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Abstract - Glaucoma leads to an unequivocal, irreversible blindness all over the world. In 2020, there were an estimated 80 

million glaucoma cases. Complex screening methods and a lack of human resources create delays that are contributing to global 

vision loss. An automatic, efficient system for the detection of the affected area of glaucoma should be designed, which will 

overcome the drawbacks of manual methods. Most existing machine learning algorithms are primarily used as a prediction tool, 

which makes it difficult for doctors, patients, and other practitioners in the medical field to understand how the data is processed 

for analysis and decision-making. In this article, a CNN-based Retinex framework with a colour correction method is developed 

to overcome these issues. The proposed method combines the CNN and general loss function and color correction for improving 

the appearance of fundus images to restore the original colors and remove the illumination effects. Methods: This method uses 

statistical tests in dataset preprocessing. The framework is presented with concrete diagrams and mathematical notation, which 

will lead to reproducible results. The framework developed here, in conjunction of demonstration, may be expanded to automated 

diagnostic tools for glaucoma for use in clinical practice. 
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1. Introduction 
Glaucoma is an incurable eye condition that can only be 

delayed by medication and surgical therapies. Existing glau-

coma detection methods are unreliable. Manual glaucoma 

identification (i.e., optic nerve head assessment) is subjective, 

costly, time-consuming, and physician competence varies 

widely. Several automated glaucoma detection processes us-

ing color fundus images have been developed. At present, the 

methods that are currently used to detect glaucoma do not re-

liably produce results that are sufficient. Manual glaucoma 

identification, also known as an examination of the optic nerve 

head, is a  subjective process that is also an expensive and time-

consuming process. Additionally, there is a  significant amount 

of variation in physician performance. Glaucoma screening 

from fundus images is challenging due to illumination/color 

variations among fundus images and the early stage of the dis-

ease. This decreases separability and results in overestimating 

false positives in the classical CNN pipeline. The aim of this 

paper is to fill this gap by combining “color augmentation” 

implemented with Retinex-based illumination normalization, 

to explicitly color Enhancement before learning, and by statis-

tics-based ROI selection to a compact CNN trained with gen-

eralized cross-focal loss, which can address class imbalance. 

This ordering renders inputs stable, bringing out clinically rel-

evant regions and sharpening decision boundaries. Unlike the 

previous Pipeline, which lacks illumination correction or low-

level CNNs that misclassify early cases, our Pipeline com-

bines the Retinex and ROI in a pre-CNN stage and validates 

each module by ablations (policies 1-4), quantitative hypoth-

esis testing and rigor.  

This paper also observes improvements in sensitivity, 

specificity, and Accuracy when both channels and regions of 

interest are utilized, and the full model outperforms the base-

lines in recall, Precision, Accuracy, and mAP@0. 75. In this 

paper, place these options in recent literature, and surface da-

taset scale/splits to support comparisons. In prior work, re-

searchers revealed that a  number of automated procedures for 

the diagnosis of glaucoma based on color fundus pictures are 

being considered for the role. Work done since 2002 includes 

[1-9]. Since 2020, recent work includes [10-15].  

All of the studies on glaucoma detection methods that 

have been listed above are based on machine learning tech-

niques. Some of them use color fundus images as input data. 

Data categorization and data  transformation are the two main 

phases in these processes. When the source data  are colour 

fundus pictures, transforming them into transformed data  is 

called data  transformation. The process is called data  classifi-

cation when the binary output is a  diagnosis of glaucoma or a 
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healthy eye. Automatic glaucoma diagnosis has been created 

by [2] using a convolutional neural network and other compo-

nents of DL architecture. As a  deep learning system example, 

CNNs can differentiate glaucoma patterns from non-glaucoma 

patterns to make diagnostic choices. The use of CNNs for au-

tomated diagnosis of eye fundus photographs was shown in 

[3]. The advantages and disadvantages of AI-enabled glau-

coma detection frameworks that use segmented fundus pic-

tures were analyzed and summarized in a review [11]. XAI  

and Interpretable ML (IML) models were created by Kamal et 

al. to assess glaucoma forecasts and outcomes. Kamal et. al 

[14], PDA and the ANFIS are the main technologies used by 

XAI to give credible explanations for glaucoma predictions 

produced using infected and healthy images[14]. 

Automated glaucoma finding using deep learning that ac-

counts for OD and OC localization [16]. To identify glaucoma 

and evaluate visual function using retinal structures, [17], cre-

ated an end-to-end attention-driven 3D deep learning model. 

An attention-based CNN technique for glaucoma diagnosis 

was described in [18, 19]. AG-CNN. Specifically, a  massive 

LAG database was built. [20], created a multi-task CNN that 

segments the OD and the OC from colour fundus images and 

predicts the presence of glaucoma. Image processing and ML 

for organization have been considered for detecting glaucoma 

[21]. 

In [22], the use of a  deep CNN for glaucoma detection 

was reported. This paper presents AT-GICD for classifying 

glaucoma in eye images, using advanced techniques like im-

age segmentation, histogram enhancement, and wavelet en-

ergy features. The approach then leverages ANN to distin-

guish between normal and glaucomatous images. Automated 

glaucoma detection was created by employing structural and 

non-structural characteristics [23]. Automatic glaucoma diag-

nosis was created by [24] using segmentation of the optic disc 

and texture feature extraction. Pre-perimetric glaucoma detec-

tion with automated perimetry employing a DL classifier was 

described in [25]. An automated system for glaucoma identi-

fication using fundus pictures has recently been established 

[10]. The developed framework combines CNN with the gen-

eralized loss function and color-correcting algorithm to im-

prove the results of the fundus photographic technique.  

