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Abstract - The present study explores a method combining machine learning with the AES-256-based encryption to protect the 

datasets while maintaining the accuracy. The presented approach addresses an increasing need for data security in the context 

of increased cyber threats that particularly focus on healthcare and finance. The AES-256 is one of the well-known algorithms 

that is susceptible to attempted attacks and ensures confidentiality throughout the transmission and storage  to encrypt datasets. 

The neural network processes the data and attains an accuracy of 8 7% for binary classification tasks, which validates the 

effectiveness and compatibility of the model. Different performance indicators demonstrate the seamless trade-off between 

security and efficiency, which classifies accuracy and encryption overhead. The paper provides a framework customized for the 

different businesses that require stringent data protection and highlights the significance of handling data safety . 
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1. Introduction  
Sensitive dataset security has become crucial in the 

current Machine Learning (ML) and the huge data set 

environment, particularly in sectors such as healthcare, 

finance, and defense, where data breaches have serious 

repercussions. The most reliable encryption method is 

Advanced Encryption Standard (AES), especially the 256-bit 

version. The AES-256-based encryption is one of the greatest 

choices for safeguarding the ML datasets against unwanted 

tampering and cyberattacks because it provides an efficient 

trade-off between efficiency and security [1, 2]. The rapid 

growth in the ML area is revolutionising a wide range of 

applications, with Neural Networks (NNs) at the center of the 

transformation. The NN, inspired by the human brain, is an 

interconnected network of neurons and is one of the essential 

parts in solving the complex pattern recognition and predictive 

modelling tasks [3]. These networks have gained significant 

attention for their effectiveness in binary classification tasks, 

where the target is to ca tegorize the data into two identical 

classes. The growing body of literature highlighted the role of 

deep learning models, particularly feedforward NNs that 

improve the accuracy and efficiency of classification 

algorithms across diverse fields like healthcare [4]. As per the 

efficient training of ML models, an extensive volume of data 

is frequently needed. On the other hand, several risks related 

to the transmission and storage of such information, like 

manipulation, interception, and illegal use, exist in this field . 

In order to ensure confidentiality and integrity throughout the 

storage and transmission stages, encryption approaches such 

as AES-256 aid in reducing these hazards [5, 6]. 

The sensitivity and volume of analysed data are increased 

in parallel with the ML applications, with the explosive 

growth. Protecting the confidentiality of users, complying 

with the regulations, and reducing the risks linked to data 

breaches depend on safeguarding such information, especially 

in the vital sectors like healthcare, banking, and national 

security [7, 8]. In this manner, the AES-256 has become a key 

component of data security. 

As the key length, AES-256 is more secure than the 128- 

and 192-bit substitutes and provides stronger defense against 

brute-force attacks. AES-256 is a  strong encryption, and there 

are particular challenges within the ML-based applications. 

System performance is impacted by the computational 

expense of encryption and decryption, which makes the 

training and inference procedures slower [9]. It is critical to 

address the trade-off between competence and security, 

especially for real-time applications and resource-intensive  

ML activities [10]. The unique difficulty is integrating the 

AES-256 with ML processes. The processing cost is also 

associated with the encryption and the decryption procedures, 

which is an important concern as it might affect ML model 

training time and effectiveness. Furthermore, the second layer 
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of difficulty is the interoperability with the systems that are 

distributed with the data  that is frequently processed across the 

numerous nodes [11]. Notwithstanding the difficulties, 

breakthroughs are being made in the hardware acceleration, 

like “Graphics Processing Unit (GPU)” and “Field  

Programmable Gate Array (FPGA),” based on the 

applications that show the AES-256 encryption performs 

noticeably better than the author of [12]. Additionally, novel 

approaches like lightweight cryptography are explored in 

order to maximize the encryption performance in resource-

constrained environments like edge computing and the 

Internet of Things (IoT) [13, 14]. 

The study aims to assess the AES-256’s compliance and 

efficacy in the procedure of ML models. The present 

investigation aims to identify the methods for maximizing the 

AES-256 utilization without compromising data security or 

system efficiency through investigating the effects across 

multiple phases, such as preliminary processing, model 

training, and implementation. The academics and practitioners 

protect ML pipelines that additionally look at the trade-offs 

between computing efficiency and encryption resilience. 

