecasting imported material purchases, the material 

control department currently predicts demand by calculating 

the average usage over the previous three months and 

comparing it with usage from the same month in the previous 

year. The higher of the two values is then selected as the 

forecast. This approach is applied because customers are 

unable to provide annual or monthly demand forecasts, but 

only weekly demand forecasts.  
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Fig. 2 Supply chain XYZ Company 

3.2. Data Understanding 

The data used in this study is primary data on the 

consumption of liquid chemical materials in the production 

process at XYZ Company, covering the period from January 

2022 to July 2024. The dataset consists of 11 attributes, which 

are as follows:  
Table 1. Data attribute 

Attribute Explanation 

Production Date Date of production 

No. Formula  Type of product 

PXX PXX usage in kilograms 

AXX AXX usage in kilograms 

TXX TXX usage in kilograms 

SXX SXX usage in kilograms 

FXX FXX usage in kilograms 

AdXX AdXX usage in kilograms 

IXX IXX usage in kilograms 

CXX CXX usage in kilograms 

BXX BXX usage in kilograms 

3.3. Data Preparation 

This stage consists of several steps. First, data selection is 

carried out to determine which type of liquid chemical 

material will be used for prediction. Next, data transformation 

is performed, where missing values are replaced with 0. This 

step is necessary because one type of material may consist of 

various brands, and not all brands are used simultaneously. 

After that, data integration is conducted on the selected 

chemical material. The data is then grouped by date, and all 

formula numbers with the same date are aggregated to obtain 

the total daily usage of chemical materials. Once daily data is 

obtained, it is further aggregated into different time frames 

such as weekly (5 days), biweekly (10 days), and monthly (20 

days). In this study, the prediction focuses on the chemical 

material with the highest consumption, namely PXX.  

3.4. Modelling 

The modeling stage is carried out to predict the usage of 

liquid chemical materials using two methods, ARIMA and 

LSTM. The general structure of the ARIMA model is 

expressed as follows:  

∆𝑑𝑦𝑡 = 𝜃𝑜 + ∑ 𝜑𝑖∆
𝑑𝑦𝑡−1+ 𝜀𝑡 + ∑ 𝜃𝑗 𝜀𝑡−𝑗

𝑞
𝑗=1

𝑝
𝑖=1  (1) 

From the equation above, the model can be represented as 

ARIMA (p, d, q), where εₜ denotes the error term in the ARMA  

(p, q) process, and yₜ represents the ARIMA (p, d, q) process 

[22]. ARIMA is essentially a linear model. Therefore, its 

capability is limited when applied to nonlinear time series 

data. The three key parameters in the ARIMA model are 

defined as follows: 

• p: the Autoregressive (AR) order, representing the 

number of lagged terms of the dependent variable. 

• d: the degree of differencing (I) applied to remove trends 

or seasonality (if d = 0, no differencing is applied; if d = 
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1, first-order differencing is applied; and so forth). 

• q: the Moving Average (MA) order, representing the 

number of lagged forecast errors in the prediction 

equation.  

There are four main steps in implementing the ARIMA 

model. The first step is to analyze the time series pattern 

through a smoothing process. If the pattern is nonstationary, 

differencing is applied to achieve stationarity. The second step 

is to determine the optimal values of parameters p and q using 

the auto-ARIMA procedure. The third step is to evaluate the 

model parameters by conducting an Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) test to 

ensure the appropriateness of the selected model and to 

identify the correlation at specific lags. Finally, the fourth step 

is to apply the model with the identified parameters to generate 

forecasts.  

 
Fig. 3 Flowchart ARIMA 

In implementing the ARIMA model using the auto-

ARIMA procedure, it is important to consider the presence of 

seasonality in the data. If seasonal elements are detected, the 

model selection process must incorporate them. The selection 

of the best model can be guided by the Akaike Information 

Criterion (AIC), where a smaller AIC value indicates a better-

fitting model [17]. In cases where the seasonal model produces 

a smaller AIC value than the non-seasonal model, the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model 

is applied. The SARIMA model extends ARIMA by 

introducing seasonal parameters expressed as (p, d, q)(P, D, 

Q)s, where (p, d, q) represent the non-seasonal components, 

(P, D, Q) represent the seasonal components, and s denotes 

the length of the seasonal cycle.  

ARIMA modeling consists of several stages. First, a  

stationarity test is conducted to determine whether the data is 

stationary. If the data is nonstationary, differencing is applied 

until stationarity is achieved. Once the data is stationary, the 

appropria te ARIMA model is identified based on the selected 

parameters. After that, the dataset is divided into training data 

(70%) and testing data (30%). The training data are used to 

build the model, and the testing data are applied to evaluate 

the model's forecasting performance. 