The basic CNN model that was used to train the network 

demonstrated how straightforward it was in comparison to 

more complex CNNs like Google LeNet and ResNet152. They 

proposed an automated glaucoma detection framework using 

a deep CNN retinex with color correction algorithm. This is 

done by utilizing hyper parameters pooling on the Region of 

Interests (ROIs) from retinex with a new loss function. The 

proposed method also uses a statistical test to preprocess the 

dataset. 

1.1. Strengths 

The Pipeline adjusts for illumination and color shifts prior 

to learning using Retinex-based normalization and colour bal-

ancing before performing ROI extraction and pooling; as such, 

it generates cleaner inputs and fixed-shape regions for the 

CNN that are free from acquisition artifacts and that enhance 

separability. Ablations reveal that allowing RO I and Retinex 

(Policy 4) consistently produces the best performance (e.g., 

Sensitivity ≈0.95-0.97, Specificity ≈0.99, Accuracy ≈0.97-

0.99). It also achieves superior performance over published 

baselines in terms of recall, Precision, Accuracy and 

mAP@0.75 (Table 5), illustrating an external relative 

strength. Factor selections and the final model are additionally 

supported by statistical analysis (effect sizes, T-and P-values). 

1.2. Limitations 

The work also addresses that, albeit with limited availa-

bility, datasets are generally small and standardized bench-

marking is lacking, limiting generalisability and comparability 

between studies and this, in turn, drives the research to wider 

multi-centre validation. While authors have shown that Reti-

nex and colour correction alleviate lighting artifacts, the per-

formance under extreme noise or blur is an open question out-

side of the preprocessing assumptions. Last, although ablation 

maps detail high gains using ROI/Retinex, further device di-

versity and prospective clinical testing would provide further 

assurance of robustness for in-situ deployments. 

Novelties of the proposed model rely on removing color-

ing effects or noises generated from scanning devices, and 

then the prediction was performed over the image. Novelty is 

shown in various tables and figures in the remaining parts of 

this work, which are structured in the following manner. A re-

lated work that has been expanded upon can be found in Sec-

tion II. In Section III, the proposed work is presented, which 

combines Retinex theory with a color correction algorithm 

based on CNN to determine the ideal values for the hyperpa-

rameters. In Section IV, results and discussion are presented, 

which show how well the associated performance worked out. 

The conclusion and the summary are presented in Section V. 

2. Related Work 
This section will offer a complete review of the present 

approaches, which will serve as the basis for discussing the 

following planned work. Deep learning, often known as deep 

neural networks, is a  multi-layered Application of ANN. Deep 

neural networks are another common synonym for deep learn-

ing. In the last several decades, it has earned a reputation as 

one of the most successful tools. It has gained universal recog-

nition in the academic community due to its ability to handle 

vast amounts of data. The fact that it can handle so much in-

formation is a  major factor in this. The use of deeper hidden 

layers has been more popular in recent years because of their 

superior performance over more conventional methods in sev-

eral areas, such as pattern recognition. CNNs are increasingly  

popular deep neural networks. Mathematically speaking, a  

“convolution” is a  linear operation carried out between two 

matrices, and this is where the term gets its name.  
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CNN is comprised of the following four layers: Fully -

connected Layer, Pooling layer, Non-linearity layer, and Con-

volutional Layer. Pooling and non-linearity layers are param-

eter-free, unlike convolutional and fully-connected layers. 

CNN layers are often necessary for training tiny feature detec-

tors based on randomly picked picture patches. Calculating an 

image feature at a  specific location is possible if the feature 

detector is convolved with the image at the location where the 

calculation is to be done [2]. Convolutional neural networks 

are unrivalled when it comes to processing audio, video, and 

speech data. The most significant are the Convolutional, Pool-

ing, and Fully-Connected (FC) layers. 

The work presented by [10] is an automatic DR classifi-

cation system using CNN models with transfer learning, 

achieving 97.72% accuracy on the Kaggle dataset and 97.58% 

accuracy on the MESSIDOR dataset. It is usual practice to uti-

lize a  convolutional layer as the first layer in a convolutional 

network [27]. The initial Layer of a  NN is always a convolu-

tional layer. There may be more convolutional layers or pool-

ing layers after these convolutional layers, but the fully con-

nected Layer is always the very last Layer. Adding more lay-

ers to a CNN increases its complexity, hence its ability to rec-

ognize more and more of a  picture. More complex features are 

highlighted at later stages, whereas basic ones like colors and 

borders are emphasized in the beginning. First, the network 

starts to identify the object’s primary components or shapes as 

it processes the picture input via  the CNN’s layers, and then it 

continues to do so until it recognizes the item for which it was 

trained. 

The convolutional Layer is the brain of a  CNN and is re-

sponsible for the bulk of the network’s processing. The term 

“invisible layer” is often used to describe this one. Data, a  fil-

ter, and a feature map are required for successful operation. 

Here are the components. First, let’s suppose the input is a  col-

our photo with a three-dimensional pixel matrix. Therefore, 

the input will have three dimensions, one for each of the ob-

ject’s height, width, and depth in a  two-dimensional picture. 

A height, breadth, and depth will be provided. They also use a  

feature detector, which traverses the image’s receptive fields 

like a  kernel or a  filter to ascertain whether or not the feature 

is there. In this way, they can determine whether the feature 

exists. The formal term for this process is convolution [28]. 

The two-dimensional weighted array is used to construct 

the feature detector. This array will represent a  segment of the 

picture. The receptive field could be any shape other than a  

standard three-by-three matrix, depending on the filter size. 

The larger the aperture of the filter, the larger the receiving 

field. After the filter is applied to a specific area of the picture, 

a  dot product is used to find the connection between the input 

pixels and the filter [6]. An output array is then used to record 

the outcomes of the dot product computation. Once the kernel 

has covered the whole image, the filter will move forward one 

step, and the process will continue. Feature maps, activation 

maps, or convolved features are terms that describe the final 

result of many dot products taken from the input and the ap-

plied filter. After each convolution operation, a  CNN incorpo-

rates non-linearity into its model by applying a Rectified Lin-

ear Unit (ReLU) to the feature map. The end result is a  more 

intricate model. 