The current research demonstrated the capacity of NNs in 

order to handle the vast volumes of data , which leads to 

improving the precision and recall in the binary classification 

tasks [15, 16]. Furthermore, the integration of advanced 

optimization techniques like backpropagation and gradient 

descent has allowed the NNs to achieve significant 

performance gains with the large datasets [17, 18]. However, 

the advances in challenges like overfitting, model 

interpretability, and training time continue in order to demand 

further exploration and optimization [19-21]. The main aim of 

the research is to discuss some of the challenges that explore 

the competence of an NN-based model in accurately 

classifying data , emphasising improving both performance 

and computational cost. The paper focuses on enhancing the 

security of ML datasets using the AES-256 algorithm. 

Furthermore, it presents the comprehensive performance 

evaluation of the encryption process and examines the impact 

of AES-256 on training time, accuracy, and system 

compatibility across different ML models. 

2. Literature Review  
The section provides a concise summary of the previous 

research of various researchers in the particular area. There is 

so much literature present for the particular area of work that 

provides, after the refinements of the considered papers, which 

are discussed below: 

In several fields, the integration of AI in healthcare and 

power systems has produced a revolutionary effect. According 

to the author of Patel et al. (2024) [22], AI plays an essential 

part in the process optimization and failure prevention that can 

enhance the safety and efficiency of operations in the power 

industry. In the same way, the author of Gupta et al. (2022) 

[23] illustrated how AI is used in cloud-based storage for 

healthcare, highlighting the significance of secure data 

processing and predictive analytics. 

As the utilization of AI increases in day-to-day life, 

protecting devices' privacy and security is taking the center 

stage. The authors of Villegas and García (2023) [24] 

presented a thorough framework that tackles key problems 

like data integrity and access control to maintain privacy and 

safety in the field of AI. Furthermore, the author, like 

Padmanaban (2024) [25], studied the privacy-preserving 

designs that offer details regarding the strategies that achieve 

a balance between system performance and security 

requirements. According to the author of Bonawitz et al. 

(2019) [26], the architectures become even more relevant 

when taking into account the scalability of federated learning, 

which produced the system architecture that permits 

extensive, privacy-conscious AI model training over dispersed 

networks. 

The latest trends in technology, especially for protecting 

privacy, are critical in sensitive industries like the healthcare 

sector. The thorough analysis of the privacy-preserving ML 

model was provided by the author of Tanuwidjaja et al. (2020) 

[27], which highlighted methods for maintaining the 

confidentiality of data without sacrificing the model’s 

performance. Moreover, the author of Michael (2021) [28] 

further illustrates the need for privacy at the edge of the AI 

networks by discussing the difficulties and suggesting fixes 

for protecting the localized processed data on the edge 

devices. The privacy-centric framework set out by the author 

of Calvaresi et al. (2021) [29] in the development of the 

compliant structure for health-assistant chatbots was 

supported, which emphasized the requirement for 

sophisticated security measures in order to protect patient data 

in contemporary healthcare systems. 

In order to meet both technical and legal requirements, it 

is essential to integrate an AI/ML model with enhanced 

security protocols. For this, Bayani, Prakash, and 

Malaiyappan (2023) [30] investigated enhanced security and 

compliance challenges that present through a unified 

assurance framework, promoting strong compliance with  

regulations and secure cloud services. Despite the significant 

advancements in securing the ML, the critical research gap 

persists in balancing the strong encryption with efficient 

model performance. The existing studies predominantly 

emphasize the lightweight encryption algorithms, like AES-

128 or the custom lightweight cyphers for the resource-

constrained environments like IoT, often sacrificing the 

security strength for the computational feasibility 

(Padmanaban et al., 2022). The previous researchers explore 

privacy-preserving techniques like differential privacy or the 

homomorphic encryption within the federated learning 

frameworks, but typically overlook the integration and 

overhead of the robust encryption standards (Gupta & 
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Malhotra, 2021). Moreover, the research isolates the security 

implementation from the performance analysis, leaving a void 

in understanding how strong encryption affects model 

accuracy, training time, and system compatibility. The paper 

further addresses the gap by demonstrating an efficient 

implementation of AES-256 encryption for securing machine 

learning datasets, accompanied by a detailed evaluation of its 

impact on neural network performance. The results validate 

that high-level encryption can be integra ted without 

significantly compromising model efficiency, thereby 

offering a scalable, secure, and adaptable framework for ML 

applications in sensitive domains like healthcare and finance. 