Long Short-Term Memory (LSTM) is an extension of the 

Recurrent Neural Network (RNN) designed with higher -

dimensional capabilities and nonlinear activation functions at 

each layer. Unlike traditional RNNs, LSTM can effectively 

capture nonlinear patterns in time series data and retain 

information over long periods, thereby overcoming the 

vanishing gradient problem that is commonly found in RNNs. 

Due to these advantages, LSTM has been widely successfully 

applied to various time series forecasting problems [23].        

The main advantage of the LSTM structure lies in the 

presence of three types of gates, such as the input gate, forget 

gate, and output gate. These gates regulate the flow of 

information and enabling LSTM to retain relevant information 

while discarding unnecessary data. In addition, LSTM 

overcomes the vanishing and exploding gradient problems 

that are commonly encountered in RNNs.  It is also capable of 

storing information over long periods. The structure of the 

LSTM cell is illustrated in the Figure, which can be explained 

mathematically. In the Figure, the symbol (+) represents 

addition and the symbol (×) represents multiplication. And 

arrows indicate the direction of information flow.  

 
Fig. 4 LSTM cell structure 
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The first layer is the forget gate, which determines the 

information that is not needed and is removed from the cell 

state. Where ft denotes the forgetting threshold at time t, σ 

denotes the sigmoid activation function, Wf and Uf denote the 

weights, xt denotes the input value, ht-1 denotes the output 

value at time t-1, and bf denotes the bias term. The first layer 

of the LSTM cell is the forget gate, which is responsible for 

determining which information is no longer needed and 

should be removed from the cell state. At this layer, the gate 

evaluates the current input xt together with the previous hidden 

state ht-1. These values are processed through the sigmoid 

activation function σ using the corresponding weights (Wf,  Uf) 

and bias bf to generate the forgetting threshold ft. The value of 

ft ranges between 0 and 1, where values close to 0 indicate that 

the information will be discarded and values close to 1 indicate 

that the information will be retained. This mechanism ensures 

that irrelevant information is forgotten and important 

information will continue to be stored in the cell state. 

𝑓𝑡 = 𝜎(𝑊𝑓 × 𝑥𝑡+ 𝑈𝑓 × ℎ𝑡−1+ 𝑏𝑓) (2) 

The second layer is the input gate, which determines what 

information from the current input vector should be stored in 

the cell state. At this layer, the gate evaluates the current input 

xt and the previous hidden state ht-1. After being processed 

through the sigmoid activation function σ to produce the input 

threshold, it. The values are influenced by the corresponding 

weights (Wi, Ui) and bias bi. In parallel, a  candidate value for 

the new cell state is generated through the tanh layer using 

weights (Wc, Uc) and bias bc. Finally, the cell state at time t is 

updated by combining the retained past information with the 

selected new information. This mechanism ensures that only 

the most relevant information is stored in the memory cell for 

the current time step.  

𝑖𝑡 = 𝜎(𝑊𝑖 × 𝑥𝑡+ 𝑈𝑖 × ℎ𝑡−1 + 𝑏𝑖) (3) 

𝑪𝒕̅̅ ̅ = 𝝈(𝑾𝒄 × 𝒙𝒕 + 𝑼𝒄 × 𝒉𝒕−𝟏 + 𝒃𝒄) (4) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1+ 𝑖𝑡 × 𝐶𝑡̅ (5) 

The third layer is the output gate, which generates the 

output information from the current cell state. At this stage, 

the gate evaluates the input xt and the previous hidden state ht-

1 through the sigmoid activation function σ to produce the 

output threshold Ot. These values are influenced by the 

corresponding weights (Wo, Uo) and bias bo. The current cell 

state Ct then passed through the tanh activation function to 

scale its values and combined with Ot to generate the hidden 

state ht, which represents the output of the LSTM cell at time 

t. Through this process, only effective information is released 

as output and irrelevant information is filtered out. 

𝑂𝑡 = 𝜎(𝑊𝑜 × 𝑥𝑡 + 𝑈𝑜 × ℎ𝑡−1 + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡) (7) 

In implementing the LSTM method, the process begins 

with data collection, followed by data preprocessing to ensure 

data quality and readiness for modeling. After that, the dataset 

is divided into two parts. Data training (70%) and data testing 

(30%). The training data is used to build and train the LSTM 

model. The testing dataset is used to evaluate the model's 

performance. Once the training process is completed, the 

trained LSTM model is applied to the testing data to generate 

predictions. Finally, an evaluation process is conducted to 

assess the accuracy and reliability of the model. 