2.1. Pooling Layer 

Dimensionality Reduction By Pooling Layers. Another 

dimensionality reduction tool is pooling layers, sometimes 

called down-sampling. Using this strategy, we are able to re-

duce the overall number of parameters required. Like the con-

volution layer, the pooling operation takes a filter passed over 

the entire input, but the filter has no weights [28]. When in 

use, this filter is reminiscent of a  convolutional layer. As a re-

placement, the kernel performs an aggregation function on the 

receptive field information to generate the output array. This 

means that the input array is not used directly by the kernel. 

As a  concept, pooling may be broken down into two distinct 

types. It does this by repeatedly sliding the filter (max pooling) 

over the input, and selecting a  pixel with the maximum value 

to pass to an output array. This process is called “travelling 

across the input” in computing jargon. This takes place as the 

process advances across the input. As an aside, this procedure 

is used more often than the technique of average pooling. 

Keeping this in mind, they shall proceed to the next statement. 

The filer moves over the input, calculates the average value 

within the receptive area and outputs it to the output array. The 

author can then further process this value. This is referred to 

as average pooling. 

2.2. Fully-Connected Layer 

The Layer’s name, which is entirely related to all other 

layers, accurately describes the Layer itself. As mentioned 

above, the input picture’s pixel values do not directly correlate 

with the output layer’s values for pictures with only minimal 

connections between their layers. On the other hand, a  fully 

linked output layer has direct connections between every node 

in the Layer below it. And so it is with the completely linked 

Layer. 

This Layer is responsible for carrying out the classifica-

tion process by using the attributes gathered from the previous 

layers and the filters that were unique to each of those layers. 

FC layers often utilize a  softmax activation function, which 

provides a  probability range of 0 to 1, to correctly classify in-

puts instead of the inclination [2]. DM as USD Deep learning 

has manifested strongly in both glaucoma diagnosis input mo-

dalities, fundus and OCT (sens/spec: 0.92/0.93 and 0.90/ 0.87; 

AUROC 0.90 and 0.86), though progression prediction is less 

strong and requires multimodal real-world validation [32]. A 

PRISMA-ScR bibliometric map of 3,581 articles reveals ac-

celerating ML activity in fundus imaging and risk factors; mo-

mentum towards multimodal fusion and LLM-supported 

workflows [33]. Focused reviews report ≈93% diagnostic ac-
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curacy but underpin the need for data  diversity, standardiza-

tion and explainability toward the clinical adoption [36]. In 

addition to images, the ERG-based SVM/CNN pipelines may 

facilitate signal-level detection, awaiting rigorous cross-de-

vice validation [35].  

Nationwide screening analysis from Kazakhstan shows 

that tonometry-based programs are predominant, the inci-

dence has increased, and there are cost/inequity concerns with 

potential to drive protocol and funding reforms [36]. Features 

such as OCT/OCTA/MRI derived with AI are facilitating bet-

ter structural–vascular evaluations, but require reproducible 

cross-platform benchmarks [37]. Vision-language models 

(GPT-4V) demonstrate consistent feature-grading but are be-

hind experts overall, indicating adjunct, not independent use 

until fine-tuned and for calibrated outputs [38]. Manually ex-

amining the optic nerve head is subjective, expensive, time-

consuming, and varies with the examiner’s skill, making it dif-

ficult to scale up for screening. Most automated ML pipelines 

on fundus images are unreliable and are often used as a  black 

box predictor that cannot explain to the clinician or the pa-

tients how its predictions are being made, leading to a  poor 

confidence in its use and acceptance. 

Furthermore, existing methods (including recent work on 

SPL) often neglect acquisition-dependent illumination and 

color variations, which compromise separability of early 

signs; our ablations demonstrate that our model degrades sig-

nificantly without Retinex and ROI (Policies 1–2 vs. Policy 4) 

in sensitivity, specificity and Accuracy, as this is a  general fra-

gility across existing pipelines. Last, noisy or saturated real-

world images even degrade robustness, but explicit colour cor-

rection/Retinex contributes to recovering informative struc-

ture. These deficiencies drive our pre-CNN normalization, fol-

lowed by ROI design and the relative experiments, which are 

accordingly shown in this paper. 

3. Proposed Work 
In this project, they use DL to solve the problem of glau-

coma detection. In previous research, a  low-level CNN was 

combined with the retinex algorithm and statistical tests, 

which caused more false positives and prevented the detection 

of glaucoma in its early stages. Since there was a  need for a  

solution to this problem, they introduced a colour correction 

algorithm with retinex that handled the colour differences be-

tween the earlier and later stages of the disease. Figure 1 pro-

vides the architecture of the proposed work. Initially, the da-

tasets pass into the preprocessing section, where images are 

filtered and augmented, then into the retinex section, which  

removes artificial parts from images and makes them original. 

This artificial part is the saturation and contrast that the image-

capturing device adds. After cleaning the image region of in-

terest, the irregularity-removed images are passed into the 

deep convolutional neural network to perform detection over 

images with defined parameters and return whether the image 

contains glaucoma. 

The proposed work’s high-level overview is defined in 

Figure 1, which not only shows the place for the modeling in 

the Pipeline but also explains the way the dataset moves in the 

complete system, as it is observable that the dataset is filtered 

out in the initial stages so that color correction algorithm 

works upon it which makes feature extraction faster and more 

detailed features were extracted on these features resting is 

performed and images were converted into constant sizes then 

passed into convolution which predicts regions were glau-

coma resides in the scans.  