3. Hybrid AES-256 Encryption for ML Data 

Security 
The AES-256-based encryption is used with the key 

management techniques. Furthermore, the ML approaches are 

also included in order to validate these things. The in-depth 

details of the techniques used in the research are discussed in 

this section. 

3.1. Method Components 

• Data Preprocessing and Encryption: The raw data is first  

preprocessed and then normalized. The AES-256 

encryption is applied to ensure that the data is securely 

stored and transmitted. 

• Encryption and Decryption Workflow: Define the 

encryption and decryption workflow, optimizing for 

minimal processing time while maintaining security. 

• Model Training and Evaluation on Encrypted Data: 

Secure computation techniques allow the model to 

process encrypted data, avoiding plaintext exposure. 

AES-256 Encryption Algorithm: Mathematical 

Foundation 

AES-256 is a symmetric block cipher that using a 256-bit 

key in order to encrypt the data in fixed 128-bit blocks. It also 

operates through a series of transformations based on 

Substitution-Permutation Networks (SPNs). Here is a 

breakdown of key components: 

3.1.1. Key Expansion 

AES-256’s key expansion uses a 256-bit key to derive 

240 bytes of key material for every encryption round. The key 

schedule uses Rijndael’s key schedule technique, which  

expands the original key into multiple 128-bit subkeys: 

𝐾(0) = 𝐾, 𝐾(𝑖) = 𝑓(𝐾(𝑖−1) ) (1) 

Where i is a  transformation function involving rotation, 

XOR operations, and the AES constant RCON. 

3.1.2. Round of Encryption 

AES-256 uses 14 rounds of transformation for each 128-

bit data block. Each round includes: 

• SubBytes: Applies a non-linear substitution using an S-

box, enhancing security against differential cryptanalysis. 

𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 (𝑠𝑖,𝑗) = 𝑆[𝑠𝑖,𝑗] (2) 

Where the S is a substitution box that maps each byte. 

• ShiftRows: Rotates rows of the state matrix to the left by 

offsets, increasing diffusion. 

𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑠𝑖 ,𝑗) = 𝑠𝑖 ,(𝑗+1)𝑚𝑜𝑑4  (3) 

• MixColumns: Operates on the columns by multiplying 

each by a constant polynomial matrix to ensure diffusion. 

 (4) 

• AddRoundKey: It performs the XOR between the state 

and the round key that is derived from the expanded key. 

𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 (𝑠) = 𝑠 ⨁𝐾𝑟𝑜𝑢𝑛𝑑  (5) 

3.2. Mathematical Analysis for Encryption in ML Pipelines 

Using AES-256 introduces a computational overhead in 

the ML pipelines, particularly if data needs to be decrypted 

before training or inference. To maintain data security while 

minimizing this impact, the homomorphic encryption or the 

Secure Multi-Party Computation (SMPC) allows the 

encrypted data to be processed without decryption, adding 

complexity layers. 

The computational complexity ‘T’ of encryption scales 

with the number of data blocks ‘n’ and the number of rounds 

‘r’, leading to: 

𝑇 = 𝑂(𝑛 𝑋 𝑟 𝑋 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 ) (6) 

The block size is 128 bits for the AES-256-based 

encryption, making the encryption computationally feasible 

but potentially costly with very large datasets. 

3.3. Neural Network Processing Stage 

NNs are the only powerful models that contain 

interconnected nodes or neurons, and are organized layer-wise 

to process the data. The processing steps are involved in the 

training and implementation of an NN-based model for the 

classification tasks that are crucial for the optimization, and in 

order to safeguard the model that generalizes well to new and 

unseen data. Moreover, the section outlines the essential steps 

intricate in the methodology, from data preprocessing to the 

final prediction, which emphasizes the importance of each 
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stage for achieving accurate and efficient outcomes. The 

process begins with data preprocessing that includes data 

normalization and scaling in order to safeguard that all the 

features are on a similar scale, preventing the model from 

becoming biased toward certain input features. This step is 

crucial because it impacts the convergence speed during the 

training and the complete effectiveness of the NN. Once the 

data is prepared, the NN architecture often consists of an input 

layer and one or more hidden layers with an output layer. This 

architecture's number of layers and neurons significantly  

affects the model’s capability to learn complex patterns.  