 
Fig. 5 Flowchart LSTM 
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Table 2. MAPE value interpretation 

MAPE Interpretation 

<10 Very accurate 

10-20 Good 

20-50 Fair 

>50 Not accurate 

3.6. Deployment 

After the evaluation stage, the most accurate forecasting 

method (ARIMA or LSTM) and the most suitable time frame 

(weekly, biweekly, or monthly) can be identified. The results 

can be proposed as a recommendation for forecasting liquid 

chemical material requirements at XYZ Company. 

Furthermore, the selected method can also be applied to other 

types of liquid chemical materials, such as IXX and similar 

materials, to ensure a more reliable and efficient supply 

planning process across different product categories. 

4. Results and Discussion 
4.1. Data Preparation 

Data preparation in this study begins with data selection, 

namely, determining the type of liquid chemical material to be 

used in the prediction process. The selected material is the 

type with the highest level of usage, which in this case is the 

liquid chemical material PXX. After that, a  data 

transformation process is carried out to handle missing values. 

Missing values are converted to 0, because each type of 

chemical material generally consists of several different 

brands and not all brands are used simultaneously in the 

production process. This step ensures that the dataset is 

complete and ready for further processing without losing 

important information. After that, data integration is carried 

out for the PXX type of material, which consists of several 

variants (P-1 to P-10). The next step is data grouping based on 

date, where all usage records from different formulas on the 

same date are aggregated to obtain the total daily consumption 

of PXX. Once the daily usage data is obta ined, the data is 

further restructured into different time frames. Namely, 

weekly (5 working days), biweekly (10 working days), and 

monthly (20 working days). This transformation is carried out 

to support the prediction process with different time horizons 

and to compare the accuracy of each model at various 

aggregation levels.  

4.2. ARIMA 

In the ARIMA model, the dataset used is the consumption 

of chemical material PXX from January 2022 to July 2024. 

The data is aggregated into weekly, biweekly, and monthly 

total usage. For each time span, a stationarity test is conducted 

to ensure the data meet the requirements for ARIMA 

modeling. Data is considered stationary if the p-value < 0,05. 

If the result of the stationarity test shows a p-value > 0,05, then 

differencing must be applied to transform the data into a 

stationary form. The results of the stationarity test for each 

time span are presented in Table 3 below.  

Table 3. Stationary test result 

Time 

Frame 

p- 

value 
Differencing Final p-value 

Weekly 0,35 Yes 8,206757969540674e-19 

Biweekly 0,41 Yes 9,061716553559969e-18 

Monthly 0,46 Yes 0,00015386757329399788 

After obtaining stationary data, the dataset was divided 

into 70% training data and 30% testing data. The next step was 

to search for the optimal ARIMA parameters using the 

pm.auto_arima function. In this process, both seasonal and 

non-seasonal ARIMA models were tested. The results 

indicated that the seasonal ARIMA model produced a lower 

Akaike Information Criterion (AIC) compared to the non-

seasonal model. Therefore, the SARIMA model was selected 

with the following parameters: 

Table 4. Result of ARIMA parameter 

Time Frame Best Parameter 

Weekly ARIMA(0, 0, 1)x(2, 0, 1, 7) 

Biweekly ARIMA(1, 0, 0)x(2, 0, 2, 12) 

Monthly ARIMA(0, 0, 1)x(2, 0, 0, 12) 

 
Fig. 6 Diagnostic graphic ARIMA weekly 

 
Fig. 7 Diagnostic graphic ARIMA biweekly 
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Fig. 8 Diagnostic graphic ARIMA monthly 

Modeling was carried out using the selected parameters 

and the model_fit. The plot_diagnostics function was applied 

to evaluate the adequacy of the model. Based on the Q-Q plot, 

the data points were observed to follow the diagonal line, 

indicating that the ARIMA model nearly satisfies the 

assumption of a normal distribution. Furthermore, the 

Autocorrelation Function (ACF) plot showed that most of the 

points remained within the blue confidence limits, suggesting 

that the residuals exhibit no significant autocorrelation. From 

these results, it can be concluded that the ARIMA model 

performs adequately across all time frames, weekly, biweekly, 

and monthly. Based on the ARIMA model, the prediction 

results for each time frame are as follows. For the weekly time 

frame, the model produced an RMSE of 15.722 and a MAPE 

of 15,8%, for the biweekly time frame, the RMSE was 30.415 

with a MAPE of 15,9%, and for the monthly time frame, the 

RMSE was 322.101 with a MAPE of 9,0%. These results 

indicate that the ARIMA model provides better accuracy in 

the monthly time frame, as reflected by the lower MAPE 

value, which falls into the "good" prediction category. The 

comparison between the actual data and the predicted values 

for each time frame is illustrated in Figures 9-11.  