Figure 2 provides a  visual representation of the basic 

structure of the suggested method. This is comprised of three 

primary components. Part 1 and Part 3 will be discussed first. 

The findings of Part 1 indicate that 899 out of a  total of 1450 

fundus pictures had glaucomatous signs. The Taiwanese hos-

pital Kaohsiung Chang Gung Memorial (KCGM) was respon-

sible for the donation of 551 organs, all of which were in out-

standing condition. The proportional proportions of each set 

used for training, validation, and testing were fifty percent 

(20%), twenty percent (30%), and thirty percent (30%). 

Samples were preprocessed with transformations and the 

decoloring algorithm to enhance the region of glaucoma in the 

image. This makes the modeling process simple and generates 

good results over unknown image samples. The efficiency of 

the proposed model not only relies on CNN, as the model 

Pipeline itself was trained in a  manner that is not able to effec-

tively reduce overhead during training, but also in prepro-

cessing steps, as without the proper required data  input, model 

performance will not be decided,the proposed model effec-

tively packed with color correction, and CNN in which CNN 

is working upon the features defined over corrected colored 

images by coloring algorithm. 

3.1. Block, Epoch, and Batch 

They will begin by investigating the link between epochs 

and blocks. The system’s intended architecture consists of a  

total of l blocks, where l = 10 blocks. Because the benchmark 

for the training, validation and test sets is always the same 

within each Block, the term “block” refers to Block i, whic h  

ha s h i epochs, where h i<= h a nd i = 1 , 2 , ...l. It wa s determined 

that h = 50 is the maximum number of epochs per Block. Hi 

will equal h if the termination rule was not met. 50% of the 

sample were able to capture all the different variations for 

glaucoma shown scans, and adding more samples makes it 

lead to bias towards a particular pattern, and results might be 

altered, as reducing samples by 50% leads to missing some of 

the important behavior of the dataset, which makes it difficult 

to decide on taking 50% of the samples for training. Figure 2, 

part 3, demonstrates the process of building a block model, 

which the test set will be utilized to output performance statis-

tics at the end of the final epoch of each Block. They then ex-

plored the interplay between epochs and batches. Each epoch 

contained b = 40 batches with m = 40 images in each batch. 
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We employed the nearby Block’s training set to randomly se-

lect each one of the m = 40 images in the batch. Every picture 

in each batch was processed using a pre-CNN technique (Step 

0-4 in CNN, Step 5-8 in Figure 4). Using the amended data, a  

prevalidation model was created. Pre-CNN processing and 

CNN processing on picture collections. A channel represents 

the Colors, and the block size was configured based on the 

coloring algorithm, which avoids making the color intensity 

of the pixel constant as in the original images. If a  block were 

not manipulated, then due to the coloring algorithm, actual in-

tensity values may get changed, and information may be al-

tered from the original format. Figure 3 depicts the prelimi-

nary CNN procedure. The sizes of the image are scaled by us-

ing common scaling and transformation exercises. 2 strides of 

size 3X5 were used to scale the image to the desired results, 

and similarity padding was added to compare. Figure 4 illus-

trates the CNN process phases. Block refers to the mini-

batches and epochs defined as one round from input to output 

and reserve back from output to the input node. This complete 

state is called as one epoch.

 
Fig. 1 Workflow of proposed model 

3.2. Pre-CNN Process 

This section presents an overview of the pre-CNN ap-

proach, which may be summarized as Steps 0 through 4, as 

seen in Figure 3. The numbers after “input and output” indi-

cated the total number of images in proportion to their R, G, 

and B values. Figure 3 @500*700 corresponds to the number 

of row and column pixels, respectively. The number 0 in indi-

cates three R-G-B pictures, each of which has 00 row pixels 

and 70 column pixels, respectively.  
 

Following is the detailed explanation of Steps 0 through 

4, starting with the first:- The term “cortex” was merged with  

“retina” to produce. The eye’s retina is responsible for color 

perception, and the cortex is the brain region that processes the 

information it receives from the retina. Together, these two in-

gredients comprise the phrase “retinex”. Images that are clean 

have had all of their text replaced with pixel 0, which is equiv-

alent to the colour black. A variety of augmentations are 

added. Finally, the statistical test is done to determine ROI. 
 

3.3. Mathematical and Statistical Calculations Over Images 

to Make and Test Hypothesis 

The proposed generalized cross-focal entropy will be em-

ployed as the loss function, denoted by L, for each picture that 

is included in the trainset [22, 10]. 

Algorithm 1: Proposed Pre-CNN Algorithm 

Input:ra wima geda ta set . 

Output:p rep roc e sse dda ta se t . 

1:Forea ch Iin ra n ge (sh ap e .da ta set ): 

2:I←I.cv .rotate (). 

3:I←I.cv .ho rizon ta lS cale (). 

4:I←I.cv . Re mo v e_ Blu rr ( ). 

5:Return I . 

 

Algorithm 1 performs data  preprocessing tasks, as da-

tasets of images may have low variance and noise in them. To 

handle such cases of datasets, this algorithm performs rotation 

over images, which generates the same number of images after 

the rotation.  

 

Then, it performs horizontal scaling on the images, which 

gives a different variety of data  to the training set. Some im-

ages may also contain blurry noise in pixels, creating a hassle 

for the algorithm in the learning process.  

 

Then the algorithm returns images, and now the dataset 

has also increased in size as more samples of the same images 

are available. 

Dataset /Images Filter out images 
Retinax with color 

correction 

Extract regions 

(ROI) 

Detection 
Apply CNN with 

all parameters 

Resize into constant 

size all images 
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Fig. 2 Framework of proposed model 

 
Fig. 3 Framework of a pre-CNN model 

1450 images from Hospital 

Train Set (50%), Validation Set (20%), Test Set (30%) 10 

Blocks, 50 epochs, each with 40 batches  
 

Block 1: using Ith train, validation, and test  

sets hi epochs, 11,2,...,10 

Batch 1, batch size m = 40, from train set Pre-CNN Pro-

cess: Steps 0 – 4 

CNN Process: Steps 5 - 8 

End of this batch: update batch-loss fun. 