Subsequent steps involve the forward propagation 

process, in which the input data is passed into the network’s 

layers. During this process, the overall weighted sums of the 

inputs are computed and passed over to activation functions 

like the Rectified Linear Unit (ReLU) or the Sigmoid in order 

to introduce the non-linearity model. The choice of the 

activation function plays a  critical role in enabling the network 

to learn nonlinear relationships in the data. Furthermore, the 

forward propagation and the output are associated with the 

actual target value. The error is computed with a loss function 

such as the Mean Squared Error (MSE) for the Cross-Entropy 

Loss or regression tasks for classification. 

The next step is processing the NN in the 

backpropagation, from which the model is learned by 

regulating the weights based on the computed error. 

According to the optimization algorithms, the network 

performs the gradient updates in order to minimalize the loss 

function. Backpropagation is one of the essential functions for 

apprising the weights that enables the network to improve the 

accuracy over time. The multiple iterations, or according to 

the epochs, the model gradually refines the weights in order to 

minimize the error and improve the predictive power. Finally, 

after the training, the NN is evaluated on the basis of the 

validation data set to assess the performance and generalise 

the model’s ability. Metrics like accuracy, precision, recall, 

and the F1-score are commonly used parameters for 

measuring performance. The trained NNs are deployed to 

make predictions on new and unseen data. 

These processing steps are vital for ensuring the optimal 

functioning of NNs in real-world applications. Each step 

contributes to the network’s ability to learn from data, adapt 

to new information, and make predictions that drive intelligent  

decision-making in various domains, i.e., healthcare to 

finance. 

Data Preprocessing: Input data is normalized to ensure 

uniform scaling, making training more stable. If x_i is an input 

feature, normalization is: 

𝑥 𝑖
′ =  

𝑥𝑖 − 𝜇

𝜎
  (7)  

“μ” is the mean and “σ” is the standard deviation. 

Input Layer: The data passes through the input layer, 

which holds n features (nodes). If “X” is the input vector, the 

input layer activation is: 

𝑎0 = 𝑋 (8) 

Hidden Layers: Each hidden layer transforms the input 

using weights “W” and biases “b”, followed by an activation 

function f(x). For layer l: 

𝑧𝑙 =  𝑊𝑙 . 𝑎𝑙 −1 + 𝑏𝑙    

𝑎𝑙 = 𝑓(𝑧𝑙 (9) 

Common activation functions also include: 

Relu: f(x)=max (0,x) 

Sigmoid: f(x)=1/(1+ e^(-z) ) 

Output layer: A sigmoid activation function outputs 

probabilities for the binary classification. 

𝑦 =  𝜎(𝑧) = 
1

1+ 𝑒−𝑧
  (10) 

Loss function: The binary cross-entropy is used in order 

to measure the error between predictions (y  ̂) and ground 

truths y: 

𝐿 =  − 
1

𝑚
∑ [𝑦𝑖 log(𝑦𝑖̂

) + (1 − 𝑦𝑖 )log (1 − 𝑦𝑖̂)]𝑚
𝑖−1  (11) 

4. Research Methodology  
The proposed technique aims to use the AES-256 

encryption to secure the sensitive datasets before processing 

the ML pipeline. AES is chosen for speed and robustness, with 

a focus on AES-256-based encryption for enhanced security. 

Encrypting the data at rest and in transit mitigates the risks 

from unauthorized access, data leaks, and adversarial attacks 

on the processing of ML. 

Key management plays a critical role in your 

methodology by providing robust security and ensuring that 

encryption keys are effectively threatened and accessible only 

in order to authorized users or systems. Key management here 

is applied across multiple phases, including key generation, 

secure distribution, key rotation, and revocation. 