 
Fig. 9 Model prediction result ARIMA weekly

 
Fig. 10 Model prediction result ARIMA biweekly 
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Fig. 11 Model prediction result ARIMA monthly

From the weekly graph, the ARIMA model is quite 

effective in capturing the actual data pattern, particularly at the 

beginning of the testing period. However, in the middle and 

towards the end of the prediction period, the results tend to 

decline steadily without reflecting the fluctuations observed in 

the actual data. In the biweekly graph, the model shows a 

better ability to follow the actual data pattern.  

The predicted values closely match the actual data from 

the beginning to the middle of the testing period. Nevertheless, 

towards the end, there is a noticeable divergence, with the 

prediction line showing a downward trend. For the monthly 

graph, the model performs very well in capturing the actual 

data pattern. The predicted values closely align with the actual 

values, with the prediction line almost overlapping the actual 

data line, indicating high accuracy in this time frame.  

After performing the ARIMA modeling process on each 

time frame, the best ARIMA equations were obtained 

sequentially for the weekly, biweekly, and monthly models as 

follows:  

𝑌𝑡 = −383.0113 + (−0.7125 ∗ 𝑒𝑡−1) + 𝑒𝑡  (10) 

𝒀𝒕 = −𝟏𝟓𝟗𝟖. 𝟑𝟓𝟕𝟏 + (−𝟎. 𝟒𝟕𝟐𝟗 ∗ 𝒆𝒕−𝟏) + 𝒆𝒕  (11) 

𝒀𝒕 = −𝟔𝟐𝟓𝟒. 𝟓𝟐𝟐𝟕 + (−𝟎. 𝟖𝟓𝟏𝟎 ∗ 𝒆𝒕−𝟏) + 𝒆𝒕  (12) 

These equations represent the optimal parameters 

selected by the auto ARIMA process, considering both 

seasonal and non-seasonal elements. The chosen models 

provide the basis for generating predictions across different 

time frames. 

4.3. LSTM 

In the LSTM model, the dataset used consists of PXX 

chemical material consumption records from January 2022 to 

July 2024. The data is aggregated into weekly, biweekly, and 

monthly totals with a sliding window of 10, meaning that the 

model observes the last 10 data points to predict the next 

value. The dataset is then split into 70% training data and 30% 

testing data. To optimize performance, the model is enhanced 

with Batch Normalization and the Adam (Adaptive Moment 

Estimation) optimizer, which helps stabilize the training 

process and improve convergence. Prior to full modeling, the 

val_root_mean_squared_error is examined to evaluate 

whether the model configuration is optimal.  

 
Fig. 12 Model evaluation LSTM weekly 
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Fig. 13 Model evaluation LSTM biweekly 

 
Fig. 14 Model evaluation LSTM monthly 

From the model evaluation results, it can be observed that 

the average error shows a downward trend as the number of 

epochs increases, which indicates that the model is improving 

in its predictive capability. The performance of the LSTM 

model was further assessed using RMSE and MAPE values. 

For the weekly time frame, the LSTM model achieved an 

RMSE of 9.921 and a MAPE of 11,3. For the biweekly time 

frame, the model obtained an RMSE of 19.704 and a n MAPE 

of 11,2. Meanwhile, for the monthly time frame, the results 

were an RMSE of 64.585 and a n MAPE of 18,7.  

 
Fig. 15 Model prediction result LSTM weekly 
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Fig. 16 Model prediction result LSTM biweekly 

 
Fig. 17 Model prediction result LSTM monthly

From the weekly graph, the prediction results are quite 

good at following the actual data trend and are able to capture 

fluctuations, particularly in the early testing period, where the 

predicted values are close to the actual values.  

However, for the biweekly and monthly time frames, the 

prediction results tend to show a flatter pattern compared to 

the actual data, which still exhibits noticeable fluctuations. 

4.4. Result Comparison Between ARIMA and LSTM 

After predicting the use of chemical materials using the 

ARIMA and LSTM models, and dividing each model based 

on weekly, biweekly, and monthly time frames, the 

comparison results of RMSE and MAPE values are as follows:  

Table 5. Results of ARIMA and LSTM 

Model 
Time 

Frame 
RMSE MAPE 

MAPE Value 

Interpretation 

ARIMA Weekly 15.722 15,8 Good 

ARIMA Biweekly 30.415 15,9 Good 

ARIMA Monthly 32.101 9,0 Very accurate 

LSTM Weekly 9.921 11,3 Good 

LSTM Biweekly 19.704 11,2 Good 

LSTM Monthly 64.585 18,7 Good 

 

Based on the results obtained, both the ARIMA and 

LSTM models with different time frames are able to make 

good predictions, with MAPE values ranging from 9,0% to 

18,7%.  