 

Validation set 

15th Overfitting? 
 

1th Block model 
 

Test Set 

Performance for Block 1,1=1,2,...... 10 

sensitivity, specificity, and accuracy 

 

Batch 40, batch size m = 40, from train set Pre-CNN 
Process: Steps 0 - 4 

CNN Process: Steps 5-8 

End of this batch: update batch-loss fun. 

 

Yes 
Replicate hy Epochs 

 

No 
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m 

Lfun(ŷ i, yi)=−(1/m)∑(yilog ŷ i+(1−yi)log(1−ŷ i)) (1) 

i=1 

Where yi refers to the true label, ŷI is the predicted 

Results for the Class yi=1; 

 m 

Lfun(ŷ i, yi)=−(1/m)∑(yilog ŷ i) (2) 
i=1 

m 

Lfun(yi, yi
 p) = ∑ (log(cos h(yi

 p − yi))) (3) 

 i=1 

Upon the introduction of a  focusing parameter γ.  

The contribution of simple samples will diminish as the 

concentration of the parameter increases. To further address 

the problem of class imbalance, the idea of attention loss has 

included a weighting component represented by the symbol. 

Consequently, the definition of focus loss may be articulated 

in an alternative manner as:  

m 

Lfun(yi, yi
 p) = ∑((γ −1).|yi −yi

 p |+∑((γ).|yi −yi
 p |) (4) 

i= yi<yi
 pi= yi>=yi

 p 

3.4. CNN Process 

Determining the parameters and hyperparameters inher-

ent to the methodology is the first step in developing a data  

transformation and classification strategy.  

In using CNN specifically, among the first and most im-

portant steps is to set hyperparameter values (e.g., specific val-

ues for each convolution layer, number of hidden layers, and 

number of nodes within each hidden Layer) and parameter 

values (e.g., weights at each hidden Layer) for modeling.  

CNN surpasses all their models in detection tasks, Specif-

ically associated medical imaging as images contain noises 

and specific colored patil space images, in order to extract fea-

tures from the spatial images, CNN performs extraction and 

prediction with higher Accuracy, which makes using CNN in  

this particular case.  

When time complexities are taken into consideration, the 

proposed model outperforms existing ones as editing solutions 

perform various operations like contrast stretching and histo-

gram equalization to enhance images, which adds time over-

heads, but in the proposed color correction step, it reduces this 

overhead and makes it better in terms of time complexities as 

well. Below, you will find the hyperparameter values and a 

detailed explanation of the rules that were actually used. Pre-

determined hyperparameters include the following: 

1 . Kernel matrix:3∗3 

2 . The complete number of blocks is ten 

3 . The complete quantity of epochs is fifty 

4 . The overall sum of batches is forty 

5 . The number of batches: forty 

6 . The rule for terminating the replication for an epoch states 

that it must be stopped if it has been overwritten more 

than 15 times. 

Algorithm 2: Proposed CNN Algorithm 

Input: image dataset.  

Output: constant regions.  

1: The dataset batch was created as D1, D2, and D3.Dn  

2: For each dataset batch D:  

3: Preprocess every image I in D.  

4: OpenCV2.Get_color_cord(I) ← CmI.  

5 : CmI ← R3(CmI).  

6: For each CmI:  

7: Exp(−((CmI)/2x3)2) → ROI.  

8 : For each ROI : 

9: ROI → ROI X 3X3 → ROIC 

The proposed CNN models described in Algorithm 2 

begin with batching the dataset into the data  batch splits. 

These splits are preprocessed by image processing steps, 

which remove noisy images, determine the size of the test, 

train and then augment images. Furthermore, these processed 

images are passed into openCV and get the color cord func-

tion. Thus, it returns the coordinates of color values and 

matches these coordinates with the Histogram of all images to 

perform color matching. Using Equation 1 removes the artifi-

cial light or blurriness, and create images in their origina l 

form. Thereafter, regions from the images are extracted and 

stored in the ROI array. Part of the Pipeline runs as a  back-

ground process, as each region was visualized in every itera-

tion to reduce the overheads, and a single image containing 

various regions that are segmented and further processing was 

performed to avoid visualizing overheads. After that, it per-

forms pooling over these regions at the end to return objects 

in constant shapes from the regions, which are ready to pass 

into a deep convolutional neural network to detect whether 

that particular frame is glaucoma or not. In the last or output 

Layer, the softmax function was used to predict whether a par-

ticular scan was affected or not by glaucoma.  

Figure 4 describes the steps of the proposed CNN model. 

By utilizing low-cost colour fundus photography as the main-

stream approach, the approach is brought closer to population-

level screening as well as tele-ophthalmology, especially in  

resource-constrained environments. Second, the Pipeline is 

now more resilient to scanner variability and demographic 

variability, incorporating both luminance and colour normali-

zation in a Retinex framework, which specifically compen-

sates for scanner-induced artefacts; such robust performance 

is needed not only for mixed fleets of cameras in clinical de-

ployment. 



Upasana Mishra & Jagdish Raikwal / IJETT, 73(9), 100-113, 2025  

107 

Fig. 4 Framework of proposed CNN model 

The ROI, Retinex-based ablation (Policy 4) performs ex-

tremely well in terms of sensitivity/specificity/accuracy 

(≈0.95–0.99), suggesting the device can serve as a  first-pass 

triage tool and help avoid cases that would be missed as false 

negatives or costly false positives. Complementary results in 

head-to-head comparison (Recall 96.6%, Precision 97.5%, 

Accuracy 98.3%, mAP@0 75 97.9%) also reflect clinical re-

liability. This research further notes the immediate application 

relevance to screening workflows, while also recognizing the 

need for broader validation across multiple centres, given the 

historically modest and heterogeneous datasets used in glau-

coma research (1,450 images; 899 glaucomatous; KCGM sub-

set n=551; defined train/val/test splits). 