• Key Generation 

Key generation is the initial and vital step in securing the 

ML dataset. For AES-256, a secure 256-bit key is generated 

using a high-entropy, cryptographically secure random 

number generator (CSPRNG) or a hardware security module 

(HSM). 

𝐾 = 𝐶𝑆𝑃𝑅𝑁𝐺 (256) (12) 
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Where ‘K’ is the AES-256 encryption key and CSPRNG 

represents a cryptographically secure random number 

generator. 

• Key Distribution 

Ensure that the encryption key reaches authorized entities 

securely without exposure to unauthorized access. Use 

asymmetric encryption like Elliptic Curve Diffie-Hellman 

(ECDH) in order to securely exchange the AES key between 

the data owners and authorized users or nodes. This approach 

enables secure key exchange over potentially insecure 

networks. Each entity A and B generates private keys kA and 

kB and computes the public keys PA=GkA mod p and PB gkB 

mod p, where g and p are the parameters of the elliptic curve 

group. 

The shared key is computed as: 

𝐾𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑃𝐵
𝑘𝐴 = 𝑃𝐴

𝑘𝐵  𝑚𝑜𝑑𝑝 (13) 

• Key Rotation 

Periodically refresh encryption keys to mitigate the risks 

of key compromise and limit the exposure of encrypted data. 

Use an automated key rotation schedule based on the data 

sensitivity or usage frequency. AES-256 keys are regenerated 

and redistributed securely in order to ensure continuity. 

New keys are periodically generated as: 

𝐾𝑛𝑒𝑤 = 𝐻𝑀𝐴𝐶(𝐾𝑜𝑙𝑑 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) (14) 

Where Kold is the previous key, and the HMAC applies a 

hash function to timestamp the data for secure generation. 

• Key Storage and Access Control 

Securely store the keys and control access to prevent 

unauthorized usage. Store encryption keys in a secure 

environment like an HSM or use a centralized Key 

Management Service (KMS) for the cloud environments. 

Access to keys is controlled via authentication and 

authorization protocols that ensure only verified entities can 

retrieve keys. To authenticate users, consider Public Key 

Infrastructure (PKI), where each user possesses a private-

public key pair. For access, a  digital signature is used to verify 

identity. 

Access to keys can be controlled by: 

𝐴𝑐𝑐𝑒𝑠𝑠 (𝑈) = {𝐺𝑟𝑎𝑛𝑡𝑒𝑑          𝑖𝑓 𝐴𝑢𝑡ℎ (𝑈) = 𝑇𝑟𝑢𝑒
𝐷𝑒𝑛𝑖𝑒𝑑            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 (15) 

• Key Revocation 

Ensure that compromised or expired keys are invalidated 

and cannot be used to decrypt the data. Implement a key 

lifecycle policy where the compromised keys are added to the 

revocation list and are inaccessible for future data decryption. 

If key ‘K’ is compromised, update the system’s key revocation 

list (KRL): 

𝐾𝑅𝐿 = 𝐾𝑅𝐿 ∪ {𝐾} (16) 

Data encrypted with revoked keys is re-encrypted with 

new keys, ensuring security. 

4.1. Introduction to Encryption and ML Dataset Security 

The methodology focuses on enhancing the ML datasets’ 

security through the AES-256 encryption combined with the 

robust key management system. In response to growing data 

breaches and privacy concerns in ML, the approach secures 

the sensitive datasets in storage and during transit across a 

distributed ML environment. Federated Learning (FL) is used 

to allow decentralized training on the encrypted datasets that 

ensure the sensitive data remains secure and private while 

achieving high model accuracy. 

4.2. Data Preprocessing and Initial Encryption 

• Objective: It ensures the data is securely encrypted before 

integrating into the ML pipeline. 

• Process: The raw data  are undergoing preprocessing steps 

that include normalization and anonymization to reduce 

unnecessary data exposure risks. The preprocessed data is 

then encrypted using AES-256. 

• Encryption Process: 

➢ AES-256 Key Generation: The high-entropy, 256-bit 

symmetric key KKK is then generated with the 

Cryptographically Secure Random Number 

Generator (CSPRNG). The key is then kept 

confidential and forms the basis of the data 

encryption. 

➢ Data Encryption: The AES-256 algorithm encrypts 

each data block with the following steps: 

✓ SubBytes: It applies an S-box substitution for 

each byte in a  data block, creating non-linearity. 