The lowest MAPE value is achieved by the ARIMA 

model in the monthly time frame, with a value of 9,0% which 

indicates a very accurate prediction. With a relatively small 

amount of data, the ARIMA model performs better than the 

LSTM model. On the other hand, the LSTM model tends to 

become less accurate, as indicated by the increasing MAPE 

values when the amount of data decreases. However, when 

more data is available, such as in the weekly time frame. The 

LSTM model outperforms the ARIMA model, with a MAPE 

value of 11,2% compared to ARIMA’s 15,8%.  
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4.5. Deployment 

The seasonal ARIMA method (0, 0, 1) × (2, 0, 0, 12) with 

a monthly time frame achieved a MAPE value with a very 

accurate interpretation compared to the monthly LSTM 

method. This result aligns with the business needs of XYZ 

company, which requires a monthly forecasting method for 

ordering chemical materials. Accurate forecasting will help 

the company address issues of overstock and shortages of 

liquid chemical materials. 

4.6. Compare Result with Literature Review 

The results of this study indicate that the seasonal 

ARIMA method with a monthly time frame produces the best 

performance, with a very accurate MAPE value compared to 

the LSTM method in the same or other time frames. However, 

when compared with findings from previous studies such as 

those conducted by Falatouri et al. [12] and Sunjaya et al. [13], 

which compared SARIMA/ARIMA with LSTM, the 

evaluation results generally showed that the LSTM method 

outperformed SARIMA/ARIMA.  

In the study conducted by Falatouri et al. [12], the 

SARIMA method produced better results under conditions of 

seasonal behavior, while the LSTM method performed better 

under stable demand. These findings are consistent with the 

results of the present study, where the ARIMA method applied 

was Seasonal ARIMA, as the data used contained clear 

seasonal patterns.  

Meanwhile, the study conducted by Sunjaya et al. [13] 

shows that the LSTM method produced better results with a 

dataset consisting of 759 data  points. When compared to the 

present study, the weekly time frame has a dataset of 124 data 

points. The LSTM method shows better performance. 

However, in the monthly time frame, with a dataset of 31 data 

points. The seasonal ARIMA method produced more accurate 

results. This indicates that the amount of data has a significant 

impact on the accuracy of the LSTM method.  

The larger the data , the higher the accuracy. In contrast, 

the ARIMA method does not require a large amount of data to 

generate a reliable prediction. In this study, the highest 

accuracy of the LSTM method was achieved in the weekly 

time frame with an MAPE value of 11,3%. When compared 

with studies conducted by Falatouri et al. [12] and Sunjaya et 

al. [13], the LSTM method in their research obtained MAPE 

values of 14% and 25,5%. The better MAPE value obtained in 

this study is attributed to the application of LSTM with  

BatchNormalization and the Adam (Adaptive Moment 

Estimation) optimizer, which helped stabilize the training 

process, as also implemented in the study by Kumar et al. [19].  

5. Conclusion  
ARIMA, as a traditional machine learning method with 

seasonal parameters ARIMA (0, 0, 1) × (2, 0, 0, 12). And 

LSTM, as a modern deep learning based machine learning 

method optimized with Adam (Adaptive Moment Estimation), 

can predict the use of liquid chemical materials at PT XYZ 

with good accuracy.  

With a small amount of data in the case study at XYZ 

Company, the monthly ARIMA method is more suitable, as 

indicated by its MAPE value, which provides a very accurate 

interpretation of the results compared to the monthly LSTM 

method, which only achieves a good interpretation.  

The time frame affects the level of accuracy of the 

ARIMA and LSTM methods. With a weekly time frame, more 

data is available, enabling the LSTM method to produce better 

predictions. In contrast, with a monthly time frame, fewer data 

points are available. Allowing the ARIMA method to perform 

better. The ARIMA method does not require a large amount 

of historical data to generate accurate predictions, whereas the 

LSTM method relies on a larger dataset to achieve better 

accuracy.  

The application of the seasonal ARIMA (0, 0, 1) x (2, 0, 

0, 12) method with a monthly time frame aligns with the 

business needs of XYZ Company, which requires monthly 

forecasting. Compared to manual forecasting methods, the 

results are better, as indicated by the MAPE value, which falls 

into the very accurate category. By utilizing machine learning 

for forecasting, XYZ Company can effectively address the 

problems of material shortages and overstock. 
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