3.5. Statistical Tests 

This research quantified factor effects on mean perfor-

mance using effect sizes, coefficients, T-values, and P-values 

(Table 1). Factors included image size (A), convolution layers 

(B), number of kernels (C), hidden layers (D), number of 

nodes (E), a  preprocessing toggle (F), and loss parameters (G). 

Several factors (e.g., convolution layers) showed statistically 

significant influence with large |T| and small P, guiding the 

final hyper-parameter choices. Experiments followed a fixed 

design of 10 blocks, each with up to 50 epochs, 40 

batches/epoch, batch size = 40, with an early-stop rule if over-

fitting recurred >15 times; sensitivity, specificity, and Accu-

racy were computed per Block and summarized across abla-

tions.  

3.6. Retinex Integration 

Retinex-based illumination normalization plus color cor-

rection is applied before ROI selection and CNN to remove 

device-induced saturation/contrast artifacts and restore origi-

nal chromaticity. Implementation uses OpenCV color-coordi-

nate extraction and histogram matching; the correction step 

explicitly “removes the artificial light or blurriness,” yielding 

cleaner inputs for feature learning. Ablations confirm its 

value: policies enabling Retinex and ROI deliver the highest  

sensitivity/specificity/accuracy, and Table 4 attributes the sig-

nificant improvements to appending color correction with Ret-

inex. 

4. Experimental Results 
In this part, they will examine the advantages of the pro-

posed method over the alternatives already in use. First, they 

determine the effect size and the associated P-value for the 

mean response. In addition, the efficiency of different loss 

functions for insurance plans like ROI* and Retinex. The 

mean performance and related standard error (a*) are then cal-

culated for the four Policies (ten blocks, two replications, con-

volutional neural network, suggested loss function: a=1, 

=1.5). The recommended strategy and the most recent meth-

odology are used in these computations. The best results and 

their standard errors (a*) for the four policies are then obtained 

using 10 Blocks, 2 Replications, and CNN with the recom-

mended loss functions (A=1,=1.5). 

4.1. Dataset Description  
For the REFUGE (Retinal Fundus Glaucoma Challenge) 

dataset hosted on Grand Challenge, the corpus contains 1,200 

color fundus photographs, split evenly into 400 training, 400 

validation, and 400 test images. Refuge. Grand-challenge 

orgNature Images were captured on two devices—training on 

Zeiss Visucam 500 (≈2124×2056 px) and validation/test on 

https://refuge.grand-challenge.org/Details/?utm_source=chatgpt.com
https://refuge.grand-challenge.org/Details/?utm_source=chatgpt.com
https://www.nature.com/articles/s41598-022-16262-8?utm_source=chatgpt.com
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Canon CR-2 (≈1634×1634 px)—to introduce device variabil-

ity. Nature Class balance is stratified at roughly 10% glauco-

matous (≈120) and 90% non-glaucomatous (≈1080) across 

splits. PMCResearchGate Regarding demographics, pub-

lished descriptions indicate the images are from Chinese sub-

jects, but age/sex breakdowns are not provided in the public 

release materials. 

Glaucoma is one of the most prevalent eye illnesses 

worldwide and one of the main preventable causes of perma-

nent blindness in working-age adults. It employed Colour 

Fundus Photography (CFP), which has the lowest overall cost 

compared to other imaging modalities, to check for retinal ab-

normalities.  

So far, its only contribution to glaucoma research has 

been computing a few associated biomarkers. The vertical 

cup-to-disc ratio is one illustration of this. This is the outcome 

that directly results from the restrictions the strategy imposes. 

Despite their broad usage in medical image analysis, deep 

learning algorithms have not been significantly used in evalu-

ating glaucoma due to the limited quantity of data  presently 

accessible.  

This is because the presently accessible data  sets are quite 

modest in size. Additionally, it is challenging to evaluate dif-

ferent processes in a  way that is consistent throughout since 

there is no standardized benchmarking methodology in place. 

To find solutions to these problems, they established the Ret-

inal Fundus Glaucoma Challenge, often known as REFUGE 

(https://refuge.grand-challenge.org).  

In connection with the MICCAI 2018 conference, the 

challenge was organized. The difficulty could be broken down 

into two main parts: the first was classifying glaucoma, and 

the second was separating the optic disc and cup. These two 

elements were equally difficult. As a part of the REFUGE pro-

ject, they have made a data set including 1200 fundus images, 

ground truth segmentations, and clinical glaucoma labels 

available to the general public. This collection of data  was pro-

duced. This data  collection is available at the most extensive 

time [29]. In addition, they have built an evaluation method-

ology to allow and ensure fairness in the comparison of varied 

models, which would hopefully encourage the development of 

innovative methods within the domain-a total of 12 teams 

qualified to compete in the online challenge.  

This study provides a synopsis of their research proce-

dures and an analysis of the associated findings. In particular, 

they found that two of the teams that finished in first place 

performed better than two human specialists when it came to 

classifying glaucoma cases. In addition, the results of the seg-

mentation were, for the most part, comparable with the ground 

truth annotations. Furthermore, the results produced comple-

mentary outcomes that can be utilized to a  greater extent by 

assembling the findings.  