✓ ShiftRows and MixColumns: Enhance diffusion 

by the rearrangements of the bytes within the 

matrix. 

✓ AddRoundKey: It combines each data block 

with a round-specific subkey. 

➢ Storage and Access: The encrypted data is then 

stored securely, with access managed according to 

the user authentication and an authorization protocol. 

4.3. Key Management Practices 

The key management is critical in securing the encrypted 

ML datasets and involves generation, distribution, rotation, 

storage, and revocation of keys. The comprehensive 

approaches mitigate the risks of unauthorized access or data 

breaches by ensuring the keys are securely handled throughout 

their lifecycle. 

• Key Generation: A unique AES-256 key is a combination 

generated as per the dataset, ensuring the data 
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segmentation and reducing the scope of potential 

exposure in case of a compromise. 

• Key Distribution: An Elliptic Curve Diffie-Hellman 

(ECDH) based technique is used to secure the key 

exchange. This asymmetric encryption technique 

establishes the shared key for a  secure AES-256 key 

transfer that mitigates the risks associated with network 

interception. 

• Key Rotation: To limit the exposure of  the long-lived  

keys, the AES-256 keys are rotated periodically. This 

practice is particularly critical for the highly sensitive data 

and frequent data updates, with the combination of the 

new key generated as a function of the time and previous 

key, e.g., using HMAC. 

• Key Storage: Keys are stored in a hardware security 

module or the secure key management service. Only the 

authenticated and authorized users or systems have access 

to ensure confidentiality. 

• Key Revocation: In the event of a key compromise, keys 

are revoked by adding them to a revocation list. Affected 

data is re-encrypted with a new key to maintain security 

integrity. 

4.4. Federated Learning (FL) for Secure Model Training 

It allows ML models to be trained crosswise the 

decentralized nodes without needing to centralize data, 

ensuring data privacy and security. Each node participates in 

the training process locally on encrypted data, transmitting 

only model updates rather than the raw data. 

• Data Distribution: The encrypted dataset is distributed 

across multiple nodes for local training. Each node 

decrypts its local dataset using the securely transferred 

AES key and begins training. 

• Model Aggregation: Each node computes local model 

parameters. These parameters are encrypted before 

transmission to the central server, which aggregates them 

to create an updated global model. Homomorphic 

encryption or secure aggregation techniques are 

employed in order to ensure that individual updates 

remain secure and private. 

• Privacy Preservation: Differential privacy is applied to 

model updates before aggregation, ensuring that no 

individual data point is identifiable even in the combined 

model. Noise is added to the updates according to a 

privacy budget that balances accuracy and privacy. 

• Communication Efficiency: To minimize the overhead of 

federated learning, communication rounds between nodes 

and the server are optimized, balancing model accuracy 

with bandwidth efficiency. 

4.5. Security Analysis and Performance Evaluation 

The effectiveness of the encryption-based security model 

is evaluated against several criteria to ensure that it meets 

security and performance benchmarks. 

• Encryption Overhead Measurement: Measure the 

computational and latency overhead introduced by AES-

256 encryption during preprocessing and model training. 

The encryption time 𝑇 is calculated as:  

𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑛 × 𝑟 × 𝑏𝑙𝑜𝑐𝑘  𝑠𝑖𝑧𝑒 (17) 

Where the “n” is the number of blocks, “r” is defined as 

the number of rounds (14 for AES-256), and the block size is 

128 bits. 

• Model Accuracy and Latency Analysis: Compare model 

accuracy on encrypted data with that of plaintext data. 

Latency is measured for each round in FL to assess the 

added complexity due to encryption and key 

management. 

• Security Validation: Test the resilience of encryption 

against potential attacks, such as brute-force and 

ciphertext-only attacks. Key management practices are 

evaluated for robustness, including periodic key rotation 

and revocation. 

This methodology uses a secure framework for the 

protection of the ML dataset using the AES-256 based 

encryption, a robust key management strategy, and the FL. By 

combining these techniques, the proposed approach ensures 

data privacy and security at every stage of the ML, from the 

preprocessing of the dataset to distributed model training. The 

methodology aims to advance the resilience of the ML models 

against data breaches while maintaining the model 

performance and meeting the stringent privacy requirements 

in distributed systems. 