4.2. Performance Evaluation 

4.2.1. Sensitivity/Specificity  

To compute the sensitivity and specificity of the RULES 

configuration that is being investigated using an assessment 

methodology developed from an earlier article that was pub-

lished [31], and according to the formulae listed below: 

Sensitivity = TP/(TP+FN) (5) 

Specificity = TN/(TN+FP) (6) 

4.2.2. Accuracy 

The metric has been extensively used in assessing the ef-

ficacy of binary classification systems, with the Area Under 

the Curve (AUC) value, corresponding to the area under the 

receiver operating characteristic curve, ranging from 0 to 1. 

The fact that the AUC value is so high is evidence of the ex-

cellent performance of the classifier [11].  

Accuracy  =
TP + TN

TP + TN + FP  + FN
 (7) 

The values successfully predicted are denoted by True 

Positive (TP) and True Negative (TN), respectively. On the 

other hand, False Positives (FP) and False Negatives (FN) are 

examples of events that were misclassified.  

4.3. Results and Discussion 

This sub-section explores and compares four different 

strategies in terms of sensitivity, specificity and Accuracy. 

Policies were given for the entire cross-section range, from 

Policy 1, which applied neither ROI nor retinex, to Policy 4, 

which applied both retinex and ROI. Policies were provided 

for all cross-sections.  

Below is a  summary of the results displayed in the tables.  

1. Table 5 shows various hypotheses testing values in the 

proposed model and in the existing solution. How it  

changes in experiments makes the proposed models work 

better than the existing solution in every parameter effi-

ciency. This is because of the introduction of deep hidden 

layers of 128 layers, which reduces the effects of param-

eters. 

2. Table 2 compares sensitivity, specificity and Accuracy 

values of proposed and existing solutions, which show 

that the proposed solutions significantly produce better 

results due to color correction in the initial steps, which  

makes the decision boundary more separable and the de-

tection task easier for the model to detect glaucoma in it.  

3. Table 3 compares performance on different loss func-

tions, and it shows that adding pooling layers makes func-

tions to reduce the number of false positives and improve 

the values of sensitivity, specificity, and Accuracy on all 

parameters, even though ROI and retinex are absent in  

experiments, it also produces better results.  

https://www.nature.com/articles/s41598-024-55056-y?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC9778370/?utm_source=chatgpt.com
https://www.researchgate.net/figure/Summary-of-the-main-characteristics-of-each-subset-of-the-REFUGE-data-set_tbl2_336371710?utm_source=chatgpt.com
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4. Table 4 explains that appending color correction with ret-

inex makes images more noise-free and reduces cases, 

which increases bias in detection tasks, which makes 

specificity, sensitivity, and Accuracy better than existing 

solutions with significant improvements.  

4.3.1. Illustrative Example  

Figure 5 represents a  preview of the dataset images, then 

shows actual images of glaucoma and presents eye scans. 

  

 
Fig. 5 Dataset Images and Actual Images of Glaucoma 

Figure 6 shows that the coloring algorithm makes images 

saturated, which makes the algorithm extract important fea-

tures easily and find regions of interest faster than the original 

images.  

 

 
Fig. 6 Images using the coloring algorithm 

4.3.2. Tensorboard Graphs 

Figures 7, and 8 show the graph of the relationship be-

tween decreasing loss values with respect to epochs during 

training. In each loss curve, the X-axis represents epochs and 

the Y-axis represents particular losses. Optimization for layer-

level Adam was used. For handling overfitting, Dropout layers 

were taken into consideration. To make the gradients converge 

at the best point, learning rates were passed into a set of 

[0.01,0.15,0.1] from which 0.15 gives higher scores and d con-

sidered for the final Pipeline. 

- Loss curve: The loss values are consistently decreasing, 

indicating that the model obtains its optimum weight val-

ues until the last backwards propagation.  

- Accuracy per epoch: The Below curve shows that even 

though Val and train loss find global values for weights, 

each region also has their own local optimum values for 

weights in each epoch, which causes fluctuations in Ac-

curacy per epoch. 

4.3.3. Model Graphs 

Figure 9 shows the graphical representation of the model 

trained with transferred learning of existing and building new 

pipelines with add-on tasks. 

4.3.4. Comparison Result  

Table 5 shows the comparison analysis of performance 

metrics for the glaucoma detection models. The models cho-

sen for comparison are vested in class for detection purposes.  

 
Fig. 7 Loss curve 

 
Fig. 8 Accuracy per epoch 
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Fig. 9 Model evaluation 

The proposed model surpasses the performance, gener-

ates a  score that shows significant improvement over the 

benchmarking models, and generates results even on images 

with noisy pixels. Across five published baselines, perfor-

mance spans Recall 56.4–74.9%, Precision 60.0–73.4%, Ac-

curacy 65.3–69.8%, and mAP@0.75 78.0–88.0%. The Pro-

posed model markedly exceeds these ranges, achieving 96.6% 

Recall, 97.5% Precision, 98.3% Accuracy, and 97.9% 

mAP@0.75. Versus the best prior results, absolute gains are 

+21.7 pp Recall (96.6 vs 74.9), +24.1 pp Precision (97.5 vs 

73.4), +28.5 pp Accuracy (98.3 vs 69.8), and +9.9 pp 

mAP@0.75 (97.9 vs 88.0). Relative to the average baseline, 

improvements are similarly large: +31.06 pp Recall, +30.38 

pp Precision, +30.5 pp Accuracy, and +15.06 pp mAP@0.75.  

These margins indicate stronger detection and better cal-

ibration at stricter IoU (0.75), supporting the method’s robust-

ness and practical screening value. 
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Table 1. Effect and P-values W.R.T. mean response 

 Effect 
Proposed 

Effect 
Coefficient 

Proposed 

Coefficient 
T-value 

Proposed 

T-value 
P-Value 

Proposed 

P-value 

A (Image size) -0.0313 -0.00012 -0.0156 0.000034 -1.06 0.01 0.303 0.19 

B (Conv.Layers) -0.1313 0.001 -0.0657 0.02 -4.47 0.0007 0 0 

C (no.Kernel) 0.0178 0.00034 0.0089 0.01 0.6 0.11 0.554 0.21 

D (HiddenLayers) -0.0776 0.00051 -0.0388 0.0013 -2.64 1.91 0.018 0.00096 

E (no.nodes) -0.0028 -0.0001 -0.0014 0.00051 -0.09 0.00089 0.926 0.164 

F (dclctcorfill) -0.1316 0.00008 -0.0657 0.00001 -4.48 0.0041 0 0 

G (ParaA,binloss -0.0706 0.01231 -0.0353 0.0012 -2.4 0.00061 0.029 0.00012 
 

Table 2. Performance among various loss functions for policy (Roi* + Retinex) 

Loss Function 

Mean (9*) 

Sensitivity 
Proposed  

Sensitivity 
Specificity 

Proposed 

Specificity 
Accuracy 

Proposed 

Accuracy 

Proposed (a=1,b=1.5) 0.95(0.03) 0.98(0.01) 0.98(0.03) 0.99(0.03) 0.97(0.01) 0.99(0.03) 

Foca lLoss (a=1,b=1) 0.93(0.05) 0.99(0.03) 0.92(0.05) 0.95(0.02) 0.92(0.04) 0.96(0.05) 

Cross Entropy (a=1,b=1) 0.91(0.03) 0.95(0.01) 0.93(0.05) 0.97(0.01) 0.92(0.03) 0.99(0.03) 

MSE 0.92(0.03) 0.97(0.03) 0.93(0.05) 0.98(0.03) 0.93(0.03) 0.99(0.03) 
 

Table 3. Mean performance and its standard error (A*) for the four policies: 10 blocks, 2 replications, CNN with the proposed loss  
function (A=1,=1.5) 

Policy ROI* Retinex 

Mean (a*) 

Sensitivity 
Proposed  

Sensitivity 
Specificity 

Proposed  

Specificity 
Accuracy 

Proposed  

Accuracy 

1 NO NO 0.72(0.13) 0.83(0.03) 0.63(0.23) 0.70(0.03) 0.69(0.21) 0.79(0.20) 

2 YES NO 0.80(0.12) 0.89(0.32) 0.72(0.13) 0.79(0.03) 0.78(0.13) 0.83(0.23) 

3 NO YES 0.90(0.04) 0.98(0.14) 0.96(0.05) 0.99(0.15) 0.91(0.05) 0.97(0.15) 

4 YES YES 0.95(0.03) 0.99(0.003) 0.98(0.03) 0.99(0.13) 0.97(0.01) 0.99(0.11) 
 

Table 4. Optimal performance and its standard error (A*) for the four policies: 10 blocks, 2 replications, CNN with the proposed loss func-

tions (A=1,= A=1.5) 

Policy ROI* Retinex 

Mean (a*) 

Sensitivity 
Proposed  

Sensitivity 
Specificity 

Proposed  

Specificity 
Accuracy 

Proposed  

Accuracy 

1 NO NO 0.92(0.1) 0.97(0.01) 0.73(0.11) 0.93(0.1) 0.77(0.1) 0.87(0.20) 

2 YES NO 0.90(0.1) 0.93(0.21) 0.69(0.1) 0.95(0.1) 0.80(0.1) 0.81(0.01) 

3 NO YES 0.97(0.04) 0.99(0.04) 0.99(0.15) 0.99(0.05) 0.97(0.05) 0.99(0.01) 

4 YES YES 0.97(0.03) 0.99(0.13) 0.99(0.03) 0.99(0.03) 0.98(0.01) 0.99(0.03) 
 

Table 5. Comparing proposed method with existing algorithms 

Model Recall (%) Precision (%) Accuracy (%) mAp75 (%) 

De [3] 74.9 73.4 69.8 88 

Li [8] 74.1 71.5 69.2 84.2 

M.P. Karthikeyan [22] 63.3 64.2 66.2 83 

Albawi [26] 56.4 60 65.3 78 

Chen [2] 59 66.5 68.5 81 

Proposed 96.6 97.5 98.3 97.9 

5. Conclusion 
In this work, they solve the problem of glaucoma detec-

tion using deep learning. In previous works, a  low-level CNN 

is used with the retinex algorithm and statistical tests, resulting 

in false positives and an inability to detect glaucoma in its 

early stages because the colour of the scan in the earlier phase 

differs from that in the mature phase. This is why they intro-

duced the colour correction algorithm with retinex, which han-

dles the colour and male models to detect glaucoma even in its 

early stages. Another issue is that existing solutions generate 

false positives, which is wrong in terms of health issues. For 

example, if a  person has died, then the model does not predict 

https://link.springer.com/article/10.1007/s41870-023-01313-8#auth-M__P_-Karthikeyan-Aff1
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it. These cases are dangerous in some scenarios, which is why 

there is a  sudden need to reduce false positives by adding more 

hidden layers. The time taken for the modeling process is in 

the form of O(Log2NxN×2N), where classification tasks and 

preprocessing take the major chunks of the timelines and make 

the modeling heavier in terms of time.  

Optimization was avoided in the preprocessing phase as 

it generates image pixels that create fake illusions in images, 

which affects the detection capability of the CNN models.  

That is why only Adam is used for optimization on net-

work layers and not in any preprocessing and post-processing 

sections. This work pipeline suits population screening and 

tele-ophthalmology, using low-cost fundus images with Reti-

nex normalization to handle device variability. Clinically, it 

supports early-detection triage and referral prioritization. Fu-

ture work includes multi-centre, cross-device validation with 

demographics, multimodal fusion with OCT, prospective de-

ployment studies, and threshold calibration balancing sensi-

tivity, specificity, and workload constraints. 
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