5. Result and Discussion 
The results obtained from the current research provide a 

detailed evaluation of the efficacy in addressing the 

classification task. Through the analysis of the different 

performance parameters like the confusion matrix, the loss 

curves, and the accuracy trends, critical insights into the 

advantages and drawbacks of the model are obtained. The 

discussion explores the model's capacity to generalise insight  

into the data, the training security, and the trade-offs 

encountered in the specific error rates of the area. The 

following part aims to present an in-depth interpretation of the 

findings, accompanied by the quantitative metrics and 

visualizations to highlight the overall performance and 

suggest directions for future improvements. 

 
Fig. 1 Accuracy of the model 
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Fig. 2 Confusion matrix of the model 

 
Fig. 3 Epochs vs Losses graph 

The model demonstrated strong performance during the 

validation phase, achieving an accuracy of 87%, which 

indicates a reliable level of precision for the classification 

tasks. The analysis seen in the confusion matrix provided 

further insight into the classification outcomes. For Class 0, 

the model correctly predicted the 87 instances, with only 8 

false positives, which demonstrates the capability to 

effectively identify this class with minimal misclassification. 

On the other hand, for Class 1, the model identified 87 

instances correctly but showed a slightly higher error rate with  

22 false negatives. The loss analysis for the training and 

validation cycles revealed the stable learning dynamics. The 

training loss steadily decreased, showing the model’s 

capability to learn from the data effectively. The validation 

loss plateaued after a certain number of epochs, indicating the 

model reached its optimal performance without overfitting. 

The application of early stopping at epoch 23 helped maintain 

the balance between training and validation that ensures the 

model’s generalizability. 

 
Fig. 4 Validation accuracy over epochs graph 

The validation accuracy curve follows an upward trend 

over successive epochs that stabilize at approximately 87%. 

This reflects the model’s consistency and capability in order 

to generalize well to unseen data. However, minor fluctuations 

toward the end suggest that further tuning the hyperparameters 

or model architecture is beneficial in enhancing stability and 

performance. 

The proposed study was compared with the prominent 

work in the field of this particular domain, as shown in Table 

1, including Naresh (2024) [31], which focused on privacy-

preserving ML and research on blockchain-based security for 

IoT. The work focused more on balancing computational 

efficiency and security, which achieved an accuracy of 

80.48%, which aligns closely with this study’s accuracy of 

87%. However, the AES-256 implementation presented here 

stands out for its lightweight efficiency in securing datasets 

while maintaining high compatibility with ML models.  

Table 1. Comparative analysis based on traditional approaches 

Study Encryption Method Model Type Key Focus Accuracy (%) Remarks 

 

Naresh (2024)  

[31] 

Homomorphic 

Encryption 

Privacy-preserving 

ML 

Credit Risk  

Prediction 
80.48 

Incorporates homomorphic 

encryption for privacy 

management 

Propose 
ML-based  

AES-256 

Neural Network 

(NN) 

Secure machine 

learning dataset 

implementation 

87 

Demonstrates a lightweight, 

efficient approach with high 

compatibility 

6. Conclusion 
This study demonstrates the effective implementation of 

the ML-based model for the classification tasks that achieves 

an 87% accuracy. The results further validate the ability of the 

model to handle the complex datasets,enced by the balanced 

performance in both the phasning and the phases. The analysis 
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of training and the validation losses revealed that a steady 

improvement is seen in minimizing overfitting, which further 

highlights the stability of the proposed architecture. 

Furthermore, the confusion matrix provided in this study 

provides more valuable insights into the classification 

accuracy across different categories that showcase the model's 

robustness and reliability. Despite the promising results with  

this study, it remains an opportunity for further enhancements, 

particularly in reducing the misclassification rates and in order 

to optimize the architecture for improved generalization.  

Future research focuses on exploring the integration with  

advanced techniques like regularization, hyperparameter 

tuning, and ensemble methods to refine the model’s accuracy 

and adaptability.  

Overall, this work contributes to advancing NN-based 

solutions for classification problems and lays the foundation 

for further exploration and optimization in this domain.
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